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Sample-size analysis continues to be transformed by ever-improving strategies, methods,
and software. Using these tools intelligently depends on what the investigators understand
about statistical science and what they know and conjecture about the particular research
questions driving the study planning. This chapter covers only the most common type of
sample-size analysis—power analysis, i.e., studying the chance that a given hypothesis test
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will be “statistically significant,” p < a. We focus on the core concepts and issues that the
collaborating statistician must master and key investigators must understand.

We begin by reviewing p values and discuss how to conduct sample-size analyses that
focus on the classical Type I and Type II error rates, o and 8. Then we go further to
consider two other error rates, the crucial Type I error rate, a*, which is the chance that
the null hypothesis is true even though p < «, and the crucial Type II error rate, 5*, defined
as the chance that the null hypothesis is false in some particular way even though p > a.
We argue that a* and 5* are just as relevant (if not more so) than o and 3. These issues
are explored in depth through two examples stemming from a straightforward clinical trial.

10.1

Introduction

In their “Perspectives on Large-Scale Cardiovascular Clinical Trials for the New

Millennium,” Dr. Eric Topol and colleagues (1997) provide a fine preamble to our

discussions:
The calculation and justification of sample size is at the crux of the design of a
trial. Ideally, clinical trials should have adequate power, ~90%, to detect a clinically
relevant difference between the experimental and control therapies. Unfortunately,
the power of clinical trials is frequently influenced by budgetary concerns as well as
pure biostatistical principles. Yet an underpowered trial is, by definition, unlikely to
demonstrate a difference between the interventions assessed and may ultimately be
considered of little or no clinical value. From an ethical standpoint, an
underpowered trial may put patients needlessly at risk of a new therapy without
being able to come to a clear conclusion.

In addition, it must be stressed that investigators do not plan studies in a vacuum. They
design them based on their knowledge and thoughtful conjectures about the subject
matter, on results from previous studies, and on sheer speculation. They may already be
far along in answering a research question, or they may be only beginning. Richard
Feynman, the 1965 Nobel Laureate in Physics and self-described “curious character,”
stated this somewhat poetically (1999, P. 146):

Scientific knowledge is a body of statements of varying degrees of uncertainty,
some mostly unsure,
some nearly sure,
none absolutely certain.

This reflects what we will call The March of Science, which for clinical research is
sketched in Figure 10.1.

As we step forward, our sample-size considerations need to reflect what we know. At any
point, but especially at the beginning, the curious character inside of us should be free to
conduct observational, exploratory, or pilot studies, because as Feynman said, “something
wonderful can come from them.” Such studies are still ‘scientific’ but they are for
generating new and more specific hypotheses, not testing them. Accordingly, little or no
formal sample-size analyses may be called for. But to become “nearly sure” about our
answers, we typically conduct convincing confirmatory studies under specific protocols.
This often requires innovative and sophisticated statistical planning, which is usually
heavily scrutinized by all concerned, especially by the reviewers. No protocol is ever
perfect, but paraphrasing the New York Yankee catcher and populist sage, Yogi Berra,
Don’t make the wrong mistake.

Medical research is still dominated by traditional (frequentist) hypothesis testing and
classical power analysis. Here, investigators and reviewers typically ask, What is the chance
(inferential power) that some given key p-value will be significant, i.e. less than some
specified Type I error rate, a? Thus, one cannot understand inferential power without
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Figure 10.1 March of science in clinical research
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knowing what p-values are and what they are not. Researchers rely on them to assess
whether a given null hypothesis is true, but p-values are random variables, so they can
mislead us into making Type I and II errors. The respective classical error rates are called
a and B =1 — power. All of this is reviewed in detail.

This chapter also considers other error rates that relate directly to two crucial questions
that researchers should address. First, if a test turns out to be significant, what is the
chance that its null hypothesis is actually true (Type I error)? A great many researchers
think that this chance is at most . They might say something like, “We will use o = 0.05
as our level for statistical significance, so if we get a significant result, we will be more than
95% confident that the treatments are different with respect to this outcome.” Researchers
want to be able to make statements like this, but this particular logic is wrong. Likewise, if
a test turns out to be non-significant, they may ask, “What is the chance that its null
hypothesis is actually false (Type II error) to some particular degree?” Many researchers
think this is the usual Type II error rate, 5. It is not.

So, what is an appropriate way to do this? We describe something we call the crucial
Type I error rate (here, a*), which is the chance that the null hypothesis is true even after
obtaining significance, p < a. Similarly, the crucial Type II error rate (3*) is the chance
that the null hypothesis is false in some particular way even though a p > « result has
occurred. We argue that o* and * are just as relevant (if not more so) than o and 5. We
demonstrate how crucial error rates can be guesstimated if investigators are willing to state
and justify their current belief about the chance that the null hypothesis is indeed false.
Importantly, for a given « level, greater inferential power reduces both crucial error rates.

All these concepts will be developed and illustrated by carrying out a sample-size
analysis for a basic two-group trial to compare two treatments for children with severe
malaria: usual care only versus giving an adjuvant drug known to reduce high levels of
lactic acid. Two planned analyses will be covered. The first compares the groups with
respect to a binary outcome, death within the first 10 days. The second compares them on
a continuous outcome, the ratio of two amino acids measured in plasma, using baseline
values as covariates. The principles covered apply to any traditional statistical test being
used to try to reject a null hypothesis, including analyses far more complex than those
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discussed here.

While obtaining an appropriate and justifiable sample size is important, going through
the analytical process itself may be just as vital in that it forces the research team to work
collaboratively with the statistician to delineate and critique the rationale undergirding the
study and all the components of the research protocol. The investigators must specify tight
research questions, the specific research design, the various measures, and an analysis plan.
They must come to agree on and justify reasonable conjectures for what the “infinite
dataset” may be for their study. In essence, they must imagine how the entire study will
proceed before the first subject is recruited. The “group think” on this can be invaluable.

Our reader audience includes both collaborating statisticians and content investigators.
We present almost no mathematical details. While the examples given here involve clinical
trials, the principles apply broadly across all of science.

The SAS procedures POWER and GLMPOWER are the primary computational
engines, but we only use a small portion of their capabilities. Far more information can be
found in the current SAS/STAT User’s Guide.

To save space, not all SAS code and output is shown. The complete SAS code and
datasets used in this book are available on the book’s companion website at
http://support.sas.com/publishing/bbu/companion_site/60622.html.

10.2

Research Question 1: Does “QCA” Reduce Mortality in Children
with Severe Malaria?

According to a report released in 2003 by the World Health Organization, malaria remains
one of the world’s foremost health problems, killing at least one million people annually,
mostly children under five years old in sub-Saharan Africa. Lactic acidosis (toxic levels of
lactic acid in the blood) is a frequent complication in severe malaria and is an incremental
statistical predictor (“independent risk factor”) of death. Moreover, a plausible biological
rationale supports the hypothesis that lactic acidosis is a contributing cause of death.

Dr. Peter Stacpoole of the University of Florida has spent decades investigating the
safety and efficacy of dichloroacetate (DCA) for treating lactic acidosis in genetic and
acquired diseases. In 1997-99, he collaborated with Dr. Sanjeev Krishna of the University
of London to lead a team that conducted a small, randomized, double-blind, controlled
trial of quinine-only versus quinine+DCA in treating lactic acidosis in Ghanaian children
with severe malaria (Agbenyega et al., 2003). They concluded that a single infusion of
DCA was well-tolerated, did not appear to interfere with quinine, and, as hypothesized,
reduced blood lactate levels. The sample size of N = 62 + 62 was much too small to
support comparing mortality rates. The authors concluded that a large prospective study
was warranted.

From now on the story is fictionalized. Suppose “quadchloroacetate” (QCA) has the
same molecular structure as DCA at the active biological site, and has now been shown in
large animal and human studies to be clinically equivalent to DCA in quickly reducing
abnormally high blood lactate levels. However, QCA is less expensive to produce (about
US$1/dose) and has a longer shelf-life, especially in tropical climates.

“Dr. Sol Capote” heads the malaria research group at “Children’s Health International
(CHI),” and he and his colleagues are now designing a large clinical trial to be coordinated
from “Jamkatnia” in West Africa. Dr. Capote is an experienced investigator, so he knows
that substantial thought, effort, and experience must go into developing the sample-size
analysis and the rest of the statistical considerations.

The CHI study will use a randomized, double-blind design to compare usual care only
(UCO) versus usual care plus a single dose of QCA. After reviewing all previous human
studies of both DCA and QCA, the CHI team is convinced that a single dose of QCA is
very likely to be safe. Accordingly, after consulting with Jamkatnian health officials and a
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bioethicist, they decide that 2/3 of the subjects should get QCA.

10.3 p-Values, «, 3 and Power

The primary efficacy analysis will yield a p-value that compares the mortality rates of
control versus QCA. Smaller p-values indicate greater statistical separation between the
two samples, but how that p-value is determined is an issue that is not critical to
understanding the essential concepts in sample-size analysis. In this case, that p-value may
come from one of the many methods to compare two independent proportions, including
the likelihood ratio chi-square test, as used here, or it may come from a logistic or hazard
modeling that includes co-predictors. Regardless of what test is used to get the p-value, if p
is small enough (“significant”) and the QCA mortality rates are better, Dr. Capote will
report that the study supported the hypothesis that QCA reduces mortality in children
with severe malaria complicated with lactic acidosis. If the p-value is not small enough
(“not significant”), then he will report that the data provided insufficient evidence to
support the hypothesis.

10.3.1 Null and Non-Null Distributions of p-Values; Type | and Type Il Errors

Dr. Capote’s quest here is to answer: Does QCA decrease mortality in children with severe
malaria? While Mother Nature knows the correct answer, only if we mortals in science were
able to gather an infinitely large, perfectly clean dataset could we figure this out ourselves.
Rather, we must design a study or, usually, a series of studies, that will yield sample
datasets that give us a solid chance of inferring what Mother Nature knows. Unfortunately,
Lady Luck builds randomness into those sample datasets, and thus even the best studies
can deliver misleading answers.

