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Several ways of using the traditional analysis of variance to test heterogeneity of spread in
factorial designs with equal or unequal n are compared using both theoretical and Monte Carlo
results, Two types of spread variables, (1) the jackknife pseudovalues of 5* and (2) the absolute
deviations from the cell median, are shown to be robust and relatively powerful. These variables
seem to be generally superior to the Z-variance and Box-Scheffé procedures.
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Recently several procedures have been suggested for testing homogeneity of variance
hypotheses in factorial designs. Overall and Woodward [1974] introduced the Z-variance
test; Levy [1975] suggested extending the Box-Scheffé method to factorial designs. Martin
[1976] criticized Levy’s use of subgroup sizes and suggested some other alternatives. Much
earlier, Zelen [1959, 1960] developed a set of likelihood ratio tests which are two-way
generalizations of Bartlett’s test for homogeneity of variance in the one-way design. For
normally distributed data, it appears that the Z-variance and Zelen procedures are more
powerful than the Box-Scheffé test. However, the Box-Scheffé is quite robust to the
distributional form of the data, while the Z-variance and Zelen procedures are overly
sensitive to nonnormal data. In this paper, alternatives to these procedures are investi-
gated and it is argued that two of these other methods are quite robust and yet more
powerful than the Box-Scheffé. This argument is based on both theoretical and Monte
Carlo results,

The basic procedure examined here uses estimates of each independent group’s
(cell’s) “spread” (a more general term than ““variance™) as the dependent measure in a
normal theory fixed effects least squares analysis of variance, The statistical designs for
such analyses would be identical to those used for an ANOVA means analysis: Only the
dependent variable is changed. The Box-Scheffé method is simply one way to generate
those **spread variables.” The alternative measures studied here are (1) a modification of
Levene’s [1960] z2 (or 5) variable, (2) the jackknife pseudovalues of log s%, (3) the jackknife
pseudovalues of 5%, and (4) Brown and Forsythe’s [1974] W50 variable. Many other spread
variables have appeared in the literature, but are not considered here. Those that are
considered have been successful in Monte Carlo studies limited to the 2-group or k-group
cases and/or they have been shown to have favorable distributional properties. Discussion
of unincluded spread variables is necessarily limited.

The Properties of the Spread Variables

The discussion here is limited to the two-way (I X J) design with population variances
¢}, and sample sizes n,;. Because each of the spread variables is to be used as a dependent
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variable in a traditional ANOVA, it is necessary to investigate the properties of these
spread variables—especially their expected value, variance, intraclass correlation and
distributional form. Once it is known how these properties are affected by changes in o},
ny, and the distributional form of the raw data, then the existing theory of the least
squares ANOVA can be used to infer how these variables might perform as ANOVA
dependent measures. These theoretical inferences are limited, however, by the fact that
these properties can only be investigated individually rather than jointly. For example, the
effect of intraclass correlations among the spread observations is assessed as if the other
properties conformed to the regular ANOVA assumptions of normality and homo-
scedasticity. The consequences of joint ANOVA assumption violations have received so
little attention in the literature that such considerations are not feasible for the present
problem. Therefore, the development below assumes that there are no *““crossover inter-
action” type effects among the particular violations that are encountered. A large Monte
Carlo study (described later) is used to provide some check on these inferences. The
ANOVA theory is reviewed as needed.

The Log s* Variable

The log s (Box-Scheffé) variable is formed by partitioning the raw observations into
mutually exclusive subgroups within each cell and then taking the logarithm (any base) of
the unbiased sample variance of each subgroup. The log s* observations are independent
given that the raw observations are independent. Monte Carlo work with balanced one-
way designs has demonstrated that this test produces reasonable Type I error rates, P{ET],
under a variety of parent distributions, but lacks power [Levy, 1975; Games, Winkler, &
Probert, 1972; Layard, 1973; Miller, 1968].

Using a Taylor series expansion to approximate the mean and variance of a function
of random variables [Kendall & Stuart, 1969, p. 231}, it can be shown that

(1) &llog shx] = log o%) — (myr — 1) — 2ymizk + o(mijk)
(2) Var[log sij] = 2(mye — D7 + ymizi + o(miz)

where m,;, is the subset size, v is the standardized kurtosis of the parent distribution, and
o(mg;}) is a remainder term of order less than myj;.

If all subset sizes are the same in all cells, artificial differences in &[log s%;,] and Var
[log 52,,] are not introduced. Unequal subset sizes can produce artificial differences among
the cell means for log s%;, and also heterogeneity of variance: Both can affect P[E]]. While
some authors have recognized the problems with Var[log s%,.], the bias problem has been
largely ignored. Gartside [1972] studied a weighted type analysis for unequal m;,, but his
results indicated that this test is even less powerful and may aiso produce larger P{EI] with
increases in the number of cells—a potential problem with even moderately sized factorial
designs.

For equal subset sizes (m;;, = m) in balanced designs, Martin [1976] thoroughly
reviewed the problems involved in selecting the value of m that properly balances the
tradeoff between Var[log s%;,] and the number of spread observations produced. He
recommended finding an m that is close to the square root of n and, hopefully, that is an
even divisor of n.

Finally, the most troubling aspect of this procedure is that the test does not yield
unique results for a given set of data because of the arbitrariness of the subgroupings.

The z* Variable
Levene [1960] proposed the spread variable

3 Zie = Pur — Ji)*
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Since

4 8lzipw] = (ny — 1) ~L s
however, we shall consider the spread variable

) 1y, = Tullur Z Ju)
Ny — 1

which has an expected value of ;. In fact, the sample mean of the %,

(6) Z z%jk - Z (yuk yu) =,
r Ny ®
which is an excellent property since the between group effects are then computed directly
from the unbiased sample variances.
Levene gave the variance and intraclass correlation of z3,,, and these results can be
modified to give

2 .
(7) Var[zuk] - 0'1}[2 + (ntj 23’11/ + 3)7:]
niy — Ny

2”1/ + (2”[} - 3)7
2n(ny; — 1% + (ny; — 1)y — 3n; + 3)y

Values for the intraclass correlation and variance of 7%, have been computed for various v
and n;; and are given in Tables [ and 2.

The patterns of variances suggest that unbalanced designs with platykurtic (v < 0)
parent distributions may tend to exhibit larger P[ET] relative to balanced designs, because
the larger cells will have the smaller variances [Glass, Peckham, & Sanders, 1972]. The
opposite effect occurs for leptokurtic distributions.

Applying results given by Walsh [1947] and Basu, Odell, and Lewis [1974], it can be
shown that if a dependent variable, say v, satisfies all the usual ANOVA assumptions
except that there exists an intraclass correlation, p, then

) 8[ H (v — ﬁt;)z] _ (1 — p)Var[s,)]

=y — Dny 1 —p+pny
Thus, for p > 0, this usual estimate of the variance of the mean will tend to be too small
regardless of the cell size. If H, is true and the design is balanced, the usual F-statistic, Fp)
= MSy/MSwq, still has an F-distribution except for a scalar multiple adjustment, i.e.

U= p)F()
(10) T==LL] ~ R, dfw).

If F(dfy, dfwe) is used as the sampling distribution of F(p), then P[EI] > o forp > 0.1f p <
0, the variance of the mean tends to be overestimated and P[EI] < «.

Using (10), it is straightforward to assess the effect of the intraclass correlation of 72
on the balanced ANOVA. P[EI] results have been computed for the 4 effect test in the 2 X
2 and 4 X 3 designs with various v and n (Table 3). These results demonstrate the tendency
for p[7?] to moderately inflate P[EI] for n < 12. For example, with n = 8§ and v = 6 the
P[ET} values are .084 and .118 for the 2 X 2 and 4 X 3 designs respectively. For n = 16,
however, these values sharply decrease to .065 and .073. It can also be seen that the larger
design is considerably more affected. Although these calculations are based specifically on
balanced designs, the intraclass correlation should similarly affect unbalanced designs:
Equation (9) clearly shows that (under H,) §[MSy ] will be generally less than §[MSy].

(8) plZin] =
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TABLE 1

Intraclass Correlation of Spread Variables as a Function
of Cell Size and Parent Distribution.

Cell Sige
Parent Y 8 12 16 20 24
Uniform {y=-1.2)
52 #.043  +.,001 -.001 =-.001 ~.001 ~.001
q -.135 -.034k -.015 -.009 -.006 ~-.004
D -.126 -.060 =-.028 ~.016 -.010 -.006
W50 -.0bk  -,035 =-.020 -.013 =-.010 -,007
Normal (y=0)
3° 111 .020 .008 .00k .003 .002
aQ -.090 -.018 -,008 -.004 -,003 -.002
P -.101 -.023 -.013 ~-.007 -.006 -.003
W50 -.012 -.010 -.006 -,005 -.005 -.003
Expontl (y=6)
32 .192 .03  .015  .008  .005  .003
q -.03% -,006 -.002 ~.001 -.001 =-.000
b -.003 +.022 4,015 +.010 +.007 +.00%
W50 +.012 -.004 -,005 -.002 -.001 +.000

Note: Values for p and W50 are Monte Carlo estimates based on 1000

trials.

