
PSYCHOMETRIKA--VOL. 43, NO. 3. 
SEPTEMBER, 1978 

ROBUST TECHNIQUES FOR TESTING HETEROGENEITY OF 
VARIANCE EFFECTS IN FACTORIAL DESIGNS 
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Several ways of using the traditional analysis of variance to test heterogeneity of spread in 
factorial designs with equal or unequal n are compared using both theoretical and Monte Carlo 
results. Two types of spread variables, (1) the jackknife pseudovalues of s ~ and (2) the absolute 
deviations from the cell median, are shown to be robust and relatively powerful. These variables 
seem to be generally superior to the Z-variance and Box-Scheff6 procedures. 
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Recently several procedures have been suggested for testing homogeneity of variance 
hypotheses in factorial designs. Overall and Woodward [1974] introduced the Z-variance 
test; Levy [ 1975] suggested extending the Box-Scheff6 method to factorial designs. Martin 
[1976] criticized Levy's use of subgroup sizes and suggested some other alternatives. Much 
earlier, Zelen [1959, 1960] developed a set of likelihood ratio tests which are two-way 
generalizations of Bartlett's test for homogeneity of variance in the one-way design. For 
normally distributed data, it appears that the Z-variance and Zelen procedures are more 
powerful than the Box-Scheff6 test. However, the Box-Scheff6 is quite robust to the 
distributional form of the data, while the Z-variance and Zelen procedures are overly 
sensitive to nonnormal data. In this paper, alternatives to these procedures are investi- 
gated and it is argued that two of these other methods are quite robust and yet more 
powerful than the Box-Scheff6. This argument is based on both theoretical and Monte 
Carlo results. 

The basic procedure examined here uses estimates of each independent group's 
(cell's) "spread" (a more general term than "variance") as the dependent measure in a 
normal theory fixed effects least squares analysis of variance. The statistical designs for 
such analyses would be identical to those used for an ANOVA means analysis: Only the 
dependent variable is changed. The Box-Scheff6 method is simply one way to generate 
those "spread variables." The alternative measures studied here are (l) a modification of 
Levene's [1960] z 2 (or s) variable, (2) the jackknife pseudovalues of log s 2, (3) the jackknife 
pseudovalues ofs  2, and (4) Brown and Forsythe's [ 1974] W50 variable. Many other spread 
variables have appeared in the literature, but are not considered here. Those that are 
considered have been successful in Monte Carlo studies limited to the 2-group or k-group 
cases and/or they have been shown to have favorable distributional properties. Discussion 
of unincluded spread variables is necessarily limited. 

The Properties of  the Spread Variables 

The discussion here is limited to the two-way (I × J) design with population variances 
~r~j and sample sizes ntj. Because each of the spread variables is to be used as a dependent 
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variable in a traditional ANOVA, it is necessary to investigate the properties of these 
spread variables--especially their expected value, variance, intractass correlation and 
distributional form. Once it is known how these properties are affected by changes in 2 O'~j, 

ntj, and the distributional form of the raw data, then the existing theory of the least 
squares ANOVA can be used to infer how these variables might perform as ANOVA 
dependent measures. These theoretical inferences are limited, however, by the fact that 
these properties can only be investigated individually rather than jointly. For example, the 
effect of intraclass correlations among the spread observations is assessed as if the other 
properties conformed to the regular ANOVA assumptions of normality and homo- 
scedasticity. The consequences of joint ANOVA assumption violations have received so 
little attention in the literature that such considerations are not feasible for the present 
problem. Therefore, the development below assumes that there are no "crossover inter- 
action" type effects among the particular violations that are encountered. A lai'ge Monte 
Carlo study (described later) is used to provide some check on these inferences. The 
ANOVA theory is reviewed as needed. 

The Log s ~ Variable 

The log s 2 (Box-Scheff6) variable is formed by partitioning the raw observations into 
mutually exclusive subgroups within each cell and then taking the logarithm (any base) of 
the unbiased sample variance of each subgroup. The log s 2 observations are independent 
given that the raw observations are independent. Monte Carlo work with balanced one- 
way designs has demonstrated that this test produces reasonable Type I error rates, P[EI], 
under a variety of parent distributions, but lacks power [Levy, 1975; Games, Winkler, & 
Probert, 1972; Layard, 1973; Miller, 1968]. 

Using a Taylor series expansion to approximate the mean and variance of a function 
of random variables [Kendall & Stuart, 1969, p. 231], it can be shown that 

(1) g[log s~jk] = log tr~ - (m~j~ - 1 )- l _ 27mh ~ + o(mh ~) 

(2) Var[log s~j~] = 2(m~jk - 1) -I + 3,m?j~ + o(mh~) 

where mtj~ is the subset size, 3' is the standardized kurtosis of the parent distribution, and 
o(mh~ ) is a remainder term of order less than mi)L 

If all subset sizes are the same in all cells, artificial differences in g[log s~j~] and Var 
[log s~k] are not introduced. Unequal subset sizes can produce artificial differences among 
the cell means for log s~jk and also heterogeneity of variance: Both can affect P[EI]. While 
some authors have recognized the problems with Var[log s~j~], the bias problem has been 
largely ignored. Gartside [1972] studied a weighted type analysis for unequal m~j~, but his 
results indicated that this test is even less powerful and may also produce larger P[EI] with 
increases in the number of cells--a potential problem with even moderately sized factorial 
designs. 