Please study the top distribution in Figure 10.2. Here, there is no difference between the
two groups’ mortality in the infinite dataset, so regardless of the sample size, all values for
0 < p < 1 are equally likely. Accordingly, there is a 5% chance that p < 0.05, or a 100a%
chance that p < « (in practice, these percentages are rarely exact, because the data are
discrete or they fail to perfectly meet the test’s underlying mathematical assumptions). If
there is no true effect but p < « indicates otherwise, this triggers a Type I error, which is
why « is called the Type I error rate. a should be chosen after some thought; it should not
be automatically set at 0.05.

What if QCA has some true effect, good or bad? Then the non-null (non-central)
distribution of the p-value will be skewed towards 0.0, as in the middle and bottom plots of
Figure 10.2. The middle one comes from presuming (1) true mortality rates of 0.28 for
UCO and 0.21 for QCA, which is a 25% reduction in mortality; (2) 700 patients
randomized to UCO versus 1400 to QCA, and (3) the p-value arises from testing whether
the two mortality proportions differ (non-directional) using the likelihood ratio chi-square
statistic. The bottom plot conforms to presuming that QCA cuts mortality by 33%.

Inferential power is the chance that p < o when the null hypothesis is false, which is
why « could be called the ‘null power.’ If there is some true effect, but p > «, then a Type
IT error is triggered. Consider the middle plot, which is based on a 25% reduction in
mortality. Using the common Type I error rate, @ = 0.05, the power is 0.68, so the Type II
error rate is # = 0.32. By tolerating a higher a-level, one can increase power (decrease [3).
Here, using oo = 0.20. the power is 0.87, so # = 0.13. If QCA is more effective (bottom plot,
33% reduction in mortality), then the power rises to 0.91 with o = 0.05 and 0.98 with
a = 0.20. Again, we will never know the true power, because Mother Nature will never tell
us the true mortality rates in the two groups, and Lady Luck will always add some natural
randomness into our outcome data.
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Figure 10.2 Distribution of the p-value under the null hypothesis and two non-null scenarios
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10.3.2 Balancing Type | and Il Error Rates

Recall that Topol et al. (1997) advocated that the power should be around 90%, which
puts the Type II error rate around 10%. We generally agree, but stress that there should
be no standard power threshold that is worshiped blindly as being satisfactory across all
situations. Why do so many people routinely perform power analyses using o = 0.05 and
80% power (3 = 0.20)? Rarely do they give it any firm thought.

Consider the middle plot in Figure 10.2. We could achieve a much better Type II error
rate of 13% if we are willing to accept a substantially greater Type I error rate of 20%.
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Investigators should seek to obtain « versus § values that are in line with the consequences
of making a Type I error versus a Type II error. In some cases, making a Type II error may
be far more costly than making a Type I error. In particular, in the early stages of the
March of Science, making a Type I error may only extend the research to another stage.
This is undesirable, of course, as are all mistaken inferences in science, but making a Type
II error may be far more problematic, because it may halt a line of research that would
ultimately be successful. So it might be justified to use a = 0.20 (maybe more) in order to
reduce § as much as possible. Using such high « values is not standard, so investigators
adopting this philosophy must be convincing in their argument.

10.4

A Classical Power Analysis
Dr. Capote and his team plan their trial as follows.

Study Design

This trial follows the small (N = 62 + 62) DCA trial reported by Agbenyega, (2003). It
will be double-blind, but instead of a 1:1 allocation, the team would like to consider giving
one patient usual care only for every two patients that get QCA, where the QCA is given
in a single infusion of 50 mg/kg.

Subjects

Study patients will be less than 13 years old with severe malaria complicated by lactic
acidosis. “Untreatable” cases (nearly certain to die) will be excluded. These terms will
require operational definitions and the CHI team will formulate the other
inclusion/exclusion criteria and state them clearly in the protocol. They think it is feasible
to study up to 2100 subjects in a single malaria season using just centers in Jamkatnia. If
needed, they can add more centers in neighboring “Gabrieland” and increase the total size
to 2700. Drop-outs should not be a problem in this study, but all studies must consider this
and enlarge recruitment plans accordingly.

Primary Efficacy Outcome Measure

Death before Day 10 after beginning therapy. Almost all subjects who survive to Day 10
will have fully recovered. Time to death (i.e., survival analysis) is not a consideration.

Primary Analysis

To keep this story and example relatively simple, we will limit our attention to the basic
relative risk that associates treatment group (UCO vs. QCA) with death (no or yes). For
example, if 10% died under QCA and 18% died under UCO, then the estimated relative risk
would be 0.10/0.18 = 0.55 in favor of QCA. p-values will be based on the likelihood ratio
chi-square statistic for association in a 2 x 2 contingency table. The group’s biostatistician,
“Dr. Phynd Gooden,” knows that the test of the treatment comparison could be made with
greater power through the use of a logistic regression model that includes baseline
measurements such as a severity score or lactate levels, etc. (as was done in Holloway et al.,
1995). In addition, this study will be completed in a single malaria season, so performing
interim analyses is not feasible. These issues are beyond the scope of this chapter.

10.4.1 Scenario for the Infinite Dataset

A prospective sample-size analysis requires the investigators to characterize the
hypothetical infinite dataset for their study. Too often, sample-size analysis reports fail to
explain the rationale undergirding the conjectures. If we explain little or nothing, reviewers
will question the depth of our thinking and planning, and thus the scientific integrity of our
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proposal. Be as thorough as possible and do not apologize for having to make some sound
guesstimates. All experienced reviewers have had to do this themselves.

Dr. Stacpoole’s N = 62 + 62 human study (Agbenyega et al., 2003) had 8 deaths in each
group. This yields 95% confidence intervals of [5.7%, 23.9%]| for the quinine-only mortality
rate (using the “EXACT BINOMIAL” method in PROC FREQ) and [0.40, 2.50] for the
DCA relative risk (using the asymptotic “RELRISK” method in PROC FREQ). These
wide intervals are of little help in specifying the scenario. However, CHI public health
statistics and epidemiologic studies in the literature indicate that about 19% of these
patients die within 10 days using quinine only. This figure will likely be lower for a clinical
trial, because untreatable cases are being excluded and the general level of care could be
much better than is typical. Finally, the Holloway et al. (1995) rat study obtained a DCA
relative risk of 0.67 [95% CI: 0.44, 1.02], and the odds ratios adjusting for baseline
covariates were somewhat more impressive, e.g., OR= 0.46 (one-sided p = 0.021).

Given this information, the research team conjectures that the mortality rate is 12-15%
for usual care. They agree that if QCA is effective, then it is reasonable to conjecture that
it will cut mortality 25-33% (relative risk of 0.67-0.75).

Topol et al. (1999) wrote about needing sufficient power to detect a clinically relevant
difference between the experimental and control therapies. Some authors speak of designing
studies to detect the smallest effect that is clinically relevant. How do we define such
things? Everyone would agree that mortality reductions of 25-33% are clinically relevant.
What about 15%7? Even a 5% reduction in mortality would be considered very clinically
relevant in a disease that kills so many people annually, especially because a single infusion
of QCA is relatively inexpensive. Should the CHI team feel they must power this study to
detect a 5% reduction in mortality? As we shall see, this is infeasible. It is usually best to
ask: What do we actually know at this point? What do we think is possible? What
scenarios are supportable? Will the reviewers agree with us?

10.4.2 What Allocation Ratio? One-Sided or Two-Sided Test?

Dr. Gooden is aware of the fact that the likelihood ratio chi-square test for two independent
proportions can be more powerful when the sample sizes are unbalanced. Her first task is
to assess how the planned 1:2 (UCO: QCA) allocation ratio affects the power. As shown in
Program 10.1, this is relatively easy to do in PROC POWER. Its syntax is literal enough
that we will not explain it, but note particularly the GROUPWEIGHTS statement.

Table 10.1 Effect of the Allocation Ratio, Nyco : Ngca, on Power, 3, and Sample Size for Two-Sided
a = 0.05 Assuming 15% Mortality with Usual Care and a Relative Risk of 0.67 in Favor of QCA

Allocation ratio (Nyco : Noca)

1:1 2:3 1:2 1:3
Power 0.930 0.923 0.905 0.855
Niotar = 2100 G 0.070 0.077 0.095 0.145

Relative Type II risk ratio 1.00 1.10 1.36 2.07

Niotar 1870 1925 2064 2420

Power = 0.90 Relative efficiency 1.00 0.97  0.91 0.77
Relative inefficiency 1.00  1.03  1.10 1.29

Table 10.1 displays results obtained using Program 10.1 and some simple further
computations. For this conjecture of 15% mortality versus 0.67 x 15% mortality, the most
efficient of these four designs is the 1:1 allocation ratio. It has a power of 0.930 or
B = 0.070 with N;pq; = 2100 (o = 0.05), and to get a 0.90 power requires Nypq = 1870.
Compared to the 1:1 design, the 1:2 design has a 36% larger Type II error rate (“relative
Type II risk ratio”) at Nype = 2100 and requires 2064 subjects to achieve a 0.90 power.
Thus, the 1:2 design has a relative efficiency of 1870/2064 = 0.91 and requires about 10%
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more subjects to achieve 0.90 power (relative inefficiency: 2064/1870 = 1.10). The relative
inefficiencies for the 2:3 and 1:3 designs are 1.03 and 1.29 respectively.