The kurtosis of the 7 variable was estimated for various values of v and n;; using a
simple Monte Carlo analysis. (See O’Brien, 1975, p. 23 for a description of the procedure.)
These resuits are exemplified by the n;; = 12 cases. For a uniform parent (y = —1.2) the
kurtosis of z%,, was estimated at 1.0; for the normal (y = 0) it was 12.2; and the
exponential (y = 6) produced an extremely large value of 139.2. It should be noted that
with a normal parent, (¢ — u)*/¢? is a chi-square random variable which has a known
kurtosis of 12. Thus, the kurtosis of 7%, is asymptotically 12 with a normal parent.

Box and Andersen [1955] showed that the usual one-way ANOVA F-statistic is
distributed approximately as F[6(dfx), 6(dfwc)] where

_ na _2
(11) 5—1+N+0(N ).
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Here N = Dlw and O(N %) is a term of order N~2. When v is large P[EI] will decrease.
Thus, the high kurtosis of 22 should tend to counterbalance the effects of intraclass
correlation. As the size of the design increases, however, the effects from the kurtosis of £2
will diminish and the effects from intraclass correlation will dominate, thereby producing
inflated P[EI] values.

The p Variable

Mosteller and Tukey [1968] and Miller [1968] introduced the jackknife technique for
use in the study of variances. Miller used the jackknife pseudovalues

(12) pur = iy log st — (ny; — 1) log sij_

TABLE 2

Variance of Spread Variables as a Function
of Cell Size and Parent Distribution. 0$ = L,

Cell Size

Parent L 8 12 16 20 24

Uniform (Y=-1.2)

22 20.8  17.3  15.8  15.1  1L.7  1k.k
q 39.5 22.7 18.9 17.3 16.3 15.7
P 7.3 2.2 1.5 1.3 1.2 1.1
W50 1.3 1.4 1.3 1.2 1.2 1.2

Normal (Y=0)

22 32.0 32.0 32.0 32.0 32.0 32.0
a 58.7 L1.9 38.1 36.5 35.5 34.9
) 6.9 3.5 2.8 2.6 2.5 2.4
W50 1.k 1.6 1.6 1.5 1.5 1.5
Expontl (y=6)
32 88.0 105.7 112.7 115.9 118.7 120.2
q 154.7 137.9 13k.1 132.5 131.5 130.1
D 12.7 9.2 8.4 7.9 8.0 7.9
W50 1.9 2.4 2.4 2.k 2.k 2.4

Note: Values for p and W50 are Monte Carlo estimates based on 1000

trials.
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TABLE 3

Effect of Intraclass Correlation of 72 and q Variables
on the Test of A in Two-Way Balanced Designs.

Cell Size
Y 8 12 16 20 2l
2 x 2 Design

Uniform (y=-1.2)

52 .068  .052  ,050  .050  .050  .050

q .011  .025  .032 .03  .038  .039
Normal (Yy=0)

32 .100  .069  .063  .059  .05T  .055

q .021  .036 .04l .043  ,obk 046
Expontl (y=6)

22 .178  .084  .070  .065  .062  .059

q .038 .0k6 LOLT .0k8 .0Lg .0LoY

4 x 3 Design

Uniform (y=~1.2)

72 .081  .053  .050  .050  .050  .050

a .003 .016 .024 .029 .032 .034
Normal (y=0)

72 .1kk .08  .0o71 .06k  .060  .058

a .011  .029  .036  .039 .okl .0k
Expontl (y=6)

22 .2k2  ,118  .083  .0T3  .069  .063

q .032 .0l43 .0L6 .Ok7 .0k48 .0ko

as spread variables, where s, is the unbiased sample variance and s7,_, is the unbiased
sample variance when the £*" observation is deleted from consideration. The sample mean
of the p,;, in the i, j** cell is called the jackknifed estimate of log o%; while the estimator
that is jackknifed is log s%,. It is a well-known property of the jackknife technique [Gray &
Schacany, 1972] that since v

(13) &llog sty] = log o) — (ny — 1)7* — 2yn73j + o(n7%)),
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it follows that

(14)
8[pix] = log 0% + o(n7).

Jackknifing was developed to reduce estimation bias, which it does in this case. However,
p is still biased to order less than n7}, thus its use in unbalanced designs may increase P[ET]
due to the production of artificial differences among the expected values of the spread
means.

The intraclass correlation of the p variables was investigated through Monte Carlo
analysis (Table 1). Those values are negative for both the uniform and normal parents, but
are generally positive (n;; > 8) for the exponential parent. This result explains the Monte
Carlo results in the literature which consistently show conservative P[EI] for uniform and
normal distributions, but inflated P[EI] for the exponential [Miller, 1968; Brown &
Forsythe, 1974; Layard, 1973].

The variance properties of p were also investigated using Monte Carlo methods and
those results are presented in Table 2. The variance decreases as n increases. Thus, both
the heterogeneity of variance and biasedness of p should tend to inflate P[EI] for unequal n
cases. The limited Monte Carlo work on p with unequal n done by Brown and Forsythe
[1974] supports this argument since the unbalanced two-group designs exhibited markedly
increased empirical test sizes for nonnormal parent distributions,

Monte Carlo estimates of the kurtosis of p showed that for the uniform parent, vy[p]
decreases as ny; increases (5.69 for n,; = 12 and 1.02 for n;; = 24). For the normal, y[p] is
stable (averaged about 11). For the exponential, the y[p] increases as n;, increases (31.12
for n;; = 12 and 51.82 for n,, = 24). Thus, the kurtosis of p will, to some extent, tend to
make the ANOVA tests more conservative than otherwise. For the exponential parent,
however, intraclass correlation effects should overwhelm this tendency.

The q Variable
An alternative jackknife pseudovalue
(15) G = Myt — (i — D)sty e

has been basically ignored in the literature although it was briefly considered by Miller
[1968, 1974]. Because

(16) 8lgin] = nyoly — (ny — Doi; = ol),

it may be more appropriate than p for designs with unequal », It is also easier to deal with
theoretically.

Using Equation 7 from Miller [1968], it follows that
n; — ny— )it — %
(n}, 1] i kz,é:kz ik

myny — 1)

which yields some simple computational formulae,

(17 Gue =

nyWue — Pyl — sty _ (ny — Dite — s
18 = Mk i g Uy s 1
( ) ik B — 2 By — 2

It is easily demonstrated that

yy i
(19) 2 =l
k=1 Ny
thus, like 22, the estimates of between group effects can be found directly from the within-
cell variances. Therefore, the between-groups sums of squares based upon 7Z% and ¢ are
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identical. As suggested by an associate editor, the within-group sum of squares using g,

(20) SSW@) = T kZi (@ = s = 2 ;1 L _(mf"z’*): )

Thus SSW(g) will always be greater than SSW(Z?). If the design is balanced,

5 (n— 1)*F(g)
21 F(7%)y = ——*~
(21) (Z*) 2y
Thus, the P{EI] and power will be smaller for g than for 72
Since g, is a linear combination of the 7%,’s, the variance and intraclass correlation
of ¢;;» can be found. Temporarily dropping the i, j subscripts,

{(n* — 2n® — n® + 3n) — (2n® — Sn® + 3n)p[2?]}Var{#?]

(22) Var[gy] = ———— Zn —27
o Gn=2) - 1) + (= D) p[Z]
(23) )= A= T )= e — o+ 3n)p[2]

These equations have been evaluated for various values of n,; and vy and are presented in
Tables 1 and 2. Surprisingly, the intraclass correlation is negative throughout the range
studied, thus making the ANOVA test basically conservative. Like p[#*], plq] is of order
n3} and tends to increase as v increases. Because p[g] is negative, however, the larger y will
tend to make P{EI] closer to «. Using the same logic that was applied to p[#?], the effects of
plg} were calculated for the 2 X 2 and 4 X 3 balanced designs (Table 3). It can be easily
seen that the P[EI] is very conservative for small # and that the larger design is more
affected. Using (9) again, it can be seen that this basic conservativeness should apply to
unbalanced designs as well. However, the variance of g,;, decreases as n;; increases, which
should tend to increase P[EI] for unbalanced designs.
Using (18), it is immediately evident that

(24) lim (g — %) =0.
e

Kendall and Stuart {1969, p. 115] provide the “‘Second Limit Theorem™ which can be used
to show that the moments of g, and 7%, are asymptotically equivalent. Thus in the limit,
each variable has a variance of 64,(2 + ). Also, since 7%, has high kurtosis, so should g,.
Monte Carlo simulation of y[g] revealed it to be of the same magnitude as y[7?] for n,; <
24. Again, this ANOVA violation probably further reduces P{EI] for designs with small
N.

Miller [1974] criticized the g variable because its use in traditional two-tailed ¢-
distribution confidence intervals may at times lead to intervals that include negative values
for ¢%. Of course, the interval may simply be truncated openly at zero (0 < ¢%). This will
not change the confidence level of the interval since only improper values of ¢f are
removed—if the larger interval contains the population ¢%, then so will the truncated
interval.