For equal subset sizes (m~j~ = m) in balanced designs, Martin [1976] thoroughly 
reviewed the problems involved in selecting the value of m that properly balances the 
tradeoff between Var[log s~j~] and the number of spread observations produced. He 
recommended finding an m that is close to the square root of n and, hopefully, that is an 
even divisor of n. 

Finally, the most troubling aspect of this procedure is that the test does not yield 
unique results for a given set of data because of the arbitrariness of the subgroupings. 

The ~2 Variable 

Levene [1960] proposed the spread variable 

(3) 2 
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Since 

(4) g[z~j~] = (n,j - 1) a3--L , 
nu 

however, we shall consider the spread variable 

- y ~ j )  (5) -2 _ nljO'tJk - z 
z zj~ - ntj -- 1 

which has an expected value of  a~j. In fact, the sample mean of the -2 Z lJ~, 

z~j,, = (Ytj_~ -p~j )2  = ~J 
(6) ~ n,---~ ~ n , , - 1  

which is an excellent property since the between group effects are then computed directly 
from the unbiased sample variances. 

Levene gave the variance and intraclass correlation of  z~jk, and these results can be 
modified to give 

(7) Var[:?~jk] = a~j~2 + (n~j ~ 3. n__!Z + 3)%J 
n~] - -  n t ]  

2n~/+ (2n~ - 3)3' 
(8) p[z~jk] = 2ntj(n~j-  1) 2 + (n,~- l ) (n~j -  3n,j + 3)3' 

Values for the intraclass correlation and variance of:?~l~ have been computed for various 3' 
and n~j and are given in Tables 1 and 2. 

The patterns of  variances suggest that unbalanced designs with platykurtic (3" < 0) 
parent distributions may tend to exhibit larger P[EI] relative to balanced designs, because 
the larger cells will have the smaller variances [Glass, Peckham, & Sanders, 1972]. The 
opposite effect occurs for leptokurtic distributions. 

Applying results given by Walsh [1947] and Basu, Odell, and Lewis [1974], it can be 
shown that if a dependent variable, say v, satisfies all the usual ANOVA assumptions 
except that there exists an intraclass correlation, p, then 

(9) 8 [  ~ (v,jk-2 tSt,)2] ( 1 -  p)Var[tS___Aj] 

Thus, for p > 0, this usual estimate of  the variance of the mean will tend to be too small 
regardless of the cell size. If  Ho is true and the design is balanced, the usual F-statistic, F(p) 
= M S H / M S w a ,  still has an F-distribution except for a scalar multiple adjustment, i.e. 

(10) (1 - p) r (p )  ,,~ r ( d f m  dfwG). 
1 - - p + p n  

I fF(dfn ,  dfwG) is used as the sampling distribution ofF(p),  then P[EI] > ~ forp > 0. Ifp < 
0, the variance of  the mean tends to be overestimated and P[EI] < e~. 

Using (10), it is straightforward to assess the effect of the intraclass correlation of 52 
on the balanced ANOVA. P[EI] results have been computed for theA effect test in the 2 × 
2 and 4 × 3 designs with various 3" and n (Table 3). These results demonstrate the tendency 
for p[£2] to moderately inflate P[EI] for n < 12. For example, with n = 8 and 3' = 6 the 
P[EI] values are .084 and .118 for the 2 × 2 and 4 × 3 designs respectively. For n = 16, 
however, these values sharply decrease to .065 and .073. It can also be seen that the larger 
design is considerably more affected. Although these calculations are based specifically on 
balanced designs, the intraclass correlation should similarly affect unbalanced designs: 
Equation (9) clearly shows that (under/4o) ~[MSwG] will be generally less than ~[MSn].  
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TABLE i 

Intraclass Correlation of Spread Variables as a Function 

of Cell Size and Parent Distribution. 

Cell Size 

Parent 4 8 12 16 20 24 

Uniform (y=-l.2) 

~2 +.043 +.001 -.001 -.001 -.001 -.001 

q -.135 -.034 -.015 -.009 -.006 -.004 

p -.126 -.060 -.028 -.016 -.010 -.006 

w50 -.o4~ -.035 -.020 -.013 -.01o -.007 

normal (y=0) 

.2 
z .Iii .020 .008 .004 .003 .002 

q -.090 -.018 -.008 -.o0h -.003 -.002 

p -.101 -.023 -.013 -.007 -.006 -.003 

wso -.o12 -.OlO -.006 -.005 -.005 -.003 

Expontl (y=6) 

~2 .192 .036 .015 .008 .005 .003 

q -.034 -.006 -.002 -.001 -.001 -.000 

p -.003 +.022 +.015 +.010 +.007 +.00~ 

W50 +.012 -.004 -.005 -.002 -.001 +.000 

Note~ Values for p and W50 are Monte Carlo estimates based on 1000 

trials. 

The kurtosis o f  the :~z variable was estimated for various values o f  3' and n~j using a 
simple Monte  Carlo analysis. (See O'Brien, 1975, p. 23 for a description of  the procedure.) 
These results are exemplified by the n~j = 12 cases. For a uniform parent (3" = - 1.2) the 
kurtosis o f  f~jk was estimated at 1.0; for the normal (3' = 0) it was 12.2; and the 
exponential  (3" = 6) produced an extremely large value o f  139.2. It should be noted that 
with a normal parent, 0' - lz)2/a ~ is a chi-square random variable which has a known 
kurtosis o f  12. Thus, the kurtosis o f  f~jk is asymptotically 12 with a normal  parent. 