Program 10.1 Compare allocation weights

* Powers at Ntotal=2100;

proc power;
TwoSampleFreq
GroupWeights = (1 1) (2 3) (1 2) (1 3) /% UCO:QCA */
RefProportion = .15 /* Usual Care Only (UCO) mortality ratex/

RelativeRisk = .67 /* QCA mortality vs. UCO mortality */
alpha = .05
sides =1 2

Ntotal = 2100
test = 1lrchi
power = .;

* Ntotal values for power = 0.90;

proc power;
TwoSampleFreq
GroupWeights = (1 1) (2 3) (1 2) (1 3)/* UCO:QCA */
RefProportion = .15 /* Usual Care Only (UCO) mortality ratex/

RelativeRisk = .67 /* QCA mortality vs. UCO mortality */
alpha = .05

sides = 1 2

Ntotal = .

test = 1lrchi

power = .90;

run;

Note that Dr. Gooden uses SIDES=1 2 in Program 10.1 to consider both one-sided and
two-sided tests. Investigators and reviewers too often dogmatically call for two-sided tests
only because they believe using one-sided tests is not trustworthy. But being good
scientists, Dr. Capote’s team members think carefully about this issue. Some argue that
the scientific question is simply whether QCA is efficacious versus whether it is not
efficacious, where “not efficacious” means that QCA has no effect on mortality or it
increases mortality. This conforms to the one-sided test. For the design, scenario, and
analysis being considered here, the one-sided test requires 1683 subjects versus 2064 for the
two-sided test, giving the two-sided test a relative inefficiency of 1.23. At N = 2100, the
Type II error rate for the one-sided test is § = 0.052, which is 45% less than the two-sided
rate of § = 0.095. On the other hand, other members argue that it is important to assess
whether QCA increases mortality. If it does, then the effective Type II error rate for the
one-sided test is 1.00. This logic causes many to never view one-sided tests favorably under
any circumstances. After considering these issues with Dr. Gooden, Dr. Capote decides to
take the traditional approach and use a two-sided test.

For some endpoints, such as for rare adverse events or in trials involving rare diseases,
the argument in favor of performing one-sided tests is often compelling. Suppose there is
some fear that a potential new treatment for arthritis relief could increase the risk of
gastrointestinal bleeding in some pre-specified at-risk subpopulation, say raising this from
an incidence rate in the first 30 days from 8% to 24%, a relative risk of 3.0. A balanced
two-arm trial with N = 450 4+ 450 subjects may be well powered for testing efficacy
(arthritis relief), but suppose the at-risk group is only 20% of the population being
sampled, so that only about N = 90 + 90 will be available for this planned sub-group
analysis. Using o = 0.05, the likelihood ratio test for comparing two independent
proportions will provide 0.847 power for the two-sided test and 0.910 power for the
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one-sided test. Thus, using a one-sided test cuts the Type II error rate from 0.153 to 0.090,
a 41% reduction. Stated differently, using a two-sided test increases (3 by 70%. However, if
this research aim is only concerned with detecting an increase in GI bleeding, why not use
the statistical hypothesis—the one-sided version—that conforms to that aim? If using the
two-sided test increases the Type II error rate by 70%, why is that more trustworthy?

For completeness, and because it takes so little time to do, Dr. Gooden also uses PROC
POWER to find the approximate optimal allocation ratio. After iterating the group
weights, she settles on using Program 10.2 to show that while the theoretical optimal is
approximately 0.485:0.515, the balanced (0.500:0.500) design has almost the same efficiency.

Program 10.2 Find optimal allocation weights

proc power;
TwoSampleFreq
GroupWeights = /* UCO : QCA */
(.50 .50) (.49 .51) (.485 .515) (.48 .52) (.45 .55) (.33 .66)
RefProportion = .15 /* Usual Care Only (UCO) mortality ratex/

RelativeRisk = .67 /* QCA mortality vs. UCO mortality */
alpha = .05

sides = 2

Ntotal = .

test = LRchi /* likelihood ratio chi-square */

power = .90

nfractional;

run;

Output from Program 10.2

Fractional Actual Ceiling

Index Weightl Weight?2 N Total Power N Total
1 0.500 0.500 1868.510571 0.900 1869

2 0.490 0.510 1867.133078 0.900 1868

3 0.485 0.515 1867.002923 0.900 1868

4 0.480 0.520 1867.245653 0.900 1868

5 0.450 0.550 1876.616633 0.900 1877

6 0.330 0.660 2061.667869 0.900 2062

Should the study use the less efficient 1:2 design? After substantial debate within his
team, Dr. Capote decides that the non-statistical attributes of the 1:2 design give it more
“practical” power than the 1:1 design. First, nobody has safety concerns about giving a
single dose of QCA. Second, Jamkatnian health officials and parents will prefer hearing
that 2 out of 3 subjects will be treated with something that could be life saving for some.
Third, the extra cost associated with a 10% increase in the sample size is not prohibitive.
Given that this study’s set-up costs are high and the costs associated with data analysis
and reporting are unaffected by the sample size, the total cost will only increase about 3%.

10.4.3 Obtaining and Tabling the Powers

The stage is now set to carry out and report the power analysis. Please examine
Program 10.3 together with Output 10.3, which contains the essential part of the results.
Version 9.1 of PROC POWER provides plain graphical displays of the results (not shown
here), but lacks corresponding table displays. As this chapter was going to press, a
general-purpose SAS macro, %powtable, was being developed to help meet this need; see
the book’s website. Here, Dr. Gooden uses the ODS OUTPUT command and PROC
TABULATE to create a basic table. The reader may devise a better method.
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Program 10.3 Power analysis for comparing mortality rates

options 1s=80 nocenter FORMCHAR="|---—|+|-=—+=|-/\<>*";

proc power;
0DS output output=MortalityPowers;
TwoSampleFreq
GroupWeights = (1 2) /* 1 UCO : 2 QCA*/
RefProportion = .12 .15 /* UCO mortality rate */

RelativeRisk = .75 .67 /* QCA rate vs UCO ratex/
alpha = .01 .05 .10
sides = 2

Ntotal = 2100 2700

test = LRchi /* likelihood ratio chi-square */
power = .;

plot vary (panel by RefProportion RelativeRisk);

/* Avoid powers of 1.00 in table */
data MortalityPowers;
set MortalityPowers;
if power>0.999 then power999=0.999;
else power999=power;

proc tabulate data=MortalityPowers format=4.3 order=data;
format Alpha 4.3;
class RefProportion RelativeRisk alpha NTotal;
var Power999;
table
RefProportion="Usual Care Mortality"
* RelativeRisk="QCA Relative Risk",
alpha="Alpha"
* Ntotal="Total N"
* Power999=""*mean=" "/rtspace=28;
run;

Output from Program 10.3
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I
|
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| e e et S|
| |0.67 |.622].757|.823].905].893|.948|
|- ———+- e e et S|
|0.15 |0.75 |.438|.566|.677|.783].781|.864]|
| | === B T e s pal |
| [0.67 |
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Figure 10.3 juxtaposes three plots that were produced by using the same ODS output
dataset, MortalityPowers, with a SAS/GRAPH program not given here, but which is
available at this book’s website. This shows concretely how power increases for larger UCO
mortality rates or better (smaller) relative risks for QCA versus UCO.

Figure 10.3 Plots for the mortality analysis showing how changing the reference proportion or the relative risk
rate affects power.
Increasing the mortality rate under Improving the relative risk of \
Usual Care Only (UCO) increases power. QCA vs UCO increases power.
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Colleagues and reviewers should have little trouble understanding and interpreting the
powers displayed as per Output 10.3. If the goal is to have 0.90 power using o = 0.05, then
N = 2100 will only suffice under the most optimistic scenario considered, that is, if the
usual care mortality rate is 15% and QCA reduces that risk 33%. N = 2700 seems to be
required to assure adequate power over most of the conjecture space.

Tables like this are valuable for teaching central concepts in traditional hypothesis
testing. One can see with concrete numbers how power is affected by various factors. While
we can set N and «, Mother Nature sets the mortality rate for usual care and the relative
risk associated with QCA efficacy.

Let us return to the phrase from Topol et al. (1997) that called for clinical trials to have
adequate power “to detect a clinically relevant difference between the experimental and
control therapies.” With respect to our malaria study, most people would agree that even a
true 5% reduction in mortality is clinically relevant and it would also be economically
justifiable to provide QCA treatment given its low cost and probable safety. But could we
detect such a small effect in this study? If QCA reduces mortality from 15% to
0.95 x 15% = 14.25%, then the proposed design with N = 900 + 1800 only has 0.08 power
(two-sided o = 0.05). In fact, under this 1:2 design and scenario, it will require almost
104,700 patients to provide 0.90 power. This exemplifies why confirmatory trials (Phase
III) are usually designed to detect plausible outcome differences that are considerably
larger than “clinically relevant.” The plausibility of a given scenario is based on biological
principles and from data gathered in previous relevant studies of all kinds and qualities. By
ordinary human nature, investigators and statisticians tend to be overly optimistic in
guesstimating what Mother Nature might have set forth, and this causes our studies to be
underpowered. This problem is particularly relevant when new therapies are tested against
existing therapies that might be quite effective already. It is often the case that potentially
small but important improvements in therapies can only be reliably assessed in very large
trials. Biostatisticians are unwelcome and even sometimes disdained when they bring this
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news, but they did not make the Fundamental Laws of Chance—they are only charged
with policing and adjudicating them.

10.5

Beyond o and 3: Crucial Type | and Type Il Error Rates

Are a and 3 (or power= 1 — (3) the only good ways to quantify the risk of making Type I
and Type II errors? While they may be the classical rates to consider and report, they fail
to directly address two fundamental questions:

e If the trial yields traditional statistical significance (p < «), what is the chance this will
be an incorrect inference?

¢ If the trial does not yield traditional statistical significance (p > «), what is the chance
this will be an incorrect inference?

To answer these in some reasonable way, we need to go beyond using just « and (5.

10.5.1 A Little Quiz: Which Study Provides the Strongest Evidence?

Table 10.2 summarizes outcomes from three possible QCA trials. Which study has the
strongest evidence that QCA is effective? Studies #1 and #2 have N = 150 + 300 subjects,
whereas #3 has N = 700 + 1400 subjects. Studies #1 and #3 have identical 0.79 estimates
of relative risk, but with p = 0.36, Study #1 does not adequately support QCA efficacy.
Choosing between Studies #2 and #3 is harder. They have the same p-value, so many
people would argue that they have the same inferential support. If so, then #2 is the
strongest result, because its relative risk of 0.57 is substantially lower than the relative risk
of 0.79 found in Study #3. However, Study #3 has nearly 5 times the sample size, so it has
greater power. How should that affect our assessment?

Table 10.2 Which Study Has the Strongest Evidence that QCA Is Effective?