The W50 Variable
Brown and Forsythe [1974] investigated
(25) W50 = |y — Md,; |

where Md,, is the median of the 7, /*® cell. They found that it possesses excellent robustness
in the balanced and unbalanced two-group designs. The sample mean of the W50 variable
is a common measure of spread, the average absolute deviation [Hays, 1973, p. 243].
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Brown and Forsythe suggested another variable, W10, the absolute deviation about the
10% trimmed mean. Their work suggests that while W10 may be more powerful than W50,
it may also be less robust. Only W30 is examined here.

Little theoretical work has been done regarding the suitability of W50 as an ANOVA
variable. Because of the natural difficulties (absolute values and medians) of dealing with
W30 analytically, it was necessary to use Monte Carlo estimation to investigate its
properties.

The expected value generally increases as a function of n and decreases as a function
of v. For example, with o}, = 4 expected value estimates for n,; = 4 were 1.38, 1.34, and
1.15 for uniform (y = —1.2), normal (v = 0) and exponential (¥ = 6) parents respectively.
Corresponding values for n;; = 24 were 1.65, 1.54, and 1.34, Thus, unbalanced designs
produce artificial differences in the spread means and therefore may give higher P[E]] than
balanced designs. The variances of W50 (Table 1) are generally stable over different n,.

O’Brien [1975] suggested a correction factor for W50,

1/2
(26) Wi = [»’EL—} W50, -
Ry — 1
While the expected values of this variable are stable, it has smaller variances for cells with
larger n,,;, which will also inflate P[EI]. Of course, W has the same intraclass correlation
and kurtosis as W50. The correction factor W was not included in the Monte Carlo study,
although any W50 results for equal n cases apply directly to W.

The intraclass correlation (Table 1) is generally negative indicating that W50, like g,
will produce basically conservative ANOVAs. The kurtosis of W50 for n,, = 12 was
estimated as —.5 for the uniform parent, 1.0 for the normal, and 12.7 for the exponential;
and was quite stable across different ny;.

It should be noted that all these simulations used even sample sizes. Martin [1976]
suggested that W50 is much more conservative (and hence less powerful) with odd n,,’s:
The resulting W50 = 0.0 observations can radically increase the variance of W50. One
obvious solution is to randomly delete an observation, so that n;; is even.

Other Comments

The theory outlined above was used to evaluate the appropriateness of various spread
variables by focusing nearly all attention on the within cell properties of those variables:
the expected value, variance, intraclass correlation and kurtosis and their dependencies on
the cell size and parent distribution. Little attention has been paid to the statistical model
as a whole.

Since ANOVA is an additive model, the use of log ¢% type dependent variables
effectively represents a multiplicative model for ¢%,. Thus log s* and p are variables that
conform to a multiplicative model for the cell variances, while 72 and ¢ conform to an
additive model for the cell variances. The use of W50 produces an additive model for the
average absolute deviation. The distinction between additive and multiplicative models
has not been stressed in past research on tests for homogeneity of variance, because that
work has only focused on the two-group and k-group (one-way) designs. In the case of
two (or more) factors, the distinction becomes important if the researcher wishes to
parsimoniously describe and test the groups’ variances in terms of main effects and
interactions. For example, if the model underlying the variances is multiplicative with no
interactions, i.e.,

2n o, =oclab;, i=1tol, j=1toJ,

then the use of an additive statistical model will detect interaction effects that reflect the
multiplicative model. A similar phenomenon will occur if data from an underlying
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additive model is analyzed with a multiplicative statistical model. For those researchers
who are untroubled by interactions, the use of an additive model may be preferable since it
is most similar to the analysis of variance. It is important that researchers understand that
the three sets of variables (log %, p; 2%, q; and W50) imply different statistical models.
Another point needs to be brought into focus. For every spread variable, greater
parent kurtosis results in greater spread variance. This is the primary reason for the
robustness of these tests. For example, it is well-known [Scheffé, 1959, p. 83] that

2 'y]
28 21 =gt ': A I
( ) Var[S”] Gij ey — 1 + iy

Normal theory tests implicitly use ¥ = 0 and are not robust. If appropriate spread
variables are used in an ANOVA, Var[s?] is estimated from the data and will “*automati-
cally” be properly sensitive to v. For example, the asymptotic variance of both 73, and g,
is 042 + v). Because both their intraclass correlations are asymptotically 0, the variance
of the spread means, 7%, and g, will be (in the limit) properly estimated by 4,2 + v)/n;.
This relationship between parent kurtosis and spread variance also implies that even a
“perfect” spread variable (unbiased, no intraclass correlation, stable variance over n,
normally distributed) will become less powerful as the parent kurtosis increases.

The Monte Carlo Simulation

In order to supplement and test the theoretical development, an extensive Monte
Carlo simulation of these tests was conducted. The results of this study demonstrate and
validate the conclusions made above. In addition, the powers of the tests are estimated and
compared.

In addition to using the five ANOVA variables (log 52, p, 7%, ¢, W50), Zelen’s {1959,
1960] likelihood ratio tests of A, B, and 4B (denoted M,, M; and M, by Zelen) were also
included in order to assess what sacrifices in power may result from using the more robust
procedures, Since Bartlett’s test has been customarily used in past research as a standard
of power for the k-group homogeneity of variance tests, the “two-way Bartlett test”
developed by Zelen seemed to be the best standard for this study. Only balanced designs
could be considered for Zelen’s technique, however, because it has not yet been extended
to unbalanced designs. The Z-variance test was not studied, since it has aiready been
shown to have unacceptable robustness [Overall & Woodward, 1974; Levy, 1975].

The Monte Carlo study was designed to estimate the probability of rejecting the usual
A, B, and 4B hypotheses for a variety of two-way factorial designs. In essence, a factorial
Monte Carlo experiment was designed to study two-way analysis of spread designs. These
two-way designs differed with respect to the dimension of the désign (2 X 2 or 4 X 3), the
type of parent distribution (uniform, normal, exponential), the average cell sizes (12, 24),
the degree of imbalance of the cell sizes (balanced, “moderately” unbalanced, “severely”
unbalanced), the type of underlying model for the cell variances (null, one main effect, two
additive main effects, two multiplicative main effects, interaction effect). These nonnull
models were varied with respect to their degree of effect (“‘low” and “high”) which were
operationally defined in order to obtain a suitable range for the power curves. Each of
these factors was “crossed” with the other factors, except that only balanced designs were
used for the nonnull underlying models. In other words, power was only studied for the
balanced designs. For each unique combination of these factors, an estimate of the
rejection rate was made using 1000 trials, except that in the cases with no underlying
differences among the cell variances (null) 2000 trials were used. With 2000 trials, the
standard error of the Type I error rate estimate is approximately .0048 when the true a-
level is .03. Standard errors for true powers of .1 (or.9), .3(or .7) and .5 for 1000 trials are
.0095, .0145, and .0158 respectively.

Initially, each of the tests was conducted using the nominal .05 critical values. In
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addition, however, the experiment was repeated using empirical .05 critical values that
were obtained by selecting the 100" highest test statistics from each of the null model
designs (100/2000 = .05). Such a standardization allows for power comparisons that are
not contaminated by the initial discrepancies in P[EI]. Techniques with good *‘empirical
power” may provide a good basis for an adjusted test.

Random numbers were generated using the PDP-11 congruential function, RANDU,
which was imbedded in a Marsaglia table scheme [Marsaglia & Bray, 1968]. This U(0, 1)
distribution was initially transformed to either a uniform (y = —1.2), normal (y = 0), or
exponential (y = 6) distribution with locations and scales standardized to §[X] = 0 and
Var[X] = 1. In order to obtain the standardized uniform parent, the linear transformation,
X = (U~ .5)12"%, was used. The Box-Muller normalization was used to generate the N(0,
1) distribution. The transformation X = ~In(U) — 1 produced the (standardized) ex-
ponential distribution, with density, f(X) = exp(—X — 1), =1 < X < «, The cell variances
were then controlled through the transformation Y = ¢,,X. The unbalanced ANOVA tests
were computed using only the “eliminating” tests (4B |4, B; 4 | B; and B | A) as described
by Appelbaum and Cramer [1974].

Results for Type I Error Rates

It would not be practical to detail all of the results of the experiment here, but it is
worthwhile to present the results for a demonstrative case. The null model results for the
4 X 3 design with average cell sizes 7 = 12, are given in Table 4. The cell sizes (m,, nys, . . .,
ns) were 8, 8, 16, 16, 12, 12, 12, 12, 16, 16, 8, 8 for the moderately unbalanced design and
4,4,20,20,12,12,12, 12, 20, 20, 4, 4 for the severely unbalanced design. This arrangement
was selected so that the effects of biased variables would be manifested in the test of
interaction.

The log s* variable produced excellent empirical test sizes with one unexplained
exception. Of the 108 P[EI] estimates generated from the entire study, only seven exceeded
.060 (.076 maximum) and none were less than .040. Of these seven high values, however,
five were from tests of severely unbalanced designs with the uniform parent. Equal subset
sizes of m = 4 were used for all cases.

The # variable produced basically inflated test sizes, as expected. The estimates
generally increased as a function of ¥ due to the increasing intraclass correlation. The
counterbalancing effect of the kurtosis of 72 seems to have broken down in the 4 X 3
designs, although the 2 X 2 results showed a more stable pattern. There was some
difficulty with unbalanced designs due perhaps to the heterogeneity of variance of 52 and
the high intraclass correlations that exist in the smaller cells.