Box and Andersen [1955] showed that the usual one-way A N O V A  F-statistic is 
distributed approximately as F[~(dfn), ~(dfwo)] where 

(11) ~ = l + ~ + O(N-~). 
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Here N = ,~,n o and O(N -~) is a term of order N - t  When 3, is large P[EI] will decrease. 
Thus, the high kurtosis of i z should tend to counterbalance the effects of intraclass 
correlation. As the size of the design increases, however, the effects from the kurtosis of~V 
will diminish and the effects from intraclass correlation will dominate, thereby producing 
inflated P[EI] values. 

The p Variable 

Mosteller and Tukey [1968] and Miller [1968] introduced the jackknife technique for 
use in the study of variances. Miller used the jackknife pseudovalues 

(12) p~jk = n~l log s~j - (n~j - 1) log ~j_~ 

TABLE 2 

Variance of Spread Variables as a Function 
of Cell Size and Parent Distribution. o2 = 4. 

Y 

Cell Size 

Parent 4 8 12 16 20 24 

Uniform (Y=-I.2) 

~2 20.8 17.3 15.8 15.1 14.7 lb.4 

q 39.5 22.7 18.9 17.3 16.3 15.7 

P 7.3 2.2 1.5 1.3 1.2 1.1 

W50 1.3 1.4 1.3 1.2 1.2 1.2 

Normal (Y=0) 

~2 32.0 32.O 32.0 32.0 32.0 32.0 

q 58.7 41.9 38.1 36.5 35.5 34.9 

p 6.9 3.5 2.8 2.6 2.5 2.4 

WSO 1.4 1.6 1.6 1.5 1.5 1.5 

~pontl (¥=6) 

~2 88.0 105.7 112.7 115.9 118.7 120.2 

q 154.7 137.9 134.~ 132.5 131.5 130.1 

p 12.7 9.2 8.4 7.9 8.0 7.9 

W50 1.9 2.4 2.4 2.4 2.h 2.4 

Note" Values for p and W50 are Monte Carlo esti~tes based on lO00 

trials. 
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TABLE 3 

Effect of Intraclass Correlation of ~2 and q Variables 
on the Test of A in Two-Way Balanced Designs. 

Cell Size 

4 8 12 16 20 24 

2 x 2 Design 

Uniform (Y=-l.2) 

~2 .068 .052 .050 .050 .050 .050 

q .011 .025 .032 .036 .038 .039 

Normal (Y=0) 

~2 .i00 .069 .063 .059 .057 .055 

q .021 .036 .041 .043 .044 .046 

Expontl (y=6) 

~2 .178 .084 .070 .065 .062 .059 

q .038 .046 .047 .048 .049 .049 

4 x 3 Design 

Uniform (7=-1.2) 

~2 .081 .053 .050 .050 .050 .050 

q .003 .016 .024 .029 .032 .034 

Normal (y=0) 

~2 .144 .080 .071 .064 .060 .058 

q .011 .029 .036 .039 .041 .044 

Expontl (Y=6) 

~2 .242 .118 .083 .073 .069 .063 

• 032 .043 .046 .047 .048 .049 

as spread variables, where s~j is the unbiased sample variance and s~j_~ is the unbiased 
sample variance when the k th observation is deleted from consideration. The sample mean 
of the P~jk in the i, jth cell is called the jackknifed estimate of log a~ while the estimator 
that is jackknifed is log s~j. It is a well-known property of the jackknife technique [Gray & 
Schacany, 1972] that since 

(13) g[log ~ ]  = log ~ j  - (ntj - 1) -~ - 23'n~) + o(n~)), 
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it follows that 

(14) 
8[Pu~] = log tr~j + o(n-t)). 

Jackknifing was developed to reduce estimation bias, which it does in this case. However, 
p is still biased to order less than n-~), thus its use in unbalanced designs may increase P[EI]  

due to the production of artificial differences among the expected values of the spread 
means. 

The intraclass correlation of the p variables was investigated through Monte Carlo 
analysis (Table 1). Those values are negative for both the uniform and normal parents, but 
are generally positive (nu > 8) for the exponential parent. This result explains the Monte 
Carlo results in the literature which consistently show conservative P[EI]  for uniform and 
normal distributions, but inflated P[EI]  for the exponential [Miller, 1968; Brown & 
Forsythe, 1974; Layard, 1973]. 

The variance properties o f p  were also investigated using Monte Carlo methods and 
those results are presented in Table 2. The variance decreases as n increases. Thus, both 
the heterogeneity of variance and biasedness ofp should tend to inflate P[EI]  for unequal n 
cases. The limited Monte Carlo work on p with unequal n done by Brown and Forsythe 
[1974] supports this argument since the unbalanced two-group designs exhibited markedly 
increased empirical test sizes for nonnormal parent distributions. 

Monte Carlo estimates of the kurtosis o f p  showed that for the uniform parent, 3'[P] 
decreases as nu increases (5.69 for nu = 12 and 1.02 for nu = 24). For the normal, ~/[p] is 
stable (averaged about 11). For the exponential, the 3'[P] increases as n u increases (31.12 
for nu = 12 and 51.82 for nu = 24). Thus, the kurtosis o f p  will, to some extent, tend to 
make the ANOVA tests more conservative than otherwise. For  the exponential parent, 
however, intraclass correlation effects should overwhelm this tendency. 

