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Overview
Power and sample size analysis optimizes the resource usage and design of a study, improving chances of
conclusive results with maximum efficiency. The standard statistical testing paradigm implicitly assumes that
Type I errors (mistakenly concluding significance when there is no true effect) are more costly than Type II
errors (missing a truly significant result). This may be appropriate for your situation, or the relative costs
of the two types of error may be reversed. For example, in screening experiments for drug development,
it is often less damaging to carry a few false positives forward for follow-up testing than to miss potential
leads. Power and sample size analysis can help you achieve your desired balance between Type I and Type II
errors. With optimal designs and sample sizes, you can improve your chances of detecting effects that might
otherwise have been ignored, save money and time, and perhaps minimize risks to subjects.

Four chapters from SAS/STAT User's Guide 13.2:

   (18) Introduction to Power and Sample Size Analysis

   (47) The GLMPOWER Procedure

   (77) The POWER Procedure

   (78) The Power and Sample Size Application
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Relevant tools in SAS/STAT software for power and sample size analysis include the following:

• the GLMPOWER procedure

• the POWER procedure

• the Power and Sample Size application

• the %POWTABLE macro

• various procedures, statements, and functions in Base SAS and SAS/STAT for developing customized
formulas and simulations

These tools, discussed in detail in the section “SAS/STAT Tools for Power and Sample Size Analysis” on
page 371, deal exclusively with prospective analysis—that is, planning for a future study. This is in contrast
to retrospective analysis for a past study, which is not supported by the main tools. Although retrospective
analysis is more convenient to perform, it is often uninformative or misleading, especially when power is
computed directly based on observed data.

The goals of prospective power and sample size analysis include the following:

• determining the sample size required to get a significant result with adequate probability (power)

• characterizing the power of a study to detect a meaningful effect

• computing the probability of achieving the desired precision of a confidence interval, or the sample
size required to ensure this probability

• conducting what-if analyses to assess how sensitive the power or required sample size is to other factors

The phrase power analysis is used for the remainder of this document as a shorthand to represent any or all
of these goals. For more information about the GLMPOWER procedure, see Chapter 47, “The GLMPOWER
Procedure.” For more information about the POWER procedure, see Chapter 77, “The POWER Procedure.”
For more information about the Power and Sample Size application, see Chapter 78, “The Power and Sample
Size Application.”

Coverage of Statistical Analyses
The GLMPOWER procedure covers power analysis for Type III F tests and contrasts of fixed effects in
univariate and multivariate linear models. For univariate models, you can specify covariates, which can
be continuous or categorical. For multivariate models, you can choose among Wilks’ likelihood ratio,
Hotelling-Lawley trace, and Pillai’s trace F tests for multivariate analysis of variance (MANOVA) and among
uncorrected, Greenhouse-Geisser, Huynh-Feldt, and Box conservative F tests for the univariate approach to
repeated measures. Tests and contrasts that involve random effects are not supported.

The POWER procedure covers power analysis for the following:

• t tests, equivalence tests, and confidence intervals for means

• tests, equivalence tests, and confidence intervals for binomial proportions
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• multiple regression

• tests of correlation and partial correlation

• one-way analysis of variance

• rank tests for comparing two survival curves

• logistic regression with binary response

• Wilcoxon Mann-Whitney rank-sum test

The Power and Sample Size application covers a large subset of the analyses in the GLMPOWER and
POWER procedures.

Statistical Background

Hypothesis Testing, Power, and Confidence Interval Precision

Standard Hypothesis Tests

In statistical hypothesis testing, you typically express the belief that some effect exists in a population by
specifying an alternative hypothesis H1. You state a null hypothesis H0 as the assertion that the effect does
not exist and attempt to gather evidence to reject H0 in favor of H1. Evidence is gathered in the form of
sample data, and a statistical test is used to assess H0. If H0 is rejected but there really is no effect, this is
called a Type I error. The probability of a Type I error is usually designated “alpha” or ˛, and statistical tests
are designed to ensure that ˛ is suitably small (for example, less than 0.05).

If there is an effect in the population but H0 is not rejected in the statistical test, then a Type II error has been
committed. The probability of a Type II error is usually designated “beta” or ˇ. The probability 1 – ˇ of
avoiding a Type II error (that is, correctly rejecting H0 and achieving statistical significance) is called the
power of the test.

Most, but not all, of the power analyses in the GLMPOWER and POWER procedures are based on such
standard hypothesis tests.

Equivalence and Noninferiority

Whereas the standard two-sided hypothesis test for a parameter � (such as a mean difference) aims to
demonstrate that it is significantly different than a null value �0:

H0W� D �0

H1W� ¤ �0

an equivalence test instead aims to demonstrate that it is significantly similar to some value, expressed in
terms of a range �L; �U around that value:

H0W� < �L or � > �U

H1W�L � � � �U
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Whereas the standard one-sided hypothesis test for � (say, the upper one-sided test) aims to demonstrate that
it is significantly greater than �0:

H0W� � �0

H1W� > �0

a corresponding noninferiority test aims to demonstrate that it is not significantly less than �0, expressed in
terms of a margin ı > 0:

H0W� � �0 � ı

H1W� > �0 � ı

Corresponding forms of these hypotheses with the inequalities reversed apply to lower one-sided noninferior-
ity tests (sometimes called nonsuperiority tests).

The POWER procedure performs power analyses for equivalence tests for one-sample, paired, and two-
sample tests of normal and lognormal mean differences and ratios. It also supports noninferiority tests
for a variety of analyses of means, proportions, and correlation, both directly (with a MARGIN= option
representing ı) and indirectly (with an option for a custom null value representing the sum or difference of
�0 and ı).

Confidence Interval Precision

An analysis of confidence interval precision is analogous to a traditional power analysis, with CI Half-Width
taking the place of effect size and Prob(Width) taking the place of power. The CI Half-Width is the margin of
error associated with the confidence interval, the distance between the point estimate and an endpoint. The
Prob(Width) is the probability of obtaining a confidence interval with at most a target half-width.

The POWER procedure performs confidence interval precision analyses for t-based confidence intervals for
one-sample, paired, and two-sample designs, and for several varieties of confidence intervals for a binomial
proportion.

Computing Power and Sample Size
For some statistical models and tests, power analysis calculations are exact—that is, they are based on a
mathematically accurate formula that expresses power in terms of the other components. Such formulas
typically involve either enumeration or noncentral versions of the distribution of the test statistic.

When a power computation is based on a noncentral t, F, or chi-square distribution, the noncentrality
parameter generally has the same form as the test statistic, with the conjectured population parameters in
place of their corresponding estimators.

For example, the test statistic for a two-sample t test is computed as follows:

t D N
1
2 .w1w2/

1
2

�
Nx2 � Nx1 � �0

sp

�
where N is the total sample size, w1 and w2 are the group allocation weights, Nx1 and Nx2 are the sample
means, �0 is the null mean difference, and sp is the pooled standard deviation. Under the null hypothesis, the
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statistic F D t2 is distributed as F.1;N � 2/. In general, F has a noncentral F distribution F.1;N � 2; ı2/
where

ı D N
1
2 .w1w2/

1
2

��diff � �0

�

�
and �diff and � are the (unknown) true mean difference and common group standard deviation, respectively.
Note that the square-root noncentrality ı is exactly the same as the t statistic except that the estimators of
mean difference and standard deviation are replaced by their corresponding true population values.

The power for the two-sided two-sample t test with significance level ˛ is computed as

P .F � F1�˛.1;N � 2//

where F is distributed as F.1;N � 2; ı2/ and F1�˛.1;N � 2/ is the 100.1 � ˛/% quantile of the central
F distribution with 1 and N – 2 degrees of freedom. See the section “Customized Power Formulas (DATA
Step)” on page 379 for an example of the implementation of this formula in the DATA step.

In the absence of exact mathematical results, approximate formulas can sometimes be used. When neither
exact power computations nor reasonable approximations are possible, simulation provides an increasingly
viable alternative. You specify values for model parameters and use them to randomly generate a large
number of hypothetical data sets. Applying the statistical test to each data set, you estimate power with
the percentage of times the null hypothesis is rejected. While the simulation approach is computationally
intensive, faster computing makes this less of an issue. A simulation-based power analysis is always a valid
option, and, with a large number of data set replications, it can often be more accurate than approximations.
See the section “Empirical Power Simulation (DATA Step, SAS/STAT Software)” on page 380 for an example
of an empirical power simulation.

Sample size is usually computed by iterative numerical methods because it often cannot be expressed in
closed form as a function of the other parameters. Sample size tends to appear in both a noncentrality
parameter and a degrees of freedom term for the critical value.

Power and Study Planning
Power analysis is most effective when performed at the study planning stage, and as such it encourages early
collaboration between researcher and statistician. It also focuses attention on effect sizes and variability in
the underlying scientific process, concepts that both researcher and statistician should consider carefully at
this stage.

There are many factors involved in a power analysis, such as the research objective, design, data analysis
method, power, sample size, Type I error, variability, and effect size. By performing a power analysis, you
can learn about the relationships between these factors, optimizing those that are under your control and
exploring the implications of those that are fixed or unknown.

Components of Study Planning
Even when the research questions and study design seem straightforward, the ensuing power analysis can
seem technically daunting. It is often helpful to break the process down into five components:
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• Study Design: What is the structure of the planned design? This must be clearly and completely
specified. What groups and treatments (“cells” and “factors” of the design) are going to be assessed,
and what will be the relative sizes of those cells? How is each case going to be studied—that is, what
is the primary outcome measure (“dependent variable”)? Will covariates be measured and included in
the statistical model?

• Scenario Model: What are your beliefs about patterns in the data? Imagine that you had unlimited time
and resources to execute the study design, so that you could gather an “infinite data set.” Characterize
that infinite data set as best you can using a mathematical model, realizing that it will be a simplification
of reality. Alternatively, as is common with complex linear models, you may decide to construct an
“exemplary” data set that mimics the infinite data set. However you do this, your scenario model should
capture the key features of the study design and the main relationships among the primary outcome
variables and study factors.

• Effects and Variability: What exactly are the “signals and noises” in the patterns you suspect? Set
specific values for the parameters of your scenario model, keeping at most one unspecified. It is often
enlightening to consider a variety of realistic possibilities for the key values by performing a sensitivity
analysis, to explore the consequences of competing views on what the infinite data set might look like.

• Statistical Method: How will you cast your model in statistical terms and conduct the eventual data
analysis? Define the statistical models and procedures that will be used to embody the study design
and estimate and/or test the effects central to the research question. What significance levels will be
used? Will one- or two-sided tests be used?

• Aim of Assessment: Finally, what needs to be determined in the power analysis? Most often you want
to examine the statistical powers obtained across the various scenarios for the effects, variability, alter-
native varieties of the statistical procedures to be used, and the feasible total sample sizes. Sometimes
the goal is to find sample size values that provide given levels of power, say 85%, 90%, or 95%.

Effect Size
There is some confusion in practice about how to postulate the effect size. One alternative is to specify the
effect size that represents minimal clinical significance; then the result of the power analysis reveals the
chances of detecting a minimally meaningful effect size. Often this minimal effect size is so small that it
requires excessive resources to detect. Another alternative is to make an educated guess of the true underlying
effect size. Then the power analysis determines the chance of detecting the effect size that is believed to
be true. The choice is ultimately determined by the research goals. Finally, you can specify a collection
of possible values, perhaps spanning the range between minimally meaningful effects and larger surmised
effects.

You can arrive at values for required quantities in a power analysis, such as effect sizes and measures of
variability, in many different ways. For example, you can use pilot data, results of previous studies reported
in literature, educated guesses derived from theory, or educated guesses derived from partial data (a small
sample or even just quantiles).
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Uncertainty and Sensitivity Analysis
Uncertainty is a fact of life in any power analysis, because at least some of the numbers used are best guesses
of unknown values. The result of a power calculation, whether it be achieved power or required sample
size or something else, serves only as a point estimate, conditional on the conjectured values of the other
components. It is not feasible in general to quantify the variability involved in using educated guesses or
undocumented results to specify these components. If observed data are used, relevant adjustments for
variability in the data tend to be problematic in the sense of producing confidence intervals for power that are
too wide for practical use. But there is a useful way for you to characterize the uncertainty in your power
analysis, and also discover the extent to which statistical power is affected by each component. You can
posit a reasonable range for each input component, vary each one within its range, and observe the variety of
results in the form of tables or graphs.

SAS/STAT Tools for Power and Sample Size Analysis
This section demonstrates how you can use the different SAS power analysis tools mentioned in the section
“Overview” on page 365 to generate graphs, tables, and narratives; implement your own power formulas; and
simulate empirical power.

Suppose you want to compute the power of a two-sample t test. You conjecture that the mean difference
is between 5 and 6 and that the common group standard deviation is between 12 and 18. You plan to use
a significance level between 0.05 and 0.1 and a sample size between 100 and 200. The following SAS
statements use the POWER procedure to compute the power for these scenarios:

proc power;
twosamplemeans test=diff

meandiff = 5 6
stddev = 12 18
alpha = 0.05 0.1
ntotal = 100 200
power = .;

run;

Figure 18.1 shows the results. Depending on the plausibility of the various combinations of input parameter
values, the power ranges between 0.379 and 0.970.
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Figure 18.1 PROC POWER Tabular Output

The POWER Procedure
Two-Sample t Test for Mean Difference

The POWER Procedure
Two-Sample t Test for Mean Difference

Computed Power

Index Alpha
Mean

Diff
Std
Dev

N
Total Power

1 0.05 5 12 100 0.541

2 0.05 5 12 200 0.834

3 0.05 5 18 100 0.280

4 0.05 5 18 200 0.498

5 0.05 6 12 100 0.697

6 0.05 6 12 200 0.940

7 0.05 6 18 100 0.379

8 0.05 6 18 200 0.650

9 0.10 5 12 100 0.664

10 0.10 5 12 200 0.902

11 0.10 5 18 100 0.397

12 0.10 5 18 200 0.623

13 0.10 6 12 100 0.799

14 0.10 6 12 200 0.970

15 0.10 6 18 100 0.505

16 0.10 6 18 200 0.759

The following seven sections illustrate additional ways of displaying these results using the different SAS
tools.

Basic Graphs (POWER, GLMPOWER, Power and Sample Size Application)
If you include a PLOT statement, the GLMPOWER and POWER procedures produce standard power curves,
which represent any multivalued input parameters with varying line styles, symbols, colors, and/or panels.
The Power and Sample Size application also has an option to produce power curves. If ODS Graphics is
enabled, then graphs are created using ODS Graphics; otherwise, traditional graphs are produced.

To display default power curves for the preceding PROC POWER call, add the PLOT statement with no
arguments as follows:

ods graphics on;

proc power plotonly;
twosamplemeans test=diff

meandiff = 5 6
stddev = 12 18
alpha = 0.05 0.1
ntotal = 100 200
power = .;

plot;
run;

ods graphics off;
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The ODS GRAPHICS ON statement enables ODS Graphics.

Figure 18.2 shows the results. Note that the line style varies by the significance level ˛, the symbol varies by
the mean difference, and the panel varies by standard deviation.

Figure 18.2 PROC POWER Default Graphical Output
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Figure 18.2 continued

Highly Customized Graphs (POWER, GLMPOWER)
Example 77.8 of Chapter 77, “The POWER Procedure,” demonstrates various ways you can modify and
enhance plots created in the GLMPOWER or POWER procedures:

• assigning analysis parameters to axes

• fine-tuning a sample size axis

• adding reference lines

• linking plot features to analysis parameters

• choosing key (legend) styles

• modifying symbol locations

For example, replace the default PLOT statement with the following statement to modify the graphical
results in Figure 18.2 to lower the minimum sample size to 60, show a reference line at power=0.9 with
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corresponding sample size values, distinguish standard deviation by color instead of panel, and swap the
roles of ˛ and mean difference:

plot
min=60
yopts=(ref=0.9 crossref=yes)
vary(color by stddev, linestyle by meandiff, symbol by alpha);

Figure 18.3 shows the results. The plot reveals that only the scenarios with the largest mean difference and
smallest standard deviation achieve a power of at least 0.9 for this sample size range.

Figure 18.3 PROC POWER Customized Graphical Output

Formatted Tables (%POWTABLE Macro)
The %POWTABLE macro renders the output of the POWER and GLMPOWER procedures in rectangular
form, and it optionally produces simplified results using weighted means across chosen variables. PROC
REPORT and the Output Delivery System (ODS) are used to generate the tables. Base SAS and SAS/STAT
9.1 or higher versions are required.
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You can run the %POWTABLE macro for the output in Figure 18.1 to display the results in a form more
suitable for quickly discerning relationships among parameters. First use the ODS OUTPUT statement to
assign the “Output” table produced by the POWER procedure to a data set as follows:

ods output output=powdata;

Next, specify the same PROC POWER statements that generate Figure 18.1. Finally, use the %POWTABLE
macro to assign analysis parameters to table dimensions. To create a table of computed power values with
mean difference assigned to rows, sample size and ˛ assigned to columns, and standard deviation assigned to
“panels” (rendered by default as rows separated by blank lines), specify the following statements:

%powtable ( Data = powdata,
Entries = power,
Rows = meandiff,
Cols = ntotal alpha,
Panels = stddev )

Figure 18.4 shows the results.

Figure 18.4 %POWTABLE Macro Output

The POWTABLE Macro

Entries are Power

N Total

100 200

Alpha Alpha

0.05 0.10 0.05 0.10

Std
Dev

--

Mean
Diff
-- -- -- -- --

12 5 0.541 0.664 0.834 0.902

6 0.697 0.799 0.940 0.970

18 5 0.280 0.397 0.498 0.623

6 0.379 0.505 0.650 0.759
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Narratives and Graphical User Interface (Power and Sample Size
Application)
The Power and Sample Size application produces narratives for the results. Narratives are descriptions of the
input parameters and a statement about the computed power or sample size.

For example, the Power and Sample Size application creates the following narrative for the scenario corre-
sponding to the first row in Figure 18.1:

“For a two-sample pooled t test of a normal mean difference with a two-sided significance level of 0.05,
assuming a common standard deviation of 12, a total sample size of 100 assuming a balanced design has a
power of 0.541 to detect a mean difference of 5.”

The Power and Sample Size application also provides multiple input parameter options, stores the results in a
project format, displays power curves, and shows the SAS log and SAS code. You can access each project to
review the results or to edit your input parameters and produce another analysis.

Where appropriate, several alternate ways of entering values for certain parameters are offered. For example,
in the two-sample t test analysis, sample sizes can be entered in any of several parameterizations:

• total sample size in a balanced design

• sample size per group in a balanced design

• total sample size and group allocation weights

• groupwise sample sizes

See Figure 18.5 for an illustration of the application, showing the sample size input page for a two-sample t
test.
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Figure 18.5 Power and Sample Size Application
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Customized Power Formulas (DATA Step)
If you want to perform a power computation for an analysis that is not currently supported directly in
SAS/STAT tools, and you have a power formula, then you can program the formula in the DATA step.

For purposes of illustration, here is the power formula in the section “Computing Power and Sample Size” on
page 368 implemented in the DATA step to compute power for the t test example:

data tpow;
do meandiff = 5, 6;

do stddev = 12, 18;
do alpha = 0.05, 0.1;

do ntotal = 100, 200;
ncp = ntotal * 0.5 * 0.5 * meandiff**2 / stddev**2;
critval = finv(1-alpha, 1, ntotal-2, 0);
power = sdf('f', critval, 1, ntotal-2, ncp);
output;

end;
end;

end;
end;

run;

proc print data=tpow;
run;

The output is shown in Figure 18.6.

Figure 18.6 Customized Power Formula (DATA Step)

Obs meandiff stddev alpha ntotal ncp critval power

1 5 12 0.05 100 4.3403 3.93811 0.54102

2 5 12 0.05 200 8.6806 3.88885 0.83447

3 5 12 0.10 100 4.3403 2.75743 0.66434

4 5 12 0.10 200 8.6806 2.73104 0.90171

5 5 18 0.05 100 1.9290 3.93811 0.27981

6 5 18 0.05 200 3.8580 3.88885 0.49793

7 5 18 0.10 100 1.9290 2.75743 0.39654

8 5 18 0.10 200 3.8580 2.73104 0.62287

9 6 12 0.05 100 6.2500 3.93811 0.69689

10 6 12 0.05 200 12.5000 3.88885 0.94043

11 6 12 0.10 100 6.2500 2.75743 0.79895

12 6 12 0.10 200 12.5000 2.73104 0.96985

13 6 18 0.05 100 2.7778 3.93811 0.37857

14 6 18 0.05 200 5.5556 3.88885 0.65012

15 6 18 0.10 100 2.7778 2.75743 0.50459

16 6 18 0.10 200 5.5556 2.73104 0.75935
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Empirical Power Simulation (DATA Step, SAS/STAT Software)
You can obtain a highly accurate power estimate by simulating the power empirically. You need to use this
approach for analyses that are not supported directly in SAS/STAT tools and for which you lack a power
formula. But the simulation approach is also a viable alternative to existing power approximations. A high
number of simulations will yield a more accurate estimate than a non-exact power approximation.

Although exact power computations for the two-sample t test are supported in several of the SAS/STAT tools,
suppose for purposes of illustration that you want to simulate power for the continuing t test example. This
section describes how you can use the DATA step and SAS/STAT software to do this.

The simulation involves generating a large number of data sets according to the distributions defined by the
power analysis input parameters, computing the relevant p-value for each data set, and then estimating the
power as the proportion of times that the p-value is significant.

The following statements compute a power estimate along with a 95% confidence interval for power for the
first scenario in the two-sample t test example, with 10,000 simulations:

%let meandiff = 5;
%let stddev = 12;
%let alpha = 0.05;
%let ntotal = 100;
%let nsim = 10000;

data simdata;
call streaminit(123);
do isim = 1 to &nsim;

do i = 1 to floor(&ntotal/2);
group = 1;
y = rand('normal', 0 , &stddev);
output;
group = 2;
y = rand('normal', &meandiff, &stddev);
output;

end;
end;

run;

ods listing close;
proc ttest data=simdata;

ods output ttests=tests;
by isim;
class group;
var y;

run;
ods listing;

data tests;
set tests;
where method="Pooled";
issig = probt < &alpha;

run;
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proc freq data=tests;
ods select binomial;
tables issig / binomial(level='1');

run;

First the DATA step is used to randomly generate nsim = 10,000 data sets based on the meandiff , stddev , and
ntotal parameters and the normal distribution, consistent with the assumptions underlying the two-sample t
test. These data sets are contained in a large SAS data set called simdata indexed by the variable isim.

The CALL STREAMINIT(123) statement initializes the random number generator with a specific sequence
and ensures repeatable results for purposes of this example. (NOTE: Skip this step when you are performing
actual power simulations.)

The TTEST procedure is run using isim as a BY variable, with the ODS LISTING CLOSE statement to
suppress output. The ODS OUTPUT statement saves the “TTests” table to a data set called tests. The
p-values are contained in a column called probt.

The subsequent DATA step defines a variable called issig to flag the significant p-values.

Finally, the FREQ procedure computes the empirical power estimate as the estimate of P(issig = 1) and
provides approximate and exact confidence intervals for this estimate.

Figure 18.7 shows the results. The estimated power is 0.5388 with 95% confidence interval (0.5290, 0.5486).
Note that the exact power of 0.541 shown in the first row in Figure 18.1 is contained within this tight
confidence interval.

Figure 18.7 Simulated Power (DATA Step, SAS/STAT Software)

The FREQ ProcedureThe FREQ Procedure

Binomial Proportion

issig = 1

Proportion 0.5388

ASE 0.0050

95% Lower Conf Limit 0.5290

95% Upper Conf Limit 0.5486

Exact Conf Limits

95% Lower Conf Limit 0.5290

95% Upper Conf Limit 0.5486
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Overview: GLMPOWER Procedure
Power and sample size analysis optimizes the resource usage and design of a study, improving chances of
conclusive results with maximum efficiency. The GLMPOWER procedure performs prospective power and
sample size analysis for linear models, with a variety of goals:

• determining the sample size required to get a significant result with adequate probability (power)

• characterizing the power of a study to detect a meaningful effect

• conducting what-if analyses to assess sensitivity of the power or required sample size to other factors

Here prospective indicates that the analysis pertains to planning for a future study. This is in contrast to
retrospective analysis for a past study, which is not supported by this procedure.

The statistical analyses that are covered include Type III F tests and contrasts of fixed effects in univariate
and multivariate linear models. For univariate models, you can specify covariates, which can be continuous
or categorical. For multivariate models, you can choose among Wilks’ likelihood ratio, Hotelling-Lawley
trace, and Pillai’s trace F tests for multivariate analysis of variance (MANOVA) and among uncorrected,
Greenhouse-Geisser, Huynh-Feldt, and Box conservative F tests for the univariate approach to repeated
measures. Tests and contrasts that involve random effects are not supported. For power and sample size
analyses in a variety of other statistical situations, see Chapter 77, “The POWER Procedure.”

Input for PROC GLMPOWER includes the following components, which are considered in study planning:

• design (including subject profiles and their allocation weights)

• statistical model and test

• between-subject contrasts of class effects

• within-subject contrasts (for multivariate models)

• significance level (alpha)

• surmised response means for subject profiles (often called “cell means”)

• surmised variability (and correlation for multivariate models)

• power

• sample size

In order to identify power or sample size as the result parameter, you designate it by a missing value in the
input. The procedure calculates this result value over one or more scenarios of input values for all other
components.

You specify the design and the cell means by using an exemplary data set, a data set of artificial values that is
constructed to represent the intended sampling design and the surmised response means in the underlying
population. You specify the model and between-subject contrasts by using MODEL and CONTRAST
statements similar to those in the GLM, ANOVA, and MIXED procedures. For multivariate models, you
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specify the within-subject contrasts by using MANOVA and REPEATED statements similar to those in the
GLM and MIXED procedures. You specify the remaining parameters by using the POWER statement, which
is similar to analysis statements in the POWER procedure.

In addition to tabular results, PROC GLMPOWER produces graphs. You can produce the most common types
of plots easily with default settings and use a variety of options for more customized graphics. For example,
you can control the choice of axis variables, axis ranges, number of plotted points, mapping of graphical
features (such as color, line style, symbol, and panel) to analysis parameters, and legend appearance.

If ODS Graphics is enabled, then PROC GLMPOWER uses ODS Graphics to create graphs; otherwise,
traditional graphs are produced.

For more information about enabling and disabling ODS Graphics, see the section “Enabling and Disabling
ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

For specific information about the statistical graphics and options available with the GLMPOWER procedure,
see the PLOT statement and the section “ODS Graphics” on page 3641.

The GLMPOWER procedure is one of several tools available in SAS/STAT software for power and sample
size analysis. PROC POWER covers a variety of other analyses such as t tests, equivalence tests, confidence
intervals, binomial proportions, multiple regression, one-way ANOVA, survival analysis, logistic regression,
and the Wilcoxon rank-sum test. The Power and Sample Size application provides a user interface and
implements many of the analyses supported in the procedures. See Chapter 77, “The POWER Procedure,”
and Chapter 78, “The Power and Sample Size Application,” for details.

The following sections of this chapter describe how to use PROC GLMPOWER and discuss the underlying
statistical methodology. The section “Getting Started: GLMPOWER Procedure” on page 3599 introduces
PROC GLMPOWER with examples of power computation for a two-way analysis of variance. The section
“Syntax: GLMPOWER Procedure” on page 3605 describes the syntax of the procedure. The section “Details:
GLMPOWER Procedure” on page 3626 summarizes the methods employed by PROC GLMPOWER and
provides details on several special topics. The section “Examples: GLMPOWER Procedure” on page 3641
illustrates the use of the GLMPOWER procedure with several applications.

For an overview of methodology and SAS tools for power and sample size analysis, see Chapter 18,
“Introduction to Power and Sample Size Analysis.” For more discussion and examples for linear models, see
Castelloe and O’Brien (2001); O’Brien and Shieh (1992); Muller and Benignus (1992); O’Brien and Muller
(1993). For additional discussion of general power and sample size concepts, see O’Brien and Castelloe
(2007); Castelloe (2000); Muller and Benignus (1992); Lenth (2001).

Getting Started: GLMPOWER Procedure

Simple Two-Way ANOVA
This example demonstrates how to use PROC GLMPOWER to compute and plot power for each effect test
in a two-way analysis of variance (ANOVA).

Suppose you are planning an experiment to study the effect of light exposure at three levels on the growth
of two varieties of flowers. The planned data analysis is a two-way ANOVA with flower height (measured
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at two weeks) as the response and a model consisting of the effects of light exposure, flower variety, and
their interaction. You want to calculate the power of each effect test for a balanced design with a total of 60
specimens (10 for each combination of exposure and variety) with ˛ = 0.05 for each test.

As a first step, create an exemplary data set describing your conjectures about the underlying population
means. You believe that the mean flower height for each combination of variety and exposure level (that is,
for each design profile, or for each cell in the design) roughly follows Table 47.1.

Table 47.1 Mean Flower Height (in cm) by Variety and Exposure

Exposure
Variety 1 2 3

1 14 16 21
2 10 15 16

The following statements create a data set named Exemplary containing these cell means.

data Exemplary;
do Variety = 1 to 2;

do Exposure = 1 to 3;
input Height @@;
output;

end;
end;
datalines;

14 16 21
10 15 16

;

You also conjecture that the error standard deviation is about 5 cm.

Use the DATA= option in the PROC GLMPOWER statement to specify Exemplary as the exemplary data
set. Identify the classification variables (Variety and Exposure) by using the CLASS statement. Specify the
model by using the MODEL statement. Use the POWER statement to specify power as the result parameter
and provide values for the other analysis parameters, error standard deviation and total sample size. The
following SAS statements perform the power analysis:

proc glmpower data=Exemplary;
class Variety Exposure;
model Height = Variety | Exposure;
power

stddev = 5
ntotal = 60
power = .;

run;

The MODEL statement defines the full model including both main effects and the interaction. The POWER=
option in the POWER statement identifies power as the result parameter with a missing value (POWER=.).
The STDDEV= option specifies an error standard deviation of 5, and the NTOTAL= option specifies a total
sample size of 60. The default value for the ALPHA= option sets the significance level to ˛ = 0.05.

Figure 47.1 shows the output.
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Figure 47.1 Sample Size Analysis for Two-Way ANOVA

The GLMPOWER ProcedureThe GLMPOWER Procedure

Fixed Scenario Elements

Dependent Variable Height

Error Standard Deviation 5

Total Sample Size 60

Alpha 0.05

Error Degrees of Freedom 54

Computed Power

Index Source
Test

DF Power

1 Variety 1 0.718

2 Exposure 2 0.957

3 Variety*Exposure 2 0.191

The power is about 0.72 for the test of the Variety effect. In other words, there is a probability of 0.72 that
the test of the Variety effect will produce a significant result (given the assumptions for the means and error
standard deviation). The power is 0.96 for the test of the Exposure effect and 0.19 for the interaction test.

Now, suppose you want to account for some of your uncertainty in conjecturing the true error standard
deviation by evaluating the power at reasonable low and high values, 4 and 6.5. You also want to plot power
for sample sizes between 30 and 90. The following statements perform the analysis:

ods graphics on;

proc glmpower data=Exemplary;
class Variety Exposure;
model Height = Variety | Exposure;
power

stddev = 4 6.5
ntotal = 60
power = .;

plot x=n min=30 max=90;
run;

ods graphics off;

The PLOT statement with the X=N option requests a plot with sample size on the X axis. (The result
parameter—in this case, power—is always plotted on the other axis.) The MIN= and MAX= options in the
PLOT statement specify the sample size range. The ODS GRAPHICS ON statement enables ODS Graphics.