The p variable also performed as expected. In agreement with its intraclass correla-
tion, the test was conservative for uniform and normal parent populations and inflated for
the exponential which gave quite high levels (089 to .112 for the case presented here). This
test was also unstable for unbalanced designs as shown by the high P[E]] for the 4B tests.
For the normal parent, this case produced 4, B, and 4B test sizes of .052, .051, and .120
respectively. The exponential parent produced an 4B test size of .174 in the severely
unbalanced design.

The q variable produced the conservative test sizes that were expected from its
negative intraclass correlations. This test was generally well-behaved in unbalanced de-
signs. There were some increases for 4B tests in severely unbalanced 4 X 3 designs,
although this was only troublesome with the exponential parent (.097, for /i = 12 and .090
fora = 12).

The W50 variable performed conservatively due to its negative intraclass correlation.
Unbalanced designs did not substantially effect this test, thus the dependency between the
expected value of W50 and n,, had little effect.
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TABLE 4

Empirical Probability of Type I Error Using the Nominal .05
Critical Values for the 4 x 3 Design with Average Cell Size of #=12

Equal n Moderate Imbal Severe Imbal
A B AB A B AB A B AB
Uniform parent
Zelen .00k ,002 ,002
log s° 043 .obg .ok2 043 .obT .05k .052 060 .076
D .015 .016 ,018 .021 ,020 022 .039 ,067 .202
32 048 .0h8 050 .055 .07 060 .069 .065 .105
q ,023 .026 .022 .030 .029 .022 L027 .036 .0k3
W50 L017 .0i7T .012 .028 021 .020 .020 .029 .0kl
Normal parent
Zelen .051 .051 .0kO
log s° L0b1 Loko .ol .0k5 ,052 .051 .047 .0k2 .060
P L0kL .035 L0271 .03 .o45 ,0k1 .052  .051 .120
22 .068 .056 .055 .052 .062 .0T9 L069 .073 .110
a .036  .030 .027 .024 .03k .03k .032 .035 .052
W50 .032 031 .026 .025 ,038 ,032 .032 .036 .033
Expontl parent
Zelen 437,357 .649
log &2 .054  .053 ,0h9 .0k8 045 .052 L054  ,0kT .058
p .090 .08 ,112 .097 .076 .116 .101 .089 .17k
32 .080 .064 .092 .079 .069 .116 .097 .098 .151
q .0kb  ,038 ,0bs .0k3  ,037 .052 .0k5  ,0Ok5  ,097
W50 L0705 045 .038 ,036 .0h2 .053 .045 ,052

The Zelen procedure was extremely nonrobust and showed the pattern typical of
Bartlett’s test.

Results Concerning Power

In order to present the general flavor of the results from the nonnull cases, the 4 X 3
design with the underlying model
4

I1

i=1

3
(29) a’; = o’aby; a= [l b;=1 a,b,>0
J=1
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was selected as a fair representative of the results from the entire study. The parameters for
a; and b; were

low effect: a = [7/10, 9/10, 10/9, 10/7] b =[4/5, 1, 5/4]
high effect: a = [6/10, 9/10, 10/9, 10/6] b = {4/5, 1, 5/4]

with ¢ = 4. Notice that the 4 effect was the only effect that was changing.

The powers using nominal critical values are given in Tables 5 and 6. Power for all the
ANOVA tests decreased as a function of v because of the corresponding increases in the
variances of the spread variables.

TABLE 5

Empirical Probability of Rejection Using the Nominal .05
Critical Values for the & x 3 Design with Equsl Cell Sizes of n=12.

Null Low Effect High Effect
A B AB A B AB A B AB
Uniform parent
Zelen .00k .002 .002 .193  .092 .002 .638 .099 .002
log s? .043 Lok ,0k2 277,190 052 .285 .091 .00T
P .015 .016 .018 430 .256 .019 .850 .260 .021
g2 .048 .048 050 .636 .1k .076 .920 406 .090
q .023 ,026 022 .508 .318 .048 .86 ,299 .06
W50 .017 .07 .012 .299 ,195 .016 .667 .179  .01T
Normal parent
Zelen .051  ,051 .0ho L34k L232 048 .657 .21k .060
log 52 .0kl ,0k9 .okl .220 .150 .051 .20k .08L .00k
P .0kl L035 .027 263 .176 .032 .540  ,152 .038
32 .068 .056 .055 .370 .251 .087 638 .213 .100
q .036 .030 .027 .257 .17k .039 .506 .152 .058
W50 .032 .031 .026 .239 ,154 032 .511  .1%6  .039
Expontl parent
Zelen 537,357 .6h9 .627 469  .606 LT7h LLET  .623
log s2 .05h L0353 .049 .12k ,092 Loki 17T .073 .009
P .090 ,089 .112 .228 .139 .101 .297 .152  .107
32 .080 .06h .092 181 .121 .09l .29k .131 .107
q Lokl L0388 L0bs .107 .068 .04S .195 .081 .061

W50 Lok7  ,0ks ,Ohs .166 .095 .0kO .297 .105 .0hk
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TABLE 6

Empiricel Probability of Rejection Using the Nominal .05
Critical Values for the 4 x 3 Design with Equal Cell Sizes of n=2k.

Null Low Effect High Effect
A B AB A B AB A B AB
Uniform parent
Zelen .001 .001 .001 .T22  .328 .000 .992  .353 .000
log s2 .052 .0k6 .050 .580 .345 oLk .580 .163 .002
P .02k .022 022 .968 .778 .02k .999 760 017
72 .OM7 .0kO .051 .973 .786 .08k .999 .759 .131
q .035 .030 .03k .965 .735 .05T .999 .718 .096
W50 .02k 023 .019 L7988 .499  .019 .985 .501 .023
Normal parent
Zelen .0k9  ,056 .062 L671 465 051 .953  LhkhT o L0857
log s° .ok3 .okk 056 409 281 .049 452,180 .003
D .036  .obk1 LobT 619 .his  .ob3 .935 .415 .050
72 .050 .059 .06k 658 .L4T .09k L947  .430 .09k
q L037 .0k3 .0k2 .616 .ho6 .058 .927 .384 .069
W50 .039 .ok2 .0b1 .586  .37TT .0k9 .908 .369 .0k5
Expontl parent
Zelen 7T L0387 L697 .790  .591  .697 .898 ,594 .678
log s2 .Ok7 .08 L0532 .254  ,1k8 .05k .278 .10k .006
D .073 .073 .10k .306  .187 .096 .b93 (186 .106
72 .056 .058 .0T3 .253 160 .076 439 .14 086
qQ L0bl  .Oobk3  .ohg .211 .135  .060 .382  .111  .065
W50 .0k3  .obks o054 .333 .197 .Ok6 .592 ,176 .068

For the uniform parent, the p and 22 ANOV As gave the highest power. The power of
g was a close third in rank. Zelen’s tests and the W50 ANOVA were similar in power,
ranking below ¢. The log & ANOVA was much lower in power.

For the normal parent, the Zelen procedure was superior, although the (inflated) 2
test was nearly as powerful. A group consisting of the p, ¢, and W50 ANOVAs had less
power, but were considerably more powerful than the log & ANOVA.

For the exponential parent, the power of Zelen’s procedure is deceptive due to the
extreme test sizes. The most outstanding performance was that of the W50 variable which
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generally gave the highest power of the ANOVA procedures, even though its empirical test
sizes were not inflated. The p and 2% variables produced power near that of W50, but their
P[EI] values were quite high. The ¢ and log s? ANOVAs were the lowest in power.

Because the results presented here were from the multiplicative underlying model, the
P[EI] values for the AB tests for the additive statistical models (£ and ¢q) are expectedly
greater than .05. Distributing the overall between-groups variance over main effects and
interaction effects may have reduced the power of the main effects tests for 72 and g to
some degree. Over all underlying models, however, the relative powers of all ANOVA
tests remained fairly stable.

With some minor exceptions, the ANOVA tests’ power results based on the empirical
.05 critical values were consistent with the nominal results. For the uniform parent, the p,
#2 and ¢ ANOVAs produced the most power, although the Zelen procedure had similar
power. The W50 ANOVA trailed considerably, but it was still more powerful than the log
s* ANOVA. For the normal parent, the Zelen test excelled, and the p, ¢, 72, and W50
ANOVAs were all quite similar and were all clearly more powerful than log 5. With the
exponential parent, the W50 ANOVA was the most powerful test and was followed by
Zclen’s test. The power of the log 5% variable was surprising in that it was greater than that
of the p, g, or 7° variables, especially with n = 24. Due to the fact that the F-statistics for 22
and g are linearly related, their empirical powers were identical under all conditions.

Conclusion

It seems fair to conclude that the Monte Carlo results reasonably paralleled the
expectations that were derived from the properties of the various spread variables. This
fusion of empirical and theoretical studies enabled us to discover not only what happens
when these spread variables are used in an ANOVA, but also why those things happen.
Knowledge of the theoretical properties of these tests should provide a basis for their
refinements.