The  q Variable  

An alternative jackknife pseudovalue 

(15) quk = nus~  - (nu - l)s~j_~ 

has been basically ignored in the literature although it was briefly considered by Miller 
[1968, 1974]. Because 

(16) 8[quk ] = nua~ j - (n u - l)a~j = tr~, 

it may be more appropriate than p for designs with unequal n. It is also easier to deal with 
theoretically. 

Using Equation 7 from Miller [1968], it follows that 

( n ~ j - n  u -  l ) ~ j k -  ~ ? ~ j k ,  

(17) qu~ = no(n o - 1) 

which yields some simple computational formulae, 

(18) qu~ = n u0~uk - flu)2 _ s~ = (n u - 1)~t2jk - s~j 
n u -  2 n u -  2 

It is easily demonstrated that 
n t j  

(19) ~ qu~ = s~j; 
t~ = 1 n l J  

thus, like ~72, the estimates of between group effects can be found directly from the within- 
cell variances. Therefore, the between-groups sums of squares based upon £2 and q are 
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identical. As suggested by an associate editor, the within-group sum of squares using q, 
nlJ rttj 

(20) SSW(q) = ~ ~=IE (q,~k- s~j) ~= Z,,~ k=lZ (nu -(n,,l'~(e~Jk_ 2) 2- ~j)2 

Thus SSW(q) will always be greater than SSW(~Z). If the design is balanced, 

(21) F(•2 ) = ( n -  1)2F(q) 
¢ n  - 2) 2 

Thus, the P[EI] and power will be smaller for q than for ~ .  
Since q~j~ is a linear combination of the ~j~'s, the variance and intraclass correlation 

of quk can be found. Temporarily dropping the i, j subscripts, 

(22) Var[qk] = {(n' - 2n 3 - n 2 + 3n) - (2n 3 - 5n 2 + 3n)p[k~]!Var[~ ] 
n~fn  2 y  

( 3 n - 2 n  2 ) + { ( n -  1) 4 + ( n -  1)}p[~] 
(23) p[qk]= ( n ' - 2 n  3 - n  2+  3 n ) - ( 2 n  3 -  5n 2 + 3 n ) p [ ~ ] "  

These equations have been evaluated for various values of n~j and 3" and are presented in 
Tables 1 and 2. Surprisingly, the intraclass correlation is negative throughout the range 
studied, thus making the ANOVA test basically conservative. Like p[~], p[q] is of order 
n-~ and tends to increase as 3" increases. Because p[q] is negative, however, the larger 3" will 
tend to make P[EI] closer to a.  Using the same logic that was applied to p[~], the effects of 
p[q] were calculated for the 2 × 2 and 4 × 3 balanced designs (Table 3). It can be easily 
seen that the P[EI] is very conservative for small n and that the larger design is more 
affected. Using (9) again, it can be seen that this basic conservativeness should apply to 
unbalanced designs as well. However, the variance ofq~jk decreases as n~j increases, which 
should tend to increase P[EI] for unbalanced designs. 

Using (18), it is immediately evident that 

(24) lim (quk - ~j~) = 0 .  
n t j ~  

Kendall and Stuart [ 1969, p. 115] provide the "Second Limit Theorem" which can be used 
to show that the moments ofq~jk and ~j~ are asymptotically equivalent. Thus in the limit, 
each variable has a variance of alj(2 + 3'). Also, since ~jk has high kurtosis, so should q~j~. 
Monte Carlo simulation of'y[q] revealed it to be of the same magnitude as 3"[z "~] for nt~ < 
24. Again, this ANOVA violation probably further reduces P[EI] for designs with small 
N. 

Miller [1974] criticized the q variable because its use in traditional two-tailed t- 
distribution confidence intervals may at times lead to intervals that include negative values 
for a 2. Of course, the interval may simply be truncated openly at zero (0 < a2). This will 
not change the confidence level of the interval since only improper values of  tr 2 are 
removed--if  the larger interval contains the population tr z, then so wilt the truncated 
interval. 

The W50 Variable 
Brown and Forsythe [1974] investigated 

(25) W50,j~ = lY,J~ - Md, j l 

where Md~j is the median of the i , f  h cell. They found that it possesses excellent robustness 
in the balanced and unbalanced two-group designs. The sample mean of the W50 variable 
is a common measure of spread, the average absolute deviation [Hays, 1973, p. 243]. 
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Brown and Forsythe suggested another variable, WIO, the absolute deviation about the 
10% trimmed mean. Their work suggests that while 14110 may be more powerful than W50, 
it may also be less robust. Only W50 is examined here. 

Little theoretical work has been done regarding the suitability of W50 as an ANOVA 
variable. Because of the natural difficulties (absolute values and medians) of dealing with 
WSO analytically, it was necessary to use Monte Carlo estimation to investigate its 
properties. 