Deaths/N Mortality Relative risk LR test

Study UCO QCA UCO QCA RR [95% CT] p-value
#1 21/150  33/300 14.0% 11.0% 0.79 [0.47, 1.31] 0.36
#2 21/150  24/300 14.0%  8.0% 0.57 [0.33, 0.992] 0.05

#3  98/700 154/1400 14.0% 11.0% 0.79 [0.62, 0.995] 0.05

10.5.2 To Answer the Quiz: Compare the Studies’ Crucial Error Rates

Suppose that Mother Nature has set the true usual care mortality rate at 0.15 and the
QCA relative risk at 0.67, the most powerful scenario we considered above. We have
already seen (Figure 10.3, Output 10.3) that with N = 700 + 1400 subjects and using
a = 0.05 (two-sided), the power is 90%. With 150 subjects getting usual care and 300
getting QCA, the power is only about 33%.

Now, in addition, suppose that Dr. Capote and his team are quite optimistic that QCA
is effective. This does not mean they have lost their ordinary scientific skepticism and
already believe that QCA is effective. Consider another Feynman-ism (1999, P. 200):

The thing that's unusual about good scientists is that they're not so sure of
themselves as others usually are. They can live with steady doubt, think “maybe
it's so" and act on that, all the time knowing it's only “maybe.”

Dr. Capote’s team understands that even for the most promising experimental
treatments, the clear majority fail to work when tested extensively. In fact, Lee and Zelen
(2000) estimated that among 87 trials completed and reported out by the Eastern
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Cooperative Oncology Group at Harvard from 1980-1995, only about 30% seem to have
been testing therapies that had some clinical efficacy.

Let us suppose that Dr. Capote’s team conducted 1000 independent trials looking for
significant treatment effects, but Mother Nature had set things up so that 700 effects were
actually null. What would we expect to happen if Dr. Capote ran all 1000 trials at average
powers of 33%7? 90%?7 Table 10.3 presents some straightforward computations that
illustrate what we call the crucial Type I and Type II error rates. With 700 null tests, we
would expect to get 35 (5%) Type I errors (false positives). From the 300 non-null
hypotheses tested with 33% power, we would expect to get 99 true positives. Thus, each
“significant” test (p < 0.05) has an o* = 35/134 = 0.26 chance of being misleading. Note
how much larger this is than « = 0.05. Some people (including authors of successful
statistics books) confuse a and a*, and hence they also misinterpret what p-values are. A
p-value of 0.032 does not imply that there is a 0.032 chance that the null hypothesis is true.

Table 10.3 Expected Results for 1000 Tests Run at o = 0.05. The true hypothesis is null in 700 tests. For the
300 non-null tests, the average power is 33% or 90%.

Result of hypothesis test

p < 0.05 (“significant”) p > 0.05 (“not significant”)
33% average power
700 true null 5% of 700 = 35 95% of 700 = 665
300 true non-null 33% of 300 = 99 67% of 300 = 201
Crucial Type I error rate: Crucial Type II error rate:
a* =35/134 = 0.26 B* =201/866 = 0.23
90% average power
700 true null 5% of 700 = 35 95% of 700 = 665
300 true non-null 90% of 300 = 270 10% of 300 = 30
Crucial Type I error rate: Crucial Type II error rate:
a* =35/305 = 0.11 £* =30/695 = 0.04

The crucial Type II error rate, 8*, is defined similarly. With 33% power, we would
expect to get 201 Type II errors (false negatives) to go with 665 true negatives; thus 5* =
210/866 = 0.23. Note that this is not equal to 3 = 0.67.

10.5.3 Greater Power Reduces Both Types of Crucial Error Rates

A key point illustrated in Table 10.3 is that greater power reduces both types of crucial
error rates. In other words, statistical inferences are generally more trustworthy when the
underlying power is greater. Let us return to Table 10.2. Again, which study has the
strongest evidence that QCA is effective? Even under our most powerful scenario, a

p < 0.05 result has a 0.26 chance of being misleading when using N = 150 + 300, as per
Study #2. This falls to 0.11 using N = 700 + 1400 (Study #3). Both studies may have
yielded p = 0.05, but they do not provide the same level of support for inferring that QCA
is effective. Study #3 provides the strongest evidence that QCA has some degree of
efficacy. This concept is poorly understood throughout all of science.

10.5.4 The March of Science and Sample-Size Analysis

Consistent with Lee and Zelen (2000), we think that investigators designing clinical trials
are well served by considering o* and 3*. (Note that Lee and Zelen’s definition is reversed
from ours in that our a* and #* correspond to their 5* and o*, respectively.) Ioannidis
(2005b) used the same logic in arguing “why most published research findings are false.”
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Wacholder et al. (2004) described the same methodology to more carefully infer whether a
genetic variant is really associated with a disease. Their “false positive report probability”
is identical to o*. Also, readers familiar with accuracy statistics for medical tests will see
that 1 — « and (8 are isomorphic to the specificity and sensitivity of the diagnostic method
and 1 — o and 1 — 8* are isomorphic with the positive and negative predictive values.

Formally, let v be the probability that the null hypothesis is false. We like to think of ~
as measuring where the state of knowledge currently is in terms of confirming the non-null
hypothesis; in short, its location along its March of Science (Figure 10.1). Thus, for novel
research hypotheses, v will be nearer to 0. For mature hypotheses that stand ripe for solid
confirmation with say, a large Phase III trial, v will be markedly greater than 0. One might
regard v = 0.5 as scientific equipoise, saying that the hypothesis is halfway along its path
to absolute confirmation in that we consider the null and non-null hypothesis as equally
viable. Lee and Zelen’s calculations put v around 0.3 for Phase III trials coordinated in the
Eastern Cooperative Oncology Group.

Given v, a and some 3 set by some particular design, sample size, and non-null
scenario, we can apply Bayes’ Theorem to get

a(l—7)
a(l =)+ (1 =B

o = Prob[Hy true | p < a] =

and

By
By+ (1 —-a)(l—7)
To be precise, “H false” really means “H, false, as conjectured in some specific manner.”

For the example illustrated first in Table 10.3, we have v = 0.30, o = 0.05 and 3 = 0.67,
thus

B* = Prob[H, false | p > a] =

. (0.05)(1 — 0.30) -
T 0051 - 030) + (1067030

and

(0.67)(0.30)

(0.67)(0.30) + (1 — 0.05)(1 —0.30) _ "2°%

g =

In Bayesian terminology, v = 0.3 is the prior probability that QCA is effective, and
1 —a* =0.739 is the posterior probability given that p < a. However, nothing here involves
Bayesian data analysis methods, which have much to offer in clinical research, but are not
germane to this chapter. Some people are bothered by the subjectivity involved in
specifying prior probabilities like v, but we counter by pointing out that there are many
other subjectivities involved in sample-size analysis for study planning, especially the
conjectures made in defining the infinite dataset. Indeed, we find that most investigators
are comfortable specifying v, at least with a range of values, and that computing various
o and 3* values of interest gives them much better insights into the true inferential
strength of their proposed (frequentist) analyses.

10.6 Research Question 1, Continued: Crucial Error Rates for
Mortality Analysis

In developing the statistical considerations for the QCA /malaria trial, Dr. Gooden
understands the value in assessing its crucial Type I and Type II error rates, and she
presses her CHI colleagues to complete the exercise faithfully. As mentioned before, they
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Program 10.4 Compute crucial error rates for mortality endpoint

options 1s=80 nocenter FORMCHAR="|----|+|-——+=|-/\<>*";

proc power;
0DS output output=MortalityPowers;

TwoSampleFreq
GroupWeights = (1 2) /* 1 UCO for every 2 QCA */
RefProportion = .12 .15 /% UCO mortality rate */
RelativeRisk = .75 .67 /* QCA rate vs UCO rate */
alpha = .01 .05
sides = 2

Ntotal = 2700
test = LRchi /* likelihood ratio chi-square */
power = .;

plot key=0nCurves;

run;

* Call %CrucialRates macro, given in Appendix B of this chapter;
Y%CrucialRates( PriorPNullFalse = .30 .50,

Powers = MortalityPowers,

CrucialErrRates = MortalityCrucRates )

proc tabulate data=MortalityCrucRates format=4.3 order=data;
title3 "Crucial Error Rates for QCA Malaria Trial";
format alpha 4.3;
class RefProportion RelativeRisk alpha gamma TypeError NTotal;
var CrucialRate;
table
Ntotal="Total N: ",
RefProportion="Usual Care Mortality"
* RelativeRisk="QCA Relative Risk",
alpha="Alpha"
* gamma="PriorP[Null False]"
* TypeError="Crucial Error Rate"
* CrucialRate=""*mean=" "
/ rtspace = 26;
run;

are optimistic that QCA is effective, but to compute crucial error rates, they must now
quantify that optimism by setting . Initial discussions place v near 0.75, but the 0.30
value reported by Lee and Zelen (2000) tempers their thinking substantially. They come to
settle on v = 0.50. Dr. Gooden will also use v = 0.30.

Program 10.4 gives the code to handle this. First, a more focused version of
Program 10.3 computes the powers. Second, a macro called %CrucialRates (given in
Appendix B and available on the book’s web site) converts the PROC POWER results into
crucial Type I and Type II error rates. Finally, PROC TABULATE organizes these crucial
rates effectively.

Output 10.4 shows that the most optimistic case considered here presumes that the
mortality rate is 0.15 under usual care and it takes QCA to have a prior probability of
~v = 0.50 of being effective, where “effective” is a QCA relative risk of 0.67. If so, then by
using « = 0.05, the crucial Type I and Type II error rates are a* = 0.050 and 8* = 0.040,
respectively, which seem very good. However, for a = 0.01, 3* rises to 0.115. Now consider
the most pessimistic case. If v = 0.30 and the non-null scenario has a mortality rate of 0.12
under usual care and a QCA relative risk is 0.75, then using a = 0.05 gives a* = 0.147 and
B* = 0.127. The team from Children’s Health International decides that they can tolerate
these values and thus planning continues around N = 2700.
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After going through this process, Dr. Capote remarks that if all clinical trial protocols
were vetted in this manner, a great many of them would show crucial Type I and Type 11
error rates that would severely temper any inferences that can be made. This is true.