Figure 47.2 shows the output, and Figure 47.3 shows the plot.
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Figure 47.2 Sample Size Analysis for Two-Way ANOVA with Input Ranges

The GLMPOWER ProcedureThe GLMPOWER Procedure

Fixed Scenario Elements

Dependent Variable Height

Total Sample Size 60

Alpha 0.05

Error Degrees of Freedom 54

Computed Power

Index Source
Std
Dev

Test
DF Power

1 Variety 4.0 1 0.887

2 Variety 6.5 1 0.496

3 Exposure 4.0 2 0.996

4 Exposure 6.5 2 0.793

5 Variety*Exposure 4.0 2 0.280

6 Variety*Exposure 6.5 2 0.130

Figure 47.2 reveals that the power ranges from about 0.130 to 0.996 for the different effect tests and scenarios
for standard deviation, with a sample size of 60. In Figure 47.3, the line style identifies the effect test, and
the plotting symbol identifies the standard deviation. The locations of the plotting symbols identify actual
computed powers; the curves are linear interpolations of these points. Note that the computed points in the
plot occur at sample size multiples of 6, because there are 6 cells in the design (and by default, sample sizes
are rounded to produce integer cell sizes).
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Figure 47.3 Plot of Power versus Sample Size for Two-Way ANOVA with Input Ranges

Incorporating Contrasts, Unbalanced Designs, and Multiple Means
Scenarios
Suppose you want to compute power for the two-way ANOVA described in the section “Simple Two-Way
ANOVA” on page 3599, but you want to additionally perform the following tasks:

• try an unbalanced sample size allocation with respect to Exposure, using twice as many samples for
levels 2 and 3 as for level 1

• consider an additional, less optimistic scenario for the cell means, shown in Table 47.2

• test a contrast of Exposure comparing levels 1 and 3
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Table 47.2 Additional Cell Means Scenario

Exposure
Variety 1 2 3

1 15 16 20
2 11 14 15

To specify the unbalanced design and the additional cell means scenario, you can add two new variables to
the exemplary data set (Weight for the sample size weights, and HeightNew for the new cell means scenario).
Change the name of the original cell means scenario to HeightOrig. The following statements define the
exemplary data set:

data Exemplary;
input Variety $ Exposure $ HeightOrig HeightNew Weight;
datalines;

1 1 14 15 1
1 2 16 16 2
1 3 21 20 2
2 1 10 11 1
2 2 15 14 2
2 3 16 15 2

;

In PROC GLMPOWER, specify the name of the weight variable by using the WEIGHT statement, and
specify the name of the cell means variables as dependent variables in the MODEL statement. Use the
CONTRAST statement to specify the contrast as you would in PROC GLM. The following statements
perform the sample size analysis.

proc glmpower data=Exemplary;
class Variety Exposure;
model HeightOrig HeightNew = Variety | Exposure;
weight Weight;
contrast 'Exposure=1 vs Exposure=3' Exposure 1 0 -1;
power

stddev = 5
ntotal = 60
power = .;

run;

Figure 47.4 shows the output.

Figure 47.4 Sample Size Analysis for More Complex Two-Way ANOVA

The GLMPOWER ProcedureThe GLMPOWER Procedure

Fixed Scenario Elements

Weight Variable Weight

Error Standard Deviation 5

Total Sample Size 60

Alpha 0.05

Error Degrees of Freedom 54
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Figure 47.4 continued

Computed Power

Index Dependent Type Source
Test

DF Power

1 HeightOrig Effect Variety 1 0.672

2 HeightOrig Effect Exposure 2 0.911

3 HeightOrig Effect Variety*Exposure 2 0.217

4 HeightOrig Contrast Exposure=1 vs Exposure=3 1 0.951

5 HeightNew Effect Variety 1 0.754

6 HeightNew Effect Exposure 2 0.633

7 HeightNew Effect Variety*Exposure 2 0.137

8 HeightNew Contrast Exposure=1 vs Exposure=3 1 0.705

The power of the contrast of Exposure levels 1 and 3 is about 0.95 for the original cell means scenario
(HeightOrig) and only 0.71 for the new one (HeightNew). The power is higher for the test of Variety, but
lower for the tests of Exposure and of Variety*Exposure for the new cell means scenario compared to the
original one. Note also for the HeightOrig scenario that the power for the unbalanced design (Figure 47.4)
compared to the balanced design (Figure 47.1) is slightly lower for the tests of Variety and Exposure, but
slightly higher for the test of Variety*Exposure.

Syntax: GLMPOWER Procedure
The following statements are available in the GLMPOWER procedure:

PROC GLMPOWER < options > ;
BY variables ;
CLASS variables ;
CONTRAST ’label’ effect values < . . . effect values > < / options > ;
MANOVA ’label’ < test-options > < / detail-options > ;
MODEL dependent-variables = independent-effects ;
PLOT < plot-options > < / graph-options > ;
POWER < options > ;
REPEATED factor-specification ;
WEIGHT variable ;

The PROC GLMPOWER statement, the MODEL statement, and the POWER statement are required. If your
model contains classification effects, the classification variables must be listed in a CLASS statement, and
the CLASS statement must appear before the MODEL statement. In addition, CONTRAST and POWER
statements must appear after the MODEL statement. PLOT statements must appear after the POWER
statement that defines the analysis for the plot.

If you specify one or more MANOVA or REPEATED statements, then the model is assumed to be multivariate.
Otherwise, a univariate model is assumed, in which case multiple dependent variables represent cell means
scenarios for a single response.

You can use multiple CONTRAST, MANOVA, REPEATED, POWER, and PLOT statements. Each CON-
TRAST statement defines a separate between-subject contrast. Each MANOVA or REPEATED statement
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defines a separate within-subject contrast for a multivariate model. Each POWER statement produces a
separate analysis and uses the information that is contained in the CLASS, MODEL, WEIGHT, CONTRAST,
MANOVA, and REPEATED statements. Each PLOT statement refers to the previous POWER statement and
generates a separate graph (or set of graphs).

Table 47.3 summarizes the basic functions of each statement in PROC GLMPOWER. The syntax of each
statement in Table 47.3 is described in the following pages.

Table 47.3 Statements in the GLMPOWER Procedure

Statement Description

PROC GLMPOWER Invokes procedure and specifies exemplary data set

BY Specifies variables to define subgroups for the
analysis

CLASS Declares classification variables

CONTRAST Defines between-subject linear tests of model
parameters

MANOVA Defines within-subject linear tests of model param-
eters for multivariate models, in terms of contrast
matrix coefficients

MODEL Defines model and specifies dependent variables;
for univariate models, multiple dependent variables
represent cell means scenarios for a single response

PLOT Displays graphs for preceding POWER statement

POWER Identifies parameter to solve for and provides one
or more scenarios for values of other analysis
parameters

REPEATED Defines within-subject linear tests of model param-
eters for multivariate models, in terms of common
repeated measures transformations of the dependent
variables

WEIGHT Specifies variable for allocating sample sizes to
different subject profiles

PROC GLMPOWER Statement
PROC GLMPOWER < options > ;

The PROC GLMPOWER statement invokes the GLMPOWER procedure. You can specify the following
options.
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DATA=SAS-data-set
names a SAS data set to be used as the exemplary data set, which is an artificial data set constructed
to represent the intended sampling design and the conjectured response means for the underlying
population.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of the classification variables (which are specified in the CLASS
statement).

This option applies to the levels for all classification variables, except when you use the (default)
ORDER=FORMATTED option with numeric classification variables that have no explicit format. In
that case, the levels of such variables are ordered by their internal value.

The ORDER= option can take the following values:

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set

FORMATTED External formatted value, except for numeric variables with
no explicit format, which are sorted by their unformatted
(internal) value

FREQ Descending frequency count; levels with the most observa-
tions come first in the order

INTERNAL Unformatted value

By default, ORDER=FORMATTED. For ORDER=FORMATTED and ORDER=INTERNAL, the sort
order is machine-dependent.

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

PLOTONLY
specifies that only graphical results from the PLOT statement be produced.

BY Statement
BY variables ;

You can specify a BY statement with PROC GLMPOWER to obtain separate analyses of observations in
groups that are defined by the BY variables. When a BY statement appears, the procedure expects the input
data set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last
one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the GLMPOWER
procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the
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data are arranged in groups (according to values of the BY variables) and that these groups are not
necessarily in alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

Because sorting the data changes the order in which PROC GLMPOWER reads observations, the sort order
for the levels of the classification variables might be affected if you have also specified ORDER=DATA in
the PROC GLMPOWER statement. This, in turn, affects specifications in CONTRAST statements.

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CLASS Statement
CLASS variables ;

The CLASS statement names the classification variables to be used in the analysis. If you use the CLASS
statement, it must appear before the MODEL statement.

Classification variables can be either character or numeric. By default, class levels are determined from the
entire set of formatted values of the CLASS variables.

CONTRAST Statement
CONTRAST ’label’ effect values < . . . effect values > < / options > ;

The CONTRAST statement enables you to define custom Type III hypothesis tests by specifying an L vector
or matrix for testing either the hypothesis Lˇ D 0 (for univariate models) or the hypothesis LBM D 0 (for
multivariate models). The L matrix consists of one or more between-subject contrasts.

To use this feature, you must be familiar with the details of the model parameterization that PROC GLM uses.
For more information, see the section “Parameterization of PROC GLM Models” on page 3456 in Chapter 45,
“The GLM Procedure.” All the elements of the L matrix can be given, or if only certain portions of the L
matrix are given, PROC GLMPOWER constructs the remaining elements from the context (in a manner
similar to that in rule 4 in the section “Construction of Least Squares Means” on page 3489 in Chapter 45,
“The GLM Procedure”).

There is no limit to the number of CONTRAST statements that you can specify, but they must appear after
the MODEL statement. Each power analysis includes tests for all CONTRAST statements.

You can specify the following arguments:

label identifies the contrast in the output. A label is required for every contrast that is specified. Labels
must be enclosed in single or double quotation marks.

effect identifies an effect that appears in the MODEL statement, or the INTERCEPT effect. You do not
need to include all effects that appear in the MODEL statement.

values are constants that are elements of the L matrix associated with the effect.

You can specify the following option in the CONTRAST statement after a slash (/):
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SINGULAR=number
tunes the estimability checking. If ABS.L � LH/ > C� number for any row in the contrast, then L is
declared nonestimable. H is the .X0X/�X0X matrix, and C is ABS.L/ except for rows where L is zero,
and then it is 1. The default value for the SINGULAR= option is 10�4. Values for the SINGULAR=
option must be between 0 and 1.

As stated previously, the CONTRAST statement enables you to define custom hypothesis tests. If the
hypothesis is testable in a univariate model, then the hypothesis sum of squares, SS(H0WLˇ D 0), is
computed as

.Lb/0.L.X0X/�L0/�1.Lb/

where b D .X0X/�X0y.

For testable hypotheses in a multivariate model, the usual multivariate tests are defined by using

H DM0.LB/0.L.X0X/�L0/�1.LB/M

where B D .X0X/�X0Y and Y is the matrix of multivariate responses or dependent variables.

The degrees of freedom associated with the hypothesis are equal to the row rank of L. The sum of
squares computed in this situation is equivalent to the sum of squares computed using an L matrix with
any row deleted that is a linear combination of previous rows.

Multiple-degrees-of-freedom hypotheses can be specified by separating the rows of the L matrix with
commas.

MANOVA Statement
MANOVA ’label’ < test-options > < / detail-options > ;

If the MODEL statement includes more than one dependent variable, you can indicate a multivariate model
and define transformations of dependent variables by using the MANOVA statement.

The MANOVA statement enables you to define custom Type III hypothesis tests by specifying an M vector or
matrix for testing the hypothesis LˇM D 0. The L matrix consists of one or more between-subject contrasts
that involve the model effects, and the M matrix consists of one or more within-subject contrasts.

To use this feature, you must be familiar with the details of multivariate model and contrast parameterizations
that are used in PROC GLM. For more information, see the sections “Multivariate Analysis of Variance”
on page 3492 and “Repeated Measures Analysis of Variance” on page 3493 in Chapter 45, “The GLM
Procedure.” For information about the power and sample size computational methods and formulas, see the
section “Contrasts in Fixed-Effect Multivariate Models” on page 3633.

You can use either the MANOVA statement or the REPEATED statement with any of the tests for multivariate
models that are supported in the MTEST= option in the POWER statement. For handling repeated measures
on the same experimental unit, you would usually use the REPEATED statement instead of the MANOVA
statement. But you can use the MANOVA statement in repeated measures situations, in addition to situations
where you have clusters or multiple outcome variables. The differences between the MANOVA and
REPEATED statements are as follows:
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• You can use the MANOVA statement to construct any M matrix, but you must specify the coefficients
explicitly (except for the default identity matrix).

• You can use the REPEATED statement to specify commonly used contrasts by using keywords rather
than coefficients, but you are limited to only those forms of the M matrix.

There is no limit to the number of MANOVA statements that you can specify. Each power analysis includes
tests for all MANOVA statements.

The label identifies the dependent variable transformation in the output. The label serves the same purpose
as the factor-name in the REPEATED statement, enabling you to use the MANOVA statement for tests
of within-subject effects and within-subject-by-between-subject interactions. A label is required for every
transformation that is specified. Labels must be enclosed in single or double quotation marks.

Test Options

You can specify the following test-option in the MANOVA statement:

M=equation, . . . , equation | (row-of-matrix, . . . , row-of-matrix)
specifies a transformation matrix for the dependent variables that are listed in the MODEL statement.

The equations in the M= specification are of the form

c1 � dependent-variable ˙ c2 � dependent-variable

� � � ˙ cn � dependent-variable

where the ci values are coefficients of the various dependent-variables. If the value of a given ci is
1, it can be omitted; in other words, 1 � Y is the same as Y. Equations should involve two or more
dependent variables.

Alternatively, you can input the transformation matrix directly by entering the elements of the matrix,
using commas to separate the rows and parentheses to surround the matrix. When you use this alternate
form of input, the number of elements in each row must equal the number of dependent variables.
Although these combinations actually represent the columns of the M matrix, they are displayed by
rows.

When you include an M= specification, the tests are based on the variables that are defined by the
equations in the specification, not the original dependent variables. If you omit the M= option, the tests
are based on the original dependent variables in the MODEL statement. Omitting the M= option is
equivalent to specifying an identity matrix, as in the following example, which assumes three dependent
variables:

MANOVA 'Identity' M=(1 0 0,
0 1 0,
0 0 1);

For more examples of the M= option, see the section “Examples” on page 3431 in Chapter 45, “The
GLM Procedure.” The syntax and functionality of the M= option in PROC GLM are the same as in
PROC GLMPOWER.
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Detail Options

You can specify the following detail-option in the MANOVA statement after a slash (/):

ORTH
requests that the transformation matrix in the M= specification of the MANOVA statement be orthogo-
nalized by rows before the analysis.

MODEL Statement
MODEL dependent-variables = independent-effects ;

The MODEL statement names the dependent variables and independent effects. If one or more MANOVA
or REPEATED statements are specified, then multiple dependent variables define a multivariate model. In
the absence of the MANOVA and REPEATED statements, a univariate model is assumed, and multiple
dependent variables represent different scenarios for the cell means.

The independent-effects can involve classification variables, continuous variables, or both. You can include
main effects and interactions by using the effects notation of PROC GLM; for more information, see the
section “Specification of Effects” on page 3453 in Chapter 45, “The GLM Procedure.” For any model effect
that involves classification variables (main effects and interactions), the number of levels cannot exceed
32,767. If no independent effects are specified, only an intercept term is fit. You can specify only one
MODEL statement, and it must appear before the POWER statement if the EFFECTS= option is specified in
the POWER statement.

For a univariate model, you can account for covariates without specifying them explicitly in the model by
using the NCOVARIATES= option and either the CORRXY= or PROPVARREDUCTION= option in the
POWER statement. For a multivariate model, you must explicitly specify any covariates in the MODEL
statement.

The values of dependent variables in the exemplary data set (the data set named by the DATA= option in the
PROC GLMPOWER statement) are surmised response means across subject profiles. For a univariate model,
multiple dependent variables correspond to multiple scenarios for these cell means.

The MODEL statement is required. You can specify only one MODEL statement.

PLOT Statement
PLOT < plot-options > < / graph-options > ;

The PLOT statement produces a graph or set of graphs for the sample size analysis defined by the previous
POWER statement. The plot-options define the plot characteristics, and the graph-options are like those in
SAS/GRAPH software. If ODS Graphics is enabled, then the PLOT statement uses ODS Graphics to create
graphs. For example:
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ods graphics on;

proc glmpower data=Exemplary;
class Variety Exposure;
model Height = Variety | Exposure;
power

stddev = 4 6.5
ntotal = 60
power = .;

plot x=n min=30 max=90;
run;

ods graphics off;

Otherwise, traditional graphics are produced. For example:

ods graphics off;

proc glmpower data=Exemplary;
class Variety Exposure;
model Height = Variety | Exposure;
power

stddev = 4 6.5
ntotal = 60
power = .;

plot x=n min=30 max=90;
run;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and Disabling
ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

Table 47.4 summarizes the options available in the PLOT statement.

Table 47.4 PLOT Statement Options

Option Description

Plot Options
INTERPOL= Specifies the type of curve to draw
KEY= Specifies the style of key for the plot
MARKERS= Specifies the locations for plotting symbols
MAX= Specifies the maximum of the range of values
MIN= Specifies the minimum of the range of values
NPOINTS= Specifies the number of values
STEP= Specifies the increment between values
VARY Specifies how plot features should be linked to varying analysis parameters
X= Specifies a plot with the requested type of parameter on the X axis
XOPTS= Specifies plot characteristics pertaining to the X axis
Y= Specifies a plot with the requested type of parameter on the Y axis
YOPTS= Specifies plot characteristics pertaining to the Y axis

Graph Options
DESCRIPTION= Specifies a descriptive string
NAME= Specifies a name for the catalog entry for the plot
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Options

You can specify the following plot-options in the PLOT statement.

INTERPOL=JOIN | NONE
specifies the type of curve to draw through the computed points. The INTERPOL=JOIN option
connects computed points with straight lines. The INTERPOL=NONE option leaves computed points
unconnected.

KEY=BYCURVE < (bycurve-options) >

KEY=BYFEATURE < (byfeature-options) >

KEY=ONCURVES
specifies the style of key (or “legend”) for the plot. The default is KEY=BYFEATURE, which specifies
a key with a column of entries for each plot feature (line style, color, and/or symbol). Each entry shows
the mapping between a value of the feature and the value(s) of the analysis parameter(s) linked to that
feature. The KEY=BYCURVE option specifies a key with each row identifying a distinct curve in the
plot. The KEY=ONCURVES option places a curve-specific label adjacent to each curve.

You can specify the following byfeature-options in parentheses after the KEY=BYCURVE option.

NUMBERS=OFF | ON
specifies how the key should identify curves. If NUMBERS=OFF, then the key includes symbol,
color, and line style samples to identify the curves. If NUMBERS=ON, then the key includes
numbers matching numeric labels placed adjacent to the curves. The default is NUMBERS=ON.

POS=BOTTOM | INSET
specifies the position of the key. The POS=BOTTOM option places the key below the X axis.
The POS=INSET option places the key inside the plotting region and attempts to choose the least
crowded corner. The default is POS=BOTTOM.

You can specify the following byfeature-options in parentheses after KEY=BYFEATURE option.

POS=BOTTOM | INSET
specifies the position of the key. The POS=BOTTOM option places the key below the X axis.
The POS=INSET option places the key inside the plotting region and attempts to choose the least
crowded corner. The default is POS=BOTTOM.

MARKERS=ANALYSIS | COMPUTED | NICE | NONE
specifies the locations for plotting symbols.

The MARKERS=ANALYSIS option places plotting symbols at locations corresponding to the values
of the relevant input parameter from the POWER statement preceding the PLOT statement.

The MARKERS=COMPUTED option (the default) places plotting symbols at the locations of actual
computed points from the sample size analysis.

The MARKERS=NICE option places plotting symbols at tick mark locations (corresponding to the
argument axis).

The MARKERS=NONE option disables plotting symbols.
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MAX=number | DATAMAX
specifies the maximum of the range of values for the parameter associated with the “argument” axis
(the axis that is not representing the parameter being solved for). The default is DATAMAX, which
specifies the maximum value that occurs for this parameter in the POWER statement that precedes the
PLOT statement.

MIN=number | DATAMIN
specifies the minimum of the range of values for the parameter associated with the “argument” axis
(the axis that is not representing the parameter being solved for). The default is DATAMIN, which
specifies the minimum value that occurs for this parameter in the POWER statement that precedes the
PLOT statement.

NPOINTS=number

NPTS=number
specifies the number of values for the parameter associated with the “argument” axis (the axis that is
not representing the parameter being solved for). You cannot use the NPOINTS= and STEP= options
simultaneously. The default value for typical situations is 20.

STEP=number
specifies the increment between values of the parameter associated with the “argument” axis (the axis
that is not representing the parameter being solved for). You cannot use the STEP= and NPOINTS=
options simultaneously. By default, the NPOINTS= option is used instead of the STEP= option.

VARY ( feature < BY parameter-list > < , . . . , feature < BY parameter-list > > )
specifies how plot features should be linked to varying analysis parameters. Available features are
COLOR, LINESTYLE, PANEL, and SYMBOL. A “panel” refers to a separate plot with a heading
identifying the subset of values represented in the plot.

The parameter-list is a list of one or more names, separated by spaces. Each name must match the
name of an analysis option used in the POWER statement preceding the PLOT statement, or one of the
following keywords:

• SOURCE, which represents the model effects and contrasts in a univariate model and the between-
subject effects and contrasts in a multivariate model

• DEPENDENT, which represents the cell means scenarios in a univariate model or the dependent
variable transformations in a multivariate model

If the name represents an analysis option that is specified in the POWER statement, then it must be the
primary name for the analysis option—that is, the one that is listed first in the syntax description.

If you omit the < BY parameter-list > portion for a feature, then one or more multivalued parameters
from the analysis are automatically selected for you.

X=N | POWER
specifies a plot with the requested type of parameter on the X axis and the parameter being solved for
on the Y axis. When X=N, sample size is assigned to the X axis. When X=POWER, power is assigned
to the X axis. You cannot use the X= and Y= options simultaneously. The default is X=POWER,
unless the result parameter is power, in which case the default is X=N.
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XOPTS= ( x-options )
specifies plot characteristics pertaining to the X axis.

You can specify the following x-options in parentheses.

CROSSREF=NO | YES
specifies whether the reference lines defined by the REF= x-option should be crossed with a
reference line on the Y axis that indicates the solution point on the curve.

REF=number-list
specifies locations for reference lines extending from the X axis across the entire plotting region.
For information about specifying the number-list , see the section “Specifying Value Lists in the
POWER Statement” on page 3626.

Y=N | POWER
specifies a plot with the requested type of parameter on the Y axis and the parameter being solved for
on the X axis. When Y=N, sample size is assigned to the Y axis. When Y=POWER, power is assigned
to the Y axis. You cannot use the Y= and X= options simultaneously. By default, the X= option is used
instead of the Y= option.

YOPTS= ( y-options )
specifies plot characteristics pertaining to the Y axis.

You can specify the following y-options in parentheses.

CROSSREF=NO | YES
specifies whether the reference lines defined by the REF= y-option should be crossed with a
reference line on the X axis that indicates the solution point on the curve.

REF=number-list
specifies locations for reference lines extending from the Y axis across the entire plotting region.
For information about specifying the number-list , see the section “Specifying Value Lists in the
POWER Statement” on page 3626.

You can specify the following graph-options in the PLOT statement after a slash (/).

DESCRIPTION=’string ’
specifies a descriptive string of up to 40 characters that appears in the “Description” field of the
graphics catalog. The description does not appear on the plots. By default, PROC GLMPOWER
assigns a description either of the form “Y versus X” (for a single-panel plot) or of the form “Y versus
X (S),” where Y is the parameter on the Y axis, X is the parameter on the X axis, and S is a description
of the subset represented on the current panel of a multipanel plot.

NAME=’string ’
specifies a name of up to eight characters for the catalog entry for the plot. The default name is PLOTn,
where n is the number of the plot statement within the current invocation of PROC GLMPOWER. If the
name duplicates the name of an existing entry, SAS/GRAPH software adds a number to the duplicate
name to create a unique entry—for example, PLOT11 and PLOT12 for the second and third panels of
a multipanel plot generated in the first PLOT statement in an invocation of PROC GLMPOWER.
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POWER Statement
POWER < options > ;

The POWER statement performs power and sample size analyses for the Type III F tests that are specified
in the MTEST= option, for each effect in the model that is defined by the MODEL statement, and for
the contrasts that are defined by all CONTRAST, MANOVA, and REPEATED statements. The POWER
statement must appear after the MODEL statement if the EFFECTS= option is used in the POWER statement.

For information about the power and sample size computational methods and formulas, see the section
“Computational Methods and Formulas” on page 3630.

Summary of Options

Table 47.5 summarizes the options available in the POWER statement.

Table 47.5 POWER Statement Options

Option Description

Specify test statistic
MTEST= Specifies the test statistic for a multivariate model
UEPSDEF= Specifies the form of the Huynh-Feldt epsilon for MTEST=HF
Specify analysis information
ALPHA= Specifies the level of significance of each test
EFFECTS Specifies the model effects
Specify covariates for a univariate model
CORRXY= Specifies multiple correlation (�) between covariates and response
NCOVARIATES= Specifies additional degrees of freedom due to covariates
PROPVARREDUCTION= Specifies proportional variance reduction (r) due to covariates
Specify variability
CORRMAT= Specifies the correlation matrix of the dependent variables in a multivariate

model
CORRS= Specifies the correlations among the dependent variables in a multivariate

model
COVMAT= Specifies the covariance matrix of the dependent variables in a multivariate

model
MATRIX= Defines a matrix or vector
SQRTVAR= Specifies the vector of error standard deviations for each dependent variable

in a multivariate model
STDDEV= Specifies the common error standard deviation
Specify sample size
NFRACTIONAL Enables fractional input and output for sample sizes
NTOTAL= Specifies the sample size
Specify power
POWER= Specifies power
Choose computational method
METHOD= Specifies the computational method for multivariate tests
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Table 47.5 continued

Option Description

Control ordering in output
DEPENDENT Specifies the location of the Dependent or Transformation column in the

output
OUTPUTORDER= Controls ordering in output

Table 47.6 summarizes the valid result parameters.

Table 47.6 Summary of Result Parameters in the POWER
Statement

Solve for Syntax

Power POWER = .

Sample size NTOTAL = .

Dictionary of Options

ALPHA=number-list
specifies the level of significance of each test. The default is 0.05, corresponding to the usual 0.05 �
100% = 5% level of significance. Note that this is a test-wise significance level with the same value for
all tests, not incorporating any corrections for multiple testing. For information about specifying the
number-list , see the section “Specifying Value Lists in the POWER Statement” on page 3626.

CORRMAT=name-list
specifies the correlation matrix of the dependent variables in a multivariate model, by using labels that
are specified in the MATRIX= option. The corresponding matrices that are defined in the MATRIX=
option must have either a lower triangular form that includes the diagonal of 1’s or a linear exponent
autoregressive (LEAR) correlation structure. The matrix must be positive definite. You can use the
CORRMAT= option only when you have a multivariate model—that is, in the presence of one or more
MANOVA or REPEATED statements. For information about specifying the name-list , see the section
“Specifying Value Lists in the POWER Statement” on page 3626.

CORRS=name-list
specifies the correlations among the dependent variables in a multivariate model, by using labels that
are specified in the MATRIX= option. The corresponding matrices that are defined in the MATRIX=
option must have either a lower triangular form that excludes the diagonal of 1’s or a LEAR correlation
structure. The matrix must be positive definite. You can use the CORRS= option only when you have
a multivariate model—that is, in the presence of one or more MANOVA or REPEATED statements.
For information about specifying the name-list , see the section “Specifying Value Lists in the POWER
Statement” on page 3626.
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COVMAT=name-list
specifies the covariance matrix of the dependent variables in a multivariate model, by using labels that
are specified in the MATRIX= option. The corresponding matrices that are defined in the MATRIX=
option must have a lower triangular form that includes the diagonal of error variances. The matrix
must be positive definite. You can use the COVMAT= option only when you have a multivariate
model—that is, in the presence of one or more MANOVA or REPEATED statements. For information
about specifying the name-list , see the section “Specifying Value Lists in the POWER Statement” on
page 3626.

CORRXY=number-list
specifies the multiple correlation (�) between all covariates and the response for a univariate model. The
error standard deviation that is given by the STDDEV= option is consequently reduced by multiplying it
by a factor of .1��2/

1
2 , provided that the number of covariates (as determined by the NCOVARIATES=

option) is greater than 0. You cannot use the CORRXY= and PROPVARREDUCTION= options
simultaneously. You cannot use the CORRXY= option when you have a multivariate model—that
is, in the presence of a MANOVA or REPEATED statement. For information about specifying the
number-list , see the section “Specifying Value Lists in the POWER Statement” on page 3626.

DEPENDENT
specifies the location of the Dependent column (for a univariate model) or the Transformation column
(for a multivariate model) in the output when you specify the OUTPUTORDER=REVERSE option or
OUTPUTORDER=SYNTAX option, according to its relative position in the POWER statement.

EFFECTS < = < ( effect . . . effect ) > >
specifies the model effects to include in the power analysis. By default, or if the EFFECTS keyword is
specified without the equal sign (=), all model effects are included. Specify EFFECTS=() to exclude all
model effect tests from the power analysis. You can include main effects and interactions by using the
effects notation of PROC GLM; see the section “Specification of Effects” on page 3453 in Chapter 45,
“The GLM Procedure” for further details. The MODEL statement must appear before the POWER
statement if the EFFECTS option is used.

MATRIX('label ')=matrix-specification
defines a matrix or vector that you can use along with the CORRMAT=, CORRS=, COVMAT=, and
SQRTVAR= options when you have a multivariate model.

The matrix-specification can have one of the following three forms:

1. Raw values

(values )

specifies the values of a matrix or vector in one of the following forms:

• a matrix in lower triangular form, for use with the CORRMAT= or COVMAT= option

• a matrix in strictly lower triangular form, for use with the CORRS= option

• a vector, for use with the SQRTVAR= option

A matrix in lower triangular form contains the diagonal the and values below it. For example, you can
represent a 3 � 3 correlation matrix for use with the CORRMAT= option as follows:
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MATRIX ('MyCorrMat') = ( 1
0.5 1
0.2 0.5 1)

You can represent the same correlation matrix in strictly lower triangular form for use with the CORRS=
option as follows:

MATRIX ('MyCorrs') = (0.5
0.2 0.5)

An example of a vector for use with the SQRTVAR= option is as follows:

MATRIX ('MySqrtVar') = (3.2 4.5 3.7)

2. Linear exponent autoregressive (LEAR) correlation structure

LEAR (base-corr , corr-decay < , nlevels < , level-values > > )

specifies a LEAR correlation structure for use with the CORRMAT= or CORRS= option. The LEAR
structure is useful for characterizing exponentially decaying within-subject correlation that decays at a
rate slower or faster than AR(1). Special cases include compound symmetry, first-order autoregressive
(AR(1)), and first-order moving average correlation structures.

The LEAR correlation structure is related to the spatial covariance structures in PROC MIXED and is
discussed in Simpson et al. (2010).

The base-corr (�) is the correlation between variables whose level-values are one unit apart, and it
must satisfy 0 � � < 1. The corr-decay (ı) is the correlation decay rate, which must be nonnegative.
The default value for the number of levels, nlevels (n), is the number of dependent variables. The n
level-values, denoted fl1; : : : ; lng, must be distinct. The default level-values are f1; : : : ; ng. Let djk
denote the distance between levels j and k, .djk Dj lj � lk j/. Let dmin D min.djk W j ¤ k/ and
dmax D max.djk W j ¤ k/. The .i; j /th element of the correlation matrix according to the LEAR
model is defined as

�jk D

8̂<̂
:
1 if j = k
�dminCıŒ.djk�dmin/=.dmax�dmin/� if j ¤ k and dmin ¤ dmax

� if j ¤ k and dmin D dmax

Compound symmetry is the special case ı = 0. AR(1) is the special case ı D dmax�dmin. As ı !1,
the model approaches the first-order moving average model.

3. Kronecker product

‘matrix-name’ @ ‘matrix-name’ < @ . . . @ ‘matrix-name’ >

specifies a direct (Kronecker) product of two or more matrices for use with the CORRMAT=, CORRS=,
or COVMAT= option. This form is useful when you have more than one type of distinction among
dependent variables. For example, suppose you have a three-level repeated measurement factor with
correlation that is 0.4 for neighboring measurements and that decays slightly more slowly than AR(1)
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across more distant measurements. You also have four clusters that you believe satisfy compound
symmetry with a correlation of 0.3. Your level values are the same as the default for the LEAR model.
You can specify this correlation structure as follows:

MATRIX ('RepMeasures') = LEAR (0.4, 1.5, 3)
MATRIX ('Clusters') = LEAR (0.3, 0, 4)
MATRIX ('FullCorr') = 'RepMeasures' @ 'Clusters'
CORRMAT = 'FullCorr'

You can use the MATRIX option only when you have a multivariate model—that is, in the presence of
one or more MANOVA or REPEATED statements.

METHOD=MULLERPETERSON | MP

METHOD=OBRIENSHIEH | OS
specifies the power computation method for the multivariate tests (MTEST=HLT, MTEST=PT, and
MTEST=WILKS). METHOD=OBRIENSHIEH (the default) is based on O’Brien and Shieh (1992),
and METHOD=MULLERPETERSON is based on Muller and Peterson (1984). For information
about the associated power and sample size computational methods and formulas, see the section
“Multivariate Tests” on page 3635.