The expected value generally increases as a function of n and decreases as a function 
of y. For example, with a~j = 4 expected value estimates for n~l = 4 were 1.38, 1.34, and 
1.15 for uniform (3' = - 1.2), normal (3/= 0) and exponential (3' = 6) parents respectively. 
Corresponding values for ntj = 24 were 1.65, 1.54, and 1.34. Thus, unbalanced designs 
produce artificial differences in the spread means and therefore may give higher P[EI] than 
balanced designs. The variances of W50 (Table 1) are generally stable over different n~j. 

O'Brien [1975] suggested a correction factor for WSO, 

(26) ff',,k = V ~ l  1/5 W50,,~" 
L n~j - 1_1 

While the expected values of this variable are stable, it has smaller variances for cells with 
larger n,j, which will also inflate P[EI]. Of course, if" has the same intraclass correlation 
and kurtosis as W50. The correction factor if" was not included in the Monte Carlo study, 
although any W50 results for equal n cases apply directly to if'. 

The intraclass correlation (Table 1) is generally negative indicating that W50, like q, 
will produce basically conservative ANOVAs. The kurtosis of W50 for n~j = 12 was 
estimated as - . 5  for the uniform parent, 1.0 for the normal, and 12.7 for the exponential; 
and was quite stable across different n~j. 

It should be noted that all these simulations used even sample sizes. Martin [1976] 
suggested that W50 is much more conservative (and hence less powerful) with odd n~/s: 
The resulting W50 = 0.0 observations can radically increase the variance of  W50. One 
obvious solution is to randomly delete an observation, so that n~ is even. 

Other Comments 

The theory outlined above was used to evaluate the appropriateness of various spread 
variables by focusing nearly all attention on the within cell properties of those variables: 
the expected value, variance, intraclass correlation and kurtosis and their dependencies on 
the cell size and parent distribution. Little attention has been paid to the statistical model 
as a whole. 

Since ANOVA is an additive model, the use of log a~j type dependent variables 
effectively represents a multiplicative model for a~j. Thus log s a and p are variables that 
conform to a multiplicative model for the cell variances, while 3 ~ and q conform to an 
additive model for the cell variances. The use of W50 produces an additive model for the 
average absolute deviation. The distinction between additive and multiplicative models 
has not been stressed in past research on tests for homogeneity of variance, because that 
work has only focused on the two-group and k-group (one-way) designs. In the case of 
two (or more) factors, the distinction becomes important if the researcher wishes to 
parsimoniously describe and test the groups' variances in terms of main effects and 
interactions. For example, if the model underlying the variances is multiplicative with no 
interactions, i.e., 

(27) ~r~j= cr2atbj; i =  l t o I ;  j =  l t o J ,  

then the use of  an additive statistical model will detect interaction effects that reflect the 
multiplicative model. A similar phenomenon will occur if data from an underlying 
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additive model is analyzed with a multiplicative statistical model. For those researchers 
who are untroubled by interactions, the use of an additive model may be preferable since it 
is most similar to the analysis of variance. It is important that researchers understand that 
the three sets of variables (log s 2, p; 3 ~, q; and 14150) imply different statistical models. 

Another point needs to be brought into focus. For every spread variable, greater 
parent kurtosis results in greater spread variance. This is the primary reason for the 
robustness of these tests. For example, it is well-known [Scheff6, 1959, p. 83] that 

(28) Var[s~j]= a' [ 2 -~-~j] 
tl ntl 1 + " 

Normal theory tests implicitly use 3' = 0 and are not robust. If appropriate spread 
variables are used in an ANOVA, Var[s 2] is estimated from the data and will "automati- 
cally" be properly sensitive to 3". For example, the asymptotic variance of both ~j~ and q~jk 
is cr~j(2 + 3'). Because both their intraclass correlations are asymptotically 0, the variance 
of the spread means, i ~  and 4~j, w.ill be (in the limit) properly estimated by eli(2 + 3")/n~j. 
This relationship between parent kurtosis and spread variance also implies that even a 
"perfect" spread variable (unbiased, no intraclass correlation, stable variance over ntj, 
normally distributed) will become less powerful as the parent kurtosis increases. 

The Monte Carlo Simulation 

In order to supplement and test the theoretical development, an extensive Monte 
Carlo simulation of these tests was conducted. The results of this study demonstrate and 
validate the conclusions made above. In addition, the powers of the tests are estimated and 
compared. 

In addition to using the five ANOVA variables (log s 2, p, 32, q, W50), Zelen's [1959, 
1960] likelihood ratio tests of A, B, and AB (denoted MI, M2 and M3 by Zelen) were also 
included in order to assess what sacrifices in power may result from using the more robust 
procedures. Since Bartlett's test has been customarily used in past research as a standard 
of power for the k-group homogeneity of variance tests, the "two-way Bartlett test" 
developed by Zelen seemed to be the best standard for this study. Only balanced designs 
could be considered for Zelen's technique, however, because it has not yet been extended 
to unbalanced designs. The Z-variance test was not studied, since it has already been 
shown to have unacceptable robustness [Overall & Woodward, q974; Levy, 1975]. 