Of the properties studied here, intraclass correlation seems to be the most important.
Variables with positive p (#2 and, at times, p) produce inflated P[EI] and those with
negative p (g, W50, and at times, p) produce conservative P[EI]. The influence of p on the
behavior of these spread variables in ANOVA is strong and suggests that all candidates
for spread variables should be examined closely with respect to intraclass correlation.

The other properties are also important. Because the expected values and variances
are often dependent upon #,, designs with unequal n can behave differently than balanced
designs. The kurtosis of 72 and ¢ can be very large, which might seriously reduce P[EI] and
power for designs with small total sample sizes.

Primarily because of their slightly negative intraclass correlation, g and W50 emerge
as the best spread variables examined in this study. The use of either 72 and p will give
inflated P{E7]. While the independence of the log s? variables produces reasonable P{E]],
this variable’s lack of power and arbitrariness of subgroup formation make it undesirable.

The remaining attention will focus on g and W50. Of course, their usefulness depends
on other factors besides P[ET], i.e. power, ease of computations, and interpretability.
When underlying assumptions are met, nonrobust procedures are often more powerful
than robust procedures that do not “take advantage” of those assumptions. Here, for
example, Zelen’s test showed more power than all the ANOVA tests when the parent
population was normal. Fortunately, the normal parent power of g and W50 were not far
behind the power of Zelen’s test. Therefore, it is reasonable to use these robust procedures
even in cases when normality can be “reasonably” assured. With other types of parent
distributions, the g variable produces more power than W50 for platykurtic (v < 0)
distributions, while W50 is superior to all tests studied here when the distributions are
quite leptokurtic. Thus some knowledge of the shape of the parent distribution will aid
researchers in their choice of variables. Even cell sizes should be used for W50.
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Both the ¢ and W50 variables are easy to compute, especially if one uses the
computational formulae (18) for g. The abundance of ANOVA computer routines insures
their usability. With respect to interpretability, many researchers will find ¢ preferable to
W50, because g produces an additive model for the most familiar measure of spread, the
cell variances.

On balance, the g variable ANOVA can be recommended as a general tool, although
W50 should be used with extremely leptokurtic populations. (Remember not to use W50
with odd numbers for cell sizes.) The use of either ¢ or W50 is a simple method to test
hypotheses of homogeneity of spread in factorial designs. The resulting ANOVA tests are
robust and relatively powerful.

REFERENCES

Appelbaum, M. 1., & Cramer, E. M. Some problems in the nonorthogonal analysis of variance. Psychological
Bulletin, 1974, 81, 335-347.

Basu, J. P, Odell, P. L., & Lewis, T. O. The effects of intraclass correlation on certain significance tests when
sampling from multivariate normal population. Communications in Statistics, 1974, 3, 899-908.

Box, G. E. P., & Andersen, S. L. Permutation theory in the derivation of robust criteria and the study of
departures from assumption. Journal of the Royal Statistical Society, Series B, 1955, 17, 1-26.

Brown, M. B., & Forsythe, A. B. Robust tests for equality of variances. Journal of the American Statistical
Association, 1974, 69, 364-367.

Games, P. A., Winkler, H. R., & Probert, D. A. Robust tests for homogeneity of variance. Educational and
Psychological Measurement, 1972, 32, 887-909.

Gartside, P. S. A study of methods for comparing several variances. Journal of the American Statistical
Association, 1972, 67, 342-346.

Glass, G. V., Peckham, P. D., & Sanders, J. R. Consequences of failure to meet assumptions underlying the fixed
effects analyses of variance and covariance. Review of Educational Research, 1972, 42, 237-288.

Gray, H. L., & Schucany, W. R. The generalized jackknife statistic. New York: Marcel Dekker, 1972.

Hays, W. L. Statistics for the social sciences (2nd ed.). New York: Holt, Rinehart, & Winston, 1973.

Kendall, M. G., & Stuart, A. The advanced theory of statistics (Vol. [, 3rd ed.). London: Charles Griffin, 1969.

Layard, M. W. J. Robust large sample tests for homogeneity of variances. Journal of the American Statistical
Association, 1973, 68, 195-198.

Levene, H. Robust tests for the equality of variances. In 1. Otkin, §. G. Ghurye, W. Hoeffding, W. G. Madow, &
H. B. Mann (Eds.), Contributions to probability and statistics Palo Alto: Stanford University Press, 1960.

Levy, K. J. An empirical comparison of the Z-variance and Box-Scheffé tests for homogeneity of variance.
Psychomerrika, 1975, 40, 519-524,

Marsaglia, G., & Bray, T. A. One-line random number generators and their use in combinations. Communica-
tions of the ACM, 1968, 11, 757-759.

Martin, C. G. Comment on Levy’s “An empirical comparison of the Z-variance and Box-Scheffé tests for
homogeneity of variance.” Psychometrika, 1976, 41, 551-556.

Miiler, R. G., Jr. Jackknifing variances. Annals of Mathematical Statistics, 1968, 39, 567-582.

Miller, R. G., Jr. The jackknife—a review. Biometrika, 1974. 61, 1-15.

Mosteller, F., & Tukey, J. W. Data analysis, including statistics. In G. Lindzey & E. Aronson (Eds.}, The
handbook af social psychology (Vol. 2, 2nd ed.). Reading, Mass.: Addison-Wesley, 1968.

O'Brien, R. G. Factorial designs for the analysis of spread. (Doctoral dissertation, University of North Carolina,
1975). Dissertation Abstracts International, 1976, 37, 1328B. (University Microfilms No. 76-20,062)

Overall, J. E., & Woodward, J. A. A simple test for heterogeneity of variance in complex factorial designs.
Psychometrika, 1974, 39, 311-318.

Scheffé, H. A. The analysis of variance. New York: Wiley, 1959,

Zelen, M. Factorial experiments in life testing. Technometrics, 1959, 1, 269-288,

Zelen, M. Analysis of two-factor classifications with respect to life tests. In 1. Olkin, §. G. Ghurye, W. Hoeffding,
W. G. Madow, & H. B. Mann (Eds.), Contributions to probability and statistics. Palo Alto: Stanford
University Press, 1960.

Walsh, J. E. Concerning the effect of intraclass correlation on certain significant tests. Annals of Mathematical
Statistics, 1947, 18, 88-96.

Manuscript received 6/28/76
First revision received 2/11/77
Second revision received 2/13/78
Final version received 4/3/78



A General ANOVA Method for Robust Tests of
Additive Models for Variances

RALPH G. O'BRIEN*

Linearly combining Levene’s 22 variable with the jackknife pseudo-
values of s? produces a family of variables that allows for analysis
of variance (ANOVA) tests of additive models for the variancesin
fixed effects designs. Some distributional theory is developed, and a
new robust homogeneity of variance test is advocated.

KEY WORDS: Homogeneity of variance tests; Jackknifing
variances; Dispersion; Spread; Analysis of variance; Testing
variances using ANOVA.

1. INTRODUCTION

There are now many techniques that test homogeneity
of variance (HOV) hypotheses by applying the analysis
of variance (ANOVA) to dependent variables that are
constructed to measure the spread (a more general term
than variance) of each group’s distribution. For example,
Levene (1960) suggested the spread wvariable, z;?
= (yy — ¥;)?, where y,;; is the ¢th observation in the
jth group. Other spread variables have been investigated
by Bartlett and Kendall (1946), Box (1953), Brown and
Forsythe (1974a), Games, Winkler, and Probert (1972),
Gartside (1972), Layard (1973), Levy (1975), Martin
(1976), Martin and Games (1977), Miller (1968),
Mosteller and Tukey (1968), and O’Brien (1978). Al-
though there is a legitimate controversy concerning the
relative merits among these ANOVA-based tests, the
consensus is that they are much more robust to distribu-
tional form than the traditional normal theory proce-
dures, such as Bartlett’s test, Hartley’s F-max test, and
Cochran’s test.

The success of the ANOVA-based tests is due largely
to the fact that the estimates of the variabilities of the
average spreads are obtained directly from the data and
consequently are sensitive to the kurtosis (y;) of the
parent distribution. The traditional procedures base such
variability estimates on theoretical properties that are
tied directly to the normality assumption (specifically
that v, = 0) and are valid only when such an assumption
is satisfied. In fact, such tests are not even asymptotically
distribution free.

This article describes an ANOVA spread variable that
allows HOV tests to be conducted by using common
additive fixed effects models for the variances, ¢,2, rather
than the means, u;. The sample variances, s;% replace the

*Ralph G. O’Brien is Assistant Professor, Department of Psy-
chology, University of Virginia, Charlottesville, VA 22901. This re-
search was supported by a Wilson Gee Fellowship and was presented
at the 1978 meeting of the American Statistical Association in San
Diego, California. The author wishes to thank Jack Hahn for asking
the right question.

sample means, 7;, as the focus of attention. If some type
of factorial design defines the relationships of the J
groups, the concepts of main effects and interactions
among the variances conform to the traditional defini-
tions commonly applied to the means.