If the dependent variable transformation consists of a single contrast (rM = 1), then the two methods
are identical and compute exact power. If rM > 1 but the model effect or between-subject contrast has
only one degree of freedom (rL = 1), then METHOD=OBRIENSHIEH computes exact results and
METHOD=MULLERPETERSON computes approximate results. If rM > 1 and rL > 1, then both
methods compute approximate results.

You can use the METHOD= option only when you have a multivariate model—that is, in the presence
of one or more MANOVA or REPEATED statements.

MTEST=test-list
specifies the form of the F test for a multivariate model. Seven keywords are available, as discussed in
the following paragraphs: BOX, GG, HF, HLT, PT, UNCORR, and WILKS. For information about
specifying the keyword-list , see the section “Specifying Value Lists in the POWER Statement” on
page 3626.

Three of these tests are multivariate, corresponding to the default MSTAT=FAPPROX option in the
MANOVA and REPEATED statements in PROC GLM:

• MTEST=HLT (the default) is the Hotelling-Lawley trace

• MTEST=PT is Pillai’s trace

• MTEST=WILKS is Wilks’ lambda

For more information about these multivariate tests, see the section “Multivariate Tests” on page 90 in
Chapter 4, “Introduction to Regression Procedures.” For information about the associated power and
sample size computational methods and formulas, see the section “Multivariate Tests” on page 3635.

The other four tests are univariate, corresponding to the univariate approach to repeated measures in
the REPEATED statement in PROC GLM:

• MTEST=UNCORR is the uncorrected univariate F test, assuming sphericity (" = 1).
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• MTEST=GG is the F test with the Greenhouse-Geisser adjustment, estimating " by its maximum
likelihood estimate O".

• MTEST=HF is the F test with the Huynh-Feldt adjustment as specified by the UEPSDEF= option,
using an approximately unbiased estimate Q".

• MTEST=BOX is the F test with Box’s conservative adjustment, estimating sphericity by its small-
est possible value 1=rM , where rM is the number of within-subject contrasts in the dependent
variable transformation.

For more information about these univariate tests, see the section “Hypothesis Testing in Repeated
Measures Analysis” on page 3496 in Chapter 45, “The GLM Procedure.” For information about the
associated power and sample size computational methods and formulas, see the section “Univariate
Tests” on page 3638.

These tests are all of the form LˇM D 0, where L is a between-subject contrast, ˇ is the matrix of
model parameters, and M is a within-subject contrast.

You can use the MTEST= option only when you have a multivariate model—that is, in the presence of
one or more MANOVA or REPEATED statements.

NCOVARIATES=number-list

NCOVARIATE=number-list

NCOVS=number-list

NCOV=number-list
specifies the number of additional degrees of freedom to accommodate covariate effects—both class
and continuous—not listed in the MODEL statement, for a univariate model. The error degrees of
freedom are consequently reduced by the value of the NCOVARIATES= option, and the error standard
deviation (whose unadjusted value is provided with the STDDEV= option) is reduced according to the
value of the CORRXY= or PROPVARREDUCTION= option. You cannot use the NCOVARIATES=
option when you have a multivariate model—that is, in the presence of a MANOVA or REPEATED
statement. For information about specifying the number-list , see the section “Specifying Value Lists in
the POWER Statement” on page 3626.

NFRACTIONAL

NFRAC
enables fractional input and output for sample sizes. See the section “Sample Size Adjustment
Options” on page 3627 for information about the ramifications of the presence (and absence) of the
NFRACTIONAL option.

NTOTAL=number-list
specifies the sample size or requests a solution for the sample size with a missing value (NTOTAL=.).
The term “sample size” here refers to the number of independent sampling units. Values for the
sample size for a univariate model must be no smaller than the model degrees of freedom (counting the
covariates if present). The minimum required sample size for a multivariate model depends on the
analysis and computational method; for more information, see the section “Contrasts in Fixed-Effect
Multivariate Models” on page 3633. For information about specifying the number-list , see the section
“Specifying Value Lists in the POWER Statement” on page 3626.
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OUTPUTORDER=INTERNAL | REVERSE | SYNTAX
controls how the input and default analysis parameters are ordered in the output. OUT-
PUTORDER=INTERNAL (the default) arranges the parameters in the output according to the following
order of their corresponding options:

• DEPENDENT

• EFFECTS

• weight variable (from the WEIGHT statement)

• ALPHA=

• NCOVARIATES=

• CORRXY=

• PROPVARREDUCTION=

• STDDEV=

• NTOTAL=

• POWER=

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the same or-
der in which their corresponding options are specified in the POWER statement. The OUT-
PUTORDER=REVERSE option arranges the parameters in the output in the reverse of the order
in which their corresponding options are specified in the POWER statement.

POWER=number-list
specifies the desired power of each test or requests a solution for the power with a missing value
(POWER=.). The power is expressed as a probability (for example, 0.9) rather than a percentage. Note
that this is a test-wise power with the same value for all tests, without any correction for multiple
testing. For information about specifying the number-list , see the section “Specifying Value Lists in
the POWER Statement” on page 3626.

PROPVARREDUCTION=number-list

PVRED=number-list
specifies the proportional reduction (r) in total R square incurred by the covariates—in other words, the
amount of additional variation explained by the covariates—for a univariate model. The error standard
deviation that is given by the STDDEV= option is consequently reduced by multiplying it by a factor
of .1 � r/

1
2 , provided that the number of covariates (as determined by the NCOVARIATES= option) is

greater than 0. You cannot use the PROPVARREDUCTION= and CORRXY= options simultaneously.
You cannot use the PROPVARREDUCTION= option when you have a multivariate model—that
is, in the presence of a MANOVA or REPEATED statement. For information about specifying the
number-list , see the section “Specifying Value Lists in the POWER Statement” on page 3626.

SQRTVAR=name-list
specifies the vector of standard deviations—that is, the square roots of the variances—of the dependent
variables in a multivariate model, by using labels that are specified using the MATRIX= option. The
standard deviation values must be positive. You can use the SQRTVAR= option only when you have a
multivariate model—that is, in the presence of one or more MANOVA or REPEATED statements. For
information about specifying the name-list , see the section “Specifying Value Lists in the POWER
Statement” on page 3626.
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STDDEV=number-list
specifies the error standard deviation, or root MSE. For a multivariate model, each value in the number-
list is taken to be a common value for all dependent variables. If covariates are specified by using
the NCOVARIATES= option, then the STDDEV= option denotes the error standard deviation before
accounting for these covariates. For information about specifying the number-list , see the section
“Specifying Value Lists in the POWER Statement” on page 3626.

UEPSDEF=unbiased-epsilon-definition
specifies the type of adjustment for MTEST=HF. The default is UEPSDEF=HFL, corresponding to
the corrected form of the Huynh-Feldt adjustment (Huynh and Feldt 1976; Lecoutre 1991). Other
alternatives are UEPSDEF=HF; the uncorrected Huynh-Feldt adjustment; and UEPSDEF=CM, the
adjustment of Chi et al. (2012). For more information about these adjustments, see the section “Hy-
pothesis Testing in Repeated Measures Analysis” on page 3496 in Chapter 45, “The GLM Procedure.”
You can use the UEPSDEF= option only when you have a multivariate model—that is, in the presence
of one or more MANOVA or REPEATED statements. For information about the associated power and
sample size computational methods and formulas, see the section “Univariate Tests” on page 3638.

Restrictions on Option Combinations

To specify the variability in a multivariate model, choose one of the following parameterizations:

• covariance matrix (using the MATRIX= and COVMAT= options)

• standard deviations and correlations (using the MATRIX=, SQRTVAR=, and CORRS= options)

• common standard deviation and correlations (using the STDDEV=, MATRIX=, and CORRS= options)

• standard deviations and correlation matrix (using the MATRIX=, SQRTVAR=, and CORRMAT=
options)

• common standard deviation and correlation matrix (using the STDDEV=, MATRIX=, and CORRMAT=
options)

For the relationship between covariates and response in a univariate model, specify either the multiple
correlation (by using the CORRXY= option) or the proportional reduction in total R square (by using the
PROPVARREDUCTION= option).

REPEATED Statement
REPEATED factor-specification ;

If the MODEL statement includes more than one dependent variable, you can indicate a multivariate model
and define transformations of dependent variables by using the REPEATED statement.

The REPEATED statement enables you to define custom Type III hypothesis tests by choosing from among
several transformations of the dependent variables: contrast, Helmert, identity, mean, polynomial, and profile.
You can specify a transformation for each repeated factor (often called a within-subject factor), and each
combination of repeated factors produces an M vector or matrix for testing the hypothesis LˇM D 0. The L
matrix consists of one or more between-subject contrasts that involve the model effects, and the M matrix
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consists of one or more within-subject contrasts that involve the repeated factors. There is no limit to the
number of repeated factors that you can specify.

Usually, the variables on the left side of the equation in the MODEL statement represent one repeated response
variable. This does not mean that you are limited to listing only one factor in the REPEATED statement. For
example, one repeated response variable (wellness rating) might be measured six times (implying variables
Y1 to Y6 on the left side of the equal sign in the MODEL statement), with the associated within-subject
factors rater and time (implying two factors listed in the REPEATED statement). However, designs that have
two or more repeated response variables can be handled by using the IDENTITY transformation.

To use this feature, you must be familiar with the details of multivariate model and contrast parameterizations
that PROC GLM uses. For more information, see the sections “Repeated Measures Analysis of Variance” on
page 3493 and “Multivariate Analysis of Variance” on page 3492 in Chapter 45, “The GLM Procedure.” For
information about the power and sample size computational methods and formulas, see the section “Contrasts
in Fixed-Effect Multivariate Models” on page 3633.

If you specify one or more REPEATED statements, then a “Mean(Dep)” transformation is added to the power
analysis. This transformation is the mean of the dependent variables, the same transformation that is used
implicitly in the “Tests of Hypotheses for Between Subjects Effects” table in PROC GLM. In addition, the
Intercept model effect is included in the power analysis. If the REPEATED statement is not specified, then
tests that involve the Intercept are excluded from the power analysis.

You can use either the REPEATED statement or the MANOVA statement along with any of the tests for
multivariate models that are supported in the MTEST= option in the POWER statement. The REPEATED
statement is usually used for handling repeated measurements on the same experimental unit, but you can
also use the REPEATED statement for other situations, such as clusters or multiple outcome variables. The
differences between the REPEATED and MANOVA statements are as follows:

• You can use the REPEATED statement to specify commonly used contrasts by using keywords rather
than coefficients, but you are limited to only those forms of the M matrix.

• You can use the MANOVA statement to construct any M matrix, but you must specify the coefficients
explicitly (except for the default identity matrix).

There is no limit to the number of REPEATED statements that you can specify. Each power analysis includes
tests for all REPEATED statements and also (if you specify at least one REPEATED statement) the extra
“Mean(Dep)” transformation that was previously mentioned.

The simplest form of the REPEATED statement requires only a factor-name. When you have two or
more repeated factors, you must specify the factor-name and number of levels (levels) for each factor.
Optionally, you can specify the actual values for the levels (level-values) and a transformation that defines
single-degree-of-freedom contrasts. When you specify more than one within-subject factor, the factor-names
(and associated level and transformation information) must be separated by a comma in the REPEATED
statement.

The factor-specification for the REPEATED statement can include any number of individual factor specifica-
tions, separated by commas, of the following form:

factor-name levels < (level-values) > < transformation >

where
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factor-name names a factor to be associated with the dependent variables. The name should not be the
same as any variable name that already exists in the data set being analyzed and should
conform to the usual conventions of SAS variable names.

When you specify more than one factor, list the dependent variables in the MODEL
statement so that the within-subject factors that you define in the REPEATED statement
are nested; that is, the first factor you define in the REPEATED statement should be the
one whose values change least frequently.

levels gives the number of levels associated with the factor being defined. When there is only one
within-subject factor, the number of levels is equal to the number of dependent variables.
In this case, levels is optional. When more than one within-subject factor is defined,
however, levels is required, and the product of the number of levels of all the factors must
equal the number of dependent variables in the MODEL statement.

(level-values) gives values that correspond to levels of a repeated measures factor. These values are
used as spacings for constructing orthogonal polynomial contrasts if you specify a POLY-
NOMIAL transformation. The number of values that you specify must correspond to the
number of levels for that factor in the REPEATED statement. Enclose the level-values in
parentheses.

The following transformation keywords define single-degree-of-freedom contrasts for factors that you specify
in the REPEATED statement. Because the number of contrasts that are generated is always one less than
the number of levels of the factor, you have some control over which contrast is omitted from the analysis
by which transformation you select. The only exception is the IDENTITY transformation, which is not
composed of contrasts and has the same degrees of freedom as the factor has levels. By default, PROC
GLMPOWER uses the CONTRAST transformation.

CONTRAST< (ordinal-reference-level) >
generates contrasts between levels of the factor and a reference level. By default, PROC GLMPOWER
uses the last level as the reference level; you can optionally specify a reference level in parentheses
after the keyword CONTRAST. The reference level corresponds to the ordinal value of the level rather
than the level value that is specified. For example, to generate contrasts between the first level of a
factor and the other levels, specify CONTRAST(1).

HELMERT
generates contrasts between each level of the factor and the mean of subsequent levels.

IDENTITY
generates an identity transformation that corresponds to the associated factor. This transformation is
not composed of contrasts; it has n degrees of freedom for an n-level factor, instead of n – 1 degrees of
freedom.

MEAN< (ordinal-reference-level) >
generates contrasts between levels of the factor and the mean of all other levels of the factor. Specifying
a reference level eliminates the contrast between that level and the mean. When no reference level
is specified, the contrast that involves the last level is omitted. For an example, see the CONTRAST
transformation.
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POLYNOMIAL
generates orthogonal polynomial contrasts. Level values, if provided, are used as spacings in the
construction of the polynomials; otherwise, equal spacing is assumed.

PROFILE
generates contrasts between adjacent levels of the factor.

Examples

When you specify more than one factor, list the dependent variables in the MODEL statement so that the
within-subject factors that you define in the REPEATED statement are nested; that is, the first factor you
define in the REPEATED statement should be the one whose values change least frequently. For example,
assume that two raters submit a wellness rating at each of three times, for a total of six dependent variables
for each subject. Consider the following statements:

proc glm;
class treatment;
model Y1-Y6 = treatment;
repeated rater 2, time 3;

run;

The variables are listed in the MODEL statement as Y1 through Y6, so the REPEATED statement in the
preceding statements implies the following structure:

Dependent Variables
Y1 Y2 Y3 Y4 Y5 Y6

Value of rater 1 1 1 2 2 2

Value of time 1 2 3 1 2 3

WEIGHT Statement
WEIGHT variable ;

The WEIGHT statement names a variable that provides a profile weight (“cell weight”) for each observation
in the exemplary data set specified by the DATA= option in the PROC GLMPOWER statement.

If the WEIGHT statement is not used, then a balanced design is assumed with default cell weights of 1.

Details: GLMPOWER Procedure

Specifying Value Lists in the POWER Statement
To specify one or more scenarios for an analysis parameter (or set of parameters) in the POWER statement,
you provide a list of values for the option that corresponds to the parameter(s). To identify the parameter you
want to solve for, you place a missing value in the appropriate list.
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There are three basic types of such lists: number-lists, name-lists, and keyword-lists. Scenarios for scalar-
valued parameters, such as power, are represented by a number-list . Scenarios for named parameters, such
as correlation matrices, are represented by a name-list . Some parameters, such as the test statistic for a
multivariate model, have values that are represented by one or more keywords in a keyword-list .

Number-Lists

A number-list can be one of two things: a series of one or more numbers expressed in the form of one or
more DOLISTs, or a missing value indicator ( . ).

The DOLIST format is the same as in the DATA step. For example, you can specify four scenarios (30, 50,
70, and 100) for a total sample size in either of the following ways:

NTOTAL = 30 50 70 100
NTOTAL = 30 to 70 by 20 100

A missing value identifies a parameter as the result parameter; it is valid only with options representing
parameters you can solve for in a given analysis. For example, you can request a solution for NTOTAL as
follows:

NTOTAL = .

Name-Lists

A name-list is a list of one or more names that are enclosed in single or double quotation marks and separated
by spaces. For example, you can specify two scenarios for the correlation matrix in a multivariate model as
follows:

CORRMAT = "Corr A" "Corr B"

Keyword-Lists

A keyword-list is a list of one or more keywords, separated by spaces. For example, you can specify both the
multivariate Hotelling-Lawley trace and uncorrected univariate F test for a multivariate model as follows:

MTEST = HLT UNCORR

Sample Size Adjustment Options
By default, PROC GLMPOWER rounds sample sizes conservatively (down in the input, up in the output) so
that all total sizes and sample sizes for individual design profiles are integers. This is generally considered
conservative because it selects the closest realistic design providing at most the power of the (possibly
fractional) input or mathematically optimized design. In addition, all design profile sizes are adjusted to
be multiples of their corresponding weights. If a design profile is present more than once in the exemplary
data set, then the weights for that design profile are summed. For example, if a particular design profile
is present twice in the exemplary data set with weight values 2 and 6, then all sample sizes for this design
profile become multiples of 2 + 6 = 8.



3628 F Chapter 47: The GLMPOWER Procedure

With the NFRACTIONAL option, sample size input is not rounded, and sample size output is reported in two
versions, a raw “fractional” version and a “ceiling” version rounded up to the nearest integer.

Whenever an input sample size is adjusted, both the original (“nominal”) and adjusted (“actual”) sample
sizes are reported. Whenever computed output sample sizes are adjusted, both the original input (“nominal”)
power and the achieved (“actual”) power at the adjusted sample size are reported.

Error and Information Output
The Error column in the main output table explains reasons for missing results and flags numerical results
that are bounds rather than exact answers.

The Info column provides further information about Error entries, warnings about any boundary conditions
detected, and notes about any adjustments to input. Note that the Info column is hidden by default in the
main output. You can view it by using the ODS OUTPUT statement to save the output as a data set and the
PRINT procedure. For example, the following SAS statements print both the Error and Info columns for a
power computation in a one-way ANOVA:

data MyExemp;
input A $ Y1 Y2;
datalines;

1 10 11
2 12 11
3 15 11

;

proc glmpower data=MyExemp;
class A;
model Y1 Y2 = A;
power

stddev = 2
ntotal = 3 10
power = .;

ods output output=Power;
run;

proc print noobs data=Power;
var NominalNTotal NTotal Dependent Power Error Info;

run;

The output is shown in Figure 47.5.

Figure 47.5 Error and Information Columns

NominalNTotal NTotal Dependent Power Error Info

3 3 Y1 . Invalid input Error DF=0

10 9 Y1 0.557 Input N adjusted

3 3 Y2 . Invalid input Error DF=0 / No effect

10 9 Y2 0.050 Input N adjusted / No effect

The sample size of 3 specified with the NTOTAL= option causes an “Invalid input” message in the Error
column and an “Error DF=0” message in the Info column, because a sample size of 3 is so small that there
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are no degrees of freedom left for the error term. The sample size of 10 causes an “Input N adjusted” message
in the Info column, because it is rounded down to 9 to produce integer group sizes of 3 per cell. The cell
means scenario represented by the dependent variable Y2 causes a “No effect” message to appear in the Info
column, because the means in this scenario are all equal.

Displayed Output
If you use the PLOTONLY option in the PROC GLMPOWER statement, the procedure displays only
graphical output. Otherwise, the displayed output of the GLMPOWER procedure includes the following:

• the “Fixed Scenario Elements” table, which shows all applicable single-valued analysis parameters, in
the following order: the dependent variable that represents the cell means scenario (for a univariate
model) or the dependent variable transformation (for a multivariate model), the source of the test
(that is, the model effect or between-subject contrast), the weight variable, parameters that are input
explicitly, parameters that are supplied with defaults, and ancillary results

• an output table that shows the following when applicable (in order): the index of the scenario, the
dependent variable that represents the cell means scenario (for a univariate model) or the dependent
variable transformation (for a multivariate model), the type of the test, the source of the test (that
is, the model effect or between-subject contrast), all multivalued input, ancillary results, the primary
computed result, and error descriptions

• plots (if requested)

The exception to these ordering conventions is that the DEPENDENT and EFFECTS= options can be
used along with the OUTPUTORDER=SYNTAX or OUTPUTORDER=REVERSE option in the POWER
statement to specify the relative location of the output for dependent variable and type and source of test.

Ancillary results include the following:

• Actual Power, the achieved power, if it differs from the input (Nominal) power value

• Actual Alpha, the achieved significance level, if it differs from the input (Nominal) alpha value

• fractional sample size, if the NFRACTIONAL option is used in the POWER statement

• test or numerator degrees of freedom in the test’s critical value

• error or denominator degrees of freedom in the test’s critical value

• Effect, the combination of the within-subject Transformation contrast and between-subject Source test
or contrast in a multivariate model

If sample size is the result parameter and the NFRACTIONAL option is used in the POWER statement, then
both “Fractional” and “Ceiling” sample size results are displayed. Fractional sample sizes correspond to the
“Nominal” values of power. Ceiling sample sizes are simply the fractional sample sizes rounded up to the
nearest integer; they correspond to “Actual” values of power.
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The noncentrality parameter is computed and stored in a hidden column called Noncentrality in the “Output”
table. If a univariate test for a multivariate model is specified (that is, one of MTEST=BOX, MTEST=GG,
MTEST=HF, or MTEST=UNCORR), then the numerator and denominator degrees of freedom that are used
in the noncentral F approximation of the test statistic distribution are computed and stored in hidden columns
called NumNCDF and DenNCDF, respectively, in the “Output” table. These are the only tests for which
the degrees of freedom in the noncentral F approximation of the test statistic are different from those in the
critical value.

ODS Table Names
PROC GLMPOWER assigns a name to each table that it creates. You can use these names to reference
the table when using the Output Delivery System (ODS) to select tables and create output data sets. These
names are listed in Table 47.7. For more information about ODS, see Chapter 20, “Using the Output Delivery
System.”

Table 47.7 ODS Tables Produced by PROC GLMPOWER

ODS Table Name Description Statement

FixedElements Factoid with single-valued analysis parameters Default
Output All input and computed analysis parameters, error

messages, and information messages for each scenario
Default

PlotContent Data contained in plots, including analysis parameters
and indices identifying plot features. (NOTE: This
table is saved as a data set and not displayed in PROC
GLMPOWER output.)

PLOT

Computational Methods and Formulas
This section describes the approaches that PROC GLMPOWER uses to compute power and sample size.

Contrasts in Fixed-Effect Univariate Models

The univariate linear model has the form

y D Xˇ C �

where y is the N � 1 vector of responses, X is the N � k design matrix, ˇ is the k � 1 vector of model
parameters corresponding to the columns of X, and � is an N � 1 vector of errors with

�1; : : : ; �N � N.0; �2/ .iid/

In PROC GLMPOWER, the model parameters ˇ are not specified directly, but rather indirectly as y?, which
represents either conjectured response means or typical response values for each design profile. The y?

values are manifested as the dependent variable in the MODEL statement. The vector ˇ is obtained from y?

according to the least squares equation,

ˇ D .X0X/�X0y?
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Note that, in general, there is not a one-to-one mapping between y? and ˇ. Many different scenarios for y?

might lead to the same ˇ. If you specify y? with the intention of representing cell means, keep in mind that
PROC GLMPOWER allows scenarios that are not valid cell means according to the model that is specified in
the MODEL statement. For example, if y? exhibits an interaction effect but the corresponding interaction
term is left out of the model, then the cell means (Xˇ) that are derived from ˇ differ from y?. In particular,
the cell means that are derived in this way are the projection of y? onto the model space.

It is convenient in power analysis to parameterize the design matrix X in three parts, f RX;w; N g, defined as
follows:

1. The q � k essence design matrix RX is the collection of unique rows of X. Its rows are sometimes
referred to as “design profiles.” Here, q � N is defined simply as the number of unique rows of X.

2. The q � 1 weight vector w reveals the relative proportions of design profiles, and W D diag.w/. Row
i of RX is to be included in the design wi times for every wj times that row j is included. The weights
are assumed to be standardized (that is, they sum up to 1).

3. The total sample size is N. This is the number of rows in X. If you gather Nwi D ni copies of the ith
row of RX, for i D 1; : : : ; q, then you end up with X.

The preceding quantities are derived from PROC GLMPOWER syntax as follows:

• Values for RX, y?, and w are specified in the exemplary data set (from using the DATA= option in
the PROC GLMPOWER statement), and the corresponding variables are identified in the CLASS,
MODEL, and WEIGHT statements.

• N is specified in the NTOTAL= option in the POWER statement.

It is useful to express the crossproduct matrix X0X in terms of these three parts,

X0X D N RX0W RX

because this expression factors out the portion (N) that depends on sample size and the portion ( RX0W RX) that
depends only on the design structure.

A general linear hypothesis for the univariate model has the form

H0WLˇ D �0
HAWLˇ ¤ �0

where L is an l � k contrast matrix with rank rL and �0 is the null value (usually just a vector of zeros).

Note that model effect tests are just contrasts that use special forms of L. Thus, this scheme covers both effect
tests (which are specified in the MODEL statement and the EFFECTS= option in the POWER statement) and
custom contrasts (which are specified in the CONTRAST statement).

The model degrees of freedom DFM are equal to the rank of X, denoted rX . The error degrees of freedom
DFE are equal to N – rX . The sample size N must be at least DFM plus the number of covariates.

The test statistic is

F D

�
SSH
rL

�
O�2
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where

SSH D
1

N

�
L Ǒ � �0

�0 �
L
�
X0X

�� L0��1 �L Ǒ � �0�
Ǒ D .X0X/�X0y

O�2 D
1

DFE

�
y �X Ǒ

�0 �
y �X Ǒ

�
Under H0, F � F.rL;DFE/. Under HA, F is distributed as F.rL;DFE; �/ with noncentrality

� D N .Lˇ � �0/0
�
L
�
RX0W RX

��1
L0
��1

.Lˇ � �0/ ��2

The value of � is specified in the STDDEV= option in the POWER statement.

Muller and Peterson (1984) give the exact power of the test as

power D P .F.rL;DFE; �/ � F1�˛.rL;DFE//

The value of ˛ is specified in the ALPHA= option in the POWER statement.

Sample size is computed by inverting the power equation.

See Muller and Benignus (1992) and O’Brien and Shieh (1992) for additional discussion.

Adjustments for Covariates in Univariate Models

If you specify covariates in a univariate model (whether continuous or categorical), then two adjustments
are made in order to compute approximate power in the presence of the covariates. Let n� denote the
number of covariates (counting dummy variables for categorical covariates individually) as specified in the
NCOVARIATES= option in the POWER statement. In other words, n� is the total degrees of freedom used
by the covariates. The adjustments are as follows:

1. The error degrees of freedom decrease by n� .

2. The error standard deviation � shrinks by a factor of .1 � �2/
1
2 (if the CORRXY= option is used to

specify the correlation � between covariates and response) or .1�r/
1
2 (if the PROPVARREDUCTION=

option is used to specify the proportional reduction in total R2 incurred by the covariates). Let �?

represent the updated value of � .

As a result of these changes, the power is computed as

power D P
�
F.rL;DFE � n� ; �

?/ � F1�˛.rL; N � rx � n�/
�

where �? is calculated using �? rather than � :

�? D N .Lˇ � �0/0
�
L
�
RX0W RX

��1
L0
��1

.Lˇ � �0/ .�?/�2
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Contrasts in Fixed-Effect Multivariate Models

The multivariate model has the form

Y D Xˇ C �

where Y is the N � p vector of responses, for p > 1; X is the N � k design matrix; ˇ is the k � p matrix of
model parameters that correspond to the columns of X and Y; and � is an N � p vector of errors, where

�1; : : : ; �N � N.0;†/ .iid/

In PROC GLMPOWER, the model parameters ˇ are not specified directly, but rather indirectly as Y?, which
represents either conjectured response means or typical response values for each design profile. The Y?

values are manifested as the collection of dependent variables in the MODEL statement. The matrix ˇ is
obtained from Y? according to the least squares equation,

ˇ D .X0X/�X0Y?

Note that, in general, there is not a one-to-one mapping between Y? and ˇ. Many different scenarios for Y?

might lead to the same ˇ. If you specify Y? with the intention of representing cell means, keep in mind that
PROC GLMPOWER allows scenarios that are not valid cell means according to the model that is specified in
the MODEL statement. For example, if Y? exhibits an interaction effect but the corresponding interaction
term is left out of the model, then the cell means (Xˇ) that are derived from ˇ differ from Y?. In particular,
the cell means that are derived in this way are the projection of Y? onto the model space.

It is convenient in power analysis to parameterize the design matrix X in three parts, f RX;W; N g, defined as
follows:

1. The q � k essence design matrix RX is the collection of unique rows of X. Its rows are sometimes
referred to as “design profiles.” Here, q � N is defined simply as the number of unique rows of X.

2. The q � 1 weight vector w reveals the relative proportions of design profiles, and W D diag.w/. Row
i of RX is to be included in the design wi times for every wj times that row j is included. The weights
are assumed to be standardized (that is, they sum up to 1).

3. The total sample size is N. This is the number of rows in X. If you gather Nwi D ni copies of the ith
row of RX, for i = 1; : : : ; q, then you end up with X.

The preceding quantities are derived from PROC GLMPOWER syntax as follows:

• Values for RX, Y?, and w are specified in the exemplary data set (from using the DATA= option in
the PROC GLMPOWER statement), and the corresponding variables are identified in the CLASS,
MODEL, and WEIGHT statements.

• N is specified in the NTOTAL= option in the POWER statement.

It is useful to express the crossproduct matrix X0X in terms of these three parts,

X0X D N RX0W RX

because this expression factors out the portion (N) that depends on sample size and the portion ( RX0W RX) that
depends only on the design structure.
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A general linear hypothesis for the univariate model has the form

H0WLˇM D �0
HAWLˇM ¤ �0

where L is an l � k between-subject contrast matrix with rank rL, M is a p � m within-subject contrast matrix
with rank rM , and �0 is an l � m null contrast matrix (usually just a matrix of zeros).

Note that model effect tests are just between-subject contrasts that use special forms of L, combined with
an M that is the p � 1 mean transformation vector of the dependent variables (a vector of values all equal
to 1=p). Thus, this scheme covers both effect tests (which are specified in the MODEL statement and the
EFFECTS= option in the POWER statement) and custom between-subject contrasts (which are specified in
the CONTRAST statement).

The M matrix is often referred to as the dependent variable transformation and is specified in the MANOVA
or REPEATED statement.

The model degrees of freedom DFM are equal to the rank of X, denoted rX . The error degrees of freedom
DFE are equal to N – rX .

The hypothesis sum of squares SSH in the univariate model generalizes to the hypothesis SSCP matrix in the
multivariate model,

H D
�
L ǑM � �0

�0 �
L
�
X0X

��1 L0��1 �L ǑM � �0�
The error sum of squares O�2.N � rX / in the univariate model generalizes to the error SSCP matrix in the
multivariate model,

E D .N � rX /M0 O†M

where

O† D
�
Y �X Ǒ

�0 �
Y �X Ǒ

�
=.N � rX /

and

Ǒ D .X0X/�X0Y

The population counterpart of H=N is

H? D .LˇM � �0/0
�
L
�
RX0W RX

��
L0
��1

.LˇM � �0/

and the population counterpart of E=N is

E? DM0†M

The elements of † are specified in the MATRIX= and STDDEV= options and identified in the CORRMAT=,
CORRS=, COVMAT=, and SQRTVAR= options in the POWER statement.

The power and sample size computations for all the tests that are supported in the MTEST= option in the
POWER statement are based on H? and E?. The following two subsections cover the computational methods
and formulas for the multivariate and univariate tests that are supported in the MTEST= and UEPSDEF=
options in the POWER statement.
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Multivariate Tests
Power computations for multivariate tests are based on O’Brien and Shieh (1992) (for
METHOD=OBRIENSHIEH) and Muller and Peterson (1984) (for METHOD=MULLERPETERSON).

Let s = min.rL; rM /, the smaller of the between-subject and within-subject contrast degrees of freedom.
Critical value computations assume that under H0, the test statistic F is distributed as F.rLrM ; �2/, where
�2 D .N � rX /� rM C 1 if s = 1 but depends on the choice of test if s > 1. Power computations assume that
under HA, F is distributed as F.rLrM ; �2; �/, where the noncentrality � depends on rL, rM , the choice of
test, and the power computation method.

Formulas for the test statistic F, denominator degrees of freedom �2, and noncentrality � for all combinations
of dimensions, tests, and methods are given in the following subsections.

The power in each case is computed as

power D P .F.rLrM ; �2; �/ � F1�˛.rLrM ; �2//

Computed power is exact for some cases and approximate for others. Sample size is computed by inverting
the power equation.