Output from Program 10.4
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10.7 Research Question 2: Does “QCA” Affect “Elysemine:Elysemate”
Ratio (EER)?
This section expands Dr. Capote’s planning to consider a test that compares the UCO and

QCA arms with respect to a continuous outcome, adjusted for baseline covariates. PROC
GLMPOWER is used to perform the calculations.

10.7.1 Rationale Behind the Research Question

Now the team turns to investigating potential adverse effects.

A descriptive analysis being completed in Jamkatnia has compared 34 children with
severe malaria with 42 healthy children on some 27 measures related to metabolic
functioning, including two amino acids, “elysemine” and “elysemate” (both fictitious).
Elysemine is synthesized by the body from elysemate, which is abundant in food grains and
meat. Phagocytes (a type of white blood cell) need elysemine to fight infection. Low
plasma elysemine levels have been shown to be an incremental risk factor for death in
critically ill adults and children, especially in very premature infants. Thus, a suppressed
elysemine:elysemate ratio (EER) seems to be associated with a weakened immune system.
In addition, plasma elysemine concentrations fall, and plasma elysemate concentrations
rise, in response to extended periods of physical exertion, such as marathon running. Of
course, typical marathon runners have no problem rapidly converting elysemate to
elysemine and their EERs rebound within two hours.

This Jamkatnian study is of keen interest because the children with malaria had a
median EER of 2.00 (inter-95% range: 1.10-3.04) compared to 2.27 (inter-95% range:
1.50-3.28) for the healthy children (p = 0.01, two-tailed median test). The researchers now
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rationalize that children with severe malaria may show reduced EERs, because the parasite
attacks red blood cells and this reduces blood oxygen levels. Given that so many measures
were analyzed in an exploratory manner, this p = 0.01 result is supportive, but not
confirmatory. Nevertheless, it stirs great attention.

Related to this was a study of 7 healthy adult human volunteers who were given a single
standard dose of QCA and monitored intensively for 24 hours in a General Clinical
Research Center. The data are summarized in Table 10.4. By 4 hours post infusion, their
EERs fell by a geometric average of 14.9% (p = 0.012; 95% CI: 4.9-23.8% reduction via
one-sample, two-sided t test comparing log(EER) values measured pre and post). In that
the EER may already be suppressed in these diseased children, any further reduction
caused by QCA would be considered harmful. On the other hand, EERs could rebound
(rise) more quickly as QCA reduces lactic acid levels and thus helps restore metabolic
normalcy. Accordingly, now the research question is: Does QCA increase or decrease
elysemine:elysemate ratios in children with severe malaria complicated by lactic acidosis?

Table 10.4 Elysemine and Elysemate Levels from 7 Healthy Adults Given QCA

Baseline 4 Hours After QCA
Subject E’'mine0 E’mate0 EERO E’'mine4 E’'mated EER4 EER4/EERO0

1 288 143 2.01 260 167 1.56 0.77

2 357 163 2.19 302 135 2.24 1.02

3 285 122 2.34 246 129 1.91 0.82

4 349 143 2.44 317 157 2.02 0.83

5 332 127 2.61 285 152 1.88 0.72

6 329 119 2.76 294 114 2.58 0.93

7 389 114 3.41 365 118 3.09 0.91
Geometric

mean 331 132 2.51 293 138 2.13 0.85
Upper 95%

limit 367 149 2.94 331 158 2.63 0.95
Lower 95%

limit 298 117 2.14 260 120 1.73 0.76

Review of Study Design and Subjects

To reiterate, this double-blinded trial will randomize 900 subjects to receive usual care only
(UCO) and 1800 to receive a single infusion of 50 mg/kg QCA. Study patients will be less
than 13 years old diagnosed with severe malaria complicated by lactic acidosis.

Continuous Outcome Measure and Baseline Covariates

Our focus here is on the elysemine:elysemate ratio measured 4 hours post-infusion (EER4).
The three primary covariates being considered are the baseline (5 minutes prior to QCA
infusion) measures of log EERQ, plasma lactate level, and log parasitemia, the percentage
of red blood cells infected.

It should be mentioned that elysemine and elysemate assays are expensive to conduct,
about US$60 for each time, thus US$120 for each subject.

Planned Analysis

Ratio measurements like EER are usually best handled after being log transformed; for
ease of understanding we shall use log,(EER4), so that a 1.0 log discrepancy between two
values equates to having one value twice that of the other.
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Scenarios for the Infinite Datasets

Figure 10.4 Scenario for EER4 distributions of the Usual Care Only and QCA arms (the medians, as well as the
geometric means, are 2.0 and 1.8, and the common inter-95% relative spread is 3.16/1.26 = 2.85/1.14 = 2.5)
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Based on the Jamkatnian study reviewed above, the investigators speculate that the
median EER4 for the usual care only arm is 2.0. See Figure 10.4. Two scenarios for the
QCA arm are considered, a 10% decrease in EER4 (2.0 versus 1.8; as per Figure 10.4) and a
15% decrease (2.0 versus 1.7). Assuming that log,(EER4) has a Normal distribution, EER4
medians of 2.0 versus 1.8 (or 1.7) become log, (EER4) means of 1.00 versus 0.85 (or 0.77).

Making conjectures for the spread is a knotty problem, and the values chosen have
critical influence on the sample-size analysis. Dr. Gooden usually takes a pragmatic
approach based on the fact that, for a Normal distribution, the inter-95% range spans
about 4 standard deviations. Thus, when the outcome variable is Normal, it is sufficient to
estimate or guesstimate the range of the middle 95% of the infinite dataset for a group and
divide by 4 to set the scenario for the standard deviation.

Here, Dr. Gooden takes log(EER4) to be Normal, i.e. EER4 is logNormal, so the process
is a bit more complex. Let EER4 925 and EER4 975 be the 2.5% and 97.5% quantiles of a
distribution of EER4 values. With respect to log,(EER4) values, the approximate standard
deviation is

o = 10g2(EER40,975) - 10g2(EER40.025) _ IOgQ(EER40.975/EER0.025)
4 4

Define RS95 = EER4y 975/ EER4¢ ¢25 to be the inter-95% relative spread of EER4. For
the Jamkatnian study, these were 3.04/1.10 = 2.76 and 3.28/1.50 = 2.18. To be
conservative, Dr. Capote sets RS95 to be either 2.5 (as per Figure 10.4) or 3.0. Both arms
are assumed to have the same relative spread. These give values for o of logs(2.5)/4 = 0.33
and log,(3.0)/4 = 0.40.

Now Dr. Gooden needs to have the team decide how strongly the three baseline
covariates are correlated to log,(EER4). Technically, this correlation is the partial multiple
correlation, R, of X; = logy(EERO0), X, = plasma lacate, and X3 = logy(parasitemia) with
Y = logs(EERA4), controlling for treatment group, but this terminology is not likely to be
well understood by the CHI team. Is there any existing data on this? Not for children
infected with malaria. So, Gooden asks Dr. Capote’s team to imagine that some baseline
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index is computed by taking a linear combination of the three covariates

(b1 X1 + ba X5 + b3 X3) in such a way that this index is maximally correlated with
logz(EER4) within the two treatment groups. Dr. Gooden needs to know what R might be
for the infinite dataset, but she does not simply ask them this directly, because few
investigators have good understandings about what a given correlation value, say p = 0.30,
conveys. Instead, she shows them a version of Figure 10.5 that has the values of the
correlations covered from view.

The strongest correlation is most likely to be between log,(EERO0) and log,(EER4). The
team agrees and suspects that this is at least p = 0.20, even if the malaria and the
treatments have a substantial impact on the metabolic pathways affecting EER. Using
plasma lactate and parasitemia to also predict loga(EER4) can only increase R. Looking at
the scatterplots in Figure 10.5, the team agrees that R is, conservatively, between 0.20 and
0.50.

Figure 10.5 Scatterplots showing eight degrees of correlation. The order of presentation is unsystematic to aid in
eliciting more careful conjectures.
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Finally, Dr. Capote wants a minimal risk of committing a Type I or Type II error for
this question, so he would like to keep both « and 3 levels below 0.05. We will investigate
the crucial error rates, a* and (*, later.

Classical Power Analysis

In order for SAS to compute the powers for this problem, two programming steps are
necessary. First, Program 10.5 creates an “exemplary” dataset that conforms to the
conjectured infinite dataset.
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Program 10.5 Build and print an exemplary dataset

data EER;

group = "UCO";
CellWgt = 1;
meanlog2EER_a
meanlog2EER_b
output;

group = "QCA";
CellWgt = 2;
meanlog2EER_a
meanlog2EER_b
output;

run;

1l0g2(2.0);
1log2(2.0);

log2(1.8);
log2(1.7);

proc print data=EER;
run;

The PROC PRINT output shows that there are only two exemplary cases in the
dataset, one to specify the UCO group and the other to specify the QCA group.

Output from Program 10.5

Obs group CellWgt meanlog2EER_a meanlog2EER_b
1 Uco 1 1.00000 1.00000
2 QCA 2 0.84800 0.76553

Secondly, Program 10.6 “analyzes” the exemplary dataset using PROC GLMPOWER.