2. THE r;{w) YARIABLE AND ITS PROPERTIES

The spread variable examined here is

rig(w) = [(w + n; — 2)n;(ys; — §5)°
—wst(n; — 1)/[(n; — 1(n; —2)] . (2.1)
Now

r5(0) = n;(ys; — §)%/(n; — 1) = 2,2, (2.2)

a slight modification of Levene’s 2? variable. Of course,

for balanced designs (n; = n), 22 and 2% produce identical
F tests. At the other extreme,

ri(1) = [n;(y; — 95)* — 821/[n; — 2]

(2.3)
= nyst — (n; — D)s;® = qu5

where s;_;? is the sample variance of group j if the ith
observation is deleted; that is, r;(1) is a jackknife
pseudovalue of s;2 (Miller 1968).

Several investigators have considered 22, 2%, and/or ¢
(Levene 1960; Miller 1968; Games, Winkler, and
Probert 1972; O’Brien 1978). When used in a regular
ANOVA, 22 and %? produce moderately inflated empirical
Type I error rates in most situations. They also pro-
duce relatively low power in designs with very small
total sample sizes (N), but are competitive to other
robust methods when the designs have moderate N. The
g variable produces conservative rejection rates and has
less power than 22 The r(w) variable is simply a weighted
average of 22 and ¢ and provides a way to balance the in-
flated test sizes of 22 and the conservative test sizes of ¢.
An argument will be made that a modification to the
degrees of freedom for the ANOVA F test will increase
the power.

Regardless of the choice of w,

Fw) = X rg)/n; = s (2.4)

Thus, ANOVA tests using 7;;(w) are readily interpretable
because they conform to tests of additive models for
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o;* and linear contrasts among the ¢,2. SSH, the numera-
tor sums of squares for a given null hypothesis, is based
only on the s;? and n;.

The sample variance of 7;(w),

VFw)] = % [ris(w) — s21%/[n; — 1]n;
= [ — 2+ w5 [0 — 57T/

[n; — 11[n; — 2], . (2.5)

Thus, the within-group sums of squares is affected by w:

J
SSWG(w) = ¥ niln; — 110, — 2 + wPP[H O/

= [n, —2]2. (2.6)
Increasing w increases SSWG(w), which consequently

decreases the usual ANOVA F statistic. For balanced
designs,
SSH/dfu MSH
F(w) = =
SSWG (w)/dfwe  MSWG(w)

_[n—2F(0)
- n—2+w]’

where dfx and dfwe are the usual degrees of freedom as-

sociated with SSH and SSWG.

Using Levene’s (1960) derivation of var[z;?] and
cov[zi? 2] in conjunction with the theory on the
effects of intraclass correlation developed by Walsh
(1947), it follows that

2.7

E{V[22]} = {var[z:;2] — cov[z:?, 22} /n; 2.8)
= o'2n;(n; — 2) + (n; — 2)%:]/n*
so that
E{V[#0)]} = o*[2n;(n; — 2)
+ (nj — 2)%y:2)/[ni(n; — 1)2] . (2.9)
By (2.5)
E{V[7w)]}

_ o'l = 24+ wP2n 4+ (n — 2)7.]
niln; — 11¥[n; — 2]
It is well known that

var[7;(w)] = var[s*] = o'[2/(n; — 1) + v2/n;] . (2.11)

(2.10)

Kurtosis (y,), w*,and the Limiting Value of the Kurtosis
of r(w) for Several Parent Distributions

wt

Parent Vs (n =10, 20, 30) ylr(w)]
Uniform -1.2 -02 -12 -.16 -1.3
Normal .0 .49 .49 .50 12.0
X’a 1.0 .64 .65 .66 65.5
X6 2.0 .72 .73 74 99.3
Laplace 3.0 77 .79 .79 84.7
Exponential, x?%,, 6.0 .85 .86 .87 213.0
X 12.0 .91 .92 .92 361.7
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Equating (2.10) and (2.11) and solving for w produces
the weighting factor that yields unbiased estimates for
var[7;(w)]:
w* = [Q"f(nf = D —2) + v2(n; — 1)%(n; — 2)ir
2n; + (n; — 2)v,
- (n; —2) .

(2.12)

The table contains values of w* for various parent dis-
tributions. The value of w* increases as v, increases, but
is not significantly affected by n;. It can be shown that
w* < 1; thus, the jackknife variable, r(1), is always
conservative.

If the design is balanced and ¢:2 = o2 = . ..
can be shown that

E{MSH} = E{MSWG (w*)} = var[s;?]n (2.13)

for any testable null hypothesis.

In order to examine the relationships of E{MSH} and
E{MSWG(w*)} for unbalanced designs, consider the
single degree of freedom contrast

= 0’,’2, lt

7
Hy = 3 cjo = 0 where

i=1

J

e=0. (214)
j=1

It can be shown that

EIMSH) = ¥ opvarlst)/(5 ot/n) ,  (215)

j=1

E{MSWG (w*)} = é nj(n; — 1) var[s2]/(N — J) R
= (2.16)

These formulas can be used to infer several properties
that are true regardless of the value of w.

1. If |¢;| = land g® = 022 =... = 0,2 then E{MSH}
increases relative to E{MSWG(w)} when the design is
unbalanced, because n; var[s,?] decreases slightly as n;
increases. If the design is nearly balanced, this hetero-
geneity of the variances of r(w) should have little effect
on empirical rejection rates.

2. If 6> = 022 =...= o, and the cells with smaller
n; have the larger |c;|, then E{MSH} increases relative
to E{MSWG (w)}. ’

3. If some cells are not involved in the contrast
(¢; = 0) yet have relatively low ¢;2, their low var[s;*]
reduces E{MSWG(w)} relative to E{MSH}, even for
balanced designs.

Several converses to the second and third properties
also are immediately evident, but will not be stated
here. These results extend to tests with dfg > 1, be-
cause any such test can be formulated in terms of
a set of dfg single degree of freedom orthogonal con-
trasts. When the structure of the analysis indicates
that these properties may cause problems, it may be
prudent to conduct a Welech-type ANOVA that does not
assume homogeneity of variance (Brown and Forsythe
1974b ; Kohr and Games 1977).
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Unlike the familiar normal theory result, 7;(w) and
V[7;(w)] are not independent; in fact, they are highly
correlated. Because an analytical expression for this cor-
relation, ;, was not obtainable, Monte Carlo estimates of
p; were computed for several parent distributions with v,
varying from —1.2 to 3 and n = 8, 16, and 32. Estimates
of p; ranged from .55 (uniform parent, n = 32) to .79
(Laplace parent, n = 8). This correlation results nat-
urally from (2.11) and therefore must be present to some
degree in every spread variable for ¢%

To assess the effect of this relationship, consider testing
the contrast (2.14) by using

t = é ¢;si/ {[é ¢?/n IMSWG (w) } ¥

i=1 i=1

(2.17)

as a t random variable with N — J degrees of freedom.
It can be shown that

J
corr{ 2 ¢;8;2, MSWG (w)}
i=1

é ¢im;(n; — 1)p;
- . (2.18)
[(X ¢ X ni(n; — 12

i=1 j=1

If the design is balanced (and all groups have the same
distribution), then 5; = 5 and the correlation (2.18) is
zero. It deviates somewhat from zero for unbalanced
designs, although its magnitude is usually small. When
the correlation between the numerator and denominator
of a t is positive, its distribution tends to have larger
lower tails and smaller upper tails than otherwise. If this
correlation is negative, the opposite pattern occurs. Be-
cause the rejection rates for the two directional alterna-
tives to H, are unequal, one-tailed tests should be used
with caution.

Because the correlation between 7;(w) and V[7;(w)]
is so strong, the single group test of Ho: o* = o,? using

tony = {F(w) — o}/ {V[F(w)]/n}t  (2.19)

and the associated confidence intervals for ¢2 should not
be used. This explains why Lemmer (1978) obtained
extremely low rejection rates when he used 22 to test
H,: ¢* = o¢® versus H,: o > o4

It follows from (2.1) that

lim r;;(w) = (y;; — E[g;])* . (2.20)
The limiting value of the kurtosis of r;;(w) is
— 4 2 + 6 4 — 3 8
gor] =2 T RT3 @21

(e — o*)?

where uj is the kth central moment of the parent distribu-
tion. The table contains values of F[r(w)] for several
parent distributions. If y is normally distributed, then
the limiting distribution of r(w) is x?qa), which has a
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kurtosis of 12. For the exponential parent (v, = 6),
F[r(w)] = 213. Monte Carlo estimates of ¥[r(w)] for
finite n paralleled these limiting values.

Box and Andersen (1955) showed that when all other
fixed effects ANOVA assumptions are met, except parent
normality, then F = MSH/MSWG is approximately
distributed as an F with §-dfy and 8-dfwg degrees of
freedom, where & = 1 + v2/N. If this result applies to
r(w), the high values of ¥[r(w)] reduce the empirical
rejection rates for the customary F test, especially in
cases with low dfg and low N. Of course, these results
suggest possible adjustments to the F test.

It should be noted that these properties are not in-
variant to the usual data transformations, such as log or
square root. For example, log z* produces extremely
inflated regular ANOVA tests (O’Brien 1975), and
ANOVA'’s using |Z| are not asympotically distribution
free (Miller 1968).