Let � D E�1H, and define � as the s � 1 vector of ordered positive eigenvalues of �, � D f�1; : : : ; �sg,
where �1 � � � � � �s > 0. The population equivalent is

�? D E?�1H?

D
�
M0†M

��1
.LˇM � �0/0

�
L
�
RX0W RX

��1
L0
��1

.LˇM � �0/

where �? is the s � 1 vector of ordered positive eigenvalues of �?, �? D f�?1 ; : : : ; �
?
s g for �?1 � � � � �

�?s > 0.

Case 1: s = 1

When s = 1, all three multivariate tests (MTEST=HLT, MTEST=PT, and MTEST=WILKS) are equivalent.
The test statistic is F = �1�2=.rLrM /, where �2 D .N � rX / � rM C 1.

When the dependent variable transformation has a single degree of freedom (rM D 1),
METHOD=OBRIENSHIEH and METHOD=MULLERPETERSON are the same, computing exact
power by using noncentrality � D N�?. The sample size must satisfy N � rX C 1.

When the dependent variable transformation has more than one degree of freedom but the between-subject
contrast has a single degree of freedom (rM > 1; rL D 1), METHOD=OBRIENSHIEH computes exact
power by using noncentrality � D N�?1 , and METHOD=MULLERPETERSON computes approximate
power by using

� D
.N � rX / � rM C 1

.N � rX /
N�?1

The sample size must satisfy N � rX C rM .

Case 2: s > 1

When both the dependent variable transformation and the between-subject contrast have more than one
degree of freedom (s > 1), METHOD=OBRIENSHIEH computes the noncentrality as � D N�?, where �?

is the primary noncentrality. The form of �? depends on the choice of test statistic.
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METHOD=MULLERPETERSON computes the noncentrality as � D �2�
.MP/?, where �.MP/? has the

same form as �? except that �? is replaced by

�.MP/?
D

N

.N � rX /
�?

Computed power is approximate for both methods when s > 1.

Hotelling-Lawley Trace (MTEST=HLT) When s > 1

If N > rX C rM C 1, then the denominator degrees of freedom for the Hotelling-Lawley trace are �2 D �2a,

�2a D 4C .rLrM C 2/g

where

g D
.N � rX /

2 � .N � rX /.2rM C 3/C rM .rM C 3/

.N � rX /.rL C rM C 1/ � .rL C 2rM C r
2
M � 1/

which is the same as �.T2/2 in O’Brien and Shieh (1992) and is due to McKeon (1974).

If N � rX C rM C 1, then �2 D �2b ,

�2b D s..N � rX / � rM � 1/C 2

which is the same as both �.T1/2 in O’Brien and Shieh (1992) and �2 in Muller and Peterson (1984) and is
due to Pillai and Samson (1959).

The primary noncentrality is

�? D

sX
iD1

�?i

The sample size must satisfy

N � rX C rM C 1 � 1=s

If N > rX C rM C 1, then the test statistic is

F D
U=�1

c=�2a

where

U D trace.E�1H/

D

sX
iD1

�i

and

c D
2C .rLrM C 2/g

N � rX � rM � 1
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If N � rX C rM C 1, then the test statistic is

F D
U=�1

s=�2b

Pillai’s Trace (MTEST=PT) When s > 1

The denominator degrees of freedom for Pillai’s trace are

�2 D s..N � rX /C s � rM /

The primary noncentrality is

�? D s

0B@
Ps
iD1

�?
i

1C�?
i

s �
Ps
iD1

�?
i

1C�?
i

1CA
The sample size must satisfy

N � rX C rM C 1=s � s

The test statistic is

F D
V=�1

.s � V /=�2

where

V D trace
�
H.HC E/�1

�
D

sX
iD1

�i

1C �i

Wilks’ Lambda (MTEST=WILKS) When s > 1

The denominator degrees of freedom for Wilks’ lambda are

�2 D t Œ.N � rX / � 0:5.rM � rL C 1/� � 0:5.rLrM � 2/

where

t D

8̂<̂
:
1 if rLrM � 3�
.rLrM /

2�4

r2LCr
2
M�5

� 1
2

if rLrM � 4

The primary noncentrality is

�? D t

24 sY
iD1

�
.1C �?i /

�1
�!� 1t

� 1

35
The sample size must satisfy

N � .1C 0:5.rLrM � 2//=t C rX C .rM � rL C 1/=2
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The test statistic is

F D
.1 �ƒ1=t /=�1

ƒ1=t=�2

where

ƒ D det.E/=det.HC E/

D

sY
iD1

�
.1C �i /

�1
�

Univariate Tests
Power computations for univariate tests are based on Muller et al. (2007) and Muller and Barton (1989).

The test statistic is

F D
trace.H/=rL

trace.E/=.N � rX /

Critical value computations assume that under H0, F is distributed as F.�1; �2/, where �1 and �2 depend on
the choice of test.

The four tests for the univariate approach to repeated measures differ in their assumptions about the sphericity
" of E?,

" D
trace2.E?/
rM trace.E?2/

Power computations assume that under HA, F is distributed as F.�?1 ; �
?
2 ; �/.

Formulas for �1 and �2 for each test and formulas for �?1 , �?2 , and � are given in the following subsections.

The power in each case is approximated as

power D P
�
F.�?1 ; �

?
2 ; �/ � F1�˛.�1; �2/

�
Sample size is computed by inverting the power equation.

The sample size must be large enough to yield �1 > 0, �?1 > 0, �2 � 1, and �?2 � 1.

Because these univariate tests are biased, the achieved significance level might differ from the nominal
significance level. The actual alpha is computed in the same way as the power, except that the noncentrality
parameter � is set to 0.

Define �.E/ as the vector of ordered eigenvalues of E?, �.E/ D f�.E/1 ; : : : ; �
.E/
rM g, where �.E/1 � � � � � �

.E/
rM ,

and define .E/j as the jth eigenvector of E?. Critical values and power computations are based on the
following intermediate parameters:

!�j D N
�

.E/
j

�0
H?.E/j =�

.E/
j
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St1 D

rMX
jD1

�
.E/
j

St2 D

rMX
jD1

�
.E/
j !�j

St3 D

rMX
jD1

�
�
.E/
j

�2
St4 D

rMX
jD1

�
�
.E/
j

�2
!�j

R�1 D
rLSt3 C 2St4

rLSt1 C 2St2

R�2 D
St3

St1

E.t1/ D 2.N � rX /St3 C .N � rX /2S2t1

E.t2/ D .N � rX /..N � rX /C 2/St3 C 2.N � rX /
rMX
j1D2

j1�1X
j2D1

�
.E/
j1
�
.E/
j2

The degrees of freedom and noncentrality in the noncentral F approximation of the test statistic are computed
as follows:

�?1 D
rLSt1

R�1

�?2 D
.N � rX /St1

R�2

� D
St2

R�1

Uncorrected Test

The uncorrected test assumes sphericity " D 1, in which case the null F distribution is exact, with the
following degrees of freedom:

�1 D rLrM

�2 D rM .N � rX /

Greenhouse-Geisser Adjustment (MTEST=UNCORR)

The Greenhouse-Geisser adjustment to the uncorrected test reduces degrees of freedom by the MLE O" of the
sphericity,

O" D
trace2.E/
rM trace.E2/
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An approximation for the expected value of O" is used to compute the degrees of freedom for the null F
distribution,

�1 D rLrME.O"/
�2 D rM .N � rX /E.O"/

where

E.O"/ D
E.t1/
rME.t2/

Huynh-Feldt Adjustments (MTEST=HF)

The Huynh-Feldt adjustment reduces degrees of freedom by a nearly unbiased estimate Q" of the sphericity,

Q" D

8̂̂<̂
:̂

NrM O"�2
rM Œ.N�rX /�rM O"�

if UEPSDEF=HF
.N�rXC1/rM O"�2
rM Œ.N�rX /�rM O"�

if UEPSDEF=HFL�
.�a�2/.�a�4/

�2a

� �
.N�rXC1/rM O"�2
rM Œ.N�rX /�rM O"�

�
if UEPSDEF=CM

where

�a D .N � rX � 1/C .N � rX /.N � rX � 1/=2

The value of Q" is truncated if necessary to be at least 1=rM and at most 1.

An approximation for the expected value of Q" is used to compute the degrees of freedom for the null F
distribution,

�1 D rLrMEt.Q"/

�2 D rM .N � rX /Et.Q"/

where

Et.Q"/ D min.max.E.Q"/; 1=rM /; 1/

and

E.Q"/ D

8̂̂<̂
:̂

NE.t1/�2E.t2/
rM Œ.N�rX /E.t2/�E.t1/�

if UEPSDEF=HF
.N�rXC1/E.t1/�2E.t2/
rM Œ.N�rX /E.t2/�E.t1/�

if UEPSDEF=HFL�
.�a�2/.�a�4/

�2a

� �
.N�rXC1/E.t1/�2E.t2/
rM Œ.N�rX /E.t2/�E.t1/�

�
if UEPSDEF=CM

Box Conservative Test (MTEST=BOX)

The Box conservative test assumes the worst case for sphericity, " D 1=rM , leading to the following degrees
of freedom for the null F distribution:

�1 D rL

�2 D .N � rX /
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ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

If ODS Graphics is not enabled, then PROC GLMPOWER creates traditional graphics.

You can reference every graph produced through ODS Graphics with a name. The names of the graphs that
PROC GLMPOWER generates are listed in Table 47.8, along with the required statements and options.

Table 47.8 Graphs Produced by PROC GLMPOWER

ODS Graph Name Plot Description Option

PowerPlot Plot with power and sample
size on the axes

PLOT

PowerAbort Empty plot that shows an error
message when a plot could not
be produced

PLOT

Examples: GLMPOWER Procedure

Example 47.1: One-Way ANOVA
This example deals with the same situation as in Example 77.1 in Chapter 77, “The POWER Procedure.”

Hocking (1985, p. 109) describes a study of the effectiveness of electrolytes in reducing lactic acid buildup
for long-distance runners. You are planning a similar study in which you will allocate five different fluids to
runners on a 10-mile course and measure lactic acid buildup immediately after the race. The fluids consist of
water and two commercial electrolyte drinks, EZDure and LactoZap, each prepared at two concentrations,
low (EZD1 and LZ1) and high (EZD2 and LZ2).

You conjecture that the standard deviation of lactic acid measurements given any particular fluid is about
3.75, and that the expected lactic acid values will correspond roughly to Table 47.9. You are least familiar
with the LZ1 drink and hence decide to consider a range of reasonable values for that mean.
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Table 47.9 Mean Lactic Acid Buildup by Fluid

Water EZD1 EZD2 LZ1 LZ2

35.6 33.7 30.2 29 or 28 25.9

You are interested in four different comparisons, shown in Table 47.10 with appropriate contrast coefficients.

Table 47.10 Planned Comparisons

Contrast Coefficients
Comparison Water EZD1 EZD2 LZ1 LZ2
Water versus electrolytes 4 -1 -1 -1 -1
EZD versus LZ 0 1 1 -1 -1
EZD1 versus EZD2 0 1 -1 0 0
LZ1 versus LZ2 0 0 0 1 -1

For each of these contrasts you want to determine the sample size required to achieve a power of 0.9 for
detecting an effect with magnitude in accord with Table 47.9. You are not yet attempting to choose a single
sample size for the study, but rather checking the range of sample sizes needed for individual contrasts. You
plan to test each contrast at ˛ = 0.025. In the interests of reducing costs, you will provide twice as many
runners with water as with any of the electrolytes; that is, you will use a sample size weighting scheme of
2:1:1:1:1.

Before calling PROC GLMPOWER, you need to create the exemplary data set to specify means and weights
for the design profiles:

data Fluids;
input Fluid $ LacticAcid1 LacticAcid2 CellWgt;
datalines;

Water 35.6 35.6 2
EZD1 33.7 33.7 1
EZD2 30.2 30.2 1
LZ1 29 28 1
LZ2 25.9 25.9 1

;

The variable LacticAcid1 represents the cell means scenario with the larger LZ1 mean (29), and LacticAcid2
represents the scenario with the smaller LZ1 mean (28). The variable CellWgt contains the sample size
allocation weights.

Use the DATA= option in the PROC GLMPOWER statement to specify Fluids as the exemplary data set. The
following statements perform the sample size analysis:

proc glmpower data=Fluids;
class Fluid;
model LacticAcid1 LacticAcid2 = Fluid;
weight CellWgt;
contrast "Water vs. others" Fluid -1 -1 -1 -1 4;
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contrast "EZD vs. LZ" Fluid 1 1 -1 -1 0;
contrast "EZD1 vs. EZD2" Fluid 1 -1 0 0 0;
contrast "LZ1 vs. LZ2" Fluid 0 0 1 -1 0;
power

stddev = 3.75
alpha = 0.025
ntotal = .
power = 0.9;

run;

The CLASS statement identifies Fluid as a classification variable. The MODEL statement specifies the model
and the two cell means scenarios LacticAcid1 and LacticAcid2. The WEIGHT statement identifies CellWgt
as the weight variable. The CONTRAST statement specifies the contrasts. Since PROC GLMPOWER by
default processes class levels in order of formatted values, the contrast coefficients correspond to the following
order: EZD1, EZD2, LZ1, LZ2, Water. (NOTE: You could use the ORDER=DATA option in the PROC
GLMPOWER statement to achieve the same ordering as in Table 47.10 instead.) The POWER statement
specifies total sample size as the result parameter and provides values for the other analysis parameters (error
standard deviation, alpha, and power).

Output 47.1.1 displays the results.

Output 47.1.1 Sample Sizes for One-Way ANOVA Contrasts

The GLMPOWER ProcedureThe GLMPOWER Procedure

Fixed Scenario Elements

Weight Variable CellWgt

Alpha 0.025

Error Standard Deviation 3.75

Nominal Power 0.9

Computed N Total

Index Dependent Type Source
Test

DF
Error

DF
Actual
Power

N
Total

1 LacticAcid1 Effect Fluid 4 25 0.958 30

2 LacticAcid1 Contrast Water vs. others 1 25 0.947 30

3 LacticAcid1 Contrast EZD vs. LZ 1 55 0.929 60

4 LacticAcid1 Contrast EZD1 vs. EZD2 1 169 0.901 174

5 LacticAcid1 Contrast LZ1 vs. LZ2 1 217 0.902 222

6 LacticAcid2 Effect Fluid 4 25 0.972 30

7 LacticAcid2 Contrast Water vs. others 1 19 0.901 24

8 LacticAcid2 Contrast EZD vs. LZ 1 43 0.922 48

9 LacticAcid2 Contrast EZD1 vs. EZD2 1 169 0.901 174

10 LacticAcid2 Contrast LZ1 vs. LZ2 1 475 0.902 480

The sample sizes range from 24 for the comparison of water versus electrolytes to 480 for the comparison
of LZ1 versus LZ2, both assuming the smaller LZ1 mean. The sample size for the latter comparison is
relatively large because the small mean difference of 28 - 25.9 = 2.1 is hard to detect. PROC GLMPOWER
also includes the effect test for Fluid. Note that, in this case, it is equivalent to TEST=OVERALL_F in the
ONEWAYANOVA statement of PROC POWER, since there is only one effect in the model.
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The Nominal Power of 0.9 in the “Fixed Scenario Elements” table in Output 47.1.1 represents the input
target power, and the Actual Power column in the “Computed N Total” table is the power at the sample size
(N Total) adjusted to achieve the specified sample weighting. Note that all of the sample sizes are rounded
up to multiples of 6 to preserve integer group sizes (since the group weights add up to 6). You can use the
NFRACTIONAL option in the POWER statement to compute raw fractional sample sizes.

Suppose you want to plot the required sample size for the range of power values from 0.5 to 0.95. First,
define the analysis by specifying the same statements as before, but add the PLOTONLY option to the
PROC GLMPOWER statement to disable the nongraphical results. Next, specify the PLOT statement with
X=POWER to request a plot with power on the X axis. (The result parameter—here sample size—is always
plotted on the other axis.) Use the MIN= and MAX= options in the PLOT statement to specify the power
range. The following statements produce the plot:

ods graphics on;

proc glmpower data=Fluids plotonly;
class Fluid;
model LacticAcid1 LacticAcid2 = Fluid;
weight CellWgt;
contrast "Water vs. others" Fluid -1 -1 -1 -1 4;
contrast "EZD vs. LZ" Fluid 1 1 -1 -1 0;
contrast "EZD1 vs. EZD2" Fluid 1 -1 0 0 0;
contrast "LZ1 vs. LZ2" Fluid 0 0 1 -1 0;
power

stddev = 3.75
alpha = 0.025
ntotal = .
power = 0.9;

plot x=power min=.5 max=.95;
run;
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Output 47.1.2 Plot of Sample Size versus Power for One-Way ANOVA Contrasts

In Output 47.1.2, the line style identifies the cell means scenario, and the plotting symbol identifies the test.
The plotting symbol locations identify actual computed powers; the curves are linear interpolations of these
points. The plot shows that the required sample size is highest for the test of LZ1 versus LZ2, which was
previously found to require the most resources.

Note that some of the plotted points in Output 47.1.2 are unevenly spaced. This is because the plotted points
are the rounded sample size results at their corresponding actual power levels. The range specified with
the MIN= and MAX= values in the PLOT statement corresponds to nominal power levels. In some cases,
actual power is substantially higher than nominal power. To obtain plots with evenly spaced points (but with
fractional sample sizes at the computed points), you can use the NFRACTIONAL option in the POWER
statement preceding the PLOT statement.
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Finally, suppose you want to plot the power for the range of sample sizes you will likely consider for the study
(the range of 24 to 480 that achieves 0.9 power for different comparisons). In the POWER statement, identify
power as the result (POWER=.), and specify any total sample size value (say, NTOTAL=100). Specify the
PLOT statement with X=N to request a plot with sample size on the X axis.

The following statements produce the plot:

proc glmpower data=Fluids plotonly;
class Fluid;
model LacticAcid1 LacticAcid2 = Fluid;
weight CellWgt;
contrast "Water vs. others" Fluid -1 -1 -1 -1 4;
contrast "EZD vs. LZ" Fluid 1 1 -1 -1 0;
contrast "EZD1 vs. EZD2" Fluid 1 -1 0 0 0;
contrast "LZ1 vs. LZ2" Fluid 0 0 1 -1 0;
power

stddev = 3.75
alpha = 0.025
ntotal = 24
power = .;

plot x=n min=24 max=480;
run;

ods graphics off;

Note that the value 100 specified with the NTOTAL=100 option is not used. It is overridden in the plot by the
MIN= and MAX= options in the PLOT statement, and the PLOTONLY option in the PROC GLMPOWER
statement disables nongraphical results. But the NTOTAL= option (along with a value) is still needed in the
POWER statement as a placeholder, to identify the desired parameterization for sample size.

See Output 47.1.3 for the plot.
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Output 47.1.3 Plot of Power versus Sample Size for One-Way ANOVA Contrasts

Although Output 47.1.2 and Output 47.1.3 surface essentially the same computations for practical power
ranges, they each provide a different quick visual assessment. Output 47.1.2 reveals the range of required
sample sizes for powers of interest, and Output 47.1.3 reveals the range of achieved powers for sample sizes
of interest.

Example 47.2: Two-Way ANOVA with Covariate
Suppose you can enhance the planned study discussed in Example 47.1 in two ways:

• incorporate results from races at two different altitudes (“high” and “low”)

• measure the body mass index of each runner before the race

This is equivalent to adding a second fixed effect and a continuous covariate to your model.

Since lactic acid buildup is more pronounced at higher altitudes, you will include altitude as a factor in the
model along with fluid, extending the one-way ANOVA to a two-way ANOVA. In doing so, you expect to
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lower the residual standard deviation from about 3.75 to 3.5 (in addition to generalizing the study results).
You assume there is negligible interaction between fluid and altitude and plan to use a main-effects-only
model. You conjecture that the mean lactic acid buildup follows Table 47.11.

Table 47.11 Mean Lactic Acid Buildup by Fluid and Altitude

Fluid
Altitude Water EZD1 EZD2 LZ1 LZ2
High 36.9 35.0 31.5 30 27.1
Low 34.3 32.4 28.9 27 24.7

By including a measurement of body mass index as a covariate in the study, you hope to further reduce the
error variability. The extent of this reduction in variability is commonly expressed in two alternative ways:
(1) the correlation between the covariates and the response or (2) the proportional reduction in total R square
incurred by the covariates. You prefer the former and guess that the correlation between body mass index
and lactic acid buildup is between 0.2 and 0.3. You specify these estimates with the NCOVARIATES= and
CORRXY= options in the POWER statement. The covariate is not included in the MODEL statement.

You are interested in the same four fluid comparisons as in Example 47.1, shown in Table 47.10, except this
time you want to marginalize over the effect of altitude.

For each of these contrasts, you want to determine the sample size required to achieve a power of 0.9 to
detect an effect with magnitude according to Table 47.11. You are not yet attempting to choose a single
sample size for the study, but rather checking the range of sample sizes needed by individual contrasts. You
plan to test each contrast at ˛ = 0.025. You will provide twice as many runners with water as with any of the
electrolytes, and you predict that you can study approximately two-thirds as many runners at high altitude
than at low altitude. The resulting planned sample size weighting scheme is shown in Table 47.12. Since the
scheme is only approximate, you use the NFRACTIONAL option in the POWER statement to disable the
rounding of sample sizes up to integers satisfying the weights exactly.

Table 47.12 Approximate Sample Size Allocation Weights

Fluid
Altitude Water EZD1 EZD2 LZ1 LZ2
High 4 2 2 2 2
Low 6 3 3 3 3

First, you create the exemplary data set to specify means and weights for the design profiles:

data Fluids2;
input Altitude $ Fluid $ LacticAcid CellWgt;
datalines;

High Water 36.9 4
High EZD1 35.0 2
High EZD2 31.5 2
High LZ1 30 2
High LZ2 27.1 2
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Low Water 34.3 6
Low EZD1 32.4 3
Low EZD2 28.9 3
Low LZ1 27 3
Low LZ2 24.7 3

;

The variables Altitude, Fluid, and LacticAcid specify the factors and cell means in Table 47.11. The variable
CellWgt contains the sample size allocation weights in Table 47.12.

Use the DATA= option in the PROC GLMPOWER statement to specify Fluids2 as the exemplary data set.
The following statements perform the sample size analysis:

proc glmpower data=Fluids2;
class Altitude Fluid;
model LacticAcid = Altitude Fluid;
weight CellWgt;
contrast "Water vs. others" Fluid -1 -1 -1 -1 4;
contrast "EZD vs. LZ" Fluid 1 1 -1 -1 0;
contrast "EZD1 vs. EZD2" Fluid 1 -1 0 0 0;
contrast "LZ1 vs. LZ2" Fluid 0 0 1 -1 0;
power

nfractional
stddev = 3.5
ncovariates = 1
corrxy = 0.2 0.3 0
alpha = 0.025
ntotal = .
power = 0.9;

run;

The CLASS statement identifies Altitude and Fluid as classification variables. The MODEL statement specifies
the model, and the WEIGHT statement identifies CellWgt as the weight variable. The CONTRAST statement
specifies the contrasts in Table 47.10. As in Example 47.1, the order of the contrast coefficients corresponds
to the formatted class levels (EZD1, EZD2, LZ1, LZ2, Water). The POWER statement specifies total sample
size as the result parameter and provides values for the other analysis parameters. The NCOVARIATES=
option specifies the single covariate (body mass index), and the CORRXY= option specifies the two scenarios
for its correlation with lactic acid buildup (0.2 and 0.3). Output 47.2.1 displays the results.

Output 47.2.1 Sample Sizes for Two-Way ANOVA Contrasts

The GLMPOWER ProcedureThe GLMPOWER Procedure

Fixed Scenario Elements

Dependent Variable LacticAcid

Weight Variable CellWgt

Alpha 0.025

Number of Covariates 1

Std Dev Without Covariate Adjustment 3.5

Nominal Power 0.9
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Output 47.2.1 continued

Computed Ceiling N Total

Index Type Source
Corr

XY

Adj
Std
Dev

Test
DF

Error
DF

Fractional
N Total

Actual
Power

Ceiling
N

Total

1 Effect Altitude 0.2 3.43 1 84 90.418451 0.902 91

2 Effect Altitude 0.3 3.34 1 79 85.862649 0.901 86

3 Effect Altitude 0.0 3.50 1 88 94.063984 0.903 95

4 Effect Fluid 0.2 3.43 4 16 22.446173 0.912 23

5 Effect Fluid 0.3 3.34 4 15 21.687544 0.908 22

6 Effect Fluid 0.0 3.50 4 17 23.055716 0.919 24

7 Contrast Water vs. others 0.2 3.43 1 15 21.720195 0.905 22

8 Contrast Water vs. others 0.3 3.34 1 14 20.848805 0.903 21

9 Contrast Water vs. others 0.0 3.50 1 16 22.422381 0.910 23

10 Contrast EZD vs. LZ 0.2 3.43 1 35 41.657424 0.903 42

11 Contrast EZD vs. LZ 0.3 3.34 1 33 39.674037 0.903 40

12 Contrast EZD vs. LZ 0.0 3.50 1 37 43.246415 0.906 44

13 Contrast EZD1 vs. EZD2 0.2 3.43 1 139 145.613657 0.901 146

14 Contrast EZD1 vs. EZD2 0.3 3.34 1 132 138.173983 0.902 139

15 Contrast EZD1 vs. EZD2 0.0 3.50 1 145 151.565917 0.901 152

16 Contrast LZ1 vs. LZ2 0.2 3.43 1 268 274.055008 0.901 275

17 Contrast LZ1 vs. LZ2 0.3 3.34 1 253 259.919126 0.900 260

18 Contrast LZ1 vs. LZ2 0.0 3.50 1 279 285.363976 0.901 286

The sample sizes in Output 47.2.1 range from 21 for the comparison of water versus electrolytes (assuming
a correlation of 0.3 between body mass and lactic acid buildup) to 275 for the comparison of LZ1 versus
LZ2 (assuming a correlation of 0.2). PROC GLMPOWER also includes the effect tests for Altitude and Fluid.
Note that the required sample sizes for this study are lower than those for the study in Example 47.1.

Note that the error standard deviation has been reduced from 3.5 to 3.43 (when correlation is 0.2) or 3.34
(when correlation is 0.3) in the approximation of the effect of the body mass index covariate. The error
degrees of freedom has also been automatically adjusted, lowered by 1 (the number of covariates).

Suppose you want to plot the required sample size for the range of power values from 0.5 to 0.95. First,
define the analysis by specifying the same statements as before, but add the PLOTONLY option to the
PROC GLMPOWER statement to disable the nongraphical results. Next, specify the PLOT statement with
X=POWER to request a plot with power on the X axis. Sample size is automatically placed on the Y axis. Use
the MIN= and MAX= options in the PLOT statement to specify the power range. The following statements
produce the plot:

ods graphics on;

proc glmpower data=Fluids2 plotonly;
class Altitude Fluid;
model LacticAcid = Altitude Fluid;
weight CellWgt;
contrast "Water vs. others" Fluid -1 -1 -1 -1 4;
contrast "EZD vs. LZ" Fluid 1 1 -1 -1 0;
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contrast "EZD1 vs. EZD2" Fluid 1 -1 0 0 0;
contrast "LZ1 vs. LZ2" Fluid 0 0 1 -1 0;
power

nfractional
stddev = 3.5
ncovariates = 1
corrxy = 0.2 0.3 0
alpha = 0.025
ntotal = .
power = 0.9;

plot x=power min=.5 max=.95;
run;

See Output 47.2.2 for the resulting plot.

Output 47.2.2 Plot of Sample Size versus Power for Two-Way ANOVA Contrasts

In Output 47.1.2, the line style identifies the test, and the plotting symbol identifies the scenario for the
correlation between covariate and response. The plotting symbol locations identify actual computed powers;
the curves are linear interpolations of these points. As in Example 47.1, the required sample size is highest
for the test of LZ1 versus LZ2.
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Finally, suppose you want to plot the power for the range of sample sizes you will likely consider for the
study (the range of 21 to 275 that achieves 0.9 power for different comparisons). In the POWER statement,
identify power as the result (POWER=.), and specify NTOTAL=21. Specify the PLOT statement with X=N
to request a plot with sample size on the X axis.

The following statements produce the plot:

proc glmpower data=Fluids2 plotonly;
class Altitude Fluid;
model LacticAcid = Altitude Fluid;
weight CellWgt;
contrast "Water vs. others" Fluid -1 -1 -1 -1 4;
contrast "EZD vs. LZ" Fluid 1 1 -1 -1 0;
contrast "EZD1 vs. EZD2" Fluid 1 -1 0 0 0;
contrast "LZ1 vs. LZ2" Fluid 0 0 1 -1 0;
power

nfractional
stddev = 3.5
ncovariates = 1
corrxy = 0.2 0.3 0
alpha = 0.025
ntotal = 21
power = .;

plot x=n min=21 max=275;
run;

ods graphics off;

The MAX=275 option in the PLOT statement sets the maximum sample size value. The MIN= option
automatically defaults to the value of 21 from the NTOTAL= option in the POWER statement.

See Output 47.2.3 for the plot.
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Output 47.2.3 Plot of Power versus Sample Size for Two-Way ANOVA Contrasts

Although Output 47.2.2 and Output 47.2.3 surface essentially the same computations for practical power
ranges, they each provide a different quick visual assessment. Output 47.2.2 reveals the range of required
sample sizes for powers of interest, and Output 47.2.3 reveals the range of powers achieved for sample sizes
of interest.

Example 47.3: Repeated Measures ANOVA
Logan, Baron, and Kohout (1995) and Guo et al. (2013) study the effect of a dental intervention on the
memory of pain after root canal therapy. The intervention is a sensory focus strategy, in which patients are
instructed to pay attention only to the physical sensations in their mouth during the root canal procedure.

Suppose you are interested in the long-term effects of this sensory focus intervention, because avoidance
behavior has been shown to build along with memory of pain. You are planning a study to compare
sensory focus to standard of care over a period of a year, asking patients to self-report their memory of pain
immediately after the procedure and then again at 1 week, 6 months, and 12 months. You use a scale from 0
(no pain remembered) to 5 (maximum pain remembered).
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The between-subject factor in your model is treatment, with two levels (sensory focus versus standard of
care), and you allocate each treatment equally for a balanced design. The within-subject factor is time, with
four levels (0, 1, 26, and 52 weeks).

You want to determine the number of patients who are needed in order to achieve a power of 0.9 at significance
level ˛ = 0.01 for the test of the interaction between time and treatment, where the contrast over time contains
all pairwise comparisons. You also want to generate a plot of power versus sample size that covers the power
range of 0.05 to 0.99.

The default Hotelling-Lawley F test is appropriate for this study, especially because it is the same as the Wald
test in PROC MIXED with the DDFM=KR Kenward-Roger degrees-of-freedom method and an unstructured
covariance model.

You conjecture that the mean memory of pain for each treatment follows the information in Table 47.13.

Table 47.13 Mean Memory of Pain by Treatment

Time Since Root Canal Therapy
Treatment Later on Same Day 1 Week 6 Months 12 Months

Sensory Focus 2.40 2.38 2.05 1.90
Standard of Care 2.40 2.39 2.36 2.30

The following statements create a data set named Pain that is to contain these means over treatment and time:

data Pain;
input Treatment $ PainMem0 PainMem1Wk PainMem6Mo PainMem12Mo;
datalines;

SensoryFocus 2.40 2.38 2.05 1.90
StandardOfCare 2.40 2.39 2.36 2.30

;

The variable Treatment specifies the two treatments. The four variables PainMem0, PainMem1Wk, Pain-
Mem6Mo, and PainMem12Mo specify the mean memory of pain scores in Table 47.13.

To characterize the variability, you must specify a set of parameters that defines the entire covariance matrix
of the residuals. You conjecture that the error standard deviation is the same at all four time points, with a
value somewhere between 0.92 and 1.04, and you account for your uncertainty by including both the lower
and upper ends of this range in the sample size analysis. You believe that the correlation has a linear exponent
autoregressive (LEAR) structure, with a correlation of about 0.6 between measurements one week apart and a
decay rate of about 0.8 over one-week intervals. The correlation matrix that contains these LEAR parameters,
rounded to three decimal places, is shown in Table 47.14.