Program 10.6 Use PROC GLMPOWER to see range of Ny, values

proc GLMpower data=EER;
0DS output output=EER_Ntotals;
class group;
model meanlog2EER_a meanlog2EER_b = group;
weight CellWgt;
power
StdDev = 0.33 0.40 /* 1log2(2.5)/4 and 1l0g2(3.0)/4 */
Ncovariates = 3
CorrXY = .2 .35 .50
alpha = .01 .05
power = 0.95 0.99
Ntotal = .;
run;

Lastly, Program 10.7 summarizes the Ny, values in a basic, but effective manner
(Output 10.7). Again, one can develop more sophisticated reports.
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Program 10.7 Table the N;,iq; values

* Augment GLMPOWER output to facilitate tabling ;
data EER_Ntotals; set EER_Ntotals;
if dependent = "meanlog2EER_a" then EEratio =
if dependent = "meanlog2EER_b" then EEratio =
if UnadjStdDev = 0.33 then RelSpread95 = 2.5;
if UnadjStdDev = 0.40 then RelSpread95 = 3.0;
run;

"2.0 vs 1.8";
"2.0 vs 1.7";;

proc tabulate data=EER_Ntotals format=5.0 order=data;
format Alpha 4.3 RelSpread95 3.1;
class EEratio alpha RelSpread95 CorrXY NominalPower;
var Ntotal;
table
EEratio="EE Ratios: "
* alpha="Alpha"
* NominalPower="Power",
RelSpread95="95%, Relative Spread"
* CorrXY="Partial R for Covariates"
* Ntotal=""*mean=" "
/rtspace=35;

run;

Output from Program 10.7

| | 95} Relative Spread |
| |-- - |
I | 2.5 I 3.0 I
| |- e et
| | Partial R for | Partial R for |
| | Covariates | Covariates |
! |- T |
| |0.20 10.35 10.50 10.20 10.35 |0.50 |
|- r—————————————— o +-————- R o +-————- R |
|EE Ratios: |Alpha | Power | | | | | | |
|----- + + | | ! | | ! |
[2.0 vs 1.8].010 [0.95 | 369 336| 288| 537| 492] 420]
| | |- do—— + dom +————= |
| | [0.99 | 495| 453| 387| 723| 663| 567|
| | ——— +- R et + -t e R |
| | .050 10.95 | 267| 246] 210] 393| 360 306]|
| | |- +o————+— + ——t———— +————= +-———= |
| | [0.99 | 378 345| 297| 552 507| 432]
| o o o +o——— o o to——— B

[2.0 vs 1.71.010 [0.95 | 156| 144| 123| 228| 210| 180|
| | |- R et + ——t———— e R |
| | 10.99 | 210] 192] 165] 306| 282] 240]
| | ———m - +- Fo—— - + e +o——— |
| | .050 [0.95 | 114] 105]| 90| 168| 153| 132]
| | |- e + Fo—m - R |
I | 10.99 | 162] 147| 126] 234| 216] 183]

Upon scanning the results in Output 10.7, Drs. Capote and Gooden decide that
Niotar = 100 + 200 may be minimally sufficient, and Gooden focuses on this by using
Program 10.8.
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Program 10.8 Compute and table powers at N;,;,; = 300 for EER4 outcome

proc GLMpower data=EER;
0DS output output=EER_powers;
class group;
model meanlog2EER_a meanlog2EER_b = group;
weight CellWgt;
power
StdDev = 0.33 0.40 /* log2(2.5)/4 and 10g2(3.0)/4 */
Ncovariates = 3
CorrXY = .2 .35 .5
alpha = .01 .05
Ntotal = 300
power = .;
run;

* Augment GLMPOWER output to facilitate tabling ;
data EER_powers; set EER_powers;

if dependent = "meanlog2EER_a" then EEratio = "2.0 vs 1.8";
if dependent = "meanlog2EER_b" then EEratio = "2.0 vs 1.7";;
if UnadjStdDev = 0.33 then RelSpread95 = 2.5;
if UnadjStdDev = 0.40 then RelSpread95 = 3.0;

if power > .999 then power999 = .999;
else power999 = power;
run;

proc tabulate data=EER_powers format=4.3 order=data;
format Alpha 4.3 RelSpread95 3.1;
class EEratio alpha RelSpread95 CorrXY Ntotal;
var power999;
table
Ntotal="Total Sample Size: ",
EEratio="EE Ratios: "
* alpha="Alpha",
RelSpread95="95% Relative Spread"
* CorrXY="Partial R for Covariates"
* power999=""xmean=" "
/rtspace=35;
run;

Output 10.8 shows that only in the most pessimistic scenario does the power wane a
little below 0.90 using N;:o; = 300 and « = 0.05, and the mid-range scenarios even have
substantial power at o = 0.01. Furthermore, with N, = 300, the assay costs associated
with this aim will run about 300 x US$120 = US$36000, which is deemed practical. The
CHI team still wants to assess the crucial Type I and Type II error rates.
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Output from Program 10.8

Total Sample Size: 300

| 2.5 3.0 |

+ —_——
+

|

|

| |--
| |Partial R for |Partial R for |
| | Covariates | Covariates |
|
|

10.2010.35]0. 50|o 2010.35]0.50]
| ————- e e e e e e e |

|EE Ratios: | Alpha | | | | | | |
ettt e | | | | | | |
[2.0 vs 1.8 |.010 |.893.922].959]|.717|.764| .838]|
| |- B e B B s et |
| |.050 |.969].979].991].884].910|.946]
|——— e + e e e et |
2.0 vs 1.7 |.010 . 999| 999| 999| 989I 994 .998|
| | —————- —————+ +-——=|
| | .050 | 999| 999| 999| 998| 999 .999]|

10.7.2 Crucial Type | and Type Il Error Rates

Based on the current state of knowledge reviewed above, Dr. Capote’s team’s believes that
while this hypothesis is important to investigate seriously, there is only a 20-30% chance
that QCA affects EER. Accordingly, Dr. Gooden uses Program 10.9 to convert the results
given in Output 10.8 to the crucial error rates.

Program 10.9 Compute and table crucial error rates for EER4 outcome

%CrucialRates ( PriorPNullFalse= .20 .30,
Powers = EER_powers,
CrucialErrRates = EERCrucRates )

proc tabulate data=EERCrucRates format=4.3 order=data;
title3 "Crucial Error Rates for EER Outcome";
format Alpha 4.3 RelSpread95 3.1;
class TypeError gamma EEratio alpha RelSpread95 CorrXY Ntotal;
var CrucialRate;
table
Ntotal="Total N: ",
EEratio="EE Ratios: "
* RelSpread95="95) Relative Spread"
* CorrXY="Partial R for Covariates",
alpha="Alpha"
* gamma="PriorP[Null False]"
* TypeError="Crucial Error Rate"
* CrucialRate=""*mean=" "
/ rtspace = 32;

run;
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Output from Program 10.9

Total N: 300

| .010 | .050 |
|- e |

|PriorP[Null False] |PriorP[Null False] |

| Error Error Error | Error |
| Rate Rate Rate | Rate |

'
[— + ——t o |

+
| |
Fo— Fo—m o |
| Crucial | Crucial | Crucial | Crucial |
| |
| |
+ \

| Type | Type | Type | Type | Type | Type | Type | Type |
| T |IT ]I |II|TI |IT|TI | II |

| ————————- -—- s S s s e e S e
|EE |95% |Partial R | | | | | | | | |
|Ratios: |Relative |for | | | | | | | |

[ ——— |Spread  |Covariates]| | | | | | | | |
2.0 vs  |-—-——-——- Fomm | | | | | | | |

1.8 2.5 10.20 |.043].026|.025].044].171|.008].107|.014]
| | | —- ———t- + + + + + Fo—m =]
| | 10.35 |.042].019].025].033|.170].005].106].009|
| | |- Fo—— b ———+ + + + |
| | 10.50 |.040].010].024].017|.168].002]|.105|.004|
| | ————————- o B m B s ettt IS )|
| 3.0 10.20 |.053|.067].032].109].184].0301.117].050]|
| | | -—————- + -1
| | 10.35 |.050].056].030].093|.180].023].114].039]|
| | |- R e B S s St e et |
| | 10.50 |.046].039|.027].065].174|.014].110](.024|
| —————- + + s S s s e e e
2.0 vs 2.5 10.20 |.038].000].023].000].167|.000].104|.000]
1.7 | |-- e + + + + + +

| | 10.35 |.038].000].023].000].167].000].104].000|
| | | ———————— B e S s |
| | 10.50 |.038].000].023].000]|.167|.000].104|.000]|
| | === + + + + + + + + +

| 3.0 10.20 |.039].003].023|.005].167|.000].105].001|
| | |- s S B e B s et IR e |
| | |10.35 |.039].002|.023].003]|.167|.000].105|.000]|
| | | ———— B s B S et IS |
| | 10.50 |.039].000].023].001].167|.000].104|.000]|

Dr. Capote likes what he sees here using o = 0.01, because almost all the a* and §*
values are less than 0.05. The CHI team settles on using o = 0.01 and N;:q; = 100 + 200
subjects for the EER component of this trial.

10.7.3 Using Baseline Covariates in Randomized Studies

What are the consequences of failing to use helpful baseline covariates when comparing
adjusted group means in randomized designs? What are the consequences of using
worthless baseline covariates—those that have no value whatsoever in predicting the
outcome (Y')? Researchers face this question because each additional covariate requires
another parameter to be estimated, and this decreases by 1 the degrees of freedom for error
for the F test of the group differences.

The question is easily addressed and the answer surprises many. The power values
displayed in Table 10.5 were obtained by modifying the PROC GLMPOWER code in
Program 10.8. Here, we limit our focus to the case with EER medians of 2.0 versus 1.8, a
95% relative spread of 2.5, Nypier = 300, and o = 0.01. On the other hand, we consider
several more values for R (SAS Code: CorrXY = 0 .20 .35 .50 .70) and three possible
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values for the number of covariates (SAS Code: Ncovariates = 0 3 50).

Table 10.5 Powers Obtained by Using or Not Using Baseline Covariates in Randomized Studies

Number of Multiple partial correlation (R)
covariates used 0.00 0.20 0.35 0.50 0.70
0 878 878 878 .878 .878

3 878 .893 922 959  .996

50 877 892 921 959  .996

The point here is obvious. In a randomized design, there is virtually no cost associated
with using worthless baseline covariates, because they are uncorrelated with the group
assignment. The only cost is that the nominal null F' distributions change, but in this case,
the 0.01 critical values for F(1, 298) and F(1, 248) are 6.72 and 6.74, respectively, which
are virtually equal. On the other hand, there is a high cost to be paid by not using baseline
covariates that have some value in predicting the outcome. This concept holds for both
continuous and categorical outcomes.