The Monte Carlo study was designed to estimate the probability of rejecting the usual 
A, B, and AB hypotheses for a variety of two-way factorial designs. In essence, a factorial 
Monte Carlo experiment was designed to study two-way analysis of spread designs. These 
two-way designs differed with respect to the dimension of the design (2 × 2 or 4 × 3), the 
type of parent distribution (uniform, normal, exponential), the average cell sizes (12, 24), 
the degree of imbalance of the cell sizes (balanced, "moderately" unbalanced, "severely" 
unbalanced), the type of underlying model for the cell variances (null, one main effect, two 
additive main effects, two multiplicative main effects, interaction effect). These nonnull 
models were varied with respect to their degree of effect ("low" and "high") which were 
operationally defined in order to obtain a suitable range for the power curves. Each of 
these factors was "crossed" with the other factors, except that only balanced designs were 
used for the nonnull underlying models. In other words, power was only studied for the 
balanced designs. For each unique combination of these factors, an estimate of the 
rejection rate was made using 1000 trials, except that in the cases with no underlying 
differences among the cell variances (null) 2000 trials were used. With 2000 trials, the 
standard error of the Type 1 error rate estimate is approximately .0048 when the true a- 
level is .05. Standard errors for true powers of. 1 (or .9), .3(or .7) and .5 for 1000 trials are 
.0095, .0145, and .0158 respectively. 

Initially, each of the tests was conducted using the nominal .05 critical values. In 
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addition, however, the experiment was repeated using empirical .05 critical values that 
were obtained by selecting the 100 TM highest test statistics from each of the null model 
designs (100/2000 = .05). Such a standardization allows for power comparisons that are 
not contaminated by the initial discrepancies in P[EI]. Techniques with good "empirical 
power" may provide a good basis for an adjusted test. 

Random numbers were generated using the PDP- 11 congruential function, RANDU,  
which was imbedded in a Marsaglia table scheme [Marsaglia & Bray, 1968]. This U(0, 1) 
distribution was initially transformed to either a uniform (7 = - t.2), normal (7 = 0), or 
exponential (7 = 6) distribution with locations and scales standardized to 8[X] = 0 and 
Var[X] = 1. In order to obtain the standardized uniform parent, the linear transformation, 
X = (U - ,5)121/~, was used. The Box-Muller normalization was used to generate the N(0, 
1) distribution. The transformation X = -In(U) - 1 produced the (standardized) ex- 
ponential distribution, with density, f(X) = exp( -X - 1), - 1 ___ X < co. The cell variances 
were then controlled through the transformation Y = auX. The unbalanced ANOVA tests 
were computed using only the "eliminating" tests (AB I A, B; A I B; and B t A ) as described 
by Appelbaum and Cramer [1974]. 

Results for Type I Error Rates 

It would not be practical to detail all of the results of the experiment here, but it is 
worthwhile to present the results for a demonstrative case. The null model results for the 
4 × 3 design with average cell sizes ri = 12, are given in Table 4. The cell sizes (nl~, n~z . . . . .  
n~,) were 8, 8, 16, 16, 12, 12, 12, 12, 16, 16, 8, 8 for the moderately unbalanced design and 
4, 4, 20, 20, 12, 12, 12, 12, 20, 20, 4, 4 for the severely unbalanced design. This arrangement 
was selected so that the effects of biased variables would be manifested in the test of 
interaction. 

The log s ~ variable produced excellent empirical test sizes with one unexplained 
exception. Of the 108 P[EI] estimates generated from the entire study, only seven exceeded 
.060 (.076 maximum) and none were less than .040. Of these seven high values, however, 
five were from tests of severely unbalanced designs with the uniform parent. Equal subset 
sizes of rn = 4 were used for all cases. 

The ~ variable produced basically inflated test sizes, as expected. The estimates 
generally increased as a function of 3' due to the increasing intraclass correlation. The 
counterbalancing effect of the kurtosis of ~ seems to have broken down in the 4 × 3 
designs, although the 2 × 2 results showed a more stable pattern. There was some 
difficulty with unbalanced designs due perhaps to the heterogeneity of variance of k ~ and 
the high intraclass correlations that exist in the smaller cells. 

The p variable also performed as expected. In agreement with its intraclass correla- 
tion, the test was conservative for uniform and normal parent populations and inflated for 
the exponential which gave quite high levels (.089 to .  112 for the case presented here). This 
test was also unstable for unbalanced designs as shown by the high P[EI] for the AB tests. 
For the normal parent, this case produced A, B, and AB test sizes of .052, .051, a n d .  120 
respectively. The exponential parent produced an AB test size of .174 in the severely 
unbalanced design. 

The q variable produced the conservative test sizes that were expected from its 
negative intraclass correlations. This test was generally well-behaved in unbalanced de- 
signs. There were some increases for AB tests in severely unbalanced 4 × 3 designs, 
although this was only troublesome with the exponential parent (.097, for ri = 12 and .090 
for h = 12). 

The W50 variable performed conservatively due to its negative intraclass correlation. 
Unbalanced designs did not substantially effect this test, thus the dependency between the 
expected value of  W50 and ntj had little effect. 
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TABLE 4 

~pi~ical Probability of Type I Error Using the Nominal .05 
Critical Values for the h x 3 Design with Average Cell Size of 5=12 