Table 47.14 Conjectured Correlation Matrix

0 1 26 52
0 1 0.6 0.491 0.399
1 0.6 1 0.495 0.402
26 0.491 0.495 1 0.491
52 0.399 0.402 0.491 1
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Use the DATA= option in the PROC GLMPOWER statement to specify Pain as the exemplary data set. Specify
the between- and within-subject factors and the model by using the CLASS, MODEL, and REPEATED
statements just as you would in PROC GLM for the repeated measures data analysis. Use the POWER
statement to indicate sample size as the result parameter and specify the other analysis parameters, and use
the PLOT statement to generate the power curves. The following statements perform the sample size analysis:

ods graphics on;

proc glmpower data=Pain;
class Treatment;
model PainMem0 PainMem1Wk PainMem6Mo PainMem12Mo = Treatment;
repeated Time contrast;
power

mtest = hlt
alpha = 0.01
power = .9
ntotal = .
stddev = 0.92 1.04
matrix ("PainCorr") = lear(0.6, 0.8, 4, 0 1 26 52)
corrmat = "PainCorr";

plot y=power min=0.05 max=0.99 yopts=(ref=0.9)
vary (linestyle by stddev, symbol by dependent source);

run;
ods graphics off;

The STDDEV= option specifies the two scenarios for the common residual standard deviation, 0.92 and 1.04.
The MATRIX= option defines the LEAR correlation structure, and the CORRMAT= option specifies it as the
correlation matrix of the residuals. The Y=POWER option in the PLOT statement requests a plot that has
power on the Y axis. (The result parameter—in this case, total sample size—is always plotted on the other
axis.) The MIN= and MAX= options in the PLOT statement specify the power range. The YOPTS=(REF=)
option adds a reference line at the target power value of 0.9. The VARY option specifies that the line style
vary by the residual standard deviation and that the plotting symbol vary by the combination of within-subject
and between-subject effects. The ODS GRAPHICS ON statement enables ODS Graphics.

Output 47.3.1 shows the output, and Output 47.3.2 shows the plot.

Output 47.3.1 Sample Size Analysis for Repeated Measures

The GLMPOWER Procedure
F Test for Multivariate Model
The GLMPOWER Procedure
F Test for Multivariate Model

Fixed Scenario Elements

Wilks/HLT/PT Method O'Brien-Shieh

F Test Hotelling-Lawley Trace

Alpha 0.01

Correlation Matrix PainCorr

Nominal Power 0.9
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Output 47.3.1 continued

Computed N Total

Index Transformation Source
Std
Dev Effect

Num
DF

Den
DF

Actual
Power

N
Total

1 Time Intercept 0.92 Time 3 176 0.900 180

2 Time Intercept 1.04 Time 3 226 0.903 230

3 Time Treatment 0.92 Time*Treatment 3 346 0.901 350

4 Time Treatment 1.04 Time*Treatment 3 442 0.901 446

5 Mean(Dep) Intercept 0.92 Intercept 1 4 0.960 6

6 Mean(Dep) Intercept 1.04 Intercept 1 4 0.907 6

7 Mean(Dep) Treatment 0.92 Treatment 1 950 0.900 952

8 Mean(Dep) Treatment 1.04 Treatment 1 1214 0.900 1216

Output 47.3.1 reveals that the required sample size to achieve a power of 0.9 for the test of the Time*Treatment
interaction is 350 for the error standard deviation of 0.92 and 446 for the error standard deviation of 1.04.

Output 47.3.2 Plot of Power versus Sample Size for Repeated Measures Analysis



References F 3657

References

Castelloe, J. M. (2000), “Sample Size Computations and Power Analysis with the SAS System,” in Pro-
ceedings of the Twenty-Fifth Annual SAS Users Group International Conference, Cary, NC: SAS Institute
Inc.

Castelloe, J. M. and O’Brien, R. G. (2001), “Power and Sample Size Determination for Linear Models,”
in Proceedings of the Twenty-Sixth Annual SAS Users Group International Conference, Cary, NC: SAS
Institute Inc.

Chi, Y.-Y., Gribbin, M. J., Lamers, Y., Gregory, J. F., III, and Muller, K. E. (2012), “Global Hypothesis
Testing for High-Dimensional Repeated Measures Outcomes,” Statistics in Medicine, 31, 724–742.

Guo, Y., Logan, H. L., Glueck, D. H., and Muller, K. E. (2013), “Selecting a Sample Size for Studies with
Repeated Measures,” BMC Medical Research Methodology, 13.

Hocking, R. R. (1985), The Analysis of Linear Models, Monterey, CA: Brooks/Cole.

Huynh, H. and Feldt, L. S. (1976), “Estimation of the Box Correction for Degrees of Freedom from Sample
Data in the Randomized Block and Split Plot Designs,” Journal of Educational Statistics, 1, 69–82.

Lecoutre, B. (1991), “A Correction for the Epsilon Approximate Test with Repeated Measures Design with
Two or More Independent Groups,” Journal of Educational Statistics, 16, 371–372.

Lenth, R. V. (2001), “Some Practical Guidelines for Effective Sample Size Determination,” American
Statistician, 55, 187–193.

Logan, H. L., Baron, R. S., and Kohout, F. (1995), “Sensory Focus as Therapeutic Treatments for Acute Pain,”
Psychosomatic Medicine, 57, 475–484.

McKeon, J. J. (1974), “F Approximations to the Distribution of Hotelling’s T 20 ,” Biometrika, 61, 381–383.

Muller, K. E. and Barton, C. N. (1989), “Approximate Power for Repeated-Measures ANOVA Lacking
Sphericity,” Journal of the American Statistical Association, 84, 549–555, also see “Correction to Ap-
proximate Power for Repeated-Measures ANOVA Lacking Sphericity,” Journal of the American Statistical
Association (1991), 86:255–256.

Muller, K. E. and Benignus, V. A. (1992), “Increasing Scientific Power with Statistical Power,” Neurotoxicol-
ogy and Teratology, 14, 211–219.

Muller, K. E., Edwards, L. J., Simpson, S. L., and Taylor, D. J. (2007), “Statistical Tests with Accurate Size
and Power for Balanced Linear Mixed Models,” Statistics in Medicine, 26, 3639–3660.

Muller, K. E. and Peterson, B. L. (1984), “Practical Methods for Computing Power in Testing the Multivariate
General Linear Hypothesis,” Computational Statistics and Data Analysis, 2, 143–158.

O’Brien, R. G. and Castelloe, J. M. (2007), “Sample-Size Analysis for Traditional Hypothesis Testing:
Concepts and Issues,” in A. Dmitrienko, C. Chuang-Stein, and R. D’Agostino, eds., Pharmaceutical
Statistics Using SAS: A Practical Guide, 237–271, Cary, NC: SAS Institute Inc.



3658 F Chapter 47: The GLMPOWER Procedure

O’Brien, R. G. and Muller, K. E. (1993), “Unified Power Analysis for t-Tests through Multivariate Hypothe-
ses,” in L. K. Edwards, ed., Applied Analysis of Variance in Behavioral Science, 297–344, New York:
Marcel Dekker.

O’Brien, R. G. and Shieh, G. (1992), “Pragmatic, Unifying Algorithm Gives Power Probabilities for
Common F Tests of the Multivariate General Linear Hypothesis,” Poster presented at the American
Statistical Association Meetings, Boston, Statistical Computing Section.

Pillai, K. C. S. and Samson, P., Jr. (1959), “On Hotelling’s Generalization of T 2,” Biometrika, 46, 160–168.

Simpson, S. L., Edwards, L. J., Muller, K. E., Sen, P. K., and Styner, M. A. (2010), “A Linear Exponent
AR(1) Family of Correlation Structures,” Statistics in Medicine, 29, 1825–1838.



Chapter 77

The POWER Procedure

Contents
Overview: POWER Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6266
Getting Started: POWER Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6268

Computing Power for a One-Sample t Test . . . . . . . . . . . . . . . . . . . . . . . 6268
Determining Required Sample Size for a Two-Sample t Test . . . . . . . . . . . . . . 6271

Syntax: POWER Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6274
PROC POWER Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6276
LOGISTIC Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6276
MULTREG Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6283
ONECORR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6288
ONESAMPLEFREQ Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6292
ONESAMPLEMEANS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6300
ONEWAYANOVA Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6306
PAIREDFREQ Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6310
PAIREDMEANS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6317
PLOT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6326
TWOSAMPLEFREQ Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6330
TWOSAMPLEMEANS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 6337
TWOSAMPLESURVIVAL Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 6347
TWOSAMPLEWILCOXON Statement . . . . . . . . . . . . . . . . . . . . . . . . . 6358

Details: POWER Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6363
Overview of Power Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6363
Summary of Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6364
Specifying Value Lists in Analysis Statements . . . . . . . . . . . . . . . . . . . . . 6366

Keyword-Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6366
Number-Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6366
Grouped-Number-Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6367
Name-Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6368
Grouped-Name-Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6368

Sample Size Adjustment Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6369
Error and Information Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6369
Displayed Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6371
ODS Table Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6372
Computational Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6372

Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6372
CPU Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6372

Computational Methods and Formulas . . . . . . . . . . . . . . . . . . . . . . . . . 6373



6266 F Chapter 77: The POWER Procedure

Common Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6373
Analyses in the LOGISTIC Statement . . . . . . . . . . . . . . . . . . . . . 6374
Analyses in the MULTREG Statement . . . . . . . . . . . . . . . . . . . . . 6377
Analyses in the ONECORR Statement . . . . . . . . . . . . . . . . . . . . . 6379
Analyses in the ONESAMPLEFREQ Statement . . . . . . . . . . . . . . . . 6381
Analyses in the ONESAMPLEMEANS Statement . . . . . . . . . . . . . . 6399
Analyses in the ONEWAYANOVA Statement . . . . . . . . . . . . . . . . . 6403
Analyses in the PAIREDFREQ Statement . . . . . . . . . . . . . . . . . . . 6404
Analyses in the PAIREDMEANS Statement . . . . . . . . . . . . . . . . . . 6408
Analyses in the TWOSAMPLEFREQ Statement . . . . . . . . . . . . . . . 6413
Analyses in the TWOSAMPLEMEANS Statement . . . . . . . . . . . . . . 6416
Analyses in the TWOSAMPLESURVIVAL Statement . . . . . . . . . . . . 6422
Analyses in the TWOSAMPLEWILCOXON Statement . . . . . . . . . . . . 6426

ODS Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6428
Examples: POWER Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6429

Example 77.1: One-Way ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6429
Example 77.2: The Sawtooth Power Function in Proportion Analyses . . . . . . . . . 6434
Example 77.3: Simple AB/BA Crossover Designs . . . . . . . . . . . . . . . . . . . 6443
Example 77.4: Noninferiority Test with Lognormal Data . . . . . . . . . . . . . . . 6446
Example 77.5: Multiple Regression and Correlation . . . . . . . . . . . . . . . . . . 6450
Example 77.6: Comparing Two Survival Curves . . . . . . . . . . . . . . . . . . . . 6454
Example 77.7: Confidence Interval Precision . . . . . . . . . . . . . . . . . . . . . . 6457
Example 77.8: Customizing Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6459

Assigning Analysis Parameters to Axes . . . . . . . . . . . . . . . . . . . . 6461
Fine-Tuning a Sample Size Axis . . . . . . . . . . . . . . . . . . . . . . . . 6466
Adding Reference Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6470
Linking Plot Features to Analysis Parameters . . . . . . . . . . . . . . . . . 6473
Choosing Key (Legend) Styles . . . . . . . . . . . . . . . . . . . . . . . . . 6478
Modifying Symbol Locations . . . . . . . . . . . . . . . . . . . . . . . . . . 6482

Example 77.9: Binary Logistic Regression with Independent Predictors . . . . . . . . 6484
Example 77.10: Wilcoxon-Mann-Whitney Test . . . . . . . . . . . . . . . . . . . . . 6486

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6489

Overview: POWER Procedure
Power and sample size analysis optimizes the resource usage and design of a study, improving chances of
conclusive results with maximum efficiency. The POWER procedure performs prospective power and sample
size analyses for a variety of goals, such as the following:

• determining the sample size required to get a significant result with adequate probability (power)

• characterizing the power of a study to detect a meaningful effect
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• conducting what-if analyses to assess sensitivity of the power or required sample size to other factors

Here prospective indicates that the analysis pertains to planning for a future study. This is in contrast to
retrospective power analysis for a past study, which is not supported by the procedure.

A variety of statistical analyses are covered:

• t tests, equivalence tests, and confidence intervals for means

• tests, equivalence tests, and confidence intervals for binomial proportions

• multiple regression

• tests of correlation and partial correlation

• one-way analysis of variance

• rank tests for comparing two survival curves

• logistic regression with binary response

• Wilcoxon-Mann-Whitney (rank-sum) test

For more complex linear models, see Chapter 47, “The GLMPOWER Procedure.”

Input for PROC POWER includes the components considered in study planning:

• design

• statistical model and test

• significance level (alpha)

• surmised effects and variability

• power

• sample size

You designate one of these components by a missing value in the input, in order to identify it as the result
parameter. The procedure calculates this result value over one or more scenarios of input values for all other
components. Power and sample size are the most common result values, but for some analyses the result can
be something else. For example, you can solve for the sample size of a single group for a two-sample t test.

In addition to tabular results, PROC POWER produces graphs. You can produce the most common types of
plots easily with default settings and use a variety of options for more customized graphics. For example,
you can control the choice of axis variables, axis ranges, number of plotted points, mapping of graphical
features (such as color, line style, symbol and panel) to analysis parameters, and legend appearance.

If ODS Graphics is enabled, then PROC POWER uses ODS Graphics to create graphs; otherwise, traditional
graphs are produced.

For more information about enabling and disabling ODS Graphics, see the section “Enabling and Disabling
ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”
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For specific information about the statistical graphics and options available with the POWER procedure, see
the PLOT statement and the section “ODS Graphics” on page 6428.

The POWER procedure is one of several tools available in SAS/STAT software for power and sample size
analysis. PROC GLMPOWER supports more complex linear models. The Power and Sample Size application
provides a user interface and implements many of the analyses supported in the procedures. See Chapter 47,
“The GLMPOWER Procedure,” and Chapter 78, “The Power and Sample Size Application,” for details.

The following sections of this chapter describe how to use PROC POWER and discuss the underlying
statistical methodology. The section “Getting Started: POWER Procedure” on page 6268 introduces PROC
POWER with simple examples of power computation for a one-sample t test and sample size determination
for a two-sample t test. The section “Syntax: POWER Procedure” on page 6274 describes the syntax of the
procedure. The section “Details: POWER Procedure” on page 6363 summarizes the methods employed by
PROC POWER and provides details on several special topics. The section “Examples: POWER Procedure”
on page 6429 illustrates the use of the POWER procedure with several applications.

For an overview of methodology and SAS tools for power and sample size analysis, see Chapter 18,
“Introduction to Power and Sample Size Analysis.” For more discussion and examples, see O’Brien and
Castelloe (2007); Castelloe (2000); Castelloe and O’Brien (2001); Muller and Benignus (1992); O’Brien and
Muller (1993); Lenth (2001).

Getting Started: POWER Procedure

Computing Power for a One-Sample t Test
Suppose you want to improve the accuracy of a machine used to print logos on sports jerseys. The logo
placement has an inherently high variability, but the horizontal alignment of the machine can be adjusted. The
operator agrees to pay for a costly adjustment if you can establish a nonzero mean horizontal displacement in
either direction with high confidence. You have 150 jerseys at your disposal to measure, and you want to
determine your chances of a significant result (power) by using a one-sample t test with a two-sided ˛ = 0.05.

You decide that 8 mm is the smallest displacement worth addressing. Hence, you will assume a true mean of
8 in the power computation. Experience indicates that the standard deviation is about 40.

Use the ONESAMPLEMEANS statement in the POWER procedure to compute the power. Indicate power
as the result parameter by specifying the POWER= option with a missing value (.). Specify your conjectures
for the mean and standard deviation by using the MEAN= and STDDEV= options and for the sample size by
using the NTOTAL= option. The statements required to perform this analysis are as follows:

proc power;
onesamplemeans

mean = 8
ntotal = 150
stddev = 40
power = .;

run;

Default values for the TEST=, DIST=, ALPHA=, NULLMEAN=, and SIDES= options specify a two-sided t
test for a mean of 0, assuming a normal distribution with a significance level of ˛ = 0.05.
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Figure 77.1 shows the output.

Figure 77.1 Sample Size Analysis for One-Sample t Test

The POWER Procedure
One-Sample t Test for Mean

The POWER Procedure
One-Sample t Test for Mean

Fixed Scenario Elements

Distribution Normal

Method Exact

Mean 8

Standard Deviation 40

Total Sample Size 150

Number of Sides 2

Null Mean 0

Alpha 0.05

Computed
Power

Power

0.682

The power is about 0.68. In other words, there is about a 2/3 chance that the t test will produce a significant
result demonstrating the machine’s average off-center displacement. This probability depends on the
assumptions for the mean and standard deviation.

Now, suppose you want to account for some of your uncertainty in conjecturing the true mean and standard
deviation by evaluating the power for four scenarios, using reasonable low and high values, 5 and 10 for the
mean, and 30 and 50 for the standard deviation. Also, you might be able to measure more than 150 jerseys,
and you would like to know under what circumstances you could get by with fewer. You want to plot power
for sample sizes between 100 and 200 to visualize how sensitive the power is to changes in sample size for
these four scenarios of means and standard deviations. The following statements perform this analysis:

ods graphics on;

proc power;
onesamplemeans

mean = 5 10
ntotal = 150
stddev = 30 50
power = .;

plot x=n min=100 max=200;
run;

ods graphics off;

The new mean and standard deviation values are specified by using the MEAN= and STDDEV= options in
the ONESAMPLEMEANS statement. The PLOT statement with X=N produces a plot with sample size on
the X axis. (The result parameter, in this case the power, is always plotted on the other axis.) The MIN= and
MAX= options in the PLOT statement determine the sample size range. The ODS GRAPHICS ON statement
enables ODS Graphics.

Figure 77.2 shows the output, and Figure 77.3 shows the plot.
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Figure 77.2 Sample Size Analysis for One-Sample t Test with Input Ranges

The POWER Procedure
One-Sample t Test for Mean

The POWER Procedure
One-Sample t Test for Mean

Fixed Scenario Elements

Distribution Normal

Method Exact

Total Sample Size 150

Number of Sides 2

Null Mean 0

Alpha 0.05

Computed Power

Index Mean
Std
Dev Power

1 5 30 0.527

2 5 50 0.229

3 10 30 0.982

4 10 50 0.682

Figure 77.3 Plot of Power versus Sample Size for One-Sample t Test with Input Ranges
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The power ranges from about 0.23 to 0.98 for a sample size of 150 depending on the mean and standard
deviation. In Figure 77.3, the line style identifies the mean, and the plotting symbol identifies the standard
deviation. The locations of plotting symbols indicate computed powers; the curves are linear interpolations
of these points. The plot suggests sufficient power for a mean of 10 and standard deviation of 30 (for any of
the sample sizes) but insufficient power for the other three scenarios.

Determining Required Sample Size for a Two-Sample t Test
In this example you want to compare two physical therapy treatments designed to increase muscle flexibility.
You need to determine the number of patients required to achieve a power of at least 0.9 to detect a group
mean difference in a two-sample t test. You will use ˛ = 0.05 (two-tailed).

The mean flexibility with the standard treatment (as measured on a scale of 1 to 20) is well known to be about
13 and is thought to be between 14 and 15 with the new treatment. You conjecture three alternative scenarios
for the means:

1. �1 = 13, �2 = 14

2. �1 = 13, �2 = 14.5

3. �1 = 13, �2 = 15

You conjecture two scenarios for the common group standard deviation:

1. � = 1.2

2. � = 1.7

You also want to try three weighting schemes:

1. equal group sizes (balanced, or 1:1)

2. twice as many patients with the new treatment (1:2)

3. three times as many patients with the new treatment (1:3)

This makes 3 � 2 � 3 = 18 scenarios in all.

Use the TWOSAMPLEMEANS statement in the POWER procedure to determine the sample sizes required
to give 90% power for each of these 18 scenarios. Indicate total sample size as the result parameter by
specifying the NTOTAL= option with a missing value (.). Specify your conjectures for the means by using
the GROUPMEANS= option. Using the “matched” notation (discussed in the section “Specifying Value
Lists in Analysis Statements” on page 6366), enclose the two group means for each scenario in parentheses.
Use the STDDEV= option to specify scenarios for the common standard deviation. Specify the weighting
schemes by using the GROUPWEIGHTS= option. You could again use the matched notation. But for
illustrative purposes, specify the scenarios for each group weight separately by using the “crossed” notation,
with scenarios for each group weight separated by a vertical bar (|). The statements that perform the analysis
are as follows:
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proc power;
twosamplemeans

groupmeans = (13 14) (13 14.5) (13 15)
stddev = 1.2 1.7
groupweights = 1 | 1 2 3
power = 0.9
ntotal = .;

run;

Default values for the TEST=, DIST=, NULLDIFF=, ALPHA=, and SIDES= options specify a two-sided t
test of group mean difference equal to 0, assuming a normal distribution with a significance level of ˛ = 0.05.
The results are shown in Figure 77.4.

Figure 77.4 Sample Size Analysis for Two-Sample t Test Using Group Means

The POWER Procedure
Two-Sample t Test for Mean Difference

The POWER Procedure
Two-Sample t Test for Mean Difference

Fixed Scenario
Elements

Distribution Normal

Method Exact

Group 1 Weight 1

Nominal Power 0.9

Number of Sides 2

Null Difference 0

Alpha 0.05

Computed N Total

Index Mean1 Mean2
Std
Dev Weight2

Actual
Power

N
Total

1 13 14.0 1.2 1 0.907 64

2 13 14.0 1.2 2 0.908 72

3 13 14.0 1.2 3 0.905 84

4 13 14.0 1.7 1 0.901 124

5 13 14.0 1.7 2 0.905 141

6 13 14.0 1.7 3 0.900 164

7 13 14.5 1.2 1 0.910 30

8 13 14.5 1.2 2 0.906 33

9 13 14.5 1.2 3 0.916 40

10 13 14.5 1.7 1 0.900 56

11 13 14.5 1.7 2 0.901 63

12 13 14.5 1.7 3 0.908 76

13 13 15.0 1.2 1 0.913 18

14 13 15.0 1.2 2 0.927 21

15 13 15.0 1.2 3 0.922 24

16 13 15.0 1.7 1 0.914 34

17 13 15.0 1.7 2 0.921 39

18 13 15.0 1.7 3 0.910 44
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The interpretation is that in the best-case scenario (large mean difference of 2, small standard deviation of
1.2, and balanced design), a sample size of N = 18 (n1 D n2 D 9) patients is sufficient to achieve a power of
at least 0.9. In the worst-case scenario (small mean difference of 1, large standard deviation of 1.7, and a 1:3
unbalanced design), a sample size of N = 164 (n1 = 41, n2 = 123) patients is necessary. The Nominal Power
of 0.9 in the “Fixed Scenario Elements” table represents the input target power, and the Actual Power column
in the “Computed N Total” table is the power at the sample size (N Total) adjusted to achieve the specified
sample weighting exactly.

Note the following characteristics of the analysis, and ways you can modify them if you want:

• The total sample sizes are rounded up to multiples of the weight sums (2 for the 1:1 design, 3 for
the 1:2 design, and 4 for the 1:3 design) to ensure that each group size is an integer. To request raw
fractional sample size solutions, use the NFRACTIONAL option.

• Only the group weight that varies (the one for group 2) is displayed as an output column, while the
weight for group 1 appears in the “Fixed Scenario Elements” table. To display the group weights
together in output columns, use the matched version of the value list rather than the crossed version.

• If you can specify only differences between group means (instead of their individual values), or if you
want to display the mean differences instead of the individual means, use the MEANDIFF= option
instead of the GROUPMEANS= option.

The following statements implement all of these modifications:

proc power;
twosamplemeans

nfractional
meandiff = 1 to 2 by 0.5
stddev = 1.2 1.7
groupweights = (1 1) (1 2) (1 3)
power = 0.9
ntotal = .;

run;

Figure 77.5 shows the new results.

Figure 77.5 Sample Size Analysis for Two-Sample t Test Using Mean Differences

The POWER Procedure
Two-Sample t Test for Mean Difference

The POWER Procedure
Two-Sample t Test for Mean Difference

Fixed Scenario
Elements

Distribution Normal

Method Exact

Nominal Power 0.9

Number of Sides 2

Null Difference 0

Alpha 0.05
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Figure 77.5 continued

Computed Ceiling N Total

Index
Mean

Diff
Std
Dev Weight1 Weight2

Fractional
N Total

Actual
Power

Ceiling
N

Total

1 1.0 1.2 1 1 62.507429 0.902 63

2 1.0 1.2 1 2 70.065711 0.904 71

3 1.0 1.2 1 3 82.665772 0.901 83

4 1.0 1.7 1 1 123.418482 0.901 124

5 1.0 1.7 1 2 138.598159 0.901 139

6 1.0 1.7 1 3 163.899094 0.900 164

7 1.5 1.2 1 1 28.961958 0.900 29

8 1.5 1.2 1 2 32.308867 0.906 33

9 1.5 1.2 1 3 37.893351 0.901 38

10 1.5 1.7 1 1 55.977156 0.900 56

11 1.5 1.7 1 2 62.717357 0.901 63

12 1.5 1.7 1 3 73.954291 0.900 74

13 2.0 1.2 1 1 17.298518 0.913 18

14 2.0 1.2 1 2 19.163836 0.913 20

15 2.0 1.2 1 3 22.282926 0.910 23

16 2.0 1.7 1 1 32.413512 0.905 33

17 2.0 1.7 1 2 36.195531 0.907 37

18 2.0 1.7 1 3 42.504535 0.903 43

Note that the Nominal Power of 0.9 applies to the raw computed sample size (Fractional N Total), and the
Actual Power column applies to the rounded sample size (Ceiling N Total). Some of the adjusted sample
sizes in Figure 77.5 are lower than those in Figure 77.4 because underlying group sample sizes are allowed to
be fractional (for example, the first Ceiling N Total of 63 corresponding to equal group sizes of 31.5).

Syntax: POWER Procedure
The following statements are available in the POWER procedure:

PROC POWER < options > ;
LOGISTIC < options > ;
MULTREG < options > ;
ONECORR < options > ;
ONESAMPLEFREQ < options > ;
ONESAMPLEMEANS < options > ;
ONEWAYANOVA < options > ;
PAIREDFREQ < options > ;
PAIREDMEANS < options > ;
PLOT < plot-options > < / graph-options > ;
TWOSAMPLEFREQ < options > ;
TWOSAMPLEMEANS < options > ;
TWOSAMPLESURVIVAL < options > ;
TWOSAMPLEWILCOXON < options > ;
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The statements in the POWER procedure consist of the PROC POWER statement, a set of analysis statements
(for requesting specific power and sample size analyses), and the PLOT statement (for producing graphs). The
PROC POWER statement and at least one of the analysis statements are required. The analysis statements
are LOGISTIC, MULTREG, ONECORR, ONESAMPLEFREQ, ONESAMPLEMEANS, ONEWAYANOVA,
PAIREDFREQ, PAIREDMEANS, TWOSAMPLEFREQ, TWOSAMPLEMEANS, TWOSAMPLESUR-
VIVAL, and TWOSAMPLEWILCOXON.

You can use multiple analysis statements and multiple PLOT statements. Each analysis statement produces a
separate sample size analysis. Each PLOT statement refers to the previous analysis statement and generates a
separate graph (or set of graphs).

The name of an analysis statement describes the framework of the statistical analysis for which sample
size calculations are desired. You use options in the analysis statements to identify the result parameter to
compute, to specify the statistical test and computational options, and to provide one or more scenarios for
the values of relevant analysis parameters.

Table 77.1 summarizes the basic functions of each statement in PROC POWER. The syntax of each statement
in Table 77.1 is described in the following pages.

Table 77.1 Statements in the POWER Procedure

Statement Description

PROC POWER Invokes the procedure

LOGISTIC Likelihood ratio chi-square test of a single predictor in logistic
regression with binary response

MULTREG Tests of one or more coefficients in multiple linear regression
ONECORR Fisher’s z test and t test of (partial) correlation
ONESAMPLEFREQ Tests, confidence interval precision, and equivalence tests of a

single binomial proportion
ONESAMPLEMEANS One-sample t test, confidence interval precision, or equivalence test
ONEWAYANOVA One-way ANOVA including single-degree-of-freedom contrasts
PAIREDFREQ McNemar’s test for paired proportions
PAIREDMEANS Paired t test, confidence interval precision, or equivalence test

PLOT Displays plots for previous sample size analysis

TWOSAMPLEFREQ Chi-square, likelihood ratio, and Fisher’s exact tests for two
independent proportions

TWOSAMPLEMEANS Two-sample t test, confidence interval precision, or equivalence
test

TWOSAMPLESURVIVAL Log-rank, Gehan, and Tarone-Ware tests for comparing two
survival curves

TWOSAMPLEWILCOXON Wilcoxon-Mann-Whitney (rank-sum) test for 2 independent groups

See the section “Summary of Analyses” on page 6364 for a summary of the analyses available and the syntax
required for them.
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PROC POWER Statement
PROC POWER < options > ;

The PROC POWER statement invokes the POWER procedure. You can specify the following option.

PLOTONLY
specifies that only graphical results from the PLOT statement should be produced.

LOGISTIC Statement
LOGISTIC < options > ;

The LOGISTIC statement performs power and sample size analyses for the likelihood ratio chi-square test of
a single predictor in binary logistic regression, possibly in the presence of one or more covariates that might
be correlated with the tested predictor.

Summary of Options

Table 77.2 summarizes the options available in the LOGISTIC statement.

Table 77.2 LOGISTIC Statement Options

Option Description

Define analysis
TEST= Specifies the statistical analysis

Specify analysis information
ALPHA= Specifies the significance level
COVARIATES= Specifies the distributions of predictor variables
TESTPREDICTOR= Specifies the distribution of the predictor variable being tested
VARDIST= Defines a distribution for a predictor variable

Specify effects
CORR= Specifies the multiple correlation between the predictor and the covariates
COVODDSRATIOS= Specifies the odds ratios for the covariates
COVREGCOEFFS= Specifies the regression coefficients for the covariates
DEFAULTUNIT= Specifies the default change in the predictor variables
INTERCEPT= Specifies the intercept
RESPONSEPROB= Specifies the response probability
TESTODDSRATIO= Specifies the odds ratio being tested
TESTREGCOEFF= Specifies the regression coefficient for the predictor variable
UNITS= Specifies the changes in the predictor variables

Specify sample size
NFRACTIONAL Enables fractional input and output for sample sizes
NTOTAL= Specifies the sample size

Specify power
POWER= Specifies the desired power of the test
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Table 77.2 continued

Option Description

Specify computational method
DEFAULTNBINS= Specifies the default number of categories for each predictor variable
NBINS= Specifies the number of categories for predictor variables

Control ordering in output
OUTPUTORDER= Controls the output order of parameters

Table 77.3 summarizes the valid result parameters in the LOGISTIC statement.

Table 77.3 Summary of Result Parameters in the LOGISTIC
Statement

Analyses Solve For Syntax

TEST=LRCHI Power POWER=.
Sample size NTOTAL=.

Dictionary of Options

ALPHA=number-list
specifies the level of significance of the statistical test. The default is 0.05, corresponding to the usual
0.05 � 100% = 5% level of significance. For information about specifying the number-list , see the
section “Specifying Value Lists in Analysis Statements” on page 6366.

CORR=number-list
specifies the multiple correlation (�) between the tested predictor and the covariates. If you also specify
the COVARIATES= option, then the sample size is either multiplied (if you are computing power) or
divided (if you are computing sample size) by a factor of .1 � �2/. For information about specifying
the number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

COVARIATES=grouped-name-list
specifies the distributions of any predictor variables in the model but not being tested, using labels
specified with the VARDIST= option. The distributions are assumed to be independent of each
other and of the tested predictor. If this option is omitted, then the tested predictor specified by the
TESTEDPREDICTOR= option is assumed to be the only predictor in the model. For information about
specifying the grouped-name-list , see the section “Specifying Value Lists in Analysis Statements” on
page 6366.

COVODDSRATIOS=grouped-number-list
specifies the odds ratios for the covariates in the full model (including variables in the TESTPREDIC-
TOR= and COVARIATES= options). The ordering of the values corresponds to the ordering in the
COVARIATES= option. If the response variable is coded as Y = 1 for success and Y = 0 for failure,
then the odds ratio for each covariate X is the odds of Y = 1 when X = a divided by the odds of Y = 1
when X = b, where a and b are determined from the DEFAULTUNIT= and UNITS= options. Values
must be greater than zero. For information about specifying the grouped-number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 6366.



6278 F Chapter 77: The POWER Procedure

COVREGCOEFFS=grouped-number-list
specifies the regression coefficients for the covariates in the full model including the test predictor (as
specified by the TESTPREDICTOR= option). The ordering of the values corresponds to the ordering
in the COVARIATES= option. For information about specifying the grouped-number-list , see the
section “Specifying Value Lists in Analysis Statements” on page 6366.