10.8

Crucial Error Rates When the Null Hypothesis Is Likely to Be
True

Suppose “Dr. Art Ary” is planning a small trial to obtain some sound human data on a
novel biologic, “nissenex,” which could reduce percent atheroma volume in patients with
atherosclerosis. Even Dr. Ary is skeptical about nissenex, however, giving it a 2% chance of
being truly effective: v = 0.02. Using a reasonable characterization of the infinite dataset
presuming nissenex is really efficacious, the power for the key hypothesis test is judged to
be 0.83 at @ = 0.05 and N = 120. Accordingly, the crucial error rates are o* = 0.75 and

B* = 0.004. Thus, 3 out of 4 significant tests will be misleading. Does this high o* value
imply that the study should not be run? No. If this trial yields p < 0.05, it would push this
line of research forward to a 1 — 0.75 = 0.25 chance that nissenex is effective, a major shift
from the prior v = 0.02. If p > 0.05, then there is a 1 — 0.004 = 0.996 chance that nissenex
has null or near-null efficacy, perhaps solidifying Dr. Ary’s initial skepticism. Thus, either
outcome will help Dr. Ary decide whether to continue with further studies. He also
considers using a = 0.20, which gives 0.95 power and makes o* = 0.91 and 8* = 0.001.

1 — a* = 0.09 is considerably weaker than the 0.25 computed for o = 0.05, and there is
little practical difference in 3* values (0.004 versus 0.001). Thus, Dr. Ary will use o = 0.05,
but he understands that given his current prior skepticism regarding the efficacy of
nissenex in treating atherosclerosis, not even a p < 0.05 outcome will sway him to
prematurely publicly tout nissenex as effective. It will, of course, encourage him and his
sponsors to design and carry out a more confirmatory study. This is prudent scientific
practice. If everyone followed it, the scientific literature would not be cluttered with
“significant” findings that fail to replicate in further, larger studies and meta-analyses,
providing any such work takes place (Ioannidis, 2005a, b).

10.9

Table of Crucial Error Rates

Table 10.6 shows how a* and 8* depend on v, o and (. Type I errors are more frequent
early in the March of Science (low 7), whereas Type II errors are more frequent later in the
March. Reducing either « or § reduces both o* and 3*. Note also that when v = 0.50 and
a = (0, then a = a* = g = [*.



Chapter 10 Sample-Size Analysis for Traditional Hypothesis Testing: Concepts and Issues 27

Table 10.6 Crucial Type | and Type Il Error Rates as a Function of =, a and Power

a*: Pr[H, true | p < qf B*: Pr[H, false | p > ]
v : Pr[H, false] | Power (3 |a:0.01 0.05 0.10 0.20 | «: 0.01 0.05 0.10 0.20
0.05 0.30 0.70 388 .760 .864 .927 036 .037 .039 .044

0.50 0.50 275 655 792 .884 026 .027 .028 .032
0.70  0.30 213 576 731 .844 .016 .016 .017 .019

0.80  0.20 192 543 704 .826 .011 .011 .012 .013
0.90 0.10 174 514 .679  .809 .005 .006 .006 .007
0.95 0.05 167 500 .667 .800 .003 .003 .003 .003
0.30 0.30 0.70 072 280 438 .609 233 .240 250 .273
0.50 0.50 045 189 .318 .483 178 184 192 211
0.70  0.30 032 143 250 .400 A15 119 125 138
0.80 0.20 028 127 .226 .368 .080 .083 .087 .097
0.90 0.10 025 115 .206 .341 .041 .043 .045 .051
0.95 0.05 024 109 197 .329 .021 .022 .023 .026
0.50 0.30 0.70 032 143 .250 .400 414 424 438 467

0.50 0.50 .020 .091 .167 .286 336 345 357 .385
0.70  0.30 014 .067 .125 .222 233 .240 .250 .273
0.80 0.20 012 .059 .111 .200 168 174 182 .200
0.90 0.10 011 .053 .100 .182 092 .095 .100 .111
0.95 0.05 010 .050 .095 .174 048 .050 .053 .059
0.70 0.30 0.70 .014 .067 .125 .222 623 .632 .645 .671
0.50 0.50 .008 .041 .079 .146 541 551 565 593
0.70  0.30 .006 .030 .058 .109 A14 424 438 467
0.80  0.20 005 .026 .051 .097 320 329 341  .368
0.90 0.10 005 .023 .045 .087 191 197 206 .226
0.95 0.05 004 .022 .043 .083 105 .109 115 .127

10.10 Summary

In writing a single chapter on sample-size analysis, one must strive for breadth or depth.
We opted to cover two examples in depth, and thus we failed to even mention any of the
vast array of other tools now available to help investigators carefully assess and justify
their choices for sample sizes across the statistical landscape. What have we not discussed?
The list of topics and references is too long to begin and would soon be outdated anyway.

What readers need to understand is that if they have a sample-size analysis issue, there
may be good methodological articles and strategies that address it. If no such help can be
found, then Monte Carlo simulation can provide results that are entirely satisfactory. In
fact, some excellent statisticians now use simulation for all such problems, even for
traditional ones that have sound “mathematical” solutions that are widely used.

We hope the two examples given here provide a rich context to fashion good strategies
to address other problems one may encounter. Though the methods may vary widely, the
core concepts and issues do not.
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Appendix A: Guidelines for “Statistical Considerations” Sections

A well-developed statistical considerations section persuades reviewers that solid skill and
effort have gone into framing the research questions, planning the study, and forming an
appropriate team. The writing should be crafted for the clinical researcher who is a good
para-statistician, as well as for the professional biostatistician. The “Statistical
Considerations” section should be mostly self-contained and thus may reiterate information
found elsewhere in the proposal.

Components

Design. Summarize the study design. It may be helpful to use appropriate terms such as
randomized, double blind, crossover, controlled, comparative, case-control, prospective,
retrospective, longitudinal, cohort.

Research questions. Strictly speaking, not all studies are driven by testable hypotheses,
but all studies have research questions that should be delineated in your Specific Aims.
Summarize the outcome measures and describe how you expect them to be related to the
components of the study design and other predictor variables. Restate/translate your
primary research questions into specific estimates of effects and their confidence intervals,
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and/or into statistical hypotheses or other methods. Similar descriptions regarding
secondary questions are valuable, too.

Statistical analysis plan. Specify what statistical methods will be used to analyze the
primary and secondary outcome measures. Cite statistical references for non-routine
methods. (Example: The two groups will be compared on KMOB830430 and its
metabolites using estimates and 95% confidence limits for the generalized odds ratio
(Agresti, 1980), which is directly related to the common Wilcoxon rank-sum test.) These
sections often state what statistical software package and version will be used, but this
usually provides little or no information about what actually will be done.

Randomization (if appropriate). Specify how the randomization will be done,
especially if it involves blocking or stratification to control for possible confounding factors.

Sample-size analyses. State the proposed sample size and discuss its feasibility. Estimate
the key inferential powers, or other measures of statistical sensitivity/precision, such as the
expected widths of key confidence intervals. Strive to make your sample-size analyses
congruent with the statistical methods proposed previously, and discuss any
incongruencies. State how you arrived at the conjectures for all the unknowns that underlie
the sample-size analysis, citing specific articles and/or summarizing analyses of preliminary
data or analyses presented in unpublished works. If a sample-size analysis was not
performed, state this categorically and explain why. For example, the proposal may only be
a small pilot study.

Data management. Summarize the schema for collecting, checking, entering, and
managing the data. What database software will be used? How will the database be tapped
to build smaller analysis datasets? Note how you will meet modern standards for data
security.

Technical support. Who will perform the necessary database and statistical work? If
such people are less experienced, who will supervise the work?

Appendix B: SAS Macro Code to Automate the Programming

In the interest of simplicity, the SAS code provided above avoided all macro programming,
except for using the %CrucialRates macro. However, analysts can profit greatly by making
elementary use of the SAS Macro Language. Below is the full program that was used in
developing the EER example. Note how the parameters that shape the problem are
specified only once at the beginning. Due to rounding, the results obtained with this code
differ slightly from those given above.

options 1s=80 nocenter;
/3 oksk sk sk ok sk sk ok sk ok sk sk ok sk sk sk ok sk sk sk sk ok ok sk ok ok sk s ok sk sk sk ok sk sk s ok sk sk sk ok sk sk sk ok sk sk sk ok sk sk sk ok sk ok ok \
Program Name: EER_SSAnalysis060722.sas
Date: 22 July 2006

Investigator: "Sol Capote, MD; CHI Malaria Research Group"
Statistician: "Phynd Gooden, PhD" (Actually, Ralph 0’Brien)

Purpose: Sample-size analysis for comparing usual care only vs.
QCA on elysemine:elysemate ratios at 4 hours (EER4).
Assumes data will be logNormal in distribution with same
relative range in the two groups.
st s ks s ks ok sk s ok sk e oksk s sk sk ks ks skl s ok stk s ok sk sk ok sk ek sk sk ok sk e sksksk ok skskok ki sk ookok /

*options symbolgen mlogic mprint; * for macro debugging;



30

Pharmaceutical Statistics Using SAS: A Practical Guide

*xoptions FORMCHAR="|----|+|---+=|-/\<>%";  * for ordinary text tables;

titlel "Usual Care Only (UCO) vs. Usual Care + QCA (QCA)";
title2 "Difference in 4-hour elysemine-elysemate ratio (EER4),adjusted";
title3 "for three baseline covariates: EERO, plasma lactate, parasitemia";

/kskkofe ks sk sk s sk sk e sk sk e ok sk sk ke sk sk sk e sk sk sk e ksl sk ks sk ke sk sk sk sk sk s ke sk sk sk e ksl sk sk skok ek skok ok \
This program is structured so that all the defining values are set
through %let macro statements at the start of the code.