Equal n Moderate Imbal Severe Imbai 

A B AB A B AB A B AB 

Uniform parent 
Zelen .004 .002 .002 

log s 2 .043 .0h9 .042 .043 .047 .054 .052 .060 .076 

p .015 .016 .018 .021 .020 .022 .039 .067 .202 

~2 .048 .048 .O50 .055 .047 .O60 .069 .065 .105 

q .023 .026 .022 .030 .029 .022 .027 .036 .Oh3 

W50 .017 .017 .012 .028 .021 .020 .020 .029 .041 

Normal parent 
Zelen .051 .051 .0h0 

log s 2 .041 .0h9 .041 .045 .052 .051 .0h7 .042 .060 

p .041 .035 .027 .034 .045 .041 .052 .051 .120 

~2 .068 .056 .055 .052 .062 .079 .069 .073 .llO 

q .036 .030 .027 .02h .03h .034 .032 .035 .052 

W50 .032 .031 .026 .025 .038 .032 .032 .036 .033 

Expontl parent 
Zelen .437 .357 .649 

log s 2 .054 .053 .049 .048 .045 .052 .054 .0~7 .058 

p .090 .089 .112 .097 .076 .116 .i01 .089 .17h 

~2 .080 .064 .092 .079 .069 .116 .097 .098 .151 

q .o4h .038 .045 .o43 .o37 .o52 .Oh5 .Oh5 .097 

W50 .047 .045 .045 .038 .036 .042 .053 .045 .052 

The Zelen procedure was extremely nonrobust and showed the pattern typical of 
Bartlett's test. 

Results Concerning Power 

In order to present the general flavor of the results from the nonnull cases, the 4 × 3 
design with the underlying model 

4 3 

(29) a2t~= a2a'bj; 1~  a , =  I ~  b j =  l; a , ,b~>O 
1~1 ]=1 
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was selected as a fair representative of the results from the entire study. The parameters  for 
at and b~ were 

low effect: a = [7/10, 9/10, 10/9, 10/7] b = [4/5, 1, 5/4] 
high effect: a = [6/10, 9/10, 10/9, 10/6] b = [4/5, 1, 5/4] 

with ~.2 __ 4. Notice that the A effect was the only effect that was changing. 
The powers using nominal  critical values are given in Tables 5 and 6. Power for all the 

ANOVA tests decreased as a function of  3' because of the corresponding increases in the 
variances of  the spread variables. 

TABLE 5 

Empirical Probability of Rejection Using the Nominal .05 
Critical Values for the 4 x 3 Design with Equal Cell Sizes of n=12. 

Null Low Effect High Effect 

A B AB A B AB A B AB 

Uniform parent 
Zelen 

log s 2 

P 

~2 

q 

W50 

Normal parent 
Zelen 

log s 2 

P 

~2 

q 

W50 

Expontl parent  
Zelen 

log s 2 

P 

~2 

q 

U50 

.004 .002 .002 

.043 .049 .042 

.015 .016 .018 

.048 .048 .O50 

.023 .026 .022 

.017 .017 .012 

051 .051 .040 

o41 .049 .o41 

041 .035 .027 

o68 .056 .O55 

O36 .030 .O27 

032 .031 .026 

• 437 .357 .649 

.054 .053 .049 

.090 .089 .112 

.080 .064 .092 

.044 .038 .045 

.047 .045 .045 

• 193 .092 .002 

• 277 .190 .052 

.430 .256 .019 

.636 .414 .076 

.508 .318 .048 

• 299 .195 .016 

.344 .232 .048 

.220 .150 .051 

.263 .176 .032 

• 370 .25i .087 

.257 .174 .039 

• 239 .154 .032 

.627 .469 .606 

.124 .092 .041 

.228 .139 .!01 

.181 .121 .091 

.107 .068 .045 

.166 .095 .040 

.638 .099 .002 

.285 .091 .OO7 

.850 .260 .021 

.920 .406 .090 

.864 .299 .046 

.667 .179 .017 

.657 .214 .060 

.2O4 .084 .O04 

.540 .152 .038 

.638 .213 .i00 

.506 .152 .O58 

.511 .lh6 .039 

.774 .467 .623 

.147 .073 .009 

• 297 .152 .107 

.294 .131 .107 

• 195 .081 .061 

• 297 .105 .044 
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TABLE 6 

Empirical Probability of Rejection Using the Nominal .05 
Critical Values for the 4 x 3 Design with Equal Cell Sizes of n=2h. 

Null Low Effect High Effect 

A B AB A B AB A B AB 

Uniform parent 
Ze!en .00! .001 .001 .722 .328 .000 .992 .353 .000 

log s 2 .052 .046 .050 .580 .3h5 .044 .580 .163 .002 

p .024 .022 .022 .968 .778 .024 .999 .760 .017 

~2 .047 .040 .051 .973 .786 .084 .999 .759 .131 

q .035 .030 .034 .965 .735 .057 .999 .718 .096 

W50 .024 .023 .019 .798 .499 .019 .985 .501 .023 

Normal parent 
Zelen .049 .056 .062 .671 .465 .051 .953 .447 .057 

log s 2 .043 .044 .056 .h09 .281 .049 .452 .180 .003 

p .036 .041 .047 .619 .415 .043 .935 .415 .050 

~2 .050 .059 .064 .658 .447 .094 .947 .430 .094 

q .037 .043 .042 .616 .406 .058 .927 .384 .069 

W50 .039 .042 .041 .586 .377 .049 .908 .369 .045 

Expontl parent 
Zelen .477 .387 .697 .790 .591 .697 .898 .594 .678 

log s 2 .047 .048 .052 .254 .148 .054 .278 .i04 .006 

p .073 .O73 .104 .306 .187 .096 .493 .186 .106 

-2 z .056 .058 .073 .253 .160 .076 .439 .141 .086 

q .041 .043 .049 .211 .135 .060 .382 .ill .065 

w50 .043 .045 .054 .333 .197 .046 .592 .176 .068 

For the uniform parent, thep and U A N O V A s  gave the highest power. The power of 
q was a close third in rank. Zelen's tests and the W50 A N O V A  were similar in power, 
ranking below q. The log s 2 A N O V A  was much lower in power. 