3. A SINGLE “UTILITY” TEST FOR MOST SITUATIONS

Most interval level data encountered by researchers
are not characterized easily by one of the standard
parent distributions. Thus, precise calculations of w* and
4[r(w)] will usually be impractical. Nevertheless, most
researchers will be satisfied with a single ‘“utility”’ test
that works satisfactorily in a majority of situations. The
ri;(.5) variable might assume this role, because
E{V[#;(.5)]} is nearly unbiased under the normal par-
ent. Using similar logic, one would use 8, = 1 + 12/N
and adopt the F(8odfm, dodfwe) distribution as the
sampling distribution of F(.5) = MSH/MSWG(.5).
These choices are based on the philosophy that empirical
and nominal Type I error rates should be synchronized
for the normal parent. Readers disagreeing with this con-
ventional view should have little trouble adjusting w and
8 to conform with their own criteria for robustness.

In the event that w* and 6* = 1 + §[r(w)]/N can be
easily determined, then of course they should be used.
The consequences of using estimates of v, and ¥[r(w)]
to specify values for w and & have not been determined.
This strategy may prove to be useful, however, because
Bartlett’s HOV test is improved (but not salvaged) by
modifications based on estimates of v, (Box and Andersen
1955; Miller 1968; Games, Winkler, and Probert 1972).

4. EMPIRICAL INVESTIGATION

Levene (1960) studied 22 for uniform, normal, and
Laplace parents and reported the empirical .05 critical
values, Fg[2?] = Fg[r(0)], for the usual balanced one-
way ANOVA tests with J = 2, n = 10;J = 2, n = 20;
J =4, n=20; and J = 10, n = 20. O’Brien (1978)
studied 7(0) for 2 X 2 and 4 X 3 designs, with n = 12
and 24, and uniform, normal, and exponential parents
and saved the Fg[r(0)] values. For the present study,
these Fg[r(0)] values were converted by (2.7) to
Fe[r(w)] and then compared with nominal critical
values, Fiy(8) = F (8dfy, 8dfwa, .95). When various values
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for w and 6 were selected, the general theory and the
proposed utility test were examined empirically for these
balanced designs.

These analyses will not be detailed here, because their
results so closely paralleled the theoretical conclusions.!
The Fg[r(w*)] values were reasonably close to
Fny(@® =14 ¥[r(w)]/N). These results also supported
the conjecture that the utility test is acceptably robust.
Comparing Fg[r(.5)] with Fy(6 = 1 4+ 12/N) showed
that this test is mildly conservative for platykurtic
parents and mildly inflated for leptokurtic parents, al-
though the high ¥[r(w)] produces conservative rejection
rates if N is small and the parent distribution is
leptokurtic.

At least for balanced designs, all characterizations of
r(w) produce the same power if they are held to the same
Type I error rate. Accordingly, this theory focused
on the problem of obtaining proper rejection rates. The
use of r(.5) with Fy(6 =1+ 12/N) usually provides
such rates and is uniformly more powerful than the use
of ¢ with Fx(8 = 1), which was previously recommended
for common use.

A review of the literature suggests that no single
spread variable produces the most power in all situations.
The only alternative to r(w) that also effectively tests
linear contrasts among the ;% is the unlogged version of
Box-Scheffé subgrouping method. This method is basi-
cally less efficient because, if v;; is the sample variance of
subgroup 7 in group j and the subgroup size, m, is an
even divisor of n;, then

var[#;] = o'[y2/n; + 2m/(m — 1)n;]
> var[s;?] = var[f;(w)] . (4.1)

5. CONCLUSION

A general spread variable, useful for testing HOV using
ANOVA methodology, has been introduced, and its
distributional theory has been developed and related to
the properties of ANOVA. One characterization of the
method has been suggested for common use. Usually the
method is well behaved, although some applications do
produce rejection rates that deviate in predictable direc-
tions from the nominal rate. The r(w) variable should not

1'The original version of this article contained much detail con-
cerning this empirical work, but the referees justifiably felt that these
results were simply redundant with the theoretical work. Copies of
this original version may be obtained from the author.
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be further transformed and is poorly suited for one-group
tests and confidence intervals for o2

[Received March 1978. Revised April 1979.]
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Note: This test is available in JMP (Fit Y by X) and SAS (PROC GLM).

A Simple Test for Variance Effects
in Experimental Designs

Ralph G.

O’Brien

University of Virginia

Although experimental effects are usually assessed through contrasts of group
means, there are situations in which differences among the groups’ variances are
also of interest. Such analyses are infrequently used in behavioral research, pos-
sibly because the most common methods are not robust to nonnormally distrib-
uted data. A procedure is presented that produces robust tests of the equality
of cell variances by simply performing a regular analysis of variance using a
transformation of the dependent variable. Special contrasts {e.g., simple effects,
subeffects) are also discussed, and an example is given.

It is becoming increasingly recognized
that statistical “effects” can be manifested
in terms of differences among group vari-
ances as well as (or instead of) differences
among group means. Thorngate (Note 1)
proposed “that social psychologists should
become less concerned with differences in
central tendency and more concerned with
differences in variability. . . . For exam-
ple, questions about norms, roles, conformity
and related topics are highly related to dis-
persion. Conformity results in uniformity,
that is, lack of dispersion” (p. 12). Recently,
Games (1978a, 1978b) included variance
testing in his factor structure for parametric
tests, and Games, Keselman, and Clinch
(1979) compared several existing variance
testing methods. This article describes a new
method.

Researchers should be warned that the
traditional homogeneity of variance tests,
such as the F = 5,2/s,” test for two groups
and Bartlett’s x?, Hartley’s F.,,, and Coch-
ran’s C tests for one-way designs, are se-
verely affected by the distributional form of
the data, that is, they are not robust to non-
normality. For example, Miller (1968) re-
ported that a .05 level two-group comparison
using F = s5,’/s,? with n = 25 per group has

The author wishes to thank Mary Kister Kaiser for
her particularly critical reading of an earlier draft of
this article.
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Virginia, Charlottesville, Virginia 22901,
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a real Type I error rate of only about .007
if the data are uniformly distributed (“light”
tails, kurtosis of —1.2) and about .127 if the
data are double exponentially distributed
(“moderately heavy” tails, kurtosis of 3).
Other cases and tests can be even more af-
fected. Even though some texts carry warn-
ings against the use of these nonrobust meth-
ods (e.g., Glass & Stanley, 1970, p. 374;
Hays, 1973, p.. 451; Winer, 1971, p. 205),
many statistical routines (including spss T-
TEST, SAS T-TEST, SPSS ONEWAY, SPSS MAN-
OVA, BMDI13D, BMDP3D, BMDP9D) still incor-
porate them as their only tests of homoge-
neity of variance.

More robust methods are available. Typ-
ically, they involve the use of regular anal-
ysis of variance (ANOVA) tests on suitably
transformed data. Let y;; be the kth obser-
vation in the i jth cell of an I X J independent
groups design. One well-known transfor-
mation, introduced by Levene (1960) and
popularized by Glass and Stanley (1970, p.
375), is the absolute deviation about the cell
mean,

Wk = i k=1,2,...
and is now incorporated into BMDP7D. This
test is much more robust than the conven-
tional methods, but it has received criticism.
Miller (1968) recommended against it, be-
cause, unlike many other . ANOVA-based
methods, it is not asymptotically (n; —
o0) distribution free. Brown and Forsythe
(1974b) and Games, Winkler, and Probert

Zijk = » Mijs
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(1972) reported that z produced excessive
Type I error rates.

An alternative to z is available. Replacing
yi with the sample median (Md,;) gives

Wsoijk = U’ijk - Mdijl,

which produces asymptotically distribution-
free (Miller, 1968) and robust (Brown &
Forsythe, 1974b) tests and conforms to the
common definition of dispersion about the
median, the average absolute deviation
(Hays, 1973, p. 243). O’Brien (1978) found
that W50 produces excellent power when the
underlying distribution of the raw data has
heavy tails (leptokurtic).

Another transformation method, devel-
oped by Box (1953) and Scheffé (1959, p.
83) and described by Winer (1973, p. 219),
is to compute the logarithm of the sample
variances of subgroups formed by randomly
partitioning each cell’s observations. While
this test is robust, it lacks power (Games, et
al,, 1972; Layard, 1973; Levy, 1975; Martin
& Games, 1977; Miller, 1968; O’Brien,
1978) and does not give unique test statistics
for a given set of data. Power can be partially
improved by optimally selecting subgroup
sizes (Games et al, 1972; Martin, 1976;
Toothaker, Hicks, & Price, 1978), but the
lack of uniqueness of this method can pro-
duce confusion and doubt when it is applied
in practice. Many other transformations
have been investigated. (In addition to the
above references, see Gartside, 1972.)

Testing Variance Equality
With the r Transformation

A new method has been developed to com-
pare cell variances (¢;%), and it is directly
analogous to the usual ANOVA tests on the
cell means (u;). The theoretical foundations
of this transformation are contained in
O’Brien (1979), but that work does not pro-
vide a nontechnical “how-to” summary. Us-
ing the following description, researchers
who understand ANOVA can easily perform
tests on group variances. Like its competi-
tors, the r transformation method is not uni-
formly preferable to every other method in
every situation. It is offered only as a general
method that behaves acceptably in most sit-
uations commonly encountered in behavioral
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research. It appears to be (a) robust to de-
partures from normality, (b) easy to apply—
most statistical software packages can per-
form the computations, (c) relatively pow-
erful, and (d) generalizable to factorial de-
signs with equal or unequal numbers of ob-
servations in the cells.