DEFAULTNBINS=number
specifies the default number of categories (or “bins”) into which the distribution for each predictor
variable is divided in internal calculations. Higher values increase computational time and memory
requirements but generally lead to more accurate results. However, if the value is too high, then
numerical instability can occur. Lower values are less likely to produce “No solution computed” errors.
Each test predictor or covariate that is absent from the NBINS= option derives its bin number from the
DEFAULTNBINS= option. The default value is DEFAULTNBINS=10.

There are two variable distributions for which the number of bins can be overridden internally:

• For an ordinal distribution, the number of ordinal values is always used as the number of bins.

• For a binomial distribution, if the requested number of bins is larger than n + 1, where n is the
sample size parameter of the binomial distribution, then exactly n + 1 bins are used.

DEFAULTUNIT=change-spec
specifies the default change in the predictor variables assumed for odds ratios specified with the
COVODDSRATIOS= and TESTODDSRATIO= options. Each test predictor or covariate that is absent
from the UNITS= option derives its change value from the DEFAULTUNIT= option. The value must
be nonzero. The default value is DEFAULTUNIT=1. This option can be used only if at least one of the
COVODDSRATIOS= and TESTODDSRATIO= options is used.

Valid specifications for change-spec are as follows:

number defines the odds ratio as the ratio of the response variable odds when X = a to the odds when
X = a – number for any constant a.

<+ | ->SD defines the odds ratio as the ratio of the odds when X = a to the odds when X = a – � (or
X = a + � , if SD is preceded by a minus sign (–)) for any constant a, where � is the standard
deviation of X (as determined from the VARDIST= option).

multiple*SD defines the odds ratio as the ratio of the odds when X = a to the odds when X = a –
multiple * � for any constant a, where � is the standard deviation of X (as determined from the
VARDIST= option).

PERCENTILES(p1, p2) defines the odds ratio as the ratio of the odds when X is equal to its p2�
100th percentile to the odds when X is equal to its p1� 100th percentile (where the percentiles
are determined from the distribution specified in the VARDIST= option). Values for p1 and p2
must be strictly between 0 and 1.

INTERCEPT=number-list
specifies the intercept in the full model (including variables in the TESTPREDICTOR= and COVARI-
ATES= options). For information about specifying the number-list , see the section “Specifying Value
Lists in Analysis Statements” on page 6366.
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NBINS=(“name” = number < . . . "name" = number >)
specifies the number of categories (or “bins”) into which the distribution for each predictor variable
(identified by its name from the VARDIST= option) is divided in internal calculations. Higher values
increase computational time and memory requirements but generally lead to more accurate results.
However, if the value is too high, then numerical instability can occur. Lower values are less likely
to produce “No solution computed” errors. Each predictor variable that is absent from the NBINS=
option derives its bin number from the DEFAULTNBINS= option.

There are two variable distributions for which the NBINS= value can be overridden internally:

• For an ordinal distribution, the number of ordinal values is always used as the number of bins.

• For a binomial distribution, if the requested number of bins is larger than n + 1, where n is the
sample size parameter of the binomial distribution, then exactly n + 1 bins are used.

NFRACTIONAL

NFRAC
enables fractional input and output for sample sizes. See the section “Sample Size Adjustment
Options” on page 6369 for information about the ramifications of the presence (and absence) of the
NFRACTIONAL option.

NTOTAL=number-list
specifies the sample size or requests a solution for the sample size with a missing value (NTOTAL=.).
Values must be at least one. For information about specifying the number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 6366.

OUTPUTORDER=INTERNAL | REVERSE | SYNTAX
controls how the input and default analysis parameters are ordered in the output. OUT-
PUTORDER=INTERNAL (the default) arranges the parameters in the output according to the following
order of their corresponding options:

• DEFAULTNBINS=
• NBINS=
• ALPHA=
• RESPONSEPROB=
• INTERCEPT=
• TESTPREDICTOR=
• TESTODDSRATIO=
• TESTREGCOEFF=
• COVARIATES=
• COVODDSRATIOS=
• COVREGCOEFFS=
• CORR=
• NTOTAL=
• POWER=

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the same or-
der in which their corresponding options are specified in the LOGISTIC statement. The OUT-
PUTORDER=REVERSE option arranges the parameters in the output in the reverse of the order in
which their corresponding options are specified in the LOGISTIC statement.
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POWER=number-list
specifies the desired power of the test or requests a solution for the power with a missing value
(POWER=.). The power is expressed as a probability, a number between 0 and 1, rather than as a
percentage. For information about specifying the number-list , see the section “Specifying Value Lists
in Analysis Statements” on page 6366.

RESPONSEPROB=number-list
specifies the response probability in the full model when all predictor variables (including variables in
the TESTPREDICTOR= and COVARIATES= options) are equal to their means. The log odds of this
probability are equal to the intercept in the full model where all predictor are centered at their means.
If the response variable is coded as Y = 1 for success and Y = 0 for failure, then this probability is
equal to the mean of Y in the full model when all Xs are equal to their means. Values must be strictly
between zero and one. For information about specifying the number-list , see the section “Specifying
Value Lists in Analysis Statements” on page 6366.

TEST=LRCHI
specifies the likelihood ratio chi-square test of a single model parameter in binary logistic regression.
This is the default test option.

TESTODDSRATIO=number-list
specifies the odds ratio for the predictor variable being tested in the full model (including variables in
the TESTPREDICTOR= and COVARIATES= options). If the response variable is coded as Y = 1 for
success and Y = 0 for failure, then the odds ratio for the X being tested is the odds of Y = 1 when X = a
divided by the odds of Y = 1 when X = b, where a and b are determined from the DEFAULTUNIT= and
UNITS= options. Values must be greater than zero. For information about specifying the number-list ,
see the section “Specifying Value Lists in Analysis Statements” on page 6366.

TESTPREDICTOR=name-list
specifies the distribution of the predictor variable being tested, using labels specified with the
VARDIST= option. This distribution is assumed to be independent of the distributions of the co-
variates as defined in the COVARIATES= option. For information about specifying the name-list , see
the section “Specifying Value Lists in Analysis Statements” on page 6366.

TESTREGCOEFF=number-list
specifies the regression coefficient for the predictor variable being tested in the full model including the
covariates specified by the COVARIATES= option. For information about specifying the number-list ,
see the section “Specifying Value Lists in Analysis Statements” on page 6366.

UNITS=(“name” = change-spec < . . . "name" = change-spec >)
specifies the changes in the predictor variables assumed for odds ratios specified with the COV-
ODDSRATIOS= and TESTODDSRATIO= options. Each predictor variable whose name (from
the VARDIST= option) is absent from the UNITS option derives its change value from the DE-
FAULTUNIT= option. This option can be used only if at least one of the COVODDSRATIOS= and
TESTODDSRATIO= options is used.

Valid specifications for change-spec are as follows:

number defines the odds ratio as the ratio of the response variable odds when X = a to the odds when
X = a – number for any constant a.
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<+ | ->SD defines the odds ratio as the ratio of the odds when X = a to the odds when X = a – � (or
X = a + � , if SD is preceded by a minus sign (–)) for any constant a, where � is the standard
deviation of X (as determined from the VARDIST= option).

multiple*SD defines the odds ratio as the ratio of the odds when X = a to the odds when X = a –
multiple �� for any constant a, where � is the standard deviation of X (as determined from the
VARDIST= option).

PERCENTILES(p1, p2) defines the odds ratio as the ratio of the odds when X is equal to its p2�
100th percentile to the odds when X is equal to its p1� 100th percentile (where the percentiles
are determined from the distribution specified in the VARDIST= option). Values for p1 and p2
must be strictly between 0 and 1.

Each unit value must be nonzero.

VARDIST("label")=distribution (parameters)
defines a distribution for a predictor variable.

For the VARDIST= option,

label identifies the variable distribution in the output and with the COVARIATES= and
TESTPREDICTOR= options.

distribution specifies the distributional form of the variable.

parameters specifies one or more parameters associated with the distribution.

The distributions and parameters are named and defined in the same way as the distributions and
arguments in the CDF SAS function; for more information, see SAS Language Reference: Dictionary.
Choices for distributional forms and their parameters are as follows:

ORDINAL ((values) : (probabilities)) is an ordered categorical distribution. The values are any
numbers separated by spaces. The probabilities are numbers between 0 and 1 (inclusive)
separated by spaces. Their sum must be exactly 1. The number of probabilities must match the
number of values.

BETA (a, b <, l , r >) is a beta distribution with shape parameters a and b and optional location
parameters l and r . The values of a and b must be greater than 0, and l must be less than r . The
default values for l and r are 0 and 1, respectively.

BINOMIAL (p, n) is a binomial distribution with probability of success p and number of independent
Bernoulli trials n. The value of p must be greater than 0 and less than 1, and n must be an integer
greater than 0. If n = 1, then the distribution is binary.

EXPONENTIAL (�) is an exponential distribution with scale �, which must be greater than 0.

GAMMA (a, �) is a gamma distribution with shape a and scale �. The values of a and � must be
greater than 0.

LAPLACE (� , �) is a Laplace distribution with location � and scale �. The value of � must be
greater than 0.

LOGISTIC (� , �) is a logistic distribution with location � and scale �. The value of �must be greater
than 0.
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LOGNORMAL (� , �) is a lognormal distribution with location � and scale �. The value of � must
be greater than 0.

NORMAL (� , �) is a normal distribution with mean � and standard deviation �. The value of � must
be greater than 0.

POISSON (m) is a Poisson distribution with mean m. The value of m must be greater than 0.

UNIFORM (l , r ) is a uniform distribution on the interval Œ l , r �, where l < r .

Restrictions on Option Combinations

To specify the intercept in the full model, choose one of the following two parameterizations:

• intercept (using the INTERCEPT= options)

• Prob(Y = 1) when all predictors are equal to their means (using the RESPONSEPROB= option)

To specify the effect associated with the predictor variable being tested, choose one of the following two
parameterizations:

• odds ratio (using the TESTODDSRATIO= options)

• regression coefficient (using the TESTREGCOEFFS= option)

To describe the effects of the covariates in the full model, choose one of the following two parameterizations:

• odds ratios (using the COVODDSRATIOS= options)

• regression coefficients (using the COVREGCOEFFS= options)

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses supported in the LOGISTIC statement.

Likelihood Ratio Chi-Square Test for One Predictor
You can express effects in terms of response probability and odds ratios, as in the following statements:

proc power;
logistic

vardist("x1a") = normal(0, 2)
vardist("x1b") = normal(0, 3)
vardist("x2") = poisson(7)
vardist("x3a") = ordinal((-5 0 5) : (.3 .4 .3))
vardist("x3b") = ordinal((-5 0 5) : (.4 .3 .3))
testpredictor = "x1a" "x1b"
covariates = "x2" | "x3a" "x3b"
responseprob = 0.15
testoddsratio = 1.75
covoddsratios = (2.1 1.4)
ntotal = 100
power = .;

run;
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The VARDIST= options define the distributions of the predictor variables. The TESTPREDICTOR=
option specifies two scenarios for the test predictor distribution, Normal(10,2) and Normal(10,3). The
COVARIATES= option specifies two covariates, the first with a Poisson(7) distribution. The second covariate
has an ordinal distribution on the values –5, 0, and 5 with two scenarios for the associated probabilities: (.3,
.4, .3) and (.4, .3, .3). The response probability in the full model with all variables equal to zero is specified by
the RESPONSEPROB= option as 0.15. The odds ratio for a unit decrease in the tested predictor is specified
by the TESTODDSRATIO= option to be 1.75. Corresponding odds ratios for the two covariates in the full
model are specified by the COVODDSRATIOS= option to be 2.1 and 1.4. The POWER=. option requests a
solution for the power at a sample size of 100 as specified by the NTOTAL= option.

Default values of the TEST= and ALPHA= options specify a likelihood ratio test of the first predictor with a
significance level of 0.05. The default of DEFAULTUNIT=1 specifies that all odds ratios are defined in terms
of unit changes in predictors. The default of DEFAULTNBINS=10 specifies that each of the three predictor
variables is discretized into a distribution with 10 categories in internal calculations.

You can also express effects in terms of regression coefficients, as in the following statements:

proc power;
logistic

vardist("x1a") = normal(0, 2)
vardist("x1b") = normal(0, 3)
vardist("x2") = poisson(7)
vardist("x3a") = ordinal((-5 0 5) : (.3 .4 .3))
vardist("x3b") = ordinal((-5 0 5) : (.4 .3 .3))
testpredictor = "x1a" "x1b"
covariates = "x2" | "x3a" "x3b"
intercept = -6.928162
testregcoeff = 0.5596158
covregcoeffs = (0.7419373 0.3364722)
ntotal = 100
power = .;

run;

The regression coefficients for the tested predictor (TESTREGCOEFF=0.5596158) and covariates (COV-
REGCOEFFS=(0.7419373 0.3364722)) are determined by taking the logarithm of the corresponding odds
ratios. The intercept in the full model is specified as –6.928162 by the INTERCEPT= option. This number
is calculated according to the formula at the end of “Analyses in the LOGISTIC Statement” on page 6374,
which expresses the intercept in terms of the response probability, regression coefficients, and predictor
means:

Intercept D log
�

0:15

1 � 0:15

�
� .0:5596158.0/C 0:7419373.7/C 0:3364722.0//

MULTREG Statement
MULTREG < options > ;

The MULTREG statement performs power and sample size analyses for Type III F tests of sets of predictors
in multiple linear regression, assuming either fixed or normally distributed predictors.
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Summary of Options

Table 77.4 summarizes the options available in the MULTREG statement.

Table 77.4 MULTREG Statement Options

Option Description

Define analysis
TEST= Specifies the statistical analysis

Specify analysis information
ALPHA= Specifies the significance level
MODEL= Specifies the assumed distribution of the predictors
NFULLPREDICTORS= Specifies the number of predictors in the full model
NOINT Specifies a no-intercept model
NREDUCEDPREDICTORS= Specifies the number of predictors in the reduced model
NTESTPREDICTORS= Specifies the number of predictors being tested

Specify effects
PARTIALCORR= Specifies the partial correlation
RSQUAREDIFF= Specifies the difference in R2

RSQUAREFULL= Specifies the R2 of the full model
RSQUAREREDUCED= Specifies the R2 of the reduced model

Specify sample size
NFRACTIONAL Enables fractional input and output for sample sizes
NTOTAL= Specifies the sample size

Specify power
POWER= Specifies the desired power

Control ordering in output
OUTPUTORDER= Controls the order of parameters

Table 77.5 summarizes the valid result parameters in the MULTREG statement.

Table 77.5 Summary of Result Parameters in the MULTREG
Statement

Analyses Solve For Syntax

TEST=TYPE3 Power POWER=.
Sample size NTOTAL=.

Dictionary of Options

ALPHA=number-list
specifies the level of significance of the statistical test. The default is 0.05, corresponding to the usual
0.05 � 100% = 5% level of significance. For information about specifying the number-list , see the
section “Specifying Value Lists in Analysis Statements” on page 6366.
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MODEL=keyword-list
specifies the assumed distribution of the tested predictors. MODEL=FIXED indicates a fixed predictor
distribution. MODEL=RANDOM (the default) indicates a joint multivariate normal distribution
for the response and tested predictors. You can use the aliases CONDITIONAL for FIXED and
UNCONDITIONAL for RANDOM. For information about specifying the keyword-list , see the section
“Specifying Value Lists in Analysis Statements” on page 6366.

FIXED fixed predictors

RANDOM random (multivariate normal) predictors

NFRACTIONAL

NFRAC
enables fractional input and output for sample sizes. See the section “Sample Size Adjustment
Options” on page 6369 for information about the ramifications of the presence (and absence) of the
NFRACTIONAL option.

NFULLPREDICTORS=number-list

NFULLPRED=number-list
specifies the number of predictors in the full model, not counting the intercept. For information
about specifying the number-list , see the section “Specifying Value Lists in Analysis Statements” on
page 6366.

NOINT
specifies a no-intercept model (for both full and reduced models). By default, the intercept is included
in the model. If you want to test the intercept, you can specify the NOINT option and simply consider
the intercept to be one of the predictors being tested. For information about specifying the number-list ,
see the section “Specifying Value Lists in Analysis Statements” on page 6366.

NREDUCEDPREDICTORS=number-list

NREDUCEDPRED=number-list

NREDPRED=number-list
specifies the number of predictors in the reduced model, not counting the intercept. This is the
same as the difference between values of the NFULLPREDICTORS= and NTESTPREDICTORS=
options. Note that supplying a value of 0 is the same as specifying an F test of a Pearson correlation.
This option cannot be used at the same time as the NTESTPREDICTORS= option. For information
about specifying the number-list , see the section “Specifying Value Lists in Analysis Statements” on
page 6366.

NTESTPREDICTORS=number-list

NTESTPRED=number-list
specifies the number of predictors being tested. This is the same as the difference between values
of the NFULLPREDICTORS= and NREDUCEDPREDICTORS= options. Note that supplying
identical values for the NTESTPREDICTORS= and NFULLPREDICTORS= options is the same as
specifying an F test of a Pearson correlation. This option cannot be used at the same time as the
NREDUCEDPREDICTORS= option. For information about specifying the number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 6366.
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NTOTAL=number-list
specifies the sample size or requests a solution for the sample size with a missing value (NTOTAL=.).
The minimum acceptable value for the sample size depends on the MODEL=, NOINT, NFULLPRE-
DICTORS=, NTESTPREDICTORS=, and NREDUCEDPREDICTORS= options. It ranges from p +
1 to p + 3, where p is the value of the NFULLPREDICTORS option. For further information about
minimum NTOTAL values, see Table 77.30. For information about specifying the number-list , see the
section “Specifying Value Lists in Analysis Statements” on page 6366.

OUTPUTORDER=INTERNAL | REVERSE | SYNTAX
controls how the input and default analysis parameters are ordered in the output. OUT-
PUTORDER=INTERNAL (the default) arranges the parameters in the output according to the following
order of their corresponding options:

• MODEL=
• NFULLPREDICTORS=
• NTESTPREDICTORS=
• NREDUCEDPREDICTORS=
• ALPHA=
• PARTIALCORR=
• RSQUAREFULL=
• RSQUAREREDUCED=
• RSQUAREDIFF=
• NTOTAL=
• POWER=

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the same or-
der in which their corresponding options are specified in the MULTREG statement. The OUT-
PUTORDER=REVERSE option arranges the parameters in the output in the reverse of the order in
which their corresponding options are specified in the MULTREG statement.

PARTIALCORR=number-list

PCORR=number-list
specifies the partial correlation between the tested predictors and the response, adjusting for any other
predictors in the model. For information about specifying the number-list , see the section “Specifying
Value Lists in Analysis Statements” on page 6366.

POWER=number-list
specifies the desired power of the test or requests a solution for the power with a missing value
(POWER=.). The power is expressed as a probability, a number between 0 and 1, rather than as a
percentage. For information about specifying the number-list , see the section “Specifying Value Lists
in Analysis Statements” on page 6366.

RSQUAREDIFF=number-list

RSQDIFF=number-list
specifies the difference in R2 between the full and reduced models. This is equivalent to the proportion
of variation explained by the predictors you are testing. It is also equivalent to the squared semipartial
correlation of the tested predictors with the response. For information about specifying the number-list ,
see the section “Specifying Value Lists in Analysis Statements” on page 6366.
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RSQUAREFULL=number-list

RSQFULL=number-list
specifies the R2 of the full model, where R2 is the proportion of variation explained by the model.
For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

RSQUAREREDUCED=number-list

RSQREDUCED=number-list

RSQRED=number-list
specifies the R2 of the reduced model, where R2 is the proportion of variation explained by the
model. If the reduced model is an empty or intercept-only model (in other words, if NREDUCEDPRE-
DICTORS=0 or NTESTPREDICTORS=NFULLPREDICTORS), then RSQUAREREDUCED=0 is
assumed. For information about specifying the number-list , see the section “Specifying Value Lists in
Analysis Statements” on page 6366.

TEST=TYPE3
specifies a Type III F test of a set of predictors adjusting for any other predictors in the model. This is
the default test option.

Restrictions on Option Combinations

To specify the number of predictors, use any two of these three options:

• the number of predictors in the full model (NFULLPREDICTORS=)

• the number of predictors in the reduced model (NREDUCEDPREDICTORS=)

• the number of predictors being tested (NTESTPREDICTORS=)

To specify the effect, choose one of the following parameterizations:

• partial correlation (by using the PARTIALCORR= option)

• R2 for the full and reduced models (by using any two of RSQUAREDIFF=, RSQUAREFULL=, and
RSQUAREREDUCED=)

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses supported in the MULTREG statement.

Type III F Test of a Set of Predictors
You can express effects in terms of partial correlation, as in the following statements. Default values of the
TEST=, MODEL=, and ALPHA= options specify a Type III F test with a significance level of 0.05, assuming
normally distributed predictors.
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proc power;
multreg

model = random
nfullpredictors = 7
ntestpredictors = 3
partialcorr = 0.35
ntotal = 100
power = .;

run;

You can also express effects in terms of R2:

proc power;
multreg

model = fixed
nfullpredictors = 7
ntestpredictors = 3
rsquarefull = 0.9
rsquarediff = 0.1
ntotal = .
power = 0.9;

run;

ONECORR Statement
ONECORR < options > ;

The ONECORR statement performs power and sample size analyses for tests of simple and partial Pearson
correlation between two variables. Both Fisher’s z test and the t test are supported.

Summary of Options

Table 77.6 summarizes the options available in the ONECORR statement.

Table 77.6 ONECORR Statement Options

Option Description

Define analysis
DIST= Specifies the underlying distribution assumed for the test statistic
TEST= Specifies the statistical analysis

Specify analysis information
ALPHA= Specifies the significance level
MODEL= Specifies the assumed distribution of the variables
NPARTIALVARS= Specifies the number of variables adjusted for in the correlation
NULLCORR= Specifies the null value of the correlation
SIDES= Specifies the number of sides and the direction of the statistical test

Specify effects
CORR= Specifies the correlation
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Table 77.6 continued

Option Description

Specify sample size
NFRACTIONAL Enables fractional input and output for sample sizes
NTOTAL= Specifies the sample size

Specify power
POWER= Specifies the desired power of the test

Control ordering in output
OUTPUTORDER= Controls the output order of parameters

Table 77.7 summarizes the valid result parameters in the ONECORR statement.

Table 77.7 Summary of Result Parameters in the ONECORR
Statement

Analyses Solve For Syntax

TEST=PEARSON Power POWER=.
Sample size NTOTAL=.

Dictionary of Options

ALPHA=number-list
specifies the level of significance of the statistical test. The default is 0.05, corresponding to the usual
0.05 � 100% = 5% level of significance. For information about specifying the number-list , see the
section “Specifying Value Lists in Analysis Statements” on page 6366.

CORR=number-list
specifies the correlation between two variables, possibly adjusting for other variables as determined
by the NPARTIALVARS= option. For information about specifying the number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 6366.

DIST=FISHERZ | T
specifies the underlying distribution assumed for the test statistic. FISHERZ corresponds to Fisher’s z
normalizing transformation of the correlation coefficient. T corresponds to the t transformation of the
correlation coefficient. Note that DIST=T is equivalent to analyses in the MULTREG statement with
NTESTPREDICTORS=1. The default value is FISHERZ.

MODEL=keyword-list
specifies the assumed distribution of the first variable when DIST=T. The second variable is assumed
to have a normal distribution. MODEL=FIXED indicates a fixed distribution. MODEL=RANDOM
(the default) indicates a joint bivariate normal distribution with the second variable. You can use the
aliases CONDITIONAL for FIXED and UNCONDITIONAL for RANDOM. This option can be used
only for DIST=T. For information about specifying the keyword-list , see the section “Specifying Value
Lists in Analysis Statements” on page 6366.
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FIXED fixed variables

RANDOM random (bivariate normal) variables

NFRACTIONAL

NFRAC
enables fractional input and output for sample sizes. See the section “Sample Size Adjustment
Options” on page 6369 for information about the ramifications of the presence (and absence) of the
NFRACTIONAL option.

NPARTIALVARS=number-list

NPVARS=number-list
specifies the number of variables adjusted for in the correlation between the two primary variables.
The default value is 0, corresponding to a simple correlation. For information about specifying the
number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

NTOTAL=number-list
specifies the sample size or requests a solution for the sample size with a missing value (NTOTAL=.).
Values for the sample size must be at least p + 3 when DIST=T and MODEL=CONDITIONAL, and at
least p + 4 when either DIST=FISHER or when DIST=T and MODEL=UNCONDITIONAL, where p
is the value of the NPARTIALVARS option. For information about specifying the number-list , see the
section “Specifying Value Lists in Analysis Statements” on page 6366.

NULLCORR=number-list

NULLC=number-list
specifies the null value of the correlation. The default value is 0. This option can be used only with
the DIST=FISHERZ analysis. For information about specifying the number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 6366.

OUTPUTORDER=INTERNAL | REVERSE | SYNTAX
controls how the input and default analysis parameters are ordered in the output. OUT-
PUTORDER=INTERNAL (the default) arranges the parameters in the output according to the following
order of their corresponding options:

• MODEL=
• SIDES=
• NULL=
• ALPHA=
• NPARTIALVARS=
• CORR=
• NTOTAL=
• POWER=

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the same or-
der in which their corresponding options are specified in the ONECORR statement. The OUT-
PUTORDER=REVERSE option arranges the parameters in the output in the reverse of the order in
which their corresponding options are specified in the ONECORR statement.
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POWER=number-list
specifies the desired power of the test or requests a solution for the power with a missing value
(POWER=.). The power is expressed as a probability, a number between 0 and 1, rather than as a
percentage. For information about specifying the number-list , see the section “Specifying Value Lists
in Analysis Statements” on page 6366.

SIDES=keyword-list
specifies the number of sides (or tails) and the direction of the statistical test. Valid keywords are

1 one-sided with alternative hypothesis in same direction as effect

2 two-sided

U upper one-sided with alternative greater than null value

L lower one-sided with alternative less than null value

The default value is 2.

TEST=PEARSON
specifies a test of the Pearson correlation coefficient between two variables, possibly adjusting for
other variables. This is the default test option.

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses supported in the ONECORR statement.

Fisher’s z Test for Pearson Correlation
The following statements demonstrate a power computation for Fisher’s z test for correlation. Default values
of TEST=PEARSON, ALPHA=0.05, SIDES=2, and NPARTIALVARS=0 are assumed.

proc power;
onecorr dist=fisherz

nullcorr = 0.15
corr = 0.35
ntotal = 180
power = .;

run;

t Test for Pearson Correlation
The following statements demonstrate a sample size computation for the t test for correlation. Default values
of TEST=PEARSON, MODEL=RANDOM, ALPHA=0.05, and SIDES=2 are assumed.

proc power;
onecorr dist=t

npartialvars = 4
corr = 0.45
ntotal = .
power = 0.85;

run;
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ONESAMPLEFREQ Statement
ONESAMPLEFREQ < options > ;

The ONESAMPLEFREQ statement performs power and sample size analyses for exact and approximate
tests (including equivalence, noninferiority, and superiority) and confidence interval precision for a single
binomial proportion.

Summary of Options

Table 77.8 summarizes the options available in the ONESAMPLEFREQ statement.

Table 77.8 ONESAMPLEFREQ Statement Options

Option Description

Define analysis
CI= Specifies an analysis of precision of a confidence interval
TEST= Specifies the statistical analysis

Specify analysis information
ALPHA= Specifies the significance level
EQUIVBOUNDS= Specifies the lower and upper equivalence bounds
LOWER= Specifies the lower equivalence bound
MARGIN= Specifies the equivalence or noninferiority or superiority margin
NULLPROPORTION= Specifies the null proportion
SIDES= Specifies the number of sides and the direction of the statistical test
UPPER= Specifies the upper equivalence bound

Specify effect
HALFWIDTH= Specifies the desired confidence interval half-width
PROPORTION= Specifies the binomial proportion

Specify variance estimation
VAREST= Specifies how the variance is computed

Specify sample size
NFRACTIONAL Enables fractional input and output for sample sizes
NTOTAL= Specifies the sample size

Specify power and related probabilities
POWER= Specifies the desired power of the test
PROBWIDTH= Specifies the probability of obtaining a confidence interval half-width less

than or equal to the value specified by HALFWIDTH=

Choose computational method
METHOD= Specifies the computational method

Control ordering in output
OUTPUTORDER= Controls the output order of parameters

Table 77.9 summarizes the valid result parameters for different analyses in the ONESAMPLEFREQ statement.
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Table 77.9 Summary of Result Parameters in the
ONESAMPLEFREQ Statement

Analyses Solve For Syntax

CI=WILSON Prob(width) PROBWIDTH=.

CI=AGRESTICOULL Prob(width) PROBWIDTH=.

CI=JEFFREYS Prob(width) PROBWIDTH=.

CI=EXACT Prob(width) PROBWIDTH=.

CI=WALD Prob(width) PROBWIDTH=.

CI=WALD_CORRECT Prob(width) PROBWIDTH=.

TEST=ADJZ METHOD=EXACT Power POWER=.

TEST=ADJZ METHOD=NORMAL Power POWER=.
Sample size NTOTAL=.

TEST=EQUIV_ADJZ METHOD=EXACT Power POWER=.

TEST=EQUIV_ADJZ METHOD=NORMAL Power POWER=.
Sample size NTOTAL=.

TEST=EQUIV_EXACT Power POWER=.

TEST=EQUIV_Z METHOD=EXACT Power POWER=.

TEST=EQUIV_Z METHOD=NORMAL Power POWER=.
Sample size NTOTAL=.

TEST=EXACT Power POWER=.

TEST=Z METHOD=EXACT Power POWER=.

TEST=Z METHOD=NORMAL Power POWER=.
Sample size NTOTAL=.

Dictionary of Options

ALPHA=number-list
specifies the level of significance of the statistical test. The default is 0.05, corresponding to the usual
0.05 � 100% = 5% level of significance. If the CI= and SIDES=1 options are used, then the value must
be less than 0.5. For information about specifying the number-list , see the section “Specifying Value
Lists in Analysis Statements” on page 6366.

CI

CI=AGRESTICOULL | AC

CI=JEFFREYS

CI=EXACT | CLOPPERPEARSON | CP

CI=WALD

CI=WALD_CORRECT

CI=WILSON | SCORE
specifies an analysis of precision of a confidence interval for the sample binomial proportion.
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The value of the CI= option specifies the type of confidence interval. The CI=AGRESTICOULL option
is a generalization of the “Adjusted Wald / add 2 successes and 2 failures” interval of Agresti and
Coull (1998) and is presented in Brown, Cai, and DasGupta (2001). It corresponds to the TABLES /
BINOMIAL (AGRESTICOULL) option in PROC FREQ. The CI=JEFFREYS option specifies the
equal-tailed Jeffreys prior Bayesian interval, corresponding to the TABLES / BINOMIAL (JEFFREYS)
option in PROC FREQ. The CI=EXACT option specifies the exact Clopper-Pearson confidence interval
based on enumeration, corresponding to the TABLES / BINOMIAL (EXACT) option in PROC FREQ.
The CI=WALD option specifies the confidence interval based on the Wald test (also commonly called
the z test or normal-approximation test), corresponding to the TABLES / BINOMIAL (WALD) option
in PROC FREQ. The CI=WALD_CORRECT option specifies the confidence interval based on the
Wald test with continuity correction, corresponding to the TABLES / BINOMIAL (CORRECT WALD)
option in PROC FREQ. The CI=WILSON option (the default) specifies the confidence interval based
on the score statistic, corresponding to the TABLES / BINOMIAL (WILSON) option in PROC FREQ.

Instead of power, the relevant probability for this analysis is the probability of achieving a desired
precision. Specifically, it is the probability that the half-width of the confidence interval will be at most
the value specified by the HALFWIDTH= option.

EQUIVBOUNDS=grouped-number-list
specifies the lower and upper equivalence bounds, representing the same information as the combination
of the LOWER= and UPPER= options but grouping them together. The EQUIVBOUNDS= option
can be used only with equivalence analyses (TEST=EQUIV_ADJZ | EQUIV_EXACT | EQUIV_Z).
Values must be strictly between 0 and 1. For information about specifying the grouped-number-list ,
see the section “Specifying Value Lists in Analysis Statements” on page 6366.

HALFWIDTH=number-list
specifies the desired confidence interval half-width. The half-width for a two-sided interval is the
length of the confidence interval divided by two. This option can be used only with the CI= analysis.
For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

LOWER=number-list
specifies the lower equivalence bound for the binomial proportion. The LOWER= option can be used
only with equivalence analyses (TEST=EQUIV_ADJZ | EQUIV_EXACT | EQUIV_Z). Values must be
strictly between 0 and 1. For information about specifying the number-list , see the section “Specifying
Value Lists in Analysis Statements” on page 6366.