For the normal parent, the Zelen procedure was superior, although the (inflated) 
test was nearly as powerful. A group consisting of the p, q, and W50 A N O V A s  had less 
power, but were considerably more powerful than the log s ~ ANOVA.  

For the exponential parent, the power of  Zelen's procedure is deceptive due to the 
extreme test sizes. The most outstanding performance was that of the W50 variable which 
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generally gave the highest power of the ANOVA procedures, even though its empirical test 
sizes were not inflated. The p and ~ variables produced power near that of 14150, but their 
P[EI] values were quite high. The q and log s 2 ANOVAs were the lowest in power. 

Because the results presented here were from the multiplicative underlying model, the 
P[EI] values for the AB tests for the additive statistical models (~ and q) are expectedly 
greater than .05. Distributing the overall between-groups variance over main effects and 
interaction effects may have reduced the power of the main effects tests for ~ and q to 
some degree. Over all underlying models, however, the relative powers of all ANOVA 
tests remained fairly stable. 

With some minor exceptions, the ANOVA tests' power results based on the empirical 
.05 critical values were consistent with the nominal results. For the uniform parent, the p, 

and q ANOVAs produced the most power, although the Zelen procedure had similar 
power. The 14150 ANOVA trailed considerably, but it was still more powerful than the log 
s ~ ANOVA. For the normal parent, the Zelen test excelled, and the p, q, ~, and 14150 
ANOVAs were all quite similar and were all clearly more powerful than log s 2. With the 
exponential parent, the 14150 ANOVA was the most powerful test and was followed by 
Zelen's test. The power of the log s 2 variable was surprising in that it was greater than that 
of thep, q, or ~ variables, especially with n = 24. Due to the fact that the F-statistics for 
and q are linearly related, their empirical powers were identical under all conditions. 

Conclusion 

It seems fair to conclude that the Monte Carlo results reasonably paralleled the 
expectations that were derived from the properties of the various spread variables. This 
fusion of empirical and theoretical studies enabled us to discover not only what happens 
when these spread variables are used in an ANOVA, but also why those things happen. 
Knowledge of the theoretical properties of these tests should provide a basis for their 
refinements. 

Of the properties studied here, intraclass correlation seems to be the most important. 
Variables with positive p (~ and, at times, p) produce inflated P[EI] and those with 
negative p (q, W50, and at times, p) produce conservative P[EI]. The influence ofo on the 
behavior of these spread variables in ANOVA is strong and suggests that all candidates 
for spread variables should be examined closely with respect to intraclass correlation. 

The other properties are also important. Because the expected values and variances 
are often dependent upon ntj, designs with unequal n can behave differently than balanced 
designs. The kurtosis o f ~  and q can be very large, which might seriously reduce P[EI] and 
power for designs with small total sample sizes. 

Primarily because of their slightly negative intraclass correlation, q and W50 emerge 
as the best spread variables examined in this study. The use of either ~ and p will give 
inflated P[EI]. While the independence of the tog s 2 variables produces reasonable P[EI], 
this variable's lack of power and arbitrariness of subgroup formation make it undesirable. 

The remaining attention will focus on q and W50. Of course, their usefulness depends 
on other factors besides P[EI], i.e. power, ease of computations, and interpretability. 
When underlying assumptions are met, nonrobust procedures are often more powerful 
than robust procedures that do not "take advantage" of those assumptions. Here, for 
example, Zelen's test showed more power than all the ANOVA tests when the parent 
population was normal. Fortunately, the normal parent power ofq and 14150 were not far 
behind the power of Zelen's test. Therefore, it is reasonable to use these robust procedures 
even in cases when normality can be "reasonably" assured. With other types of parent 
distributions, the q variable produces more power than 14150 for platykurtic (3' < 0) 
distributions, while 14150 is superior to all tests studied here when the distributions are 
quite leptokurtic. Thus some knowledge of the shape of the parent distribution will aid 
researchers in their choice of variables. Even cell sizes should be used for 14150. 
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Both the q and  W50 variables are easy to compute ,  especially if one uses the 
compu ta t i ona l  formulae  (18) for q. The  abundanc e  of A N O V A  compute r  rout ines  insures 
their usability. With  respect to interpretabi l i ty ,  m a n y  researchers will find q preferable to 
W50, because q produces an addit ive model  for the mos t  famil iar  measure  of spread, the 
cell variances.  

O n  balance,  the q var iable  A N O V A  can be r ecommended  as a general  tool,  a l though 
W50 should be used with extremely leptokur t ic  popula t ions .  ( R e m e m b e r  n o t  to use W50 

with odd number s  for cell sizes.) The  use of  ei ther  q or  W50 is a s imple me thod  to test 
hypotheses  of  homogene i ty  of  spread in factorial  designs. The  resul t ing A N O V A  tests are 
robus t  and  relatively powerful .  
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Note: This test is available in JMP (Fit Y by X) and SAS (PROC GLM).
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