For a two-way, I X J (fixed effects, com-
pletely randomized) design with n; obser-
vations in the /, jth cell, the basic steps of
this method are as follows:

1. Compute the sample means, y;,
the unbiased sample variances,

51j2 = % (}’ijk _}Tij)z/(nij - 1)

and

2. For every raw observation, y;;, com-
pute

Fijk =

(”ij - l-s)nij(yi/'k - )—'ij)z - -551/'2(”:‘/ - 1)
(”ij - 1)(’1:'; -2)

3. Verify that the means for r are the vari-
ances of y: F; = 5,72,

4. Use r as an ANOVA dependent variable.
Any ANOVA on r effectively tests common
linear hypotheses concerning the structure
of g;7. General main effects and interactions
can usually be tested using standard ANOVA
practices. More specific hypotheses (con-
trasts, simple effects, etc.) or extremely un-
balanced designs might require some non-
standard ANOvaAs as described below.

This procedure extends to all fixed effects,
completely randomized designs, since Steps
1 and 2 are done separately for each partic-
ular cell, no matter how those cells are fac-
torially structured. At this time, the feasi-
bility of using r in other types of designs,
including those involving random factors or
repeated measures, has not been investi-
gated.

The rs are in general nonnormally dis-
tributed, the variances of r can be hetero-
geneous, and rs from the same cell are not
independent. However, the particular distri-
butional properties of r have been shown to
be reasonably compatible with the analysis
of variance.

If the n; are unequal, a nonorthogonal
analysis must be selected that is compatible
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Table |

Means and Variances of y and t

A B n y s F v(r)

1 ! I 34.82 6.56 6.56 43.0
1 2 8 37.91 3789  37.89 1,995.6
1 3 10 3750 2028 20.28 252.7
2 1 12 3575 12.57 12.57 455.8
2 2 10 3420 5462 54.62 2,473.0
2 3 12 3483 5652 56.52 4,991.4

with the goals and philosophy of the re-
searcher. (Overall and Spiegel, 1969, and
the ensuing series of Psychological Bulletin
articles on nonorthogonal -ANOVA are cri-
tiqued by Herr and Gaebelein, 1978, and
Speed, Hocking, and Hackney, 1978.) Ex-
cept for the fact that the use of r produces
aNova models for ¢,7 rather than py the
issues concerning the definitions of the non-
orthogonal mean squares for the main ef-
fects and interactions remain unchanged.
Apart from these concerns about the be-
tween-groups variance, the properties of the
within-groups variance (MS,) of a nonor-
thogonal ANOVA on r are somewhat different
than usual. Even under the null hypothesis,
the variance of r, decreases as n; in-
creases—a pattern that tends to increase
Type I error rates, since M., is biased down-
ward. Fortunately, this tendency is not se-
vere unless the ny are extremely unbalanced
(say max(n;)/min(n;) = 4) and the data are
heavy tailed. Therefore, no modification to
the ordinary computation of MS, is usually
needed for tests of general main effects and
interactions. For troublesome situations, it
is prudent to use 2 Welch-type ANOVA that
assumes separate group variances (Brown
& Forsythe, 1974a; Kohr & Games, 1974,
1977). BMDPTD computes such statistics for
one-way designs. _

It has been shown that the variance of s,/
increases as a function of ¢;*. Thus, the vari-
ance of any spread variable, including ry,
can be extremely heterogeneous among the
groups when real differences in the o7 exist.
Therefore, the overall MS, may be an in-
appropriate error term for specific contrasts
(or simple effects or subeffects) that do not
involve all the cells of the design or have
unequal absolute contrasting weights. For
example, if the ', j'th cell is not included in
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the contrast and or/” is generally larger than
the average ¢° of the cells being contrasted,
then the overall MS,, of r will tend to over-
estimate the average variance of the rs in the
contrasted cells. This produces conservative
F statistics. If ar/? is smaller relative to the

_average o® of the contrasted cells, inflated

F statistics will result. Thus at the very least,
the MS, error term for any test should be
based only on the rs that are actually in-
volved in the contrast. Once again, the best
solution is to use a Welch-type contrast
method (available in SPSSONEWAY for single
degree of freedom contrasts). Similar issues
and solutions also apply to multiple com-
parisons of 7; (Howell & Games, 1974;
Tambhane, 1977).

Because the sample means and variances
of r are strongly correlated, it should not
be used to test one-group hypotheses (H:
o =qo") using ¢ =[F=0g’l/[Z (r.~F)/
(n = 1)n], nor should it be similarly used to
compute confidence intervals for ¢2. Unfor-
tunately, this problem is also present for all
the other known transformation methods.

Example of r Transformation to
Test Variances =~

Let us consider an artificial example of
the use of the r transformation for ANOvVA
tests on variances. Table 1 contains the
means and variances of a dependent mea-
sure, y, for a 2 X 3 fixed effects design with
unequal numbers of observations in the cells.

Table 2
ANOVA Summaries for y and t

Tests of means Tests of variances

» (F=+s)
Source df MS F P MS F P
A 1 5403 1.72 .19 6,340 3.62 .06
B 2 518 .17 .85 8308 475 .01
AB 2 3298 1.05 .36 1306 75 .48
Within
cells 60 31.31 1,747

Note. The method of weighted squares of means (Speed,
Hocking, & Hackney, 1978) was employed because it
tests unweighted hypotheses about the means. This is
the same as Overall and Spiegel’s (1969) complete least
squares method and Herr and Gacbelein's (1978) stan-
dard parametric (STP) method.
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A nonorthogonal analysis of variance on y
(analysis of means) was completed and is
summarized in Table 2. The A, B, and AB
mean effects are not significant.

Because most computer programs (in this
case, SPSS MANOVA) easily produce the cell
means and variances (or standard devia-
tions) of the dependent variable, the com-
putation of r is straightforward. For exam-
ple, the first raw observation is y,;; = 34 so
that

ron = 9.5(11)(34 — 34.82)*/90
- .5(6.56)10/90 = 416.

After completing the remaining transfor-
mations, the means, 7, and variances, V,-,(r),
can be computed (Table 1). Note that the
means for r equal the variances for y. Using
the same ANOVA design that was employed
for the means analysis, the tests on r (Table
2) indicate strong support for a B main ef-
fect: The variances are differing over the lev-
els of B. The absence of either an A or an
AB effect makes the interpretation straight-
forward.

Paired comparisons among the marginal
variances for the three levels of B were per-
formed using three different 2 X 2 designs
in order to obtain within-cells error terms
that are unaffected by the cells not involved
in the contrasts. Thus, the test of Level 1 of
B versus Level 2 is not affected by the high
variance in Level 3, nor is the Level 2 versus
Level 3 test affected by the low variance in
Level 1. The results in Table 3 show that if
they are taken a priori, “1 versus 2” and
“1 versus 37 are both significant at the .05
level. Using a Bonferroni level of signifi-
cance (a = .05/3 = .0167), as suggested by
Morrison (1976, p. 33), only the “l versus
2" comparison is significant with a family-
wise error rate of .05.

Other Matters

Interpreting tests on variances is some-
what different from interpreting tests on
means. Statistically significant tests on vari-
ances may reflect artifacts of the particular
measure being used. There may be floor/
ceiling effects and dependencies between the
mean and the variance of the distribution of
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Table 3

Paired Comparisons of Marginal Means for B

Comparison MSs dfs MS, df. F P
{vs. 2 14,747 1 1,191 40 1238 .001
2vs. 3 660 1 2,549 39 .26 614
1vs. 3 9298 1 1,527 41 6.09 .018

* The within-cells error terms are based only on those
cells actually being compared.

y (such as the Poisson or exponential). In
these cases, the variance effects are not qual-
itatively different from the mean effects.

A significant variance effect can result if
a factor is not included in the statistical de-
sign. For example, consider a 2 X 2 design
with w; = pz, B2t # B2 and 042 = 0 =
02,2 = a3, If the B factor is ignored, the
variance in the first A “group” is less than
the variance in the second ‘“‘group.” Thus,
researchers should consider whether a vari-
ance effect simply reflects an interaction
mean effect involving some ignored factor.

Finally, little has been mentioned here
about the real Type I error rates of this test.
Briefly, the real a level of the test increases
as the kurtosis of the raw observations in-
creases or the degree of cell-size imbalance
increases. However, unless one has a severely
unbalanced design with very heavy tailed
data, there is little need to worry about ex-
cessive real « levels. The W50 variable can
be used in such cases, and the r method has
several refinements that are not reviewed
here. Statistical zealots and researchers with
special problems can refer to O’Brien (1978,
1979) for more details.

Reference Note

1. Thorngate, W. The analysis of variability in social
psychology (Report 74-7). Edmonton, Canada:
University of Alberta, Social Psychology Labs, De-
partment of Psychology, 1974. (An extensive revision
of this manuscript is entitled Support tests of dis-
persion and location differences in frequency tables.
Representative Research in Social Psychology, 1975,
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