Ntk kst stk sk stk sk stk ok sk sk ok stk s ok sk ok sk sk ke okl ksl sk okl sk stk skl o stk skl ok skok ok /

KK ok ok ok KK KK oK oK ok ok KKK oK ok ok R KK Kok ok ok \
BEGIN TECHNICAL SPECIFICATIONS

[ F KKk ok ok ok ok o KK KoK oK oK ok ok o K K KoK oK oK ok ok kK Kk ok ok ok ok

* Set label for Y;

%let Ylabel = EE Ratio;

* Set variable labels for the two groups ;

* ———— e

%let GrpLabel_1 = UCO;
%let GrpLabel_2 = DCA;

[/ ®3kskokokskok ksl ok stk ok stk ok stk ok sk sk ok sk ksl sk ok stk ok stk ok stk s ok sk sk ok sk ksl sk ok skskosk skl stk ko sksk ok \
Each distribution is logNormal with different medians, but same relative
spread (defined below). This is the same as saying that the distributions
have different means but the same coefficients of variation.

stk kst stk s stk sk ok stk ok sk ok sk sk ok sk etk sk stk ok stk ok stk s ok sk sk kok sk ksl sk skl stk sk o stk sk ok sk sk ok /

* Supply guesstimates for medians ;
%let YmedianO = 2.0;

%let YmedianlA =
%let YmedianlB =

; * median for control arm, only one scenario ;
1.8; * median for experimental arm, scenario A ;
1.7; * median for experimental arm, scenario B ;

* Supply guesstimates for the 95% relative spread, defined below;

* ———— —_ e —_

%let YRelSpread95_1
%let YRelSpread95_2

>

2.5; * YRelSpread95, scenario 1 ;
3.0; * YRelSpread95, scenario 2 ;

*Set NCovariates and supply guesstimates for PrtlCorr(XXX,logY);

%let NCovariates = 0 3 50; * number of covariates ;

%let PrtlCorr_XXXlogY = .2 .35 .50 ; * Multiple partial correlation (R) ;
* between covariates ("XXX") and ;
* logY, within treatment groups. ;

* Supply prior probabilities that null is false;
%let PriorPNullFalse = .20 .30;
[ skokokok sk ke sk sk ok sk sk s ok sksk s ok sk sk sk skok s ok skok o \

END TECHNICAL SPECIFICATIONS
N\ 3k sk sk ok ok sk sk ok ok ok ok ok ok ok ok ok ok ok sk ok ok ko ok ok ok ko k ok /
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/] 3K 3Kk sk ok ok ok K ok ok oK K ok ok oK K ok ok oK K ok ok ok K ok ok oK 3K K oK ok oK K K K ok ok K K K ok ok K K ok ok ok K ok ok ok ok ook ok ok ok ok ok ok \

1. Each distribution is logNormal with different medians, but same
relative spread (defined below). This is the same as saying that the
distributions have different means but the same coefficients of
variation. Under logNormality, medians are also geometric means.

2. Let Y025, Y500 and Y975 be the 2.5%, 50%, and 97.5) quantiles for Y,
i.e., Y500 is the median of Y and Y025 and Y975 are the limits of
the mid-95%, range for Y.

3. Define YRelSpread95 = Y975/Y025 to be the inter-95% relative spread.
These relative spreads are taken to be equal in control and

experimental groups.

4. Log(Y025), log(Y500), and log(Y925) are the 2.5%, quantile, the
median, and the 97.5% quantiles for logY.

If Y © logNormal, then log(Y) ~ Normal, so
mean_logY = median_logY = log(Y500).

Let SD_logY be the standard deviation of logY. Then, log(Y025) and
log(Y925) are each 1.96*SD_log2Y units from mean_logY, so

SD_logY = [log(Y025) - log(Y025)]/(2%1.96),

where 1.96 is the 97.5), quantile (Z975) of the standard Normal,
Z "~ N(0,1).

Taking 1.96 to "equal" 2, we have,
SD_logY = [log(Y025) - log(Y025)1/4,
With YRelSpread95 = Y975/Y025, we get,
SD_logY = log(YRelSpread95)/4.
5. It some cases it may be more convenient to use another
relative spread, say YRelSpread90 or YRelSpread50. Using

2900 = 1.65 and 72750 = 0.67, we have

SD_logY

log(YRelSpread90)/(2+1.65)

and

SD_logY = log(YRelSpread50)/(2*0.67).

Whereas [log(Y750) - log(Y250)] is the interquartile range for logY
YRelSpread50 could be called the interquartile relative range for Y.
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6. One can show that the coefficient of variation is
CoefVar_Y = sqrt(exp(SD_logY**2 - 1)).

See page 213 of Johnson, Kotz, Balakrishnan (1994), Continuous
Univariate Distributions, Vol. I.

7. A1l logs are taken at base 2, but this choice is irrelevant for
sample-sizeanalysis.

\*********************************************************************/

[ ®kkkkokkk ok \

Main code
\ sk kook sk kok sk k ok /

%let SD_log2Y_1 = Ysysevalf (%sysfunc(log2(&YRelSpread95_1))/4);
%let SD_log2Y_2 = Ysysevalf (}sysfunc(log2(&YRelSpread95_2))/4);

data exemplary;
group = "&GrpLabel_1";
CellWgt = 1;

mean_log2Y_A = log2(&YmedianO);
mean_log2Y_B = log2(&YmedianO) ;
output;
group = "&GrpLabel_2";

CellWgt = 2;

mean_log2Y_A = log2(&Ymedianilh);
mean_log2Y_B = log2(&YmedianiB);
output;

run;

proc print data=exemplary;
run;

proc GLMpower data=exemplary;

0DS output output=Ntotals;

class group;

model mean_log2Y_A mean_log2Y_B = group;

weight CellWgt;

power
StdDev = &SD_log2Y_1 &SD_log2Y_2
NCovariates = &NCovariates
CorrXY = &PrtlCorr_XXXlogY
alpha = .01 .05
power = 0.95 0.99
Ntotal = .;

run;

data Ntotals;
set Ntotals;
if dependent = "mean_log2Y_A"
then comparison = "&YmedianO vs &YmedianlA";
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if dependent = "mean_log2Y_B"

then comparison = "&YmedianO vs &YmedianiB";
if UnadjStdDev = &SD_log2Y_1

then YRelSpread95 = &YRelSpread95_1;
if UnadjStdDev = &SD_log2Y_2

then YRelSpread95 = &YRelSpread95_2;

run;

proc tabulate data=Ntotals format=5.0 order=data;
format Alpha 4.3 YRelSpread95 3.1;
class comparison alpha YRelSpread95 CorrXY
NominalPower Ncovariates;
var Ntotal;
table
Ncovariates="Number of covariates; ",
comparison="&Ylabel: "
* alpha="Alpha"
* NominalPower="Power",
YRelSpread95="95%, Relative Spread"
* CorrXY="Partial R for Covariates"
* Ntotal=""*mean=" "
/rtspace=35;
run;

proc GLMpower data=exemplary;
0DS output output=powers;
class group;
model mean_log2Y_A mean_log2Y_B = group;
weight CellWgt;
power
StdDev = &SD_log2Y_1 &SD_log2Y_2
Ncovariates = &NCovariates
CorrXY = &PrtlCorr_XXXlogY
alpha = .01 .05
Ntotal = 300
power = .;
run;

data powers;
set powers;
if dependent = "mean_log2Y_A"

then comparison = "&YmedianO vs &YmedianlA";
if dependent = "mean_log2Y_B"
then comparison = "&YmedianO vs &YmedianiB";

if UnadjStdDev = &SD_log2Y_1

then YRelSpread95 = &YRelSpread95_1;
if UnadjStdDev = &SD_log2Y_2

then YRelSpread95 = &YRelSpread95_2;
if power > .999

then power999 = .999;

else power999 = power;

run;
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proc tabulate data=powers format=4.3 order=data;
format Alpha 4.3 YRelSpread95 3.1;
class comparison alpha YRelSpread95 CorrXY
Ntotal Ncovariates;
var power999;
table
Ntotal="Total Sample Size: "
* Ncovariates="Number of covariates; ",
comparison="&Ylabel.: "
* alpha="Alpha",
YRelSpread95="95), Relative Spread"
* CorrXY="Partial R for Covariates"
* power999=""*mean=" "
/rtspace=35;
run;

Ymacro CrucialRates (PriorPNullFalse = ,
Powers = powers,
CrucialErrRates = CrucialErrRates
)
/K ki ke sk sk e ok sk sk ok sk sk sk sk sk sk sk sk s sk s s ksl sk ek sk sk ks sk ke sk sk sk sk sk s sk e sk sk sk sk sksk ki sk ok sk skok ok \
Converts Alphas and Powers to Crucial Error Rates
<> PriorPNullFalse= valuel value2 ... valuelO
This is gamma = PriorP[Ho false].
<> Powers= InputDSName
"InputDSName" corresponds to ODS output statement in PROC POWER
or PROC GLMPOWER, such as
proc power;
0DS output output=MoralityPowers;
<> CrucialErrRates= OutputDSName
"OutputDSName" is SAS dataset name; default: "CrucialErrRates"
sk sk e sk s e sk s e ks sk e ok sk s e sk sk s sk sk s sk sk s sk sk e ok sk sk s ksl sk e ks sk e sk sk s e ks s sk sk s ke sk sk s ke skok ok /

data &CrucialErrRates;
set &Powers;
array PrNullFalseV{10} _temporary_ (&PriorPNullFalse);
beta = 1 - power;
iPNF = 1;
do until (PrNullFalseV{iPNF} = .);
gamma = PrNullFalseV{iPNF};
/* Compute Crucial Type I error rate */
TypeError = "Type I";
CrucialRate
= alpha*(1 - gamma)/(alpha*(1l - gamma) + (1 - beta)*gamma);
output;
/* Compute Crucial Type II error rate */
TypeError = "Type II";

CrucialRate
= beta*gamma/(beta*gamma + (1 - alpha)*(1 - gamma));
output;
iPNF + 1;
end;
run;

Ymend; *CrucialRates;
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%CrucialRates ( PriorPNullFalse = &PriorPNullFalse,
Powers=powers,
CrucialErrRates = CrucRates );

proc tabulate data=CrucRates format=4.3 order=data; *&UniversalText;
title3 "Crucial Error Rates for QCA Malaria Trial";
format Alpha 4.3 YRelSpread95 3.1;
class TypeError gamma comparison alpha YRelSpread95 CorrXY
Ntotal Ncovariates;
var CrucialRate;
table
Ntotal="Total Sample Size: "
* Ncovariates="Number of covariates; ",
comparison="&Ylabel.: "
* YRelSpread95="95%, Relative Spread"
* CorrXY="Partial R for Covariates",
alpha="Alpha"
* gamma="PriorP[Null False]"
* TypeError="Crucial Error Rate"
* CrucialRate=""*mean=" "
/ rtspace = 32;

run;
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