MARGIN=number-list
specifies the equivalence or noninferiority or superiority margin, depending on the analysis.

The MARGIN= option can be used with one-sided analyses (SIDES = 1 | U | L), in which case it
specifies the margin added to the null proportion value in the hypothesis test, resulting in a noninferiority
or superiority test (depending on the agreement between the effect and hypothesis directions and the
sign of the margin). A test with a null proportion p0 and a margin m is the same as a test with null
proportion p0 Cm and no margin.

The MARGIN= option can also be used with equivalence analyses (TEST=EQUIV_ADJZ |
EQUIV_EXACT | EQUIV_Z) when the NULLPROPORTION= option is used, in which case it
specifies the lower and upper equivalence bounds as p0 �m and p0 Cm, where p0 is the value of the
NULLPROPORTION= option and m is the value of the MARGIN= option.
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The MARGIN= option cannot be used in conjunction with the SIDES=2 option. (Instead, specify an
equivalence analysis by using TEST=EQUIV_ADJZ or TEST=EQUIV_EXACT or TEST=EQUIV_Z).
Also, the MARGIN= option cannot be used with the CI= option.

Values must be strictly between –1 and 1. In addition, the sum of NULLPROPORTION and MARGIN
must be strictly between 0 and 1 for one-sided analyses, and the derived lower equivalence bound (2 *
NULLPROPORTION – MARGIN) must be strictly between 0 and 1 for equivalence analyses.

For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

METHOD=EXACT | NORMAL
specifies the computational method. METHOD=EXACT (the default) computes exact results by using
the binomial distribution. METHOD=NORMAL computes approximate results by using the normal
approximation to the binomial distribution.

NFRACTIONAL

NFRAC
enables fractional input and output for sample sizes. This option is invalid when the METHOD=EXACT
option is specified. See the section “Sample Size Adjustment Options” on page 6369 for information
about the ramifications of the presence (and absence) of the NFRACTIONAL option.

NTOTAL=number-list
specifies the sample size or requests a solution for the sample size with a missing value (NTOTAL=.).
For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

NULLPROPORTION=number-list

NULLP=number-list
specifies the null proportion. A value of 0.5 corresponds to the sign test. For information about speci-
fying the number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

OUTPUTORDER=INTERNAL | REVERSE | SYNTAX
controls how the input and default analysis parameters are ordered in the output. OUT-
PUTORDER=INTERNAL (the default) arranges the parameters in the output according to the following
order of their corresponding options:

• SIDES=
• NULLPROPORTION=
• ALPHA=
• PROPORTION=
• NTOTAL=
• POWER=

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the same order in
which their corresponding options are specified in the ONESAMPLEFREQ statement. The OUT-
PUTORDER=REVERSE option arranges the parameters in the output in the reverse of the order in
which their corresponding options are specified in the ONESAMPLEFREQ statement.
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POWER=number-list
specifies the desired power of the test or requests a solution for the power with a missing value
(POWER=.). The power is expressed as a probability, a number between 0 and 1, rather than as a
percentage. For information about specifying the number-list , see the section “Specifying Value Lists
in Analysis Statements” on page 6366.

PROBWIDTH=number-list
specifies the desired probability of obtaining a confidence interval half-width less than or equal to the
value specified by the HALFWIDTH= option. A missing value (PROBWIDTH=.) requests a solution
for this probability. Values are expressed as probabilities (for example, 0.9) rather than percentages.
This option can be used only with the CI= analysis. For information about specifying the number-list ,
see the section “Specifying Value Lists in Analysis Statements” on page 6366.

PROPORTION=number-list

P=number-list
specifies the binomial proportion—that is, the expected proportion of successes in the hypothetical
binomial trial. For information about specifying the number-list , see the section “Specifying Value
Lists in Analysis Statements” on page 6366.

SIDES=keyword-list
specifies the number of sides (or tails) and the direction of the statistical test. For information about
specifying the keyword-list , see the section “Specifying Value Lists in Analysis Statements” on
page 6366. Valid keywords are as follows:

1 one-sided with alternative hypothesis in same direction as effect

2 two-sided

U upper one-sided with alternative greater than null value

L lower one-sided with alternative less than null value

If the effect size is zero, then SIDES=1 is not permitted; instead, specify the direction of the test
explicitly in this case with either SIDES=L or SIDES=U. The default value is 2.

TEST= ADJZ | EQUIV_ADJZ | EQUIV_EXACT | EQUIV_Z | EXACT | Z
TEST

specifies the statistical analysis. TEST=ADJZ specifies a normal-approximate z test with continu-
ity adjustment. TEST=EQUIV_ADJZ specifies a normal-approximate two-sided equivalence test
based on the z statistic with continuity adjustment and a TOST (two one-sided tests) procedure.
TEST=EQUIV_EXACT specifies the exact binomial two-sided equivalence test based on a TOST (two
one-sided tests) procedure. TEST=EQUIV_Z specifies a normal-approximate two-sided equivalence
test based on the z statistic without any continuity adjustment, which is the same as the chi-square
statistic, and a TOST (two one-sided tests) procedure. TEST or TEST=EXACT (the default) speci-
fies the exact binomial test. TEST=Z specifies a normal-approximate z test without any continuity
adjustment, which is the same as the chi-square test when SIDES=2.

UPPER=number-list
specifies the upper equivalence bound for the binomial proportion. The UPPER= option can be used
only with equivalence analyses (TEST=EQUIV_ADJZ | EQUIV_EXACT | EQUIV_Z). Values must be
strictly between 0 and 1. For information about specifying the number-list , see the section “Specifying
Value Lists in Analysis Statements” on page 6366.



ONESAMPLEFREQ Statement F 6297

VAREST=keyword-list
specifies how the variance is computed in the test statistic for the TEST=Z, TEST=ADJZ,
TEST=EQUIV_Z, and TEST=EQUIV_ADJZ analyses. For information about specifying the keyword-
list , see the section “Specifying Value Lists in Analysis Statements” on page 6366. Valid keywords are
as follows:

NULL (the default) estimates the variance by using the null proportion(s) (specified by some com-
bination of the NULLPROPORTION=, MARGIN=, LOWER=, and UPPER= options). For
TEST=Z and TEST=ADJZ, the null proportion is the value of the NULLPROPORTION=
option plus the value of the MARGIN= option (if it is used). For TEST=EQUIV_Z and
TEST=EQUIV_ADJZ, there are two null proportions, corresponding to the lower and upper
equivalence bounds, one for each test in the TOST (two one-sided tests) procedure.

SAMPLE estimates the variance by using the observed sample proportion.

This option is ignored if the analysis is one other than TEST=Z, TEST=ADJZ, TEST=EQUIV_Z, or
TEST=EQUIV_ADJZ.

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses supported in the ONESAMPLEFREQ statement.

Exact Test of a Binomial Proportion
The following statements demonstrate a power computation for the exact test of a binomial proportion.
Defaults for the SIDES= and ALPHA= options specify a two-sided test with a 0.05 significance level.

proc power;
onesamplefreq test=exact

nullproportion = 0.2
proportion = 0.3
ntotal = 100
power = .;

run;

z Test
The following statements demonstrate a sample size computation for the z test of a binomial proportion.
Defaults for the SIDES=, ALPHA=, and VAREST= options specify a two-sided test with a 0.05 significance
level that uses the null variance estimate.

proc power;
onesamplefreq test=z method=normal

nullproportion = 0.8
proportion = 0.85
sides = u
ntotal = .
power = .9;

run;
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z Test with Continuity Adjustment
The following statements demonstrate a sample size computation for the z test of a binomial proportion with
a continuity adjustment. Defaults for the SIDES=, ALPHA=, and VAREST= options specify a two-sided test
with a 0.05 significance level that uses the null variance estimate.

proc power;
onesamplefreq test=adjz method=normal

nullproportion = 0.15
proportion = 0.1
sides = l
ntotal = .
power = .9;

run;

Exact Equivalence Test for a Binomial Proportion
You can specify equivalence bounds by using the EQUIVBOUNDS= option, as in the following statements:

proc power;
onesamplefreq test=equiv_exact

proportion = 0.35
equivbounds = (0.2 0.4)
ntotal = 50
power = .;

run;

You can also specify the combination of NULLPROPORTION= and MARGIN= options:

proc power;
onesamplefreq test=equiv_exact

proportion = 0.35
nullproportion = 0.3
margin = 0.1
ntotal = 50
power = .;

run;

Finally, you can specify the combination of LOWER= and UPPER= options:

proc power;
onesamplefreq test=equiv_exact

proportion = 0.35
lower = 0.2
upper = 0.4
ntotal = 50
power = .;

run;

Note that the three preceding analyses are identical.

Exact Noninferiority Test for a Binomial Proportion
A noninferiority test corresponds to an upper one-sided test with a negative-valued margin, as demonstrated
in the following statements:
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proc power;
onesamplefreq test=exact

sides = U
proportion = 0.15
nullproportion = 0.1
margin = -0.02
ntotal = 130
power = .;

run;

Exact Superiority Test for a Binomial Proportion
A superiority test corresponds to an upper one-sided test with a positive-valued margin, as demonstrated in
the following statements:

proc power;
onesamplefreq test=exact

sides = U
proportion = 0.15
nullproportion = 0.1
margin = 0.02
ntotal = 130
power = .;

run;

Confidence Interval Precision
The following statements performs a confidence interval precision analysis for the Wilson score-based
confidence interval for a binomial proportion. The default value of the ALPHA= option specifies a confidence
level of 0.95.

proc power;
onesamplefreq ci=wilson

halfwidth = 0.1
proportion = 0.3
ntotal = 70
probwidth = .;

run;

Restrictions on Option Combinations

To specify the equivalence bounds for TEST=EQUIV_ADJZ, TEST=EQUIV_EXACT, and TEST=EQUIV_Z,
use any of these three option sets:

• lower and upper equivalence bounds, using the EQUIVBOUNDS= option

• lower and upper equivalence bounds, using the LOWER= and UPPER= options

• null proportion (NULLPROPORTION=) and margin (MARGIN=)
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ONESAMPLEMEANS Statement
ONESAMPLEMEANS < options > ;

The ONESAMPLEMEANS statement performs power and sample size analyses for t tests, equivalence tests,
and confidence interval precision involving one sample.

Summary of Options

Table 77.10 summarizes the options available in the ONESAMPLEMEANS statement.

Table 77.10 ONESAMPLEMEANS Statement Options

Option Description

Define analysis
CI= Specifies an analysis of precision of the confidence interval for the mean
DIST= Specifies the underlying distribution assumed for the test statistic
TEST= Specifies the statistical analysis

Specify analysis information
ALPHA= Specifies the significance level
LOWER= Specifies the lower equivalence bound for the mean
NULLMEAN= Specifies the null mean
SIDES= Specifies the number of sides and the direction of the statistical test
UPPER= Specifies the upper equivalence bound for the mean

Specify effect
HALFWIDTH= Specifies the desired confidence interval half-width
MEAN= Specifies the mean

Specify variability
CV= Specifies the coefficient of variation
STDDEV= Specifies the standard deviation

Specify sample size
NFRACTIONAL Enables fractional input and output for sample sizes
NTOTAL= Specifies the sample size

Specify power and related probabilities
POWER= Specifies the desired power of the test
PROBTYPE= Specifies the type of probability for the PROBWIDTH= option
PROBWIDTH= Specifies the probability of obtaining a confidence interval half-width less

than or equal to the value specified by HALFWIDTH=

Control ordering in output
OUTPUTORDER= Controls the output order of parameters

Table 77.11 summarizes the valid result parameters for different analyses in the ONESAMPLEMEANS
statement.
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Table 77.11 Summary of Result Parameters in the
ONESAMPLEMEANS Statement

Analyses Solve For Syntax

TEST=T DIST=NORMAL Power POWER=.
Sample size NTOTAL=.
Alpha ALPHA=.
Mean MEAN=.
Standard Deviation STDDEV=.

TEST=T DIST=LOGNORMAL Power POWER=.
Sample size NTOTAL=.

TEST=EQUIV Power POWER=.
Sample size NTOTAL=.

CI=T Prob(width) PROBWIDTH=.
Sample size NTOTAL=.

Dictionary of Options

ALPHA=number-list
specifies the level of significance of the statistical test or requests a solution for alpha with a missing
value (ALPHA=.). The default is 0.05, corresponding to the usual 0.05 � 100% = 5% level of
significance. If the CI= and SIDES=1 options are used, then the value must be less than 0.5. For
information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

CI

CI=T
specifies an analysis of precision of the confidence interval for the mean. Instead of power, the relevant
probability for this analysis is the probability of achieving a desired precision. Specifically, it is the
probability that the half-width of the confidence interval will be at most the value specified by the
HALFWIDTH= option. If neither the CI= option nor the TEST= option is used, the default is TEST=T.

CV=number-list
specifies the coefficient of variation, defined as the ratio of the standard deviation to the mean on
the original data scale. You can use this option only with DIST=LOGNORMAL. For information
about specifying the number-list , see the section “Specifying Value Lists in Analysis Statements” on
page 6366.

DIST=LOGNORMAL | NORMAL
specifies the underlying distribution assumed for the test statistic. NORMAL corresponds the normal
distribution, and LOGNORMAL corresponds to the lognormal distribution. The default value is
NORMAL.
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HALFWIDTH=number-list
specifies the desired confidence interval half-width. The half-width is defined as the distance between
the point estimate and a finite endpoint. This option can be used only with the CI=T analysis. For
information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

LOWER=number-list
specifies the lower equivalence bound for the mean. This option can be used only with the
TEST=EQUIV analysis. For information about specifying the number-list , see the section “Specifying
Value Lists in Analysis Statements” on page 6366.

MEAN=number-list
specifies the mean, in the original scale, or requests a solution for the mean with a missing value
(MEAN=.). The mean is arithmetic if DIST=NORMAL and geometric if DIST=LOGNORMAL. This
option can be used only with the TEST=T and TEST=EQUIV analyses. For information about specify-
ing the number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

NFRACTIONAL

NFRAC
enables fractional input and output for sample sizes. See the section “Sample Size Adjustment
Options” on page 6369 for information about the ramifications of the presence (and absence) of the
NFRACTIONAL option.

NTOTAL=number-list
specifies the sample size or requests a solution for the sample size with a missing value (NTOTAL=.).
For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

NULLMEAN=number-list

NULLM=number-list
specifies the null mean, in the original scale (whether DIST=NORMAL or DIST=LOGNORMAL).
The default value is 0 when DIST=NORMAL and 1 when DIST=LOGNORMAL. This option can be
used only with the TEST=T analysis. For information about specifying the number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 6366.

OUTPUTORDER=INTERNAL | REVERSE | SYNTAX
controls how the input and default analysis parameters are ordered in the output. OUT-
PUTORDER=INTERNAL (the default) arranges the parameters in the output according to the following
order of their corresponding options:

• SIDES=
• NULLMEAN=
• LOWER=
• UPPER=
• ALPHA=
• MEAN=
• HALFWIDTH=
• STDDEV=
• CV=
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• NTOTAL=
• POWER=
• PROBTYPE=
• PROBWIDTH=

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the same order
in which their corresponding options are specified in the ONESAMPLEMEANS statement. The
OUTPUTORDER=REVERSE option arranges the parameters in the output in the reverse of the order
in which their corresponding options are specified in the ONESAMPLEMEANS statement.

POWER=number-list
specifies the desired power of the test or requests a solution for the power with a missing value
(POWER=.). The power is expressed as a probability, a number between 0 and 1, rather than as
a percentage. This option can be used only with the TEST=T and TEST=EQUIV analyses. For
information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

PROBTYPE=keyword-list
specifies the type of probability for the PROBWIDTH= option. A value of CONDITIONAL (the
default) indicates the conditional probability that the confidence interval half-width is at most the
value specified by the HALFWIDTH= option, given that the true mean is captured by the confidence
interval. A value of UNCONDITIONAL indicates the unconditional probability that the confidence
interval half-width is at most the value specified by the HALFWIDTH= option. You can use the alias
GIVENVALIDITY for CONDITIONAL. The PROBTYPE= option can be used only with the CI=T
analysis. For information about specifying the keyword-list , see the section “Specifying Value Lists in
Analysis Statements” on page 6366.

CONDITIONAL width probability conditional on interval containing the mean

UNCONDITIONAL unconditional width probability

PROBWIDTH=number-list
specifies the desired probability of obtaining a confidence interval half-width less than or equal to the
value specified by the HALFWIDTH= option. A missing value (PROBWIDTH=.) requests a solution
for this probability. The type of probability is controlled with the PROBTYPE= option. Values are
expressed as probabilities (for example, 0.9) rather than percentages. This option can be used only
with the CI=T analysis. For information about specifying the number-list , see the section “Specifying
Value Lists in Analysis Statements” on page 6366.

SIDES=keyword-list
specifies the number of sides (or tails) and the direction of the statistical test or confidence interval.
For information about specifying the keyword-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366. Valid keywords and their interpretation for the TEST= analyses are as
follows:

1 one-sided with alternative hypothesis in same direction as effect

2 two-sided

U upper one-sided with alternative greater than null value

L lower one-sided with alternative less than null value



6304 F Chapter 77: The POWER Procedure

For confidence intervals, SIDES=U refers to an interval between the lower confidence limit and infinity,
and SIDES=L refers to an interval between minus infinity and the upper confidence limit. For both of
these cases and SIDES=1, the confidence interval computations are equivalent. The SIDES= option
can be used only with the TEST=T and CI=T analyses. The default value is 2.

STDDEV=number-list

STD=number-list
specifies the standard deviation, or requests a solution for the standard deviation with a missing value
(STDDEV=.). You can use this option only with DIST=NORMAL. For information about specifying
the number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

TEST=EQUIV | T

TEST
specifies the statistical analysis. TEST=EQUIV specifies an equivalence test of the mean by using a
two one-sided tests (TOST) analysis (Schuirmann 1987). TEST or TEST=T (the default) specifies a t
test on the mean. If neither the TEST= option nor the CI= option is used, the default is TEST=T.

UPPER=number-list
specifies the upper equivalence bound for the mean, in the original scale (whether DIST=NORMAL
or DIST=LOGNORMAL). This option can be used only with the TEST=EQUIV analysis. For
information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

Restrictions on Option Combinations

To define the analysis, choose one of the following parameterizations:

• a statistical test (by using the TEST= option)

• confidence interval precision (by using the CI= option)

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses supported in the ONESAMPLEMEANS
statement.

One-Sample t Test
The following statements demonstrate a power computation for the one-sample t test. Default values for
the DIST=, SIDES=, NULLMEAN=, and ALPHA= options specify a two-sided test for zero mean with a
normal distribution and a significance level of 0.05.

proc power;
onesamplemeans test=t

mean = 7
stddev = 3
ntotal = 50
power = .;

run;
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One-Sample t Test with Lognormal Data
The following statements demonstrate a sample size computation for the one-sample t test for lognormal data.
Default values for the SIDES=, NULLMEAN=, and ALPHA= options specify a two-sided test for unit mean
with a significance level of 0.05.

proc power;
onesamplemeans test=t dist=lognormal

mean = 7
cv = 0.8
ntotal = .
power = 0.9;

run;

Equivalence Test for Mean of Normal Data
The following statements demonstrate a power computation for the TOST equivalence test for a normal mean.
Default values for the DIST= and ALPHA= options specify a normal distribution and a significance level of
0.05.

proc power;
onesamplemeans test=equiv

lower = 2
upper = 7
mean = 4
stddev = 3
ntotal = 100
power = .;

run;

Equivalence Test for Mean of Lognormal Data
The following statements demonstrate a sample size computation for the TOST equivalence test for a
lognormal mean. The default of ALPHA=0.05 specifies a significance level of 0.05.

proc power;
onesamplemeans test=equiv dist=lognormal

lower = 1
upper = 5
mean = 3
cv = 0.6
ntotal = .
power = 0.85;

run;

Confidence Interval for Mean
By default CI=T analyzes the conditional probability of obtaining the desired precision, given that the interval
contains the true mean, as in the following statements. The defaults of SIDES=2 and ALPHA=0.05 specify a
two-sided interval with a confidence level of 0.95.
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proc power;
onesamplemeans ci = t

halfwidth = 14
stddev = 8
ntotal = 50
probwidth = .;

run;

ONEWAYANOVA Statement
ONEWAYANOVA < options > ;

The ONEWAYANOVA statement performs power and sample size analyses for one-degree-of-freedom
contrasts and the overall F test in one-way analysis of variance.

Summary of Options

Table 77.12 summarizes the options available in the ONEWAYANOVA statement.

Table 77.12 ONEWAYANOVA Statement Options

Option Description

Define analysis
TEST= Specifies the statistical analysis

Specify analysis information
ALPHA= Specifies the significance level
CONTRAST= Specifies coefficients for single-degree-of-freedom hypothesis tests
NULLCONTRAST= Specifies the null value of the contrast
SIDES= Specifies the number of sides and the direction of the statistical test

Specify effect
GROUPMEANS= Specifies the group means

Specify variability
STDDEV= Specifies the error standard deviation

Specify sample size and allocation
GROUPNS= Specifies the group sample sizes
GROUPWEIGHTS= Specifies the sample size allocation weights for the groups
NFRACTIONAL Enables fractional input and output for sample sizes
NPERGROUP= Specifies the common sample size per group
NTOTAL= Specifies the sample size

Specify power
POWER= Specifies the desired power of the test
Control ordering in output
OUTPUTORDER= Controls the output order of parameters

Table 77.13 summarizes the valid result parameters for different analyses in the ONEWAYANOVA statement.
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Table 77.13 Summary of Result Parameters in the
ONEWAYANOVA Statement

Analyses Solve For Syntax

TEST=CONTRAST Power POWER=.
Sample size NTOTAL=.

NPERGROUP==.

TEST=OVERALL Power POWER=.
Sample size NTOTAL=.

NPERGROUP==.

Dictionary of Options

ALPHA=number-list
specifies the level of significance of the statistical test. The default is 0.05, corresponding to the usual
0.05 � 100% = 5% level of significance. For information about specifying the number-list , see the
section “Specifying Value Lists in Analysis Statements” on page 6366.

CONTRAST= ( values ) < ( . . . values ) >
specifies coefficients for single-degree-of-freedom hypothesis tests. You must provide a coefficient
for every mean appearing in the GROUPMEANS= option. Specify multiple contrasts either with
additional sets of coefficients or with additional CONTRAST= options. For example, you can specify
two different contrasts of five means by using the following:

CONTRAST = (1 -1 0 0 0) (1 0 -1 0 0)

GROUPMEANS=grouped-number-list

GMEANS=grouped-number-list
specifies the group means. This option is used to implicitly set the number of groups. For informa-
tion about specifying the grouped-number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

GROUPNS=grouped-number-list

GNS=grouped-number-list
specifies the group sample sizes. The number of groups represented must be the same as with the
GROUPMEANS= option. For information about specifying the grouped-number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 6366.

GROUPWEIGHTS=grouped-number-list

GWEIGHTS=grouped-number-list
specifies the sample size allocation weights for the groups. This option controls how the total sample
size is divided between the groups. Each set of values across all groups represents relative allocation
weights. Additionally, if the NFRACTIONAL option is not used, the total sample size is restricted to be
equal to a multiple of the sum of the group weights (so that the resulting design has an integer sample
size for each group while adhering exactly to the group allocation weights). The number of groups
represented must be the same as with the GROUPMEANS= option. Values must be integers unless
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the NFRACTIONAL option is used. The default value is 1 for each group, amounting to a balanced
design. For information about specifying the grouped-number-list , see the section “Specifying Value
Lists in Analysis Statements” on page 6366.

NFRACTIONAL

NFRAC
enables fractional input and output for sample sizes. See the section “Sample Size Adjustment
Options” on page 6369 for information about the ramifications of the presence (and absence) of the
NFRACTIONAL option.

NPERGROUP=number-list

NPERG=number-list
specifies the common sample size per group or requests a solution for the common sample size per
group with a missing value (NPERGROUP==.). Use of this option implicitly specifies a balanced
design. For information about specifying the number-list , see the section “Specifying Value Lists in
Analysis Statements” on page 6366.

NTOTAL=number-list
specifies the sample size or requests a solution for the sample size with a missing value (NTOTAL=.).
For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

NULLCONTRAST=number-list

NULLC=number-list
specifies the null value of the contrast. The default value is 0. This option can be used only with
the TEST=CONTRAST analysis. For information about specifying the number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 6366.

OUTPUTORDER=INTERNAL | REVERSE | SYNTAX
controls how the input and default analysis parameters are ordered in the output. OUT-
PUTORDER=INTERNAL (the default) arranges the parameters in the output according to the following
order of their corresponding options:

• CONTRAST=
• SIDES=
• NULLCONTRAST=
• ALPHA=
• GROUPMEANS=
• STDDEV=
• GROUPWEIGHTS=
• NTOTAL=
• NPERGROUP==
• GROUPNS=
• POWER=

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the same order
in which their corresponding options are specified in the ONEWAYANOVA statement. The OUT-
PUTORDER=REVERSE option arranges the parameters in the output in the reverse of the order in
which their corresponding options are specified in the ONEWAYANOVA statement.
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POWER=number-list
specifies the desired power of the test or requests a solution for the power with a missing value
(POWER=.). The power is expressed as a probability, a number between 0 and 1, rather than as a
percentage. For information about specifying the number-list , see the section “Specifying Value Lists
in Analysis Statements” on page 6366.

SIDES=keyword-list
specifies the number of sides (or tails) and the direction of the statistical test. For information about
specifying the keyword-list , see the section “Specifying Value Lists in Analysis Statements” on
page 6366. Valid keywords are as follows:

1 one-sided with alternative hypothesis in same direction as effect

2 two-sided

U upper one-sided with alternative greater than null value

L lower one-sided with alternative less than null value

This option can be used only with the TEST=CONTRAST analysis. The default value is 2.

STDDEV=number-list

STD=number-list
specifies the error standard deviation. For information about specifying the number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 6366.

TEST=CONTRAST | OVERALL
specifies the statistical analysis. TEST=CONTRAST specifies a one-degree-of-freedom test of a
contrast of means. The test is the usual F test for the two-sided case and the usual t test for the
one-sided case. TEST=OVERALL specifies the overall F test of equality of all means. The default is
TEST=CONTRAST if the CONTRAST= option is used, and TEST=OVERALL otherwise.

Restrictions on Option Combinations

To specify the sample size and allocation, choose one of the following parameterizations:

• sample size per group in a balanced design (by using the NPERGROUP== option)

• total sample size and allocation weights (by using the NTOTAL= and GROUPWEIGHTS= options)

• individual group sample sizes (by using the GROUPNS= option)

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses supported in the ONEWAYANOVA statement.

One-Degree-of-Freedom Contrast
You can use the NPERGROUP== option in a balanced design, as in the following statements. Default values
for the SIDES=, NULLCONTRAST=, and ALPHA= options specify a two-sided test for a contrast value of
0 with a significance level of 0.05.
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proc power;
onewayanova test=contrast

contrast = (1 0 -1)
groupmeans = 3 | 7 | 8
stddev = 4
npergroup = 50
power = .;

run;

You can also specify an unbalanced design with the NTOTAL= and GROUPWEIGHTS= options:

proc power;
onewayanova test=contrast

contrast = (1 0 -1)
groupmeans = 3 | 7 | 8
stddev = 4
groupweights = (1 2 2)
ntotal = .
power = 0.9;

run;

Another way to specify the sample sizes is with the GROUPNS= option:

proc power;
onewayanova test=contrast

contrast = (1 0 -1)
groupmeans = 3 | 7 | 8
stddev = 4
groupns = (20 40 40)
power = .;

run;

Overall F Test
The following statements demonstrate a power computation for the overall F test in a one-way ANOVA. The
default of ALPHA=0.05 specifies a significance level of 0.05.

proc power;
onewayanova test=overall

groupmeans = 3 | 7 | 8
stddev = 4
npergroup = 50
power = .;

run;

PAIREDFREQ Statement
PAIREDFREQ < options > ;

The PAIREDFREQ statement performs power and sample size analyses for McNemar’s test for paired
proportions.
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Summary of Options

Table 77.14 summarizes the options available in the PAIREDFREQ statement.

Table 77.14 PAIREDFREQ Statement Options

Option Description

Define analysis
DIST= Specifies the underlying distribution assumed for the test statistic
TEST= Specifies the statistical analysis

Specify analysis information
ALPHA= Specifies the significance level
NULLDISCPROPRATIO= Specifies the null value of the ratio of discordant proportions
SIDES= Specifies the number of sides and the direction of the statistical test or

confidence interval

Specify effects
CORR= Specifies the correlation � between members of a pair
DISCPROPDIFF= Specifies the discordant proportion difference p01 � p10
DISCPROPORTIONS= Specifies the two discordant proportions, p10 and p01
DISCPROPRATIO= Specifies the ratio p01=p10
ODDSRATIO= Specifies the odds ratio Œp�1=.1 � p�1/� = Œp1�=.1 � p1�/�
PAIREDPROPORTIONS= Specifies the two paired proportions, p1� and p�1
PROPORTIONDIFF= Specifies the proportion difference p�1 � p1�
REFPROPORTION= Specifies either the reference first proportion p1� or the reference discordant

proportion p10
RELATIVERISK= Specifies the relative risk p�1=p1�
TOTALPROPDISC= Specifies the discordant proportion sum, p10 C p01
Specify sample size
NFRACTIONAL Enables fractional input and output for sample sizes
NPAIRS= Specifies the total number of proportion pairs

Specify power
POWER= Specifies the desired power of the test

Choose computational method
METHOD= Specifies the computational method

Control ordering in output
OUTPUTORDER= Controls the output order of parameters

Table 77.15 summarizes the valid result parameters in the PAIREDFREQ statement.

Table 77.15 Summary of Result Parameters in the
PAIREDFREQ Statement

Analyses Solve For Syntax

TEST=MCNEMAR METHOD=CONNOR Power POWER=.
Sample size NPAIRS=.
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Table 77.15 continued

Analyses Solve For Syntax

TEST=MCNEMAR METHOD=EXACT Power POWER=.

TEST=MCNEMAR METHOD=MIETTINEN Power POWER=.
Sample size NPAIRS=.

Dictionary of Options

ALPHA=number-list
specifies the level of significance of the statistical test. The default is 0.05, corresponding to the usual
0.05 � 100% = 5% level of significance. For information about specifying the number-list , see the
section “Specifying Value Lists in Analysis Statements” on page 6366.

CORR=number-list
specifies the correlation � between members of a pair. For information about specifying the number-list ,
see the section “Specifying Value Lists in Analysis Statements” on page 6366.

DISCPROPORTIONS=grouped-number-list

DISCPS=grouped-number-list
specifies the two discordant proportions, p10 and p01. For information about specifying the grouped-
number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

DISCPROPDIFF=number-list

DISCPDIFF=number-list
specifies the difference p01 � p10 between discordant proportions. For information about specifying
the number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

DISCPROPRATIO=number-list

DISCPRATIO=number-list
specifies the ratio p01=p10 of discordant proportions. For information about specifying the number-list ,
see the section “Specifying Value Lists in Analysis Statements” on page 6366.

DIST=EXACT_COND | NORMAL
specifies the underlying distribution assumed for the test statistic. EXACT_COND corresponds to the
exact conditional test, based on the exact binomial distribution of the two types of discordant pairs
given the total number of discordant pairs. NORMAL corresponds to the conditional test based on the
normal approximation to the binomial distribution of the two types of discordant pairs given the total
number of discordant pairs. The default value is EXACT_COND.

METHOD=CONNOR | EXACT | MIETTINEN
specifies the computational method. METHOD=EXACT (the default) uses the exact binomial
distributions of the total number of discordant pairs and the two types of discordant pairs.
METHOD=CONNOR uses an approximation from Connor (1987), and METHOD=MIETTINEN uses
an approximation from Miettinen (1968). The CONNOR and MIETTINEN methods are valid only for
DIST=NORMAL.
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NFRACTIONAL

NFRAC
enables fractional input and output for sample sizes. See the section “Sample Size Adjustment
Options” on page 6369 for information about the ramifications of the presence (and absence) of the
NFRACTIONAL option. This option cannot be used with METHOD=EXACT.

NPAIRS=number-list
specifies the total number of proportion pairs (concordant and discordant) or requests a solution for the
number of pairs with a missing value (NPAIRS=.). For information about specifying the number-list ,
see the section “Specifying Value Lists in Analysis Statements” on page 6366.

NULLDISCPROPRATIO=number-list

NULLDISCPRATIO=number-list

NULLRATIO=number-list

NULLR=number-list
specifies the null value of the ratio of discordant proportions. The default value is 1. For information
about specifying the number-list , see the section “Specifying Value Lists in Analysis Statements” on
page 6366.

ODDSRATIO=number-list

OR=number-list
specifies the odds ratio Œp�1=.1 � p�1/� = Œp1�=.1 � p1�/�. For information about specifying the number-
list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

OUTPUTORDER=INTERNAL | REVERSE | SYNTAX
controls how the input and default analysis parameters are ordered in the output. OUT-
PUTORDER=INTERNAL (the default) arranges the parameters in the output according to the following
order of their corresponding options:

• SIDES=
• NULLDISCPROPRATIO=
• ALPHA=
• PAIREDPROPORTIONS=
• PROPORTIONDIFF=
• ODDSRATIO=
• RELATIVERISK=
• CORR=
• DISCPROPORTIONS=
• DISCPROPDIFF=
• TOTALPROPDISC=
• REFPROPORTION=
• DISCPROPRATIO=
• NPAIRS=
• POWER=

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the same order
in which their corresponding options are specified in the PAIREDFREQ statement. The OUT-
PUTORDER=REVERSE option arranges the parameters in the output in the reverse of the order
in which their corresponding options are specified in the PAIREDFREQ statement.
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PAIREDPROPORTIONS=grouped-number-list

PPROPORTIONS=grouped-number-list

PAIREDPS=grouped-number-list

PPS=grouped-number-list
specifies the two paired proportions, p1� and p�1. For information about specifying the grouped-
number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

POWER=number-list
specifies the desired power of the test or requests a solution for the power with a missing value
(POWER=.). The power is expressed as a probability, a number between 0 and 1, rather than as a
percentage. For information about specifying the number-list , see the section “Specifying Value Lists
in Analysis Statements” on page 6366.

PROPORTIONDIFF=number-list

PDIFF=number-list
specifies the proportion difference p�1 � p1�. For information about specifying the number-list , see the
section “Specifying Value Lists in Analysis Statements” on page 6366.

REFPROPORTION=number-list

REFP=number-list
specifies either the reference first proportion p1� (when used in conjunction with the PROPORTION-
DIFF=, ODDSRATIO=, or RELATIVERISK= option) or the reference discordant proportion p10
(when used in conjunction with the DISCPROPDIFF= or DISCPROPRATIO= option). For information
about specifying the number-list , see the section “Specifying Value Lists in Analysis Statements” on
page 6366.

RELATIVERISK=number-list

RR=number-list
specifies the relative risk p�1=p1�. For information about specifying the number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 6366.

SIDES=keyword-list
specifies the number of sides (or tails) and the direction of the statistical test or confidence interval.
For information about specifying the keyword-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366. Valid keywords and their interpretation are as follows:

1 one-sided with alternative hypothesis in same direction as effect

2 two-sided

U upper one-sided with alternative greater than null value

L lower one-sided with alternative less than null value

If the effect size is zero, then SIDES=1 is not permitted; instead, specify the direction of the test
explicitly in this case with either SIDES=L or SIDES=U. The default value is 2.

TEST=MCNEMAR
specifies the McNemar test of paired proportions. This is the default test option.
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TOTALPROPDISC=number-list

TOTALPDISC=number-list

PDISC=number-list
specifies the sum of the two discordant proportions, p10 C p01. For information about specifying the
number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

Restrictions on Option Combinations

To specify the proportions, choose one of the following parameterizations:

• discordant proportions (using the DISCPROPORTIONS= option)

• difference and sum of discordant proportions (using the DISCPROPDIFF= and TOTAL-
PROPDISC=options)

• difference of discordant proportions and reference discordant proportion (using the DISCPROPDIFF=
and REFPROPORTION= options)

• ratio of discordant proportions and reference discordant proportion (using the DISCPROPRATIO= and
REFPROPORTION= options)

• ratio and sum of discordant proportions (using the DISCPROPRATIO= and TOTAL-
PROPDISC=options)

• paired proportions and correlation (using the PAIREDPROPORTIONS= and CORR= options)

• proportion difference, reference proportion, and correlation (using the PROPORTIONDIFF=, REF-
PROPORTION=, and CORR= options)

• odds ratio, reference proportion, and correlation (using the ODDSRATIO=, REFPROPORTION=, and
CORR= options)

• relative risk, reference proportion, and correlation (using the RELATIVERISK=, REFPROPORTION=,
and CORR= options)

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses supported in the PAIREDFREQ statement.

McNemar Exact Conditional Test
You can express effects in terms of the individual discordant proportions, as in the following statements.
Default values for the TEST=, SIDES=, ALPHA=, and NULLDISCPROPRATIO= options specify a two-
sided McNemar test for no effect with a significance level of 0.05.

proc power;
pairedfreq dist=exact_cond

discproportions = 0.15 | 0.45
npairs = 80
power = .;

run;

You can also express effects in terms of the difference and sum of discordant proportions:
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proc power;
pairedfreq dist=exact_cond

discpropdiff = 0.3
totalpropdisc = 0.6
npairs = 80
power = .;

run;

You can also express effects in terms of the difference of discordant proportions and the reference discordant
proportion:

proc power;
pairedfreq dist=exact_cond

discpropdiff = 0.3
refproportion = 0.15
npairs = 80
power = .;

run;

You can also express effects in terms of the ratio of discordant proportions and the denominator of the ratio:

proc power;
pairedfreq dist=exact_cond

discpropratio = 3
refproportion = 0.15
npairs = 80
power = .;

run;

You can also express effects in terms of the ratio and sum of discordant proportions:

proc power;
pairedfreq dist=exact_cond

discpropratio = 3
totalpropdisc = 0.6
npairs = 80
power = .;

run;

You can also express effects in terms of the paired proportions and correlation:

proc power;
pairedfreq dist=exact_cond

pairedproportions = 0.6 | 0.8
corr = 0.4
npairs = 45
power = .;

run;

You can also express effects in terms of the proportion difference, reference proportion, and correlation:

proc power;
pairedfreq dist=exact_cond

proportiondiff = 0.2
refproportion = 0.6
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corr = 0.4
npairs = 45
power = .;

run;

You can also express effects in terms of the odds ratio, reference proportion, and correlation:

proc power;
pairedfreq dist=exact_cond

oddsratio = 2.66667
refproportion = 0.6
corr = 0.4
npairs = 45
power = .;

run;

You can also express effects in terms of the relative risk, reference proportion, and correlation:

proc power;
pairedfreq dist=exact_cond

relativerisk = 1.33333
refproportion = 0.6
corr = 0.4
npairs = 45
power = .;

run;

McNemar Normal Approximation Test
The following statements demonstrate a sample size computation for the normal-approximate McNemar test.
The default value for the METHOD= option specifies an exact sample size computation. Default values for
the TEST=, SIDES=, ALPHA=, and NULLDISCPROPRATIO= options specify a two-sided McNemar test
for no effect with a significance level of 0.05.

proc power;
pairedfreq dist=normal method=connor

discproportions = 0.15 | 0.45
npairs = .
power = .9;

run;

PAIREDMEANS Statement
PAIREDMEANS < options > ;

The PAIREDMEANS statement performs power and sample size analyses for t tests, equivalence tests, and
confidence interval precision involving paired samples.

Summary of Options

Table 77.14 summarizes the options available in the PAIREDMEANS statement.
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Table 77.16 PAIREDMEANS Statement Options

Option Description

Define analysis
CI= Specifies an analysis of precision of the confidence interval for the mean

difference
DIST= Specifies the underlying distribution assumed for the test statistic
TEST= Specifies the statistical analysis

Specify analysis information
ALPHA= Specifies the significance level
LOWER= Specifies the lower equivalence bound
NULLDIFF= Specifies the null mean difference
NULLRATIO= Specifies the null mean ratio
SIDES= Specifies the number of sides and the direction of the statistical test or

confidence interval
UPPER= Specifies the upper equivalence bound

Specify effects
HALFWIDTH= Specifies the desired confidence interval half-width
MEANDIFF= Specifies the mean difference
MEANRATIO= Specifies the geometric mean ratio, 2=1
PAIREDMEANS= Specifies the two paired means

Specify variability
CORR= Specifies the correlation between members of a pair
CV= Specifies the common coefficient of variation
PAIREDCVS= Specifies the coefficient of variation for each member of a pair
PAIREDSTDDEVS= Specifies the standard deviation of each member of a pair
STDDEV= Specifies the common standard deviation

Specify sample size
NFRACTIONAL Enables fractional input and output for sample sizes
NPAIRS= Specifies the number of pairs

Specify power and related probabilities
POWER= Specifies the desired power of the test
PROBTYPE= Specifies the type of probability for the PROBWIDTH= option
PROBWIDTH= Specifies the probability of obtaining a confidence interval half-width less

than or equal to the value specified by the HALFWIDTH=

Control ordering in output
OUTPUTORDER= Controls the output order of parameters

Table 77.17 summarizes the valid result parameters for different analyses in the PAIREDMEANS statement.

Table 77.17 Summary of Result Parameters in the
PAIREDMEANS Statement

Analyses Solve For Syntax

TEST=DIFF Power POWER=.
Sample size NPAIRS=.
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Table 77.17 continued

Analyses Solve For Syntax

TEST=RATIO Power POWER=.
Sample size NPAIRS=.

TEST=EQUIV_DIFF Power POWER=.
Sample size NPAIRS=.

TEST=EQUIV_RATIO Power POWER=.
Sample size NPAIRS=.

CI=DIFF Prob(width) PROBWIDTH=.
Sample size NPAIRS=.

Dictionary of Options

ALPHA=number-list
specifies the level of significance of the statistical test. The default is 0.05, corresponding to the usual
0.05 � 100% = 5% level of significance. If the CI= and SIDES=1 options are used, then the value must
be less than 0.5. For information about specifying the number-list , see the section “Specifying Value
Lists in Analysis Statements” on page 6366.

CI

CI=DIFF
specifies an analysis of precision of the confidence interval for the mean difference. Instead of power,
the relevant probability for this analysis is the probability of achieving a desired precision. Specifically,
it is the probability that the half-width of the observed confidence interval will be at most the value
specified by the HALFWIDTH= option. If neither the CI= option nor the TEST= option is used, the
default is TEST=DIFF.

CORR=number-list
specifies the correlation between members of a pair. For tests that assume lognormal data
(DIST=LOGNORMAL, or TEST=RATIO or TEST=EQUIV_RATIO), values of the CORR= op-
tion are restricted to the range .�L; �U /, where

�L D

exp
�
�
�
log.CV21 C 1/ log.CV

2
2 C 1/

� 1
2

�
� 1

CV1CV2

�U D

exp
��

log.CV21 C 1/ log.CV
2
2 C 1/

� 1
2

�
� 1

CV1CV2

and CV1 are the CV2 coefficient of variation values specified by the CV= or PAIREDCVS= option.
See “Paired t Test for Mean Ratio with Lognormal Data (TEST=RATIO)” on page 6408 for more
information about this restriction on correlation values. For information about specifying the number-
list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.
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CV=number-list
specifies the coefficient of variation that is assumed to be common to both members of a pair. The
coefficient of variation is defined as the ratio of the standard deviation to the mean on the original data
scale. You can use this option only with DIST=LOGNORMAL. For information about specifying the
number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

DIST=LOGNORMAL | NORMAL
specifies the underlying distribution assumed for the test statistic. NORMAL corresponds the normal
distribution, and LOGNORMAL corresponds to the lognormal distribution. The default value (also
the only acceptable value in each case) is NORMAL for TEST=DIFF, TEST=EQUIV_DIFF, and
CI=DIFF; and LOGNORMAL for TEST=RATIO and TEST=EQUIV_RATIO.

HALFWIDTH=number-list
specifies the desired confidence interval half-width. The half-width is defined as the distance between
the point estimate and a finite endpoint. This option can be used only with the CI=DIFF analysis.
For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

LOWER=number-list
specifies the lower equivalence bound for the mean difference or mean ratio, in the original scale
(whether DIST=NORMAL or DIST=LOGNORMAL). This option can be used only with the
TEST=EQUIV_DIFF and TEST=EQUIV_RATIO analyses. For information about specifying the
number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

MEANDIFF=number-list
specifies the mean difference, defined as the mean of the difference between the second and first mem-
bers of a pair, �2 � �1. This option can be used only with the TEST=DIFF and TEST=EQUIV_DIFF
analyses. When TEST=EQUIV_DIFF, the mean difference is interpreted as the treatment mean minus
the reference mean. For information about specifying the number-list , see the section “Specifying
Value Lists in Analysis Statements” on page 6366.

MEANRATIO=number-list
specifies the geometric mean ratio, defined as 2=1. This option can be used only with the
TEST=RATIO and TEST=EQUIV_RATIO analyses. When TEST=EQUIV_RATIO, the mean ratio is
interpreted as the treatment mean divided by the reference mean. For information about specifying the
number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

NFRACTIONAL

NFRAC
enables fractional input and output for sample sizes. See the section “Sample Size Adjustment
Options” on page 6369 for information about the ramifications of the presence (and absence) of the
NFRACTIONAL option.

NPAIRS=number-list
specifies the number of pairs or requests a solution for the number of pairs with a missing value
(NPAIRS=.). For information about specifying the number-list , see the section “Specifying Value Lists
in Analysis Statements” on page 6366.
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NULLDIFF=number-list

NULLD=number-list
specifies the null mean difference. The default value is 0. This option can be used only with the
TEST=DIFF analysis. For information about specifying the number-list , see the section “Specifying
Value Lists in Analysis Statements” on page 6366.

NULLRATIO=number-list

NULLR=number-list
specifies the null mean ratio. The default value is 1. This option can be used only with the
TEST=RATIO analysis. For information about specifying the number-list , see the section “Spec-
ifying Value Lists in Analysis Statements” on page 6366.

OUTPUTORDER=INTERNAL | REVERSE | SYNTAX
controls how the input and default analysis parameters are ordered in the output. OUT-
PUTORDER=INTERNAL (the default) arranges the parameters in the output according to the following
order of their corresponding options:

• SIDES=
• NULLDIFF=
• NULLRATIO=
• LOWER=
• UPPER=
• ALPHA=
• PAIREDMEANS=
• MEANDIFF=
• MEANRATIO=
• HALFWIDTH=
• STDDEV=
• PAIREDSTDDEVS=
• CV=
• PAIREDCVS=
• CORR=
• NPAIRS=
• POWER=
• PROBTYPE=
• PROBWIDTH=

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the same order
in which their corresponding options are specified in the PAIREDMEANS statement. The OUT-
PUTORDER=REVERSE option arranges the parameters in the output in the reverse of the order in
which their corresponding options are specified in the PAIREDMEANS statement.

PAIREDCVS=grouped-number-list
specifies the coefficient of variation for each member of a pair. Unlike the CV= option, the PAIRED-
CVS= option supports different values for each member of a pair. The coefficient of variation is
defined as the ratio of the standard deviation to the mean on the original data scale. Values must be
nonnegative (unless both are equal to zero, which is permitted). This option can be used only with
DIST=LOGNORMAL. For information about specifying the grouped-number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 6366.
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PAIREDMEANS=grouped-number-list

PMEANS=grouped-number-list
specifies the two paired means, in the original scale. The means are arithmetic if DIST=NORMAL and
geometric if DIST=LOGNORMAL. This option cannot be used with the CI=DIFF analysis. When
TEST=EQUIV_DIFF, the means are interpreted as the reference mean (first) and the treatment mean
(second). For information about specifying the grouped-number-list , see the section “Specifying Value
Lists in Analysis Statements” on page 6366.

PAIREDSTDDEVS=grouped-number-list

PAIREDSTDS=grouped-number-list

PSTDDEVS=grouped-number-list

PSTDS=grouped-number-list
specifies the standard deviation of each member of a pair. Unlike the STDDEV= option, the PAIRED-
STDDEVS= option supports different values for each member of a pair. This option can be used only
with DIST=NORMAL. For information about specifying the grouped-number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 6366.

POWER=number-list
specifies the desired power of the test or requests a solution for the power with a missing value
(POWER=.). The power is expressed as a probability, a number between 0 and 1, rather than as a
percentage. This option cannot be used with the CI=DIFF analysis. For information about specifying
the number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

PROBTYPE=keyword-list
specifies the type of probability for the PROBWIDTH= option. A value of CONDITIONAL (the
default) indicates the conditional probability that the confidence interval half-width is at most the
value specified by the HALFWIDTH= option, given that the true mean difference is captured by the
confidence interval. A value of UNCONDITIONAL indicates the unconditional probability that the
confidence interval half-width is at most the value specified by the HALFWIDTH= option. you can
use the alias GIVENVALIDITY for CONDITIONAL. The PROBTYPE= option can be used only with
the CI=DIFF analysis. For information about specifying the keyword-list , see the section “Specifying
Value Lists in Analysis Statements” on page 6366.

CONDITIONAL width probability conditional on interval containing the mean

UNCONDITIONAL unconditional width probability

PROBWIDTH=number-list
specifies the desired probability of obtaining a confidence interval half-width less than or equal to the
value specified by the HALFWIDTH= option. A missing value (PROBWIDTH=.) requests a solution
for this probability. The type of probability is controlled with the PROBTYPE= option. Values are
expressed as probabilities (for example, 0.9) rather than percentages. This option can be used only with
the CI=DIFF analysis. For information about specifying the number-list , see the section “Specifying
Value Lists in Analysis Statements” on page 6366.

SIDES=keyword-list
specifies the number of sides (or tails) and the direction of the statistical test or confidence interval.
For information about specifying the keyword-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366. Valid keywords and their interpretation for the TEST= analyses are as
follows:
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1 one-sided with alternative hypothesis in same direction as effect

2 two-sided

U upper one-sided with alternative greater than null value

L lower one-sided with alternative less than null value

For confidence intervals, SIDES=U refers to an interval between the lower confidence limit and infinity,
and SIDES=L refers to an interval between minus infinity and the upper confidence limit. For both of
these cases and SIDES=1, the confidence interval computations are equivalent. The SIDES= option
cannot be used with the TEST=EQUIV_DIFF and TEST=EQUIV_RATIO analyses. The default value
is 2.

STDDEV=number-list

STD=number-list
specifies the standard deviation assumed to be common to both members of a pair. This option can be
used only with DIST=NORMAL. For information about specifying the number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 6366.

TEST=DIFF | EQUIV_DIFF | EQUIV_RATIO | RATIO

TEST
specifies the statistical analysis. TEST or TEST=DIFF (the default) specifies a paired t test on the
mean difference. TEST=EQUIV_DIFF specifies an additive equivalence test of the mean difference by
using a two one-sided tests (TOST) analysis (Schuirmann 1987). TEST=EQUIV_RATIO specifies a
multiplicative equivalence test of the mean ratio by using a TOST analysis. TEST=RATIO specifies a
paired t test on the geometric mean ratio. If neither the TEST= option nor the CI= option is used, the
default is TEST=DIFF.

UPPER=number-list
specifies the upper equivalence bound for the mean difference or mean ratio, in the original scale
(whether DIST=NORMAL or DIST=LOGNORMAL). This option can be used only with the
TEST=EQUIV_DIFF and TEST=EQUIV_RATIO analyses. For information about specifying the
number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

Restrictions on Option Combinations

To define the analysis, choose one of the following parameterizations:

• a statistical test (by using the TEST= option)

• confidence interval precision (by using the CI= option)

To specify the means, choose one of the following parameterizations:

• individual means (by using the PAIREDMEANS= option)

• mean difference (by using the MEANDIFF= option)

• mean ratio (by using the MEANRATIO= option)
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To specify the coefficient of variation, choose one of the following parameterizations:

• common coefficient of variation (by using the CV= option)

• individual coefficients of variation (by using the PAIREDCVS= option)

To specify the standard deviation, choose one of the following parameterizations:

• common standard deviation (by using the STDDEV= option)

• individual standard deviations (by using the PAIREDSTDDEVS= option)

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses supported in the PAIREDMEANS statement.

Paired t Test
You can express effects in terms of the mean difference and variability in terms of a correlation and common
standard deviation, as in the following statements. Default values for the DIST=, SIDES=, NULLDIFF=, and
ALPHA= options specify a two-sided test for no difference with a normal distribution and a significance
level of 0.05.

proc power;
pairedmeans test=diff

meandiff = 7
corr = 0.4
stddev = 12
npairs = 50
power = .;

run;

You can also express effects in terms of individual means and variability in terms of correlation and individual
standard deviations:

proc power;
pairedmeans test=diff

pairedmeans = 8 | 15
corr = 0.4
pairedstddevs = (7 12)
npairs = .
power = 0.9;

run;

Paired t Test of Mean Ratio with Lognormal Data
You can express variability in terms of correlation and a common coefficient of variation, as in the following
statements. Defaults for the DIST=, SIDES=, NULLRATIO= and ALPHA= options specify a two-sided test
of mean ratio = 1 assuming a lognormal distribution and a significance level of 0.05.
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proc power;
pairedmeans test=ratio

meanratio = 7
corr = 0.3
cv = 1.2
npairs = 30
power = .;

run;

You can also express variability in terms of correlation and individual coefficients of variation:

proc power;
pairedmeans test=ratio

meanratio = 7
corr = 0.3
pairedcvs = 0.8 | 0.9
npairs = 30
power = .;

run;

Additive Equivalence Test for Mean Difference with Normal Data
The following statements demonstrate a sample size computation for a TOST equivalence test for a normal
mean difference. Default values for the DIST= and ALPHA= options specify a normal distribution and a
significance level of 0.05.

proc power;
pairedmeans test=equiv_diff

lower = 2
upper = 5
meandiff = 4
corr = 0.2
stddev = 8
npairs = .
power = 0.9;

run;

Multiplicative Equivalence Test for Mean Ratio with Lognormal Data
The following statements demonstrate a power computation for a TOST equivalence test for a lognormal
mean ratio. Default values for the DIST= and ALPHA= options specify a lognormal distribution and a
significance level of 0.05.

proc power;
pairedmeans test=equiv_ratio

lower = 3
upper = 7
meanratio = 5
corr = 0.2
cv = 1.1
npairs = 50
power = .;

run;
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Confidence Interval for Mean Difference
By default CI=DIFF analyzes the conditional probability of obtaining the desired precision, given that the
interval contains the true mean difference, as in the following statements. The defaults of SIDES=2 and
ALPHA=0.05 specify a two-sided interval with a confidence level of 0.95.

proc power;
pairedmeans ci = diff

halfwidth = 4
corr = 0.35
stddev = 8
npairs = 30
probwidth = .;

run;

PLOT Statement
PLOT < plot-options > < / graph-options > ;

The PLOT statement produces a graph or set of graphs for the sample size analysis defined by the previous
analysis statement. The plot-options define the plot characteristics, and the graph-options are SAS/GRAPH-
style options. If ODS Graphics is enabled, then the PLOT statement uses ODS Graphics to create graphs. For
example:

ods graphics on;

proc power;
onesamplemeans

mean = 5 10
ntotal = 150
stddev = 30 50
power = .;

plot x=n min=100 max=200;
run;

ods graphics off;

Otherwise, traditional graphics are produced. For example:

ods graphics off;

proc power;
onesamplemeans

mean = 5 10
ntotal = 150
stddev = 30 50
power = .;

plot x=n min=100 max=200;
run;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and Disabling
ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”
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Options

You can specify the following plot-options in the PLOT statement.

INTERPOL=JOIN | NONE
specifies the type of curve to draw through the computed points. The INTERPOL=JOIN option
connects computed points by straight lines. The INTERPOL=NONE option leaves computed points
unconnected.

KEY=BYCURVE < ( bycurve-options ) >

KEY=BYFEATURE < ( byfeature-options ) >

KEY=ONCURVES
specifies the style of key (or “legend”) for the plot. The default is KEY=BYFEATURE, which specifies
a key with a column of entries for each plot feature (line style, color, and/or symbol). Each entry shows
the mapping between a value of the feature and the value(s) of the analysis parameter(s) linked to that
feature. The KEY=BYCURVE option specifies a key with each row identifying a distinct curve in the
plot. The KEY=ONCURVES option places a curve-specific label adjacent to each curve.

You can specify the following byfeature-options in parentheses after the KEY=BYCURVE option.

NUMBERS=OFF | ON
specifies how the key should identify curves. If NUMBERS=OFF, then the key includes symbol,
color, and line style samples to identify the curves. If NUMBERS=ON, then the key includes
numbers matching numeric labels placed adjacent to the curves. The default is NUMBERS=ON.

POS=BOTTOM | INSET
specifies the position of the key. The POS=BOTTOM option places the key below the X axis.
The POS=INSET option places the key inside the plotting region and attempts to choose the least
crowded corner. The default is POS=BOTTOM.

You can specify the following byfeature-options in parentheses after KEY=BYFEATURE option.

POS=BOTTOM | INSET
specifies the position of the key. The POS=BOTTOM option places the key below the X axis.
The POS=INSET option places the key inside the plotting region and attempts to choose the least
crowded corner. The default is POS=BOTTOM.

MARKERS=ANALYSIS | COMPUTED | NICE | NONE
specifies the locations for plotting symbols.

The MARKERS=ANALYSIS option places plotting symbols at locations corresponding to the values
of the relevant input parameter from the analysis statement preceding the PLOT statement.

The MARKERS=COMPUTED option (the default) places plotting symbols at the locations of actual
computed points from the sample size analysis.

The MARKERS=NICE option places plotting symbols at tick mark locations (corresponding to the
argument axis).

The MARKERS=NONE option disables plotting symbols.
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MAX=number | DATAMAX
specifies the maximum of the range of values for the parameter associated with the “argument” axis
(the axis that is not representing the parameter being solved for). The default is DATAMAX, which
specifies the maximum value that occurs for this parameter in the analysis statement that precedes the
PLOT statement.

MIN=number | DATAMIN
specifies the minimum of the range of values for the parameter associated with the “argument” axis
(the axis that is not representing the parameter being solved for). The default is DATAMIN, which
specifies the minimum value that occurs for this parameter in the analysis statement that precedes the
PLOT statement.

NPOINTS=number

NPTS=number
specifies the number of values for the parameter associated with the “argument” axis (the axis that is
not representing the parameter being solved for). You cannot use the NPOINTS= and STEP= options
simultaneously. The default value for typical situations is 20.

STEP=number
specifies the increment between values of the parameter associated with the “argument” axis (the axis
that is not representing the parameter being solved for). You cannot use the STEP= and NPOINTS=
options simultaneously. By default, the NPOINTS= option is used instead of the STEP= option.

VARY ( feature < BY parameter-list > < , . . . , feature < BY parameter-list > > )
specifies how plot features should be linked to varying analysis parameters. Available plot features are
COLOR, LINESTYLE, PANEL, and SYMBOL. A “panel” refers to a separate plot with a heading
identifying the subset of values represented in the plot.

The parameter-list is a list of one or more names separated by spaces. Each name must match the name
of an analysis option used in the analysis statement preceding the PLOT statement. Also, the name
must be the primary name for the analysis option—that is, the one listed first in the syntax description.

If you omit the < BY parameter-list > portion for a feature, then one or more multivalued parameters
from the analysis will be automatically selected for you.

X=EFFECT | N | POWER
specifies a plot with the requested type of parameter on the X axis and the parameter being solved for
on the Y axis. When X=EFFECT, the parameter assigned to the X axis is the one most representative of
“effect size.” When X=N, the parameter assigned to the X axis is the sample size. When X=POWER,
the parameter assigned to the X axis is the one most representative of “power” (either power itself or
a similar probability, such as Prob(Width) for confidence interval analyses). You cannot use the X=
and Y= options simultaneously. The default is X=POWER, unless the result parameter is power or
Prob(Width), in which case the default is X=N.

You can use the X=N option only when a scalar sample size parameter is used as input in the analysis.
For example, X=N can be used with total sample size or sample size per group, or with two group
sample sizes when one is being solved for.

Table 77.18 summarizes the parameters representing effect size in different analyses.
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Table 77.18 Effect Size Parameters for Different Analyses

Analysis Statement and Options Effect Size Parameters

LOGISTIC None

MULTREG Partial correlation or R2

difference

ONECORR Correlation

ONESAMPLEFREQ TEST Proportion

ONESAMPLEFREQ CI CI half-width

ONESAMPLEMEANS TEST=T,
ONESAMPLEMEANS TEST=EQUIV Mean

ONESAMPLEMEANS CI=T CI half-width

ONEWAYANOVA None

PAIREDFREQ Discordant proportion difference
or ratio

PAIREDMEANS TEST=DIFF,
PAIREDMEANS TEST=EQUIV_DIFF Mean difference

PAIREDMEANS TEST=RATIO,
PAIREDMEANS TEST=EQUIV_RATIO Mean ratio

PAIREDMEANS CI=DIFF CI half-width

TWOSAMPLEFREQ Proportion difference, odds ratio,
or relative risk

TWOSAMPLEMEANS TEST=DIFF,
TWOSAMPLEMEANS TEST=DIFF_SATT,
TWOSAMPLEMEANS TEST=EQUIV_DIFF Mean difference

TWOSAMPLEMEANS TEST=RATIO,
TWOSAMPLEMEANS TEST=EQUIV_RATIO Mean ratio

TWOSAMPLEMEANS CI=DIFF CI half-width

TWOSAMPLESURVIVAL Hazard ratio if used, else none

TWOSAMPLEWILCOXON None

XOPTS=( x-options )
specifies plot characteristics pertaining to the X axis.

You can specify the following x-options in parentheses.

CROSSREF=NO | YES
specifies whether the reference lines defined by the REF= x-option should be crossed with a
reference line on the Y axis that indicates the solution point on the curve.
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REF=number-list
specifies locations for reference lines extending from the X axis across the entire plotting region.
For information about specifying the number-list , see the section “Specifying Value Lists in
Analysis Statements” on page 6366.

Y=EFFECT | N | POWER
specifies a plot with the requested type of parameter on the Y axis and the parameter being solved for
on the X axis. When Y=EFFECT, the parameter assigned to the Y axis is the one most representative of
“effect size.” When Y=N, the parameter assigned to the Y axis is the sample size. When Y=POWER,
the parameter assigned to the Y axis is the one most representative of “power” (either power itself or a
similar probability, such as Prob(Width) for confidence interval analyses). You cannot use the Y= and
X= options simultaneously. By default, the X= option is used instead of the Y= option.

YOPTS=( y-options )
specifies plot characteristics pertaining to the Y axis.

You can specify the following y-options in parentheses.

CROSSREF=NO | YES
specifies whether the reference lines defined by the REF= y-option should be crossed with a
reference line on the X axis that indicates the solution point on the curve.

REF=number-list
specifies locations for reference lines extending from the Y axis across the entire plotting region.
For information about specifying the number-list , see the section “Specifying Value Lists in
Analysis Statements” on page 6366.

You can specify the following graph-options in the PLOT statement after a slash (/).

DESCRIPTION=’string ’
specifies a descriptive string of up to 40 characters that appears in the “Description” field of the
graphics catalog. The description does not appear on the plots. By default, PROC POWER assigns a
description either of the form “Y versus X” (for a single-panel plot) or of the form “Y versus X (S),”
where Y is the parameter on the Y axis, X is the parameter on the X axis, and S is a description of the
subset represented on the current panel of a multipanel plot.

NAME=’string ’
specifies a name of up to eight characters for the catalog entry for the plot. The default name is PLOTn,
where n is the number of the plot statement within the current invocation of PROC POWER. If the
name duplicates the name of an existing entry, SAS/GRAPH software adds a number to the duplicate
name to create a unique entry—for example, PLOT11 and PLOT12 for the second and third panels of
a multipanel plot generated in the first PLOT statement in an invocation of PROC POWER.

TWOSAMPLEFREQ Statement
TWOSAMPLEFREQ < options > ;

The TWOSAMPLEFREQ statement performs power and sample size analyses for tests of two independent
proportions. The Farrington-Manning score, Pearson’s chi-square, Fisher’s exact, and likelihood ratio
chi-square tests are supported.
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Summary of Options

Table 77.19 summarizes the options available in the TWOSAMPLEFREQ statement.

Table 77.19 TWOSAMPLEFREQ Statement Options

Option Description

Define analysis
TEST= Specifies the statistical analysis

Specify analysis information
ALPHA= Specifies the significance level
NULLODDSRATIO= Specifies the null odds ratio
NULLPROPORTIONDIFF= Specifies the null proportion difference
NULLRELATIVERISK= Specifies the null relative risk
SIDES= Specifies the number of sides and the direction of the statistical test or

confidence interval

Specify effects
GROUPPROPORTIONS= Specifies the two independent proportions, p1 and p2
ODDSRATIO= Specifies the odds ratio Œp2=.1 � p2/� = Œp1=.1 � p1/�
PROPORTIONDIFF= Specifies the proportion difference p2 � p1
REFPROPORTION= Specifies the reference proportion p1
RELATIVERISK= Specifies the relative risk p2=p1
Specify sample size and allocation
GROUPNS= Specifies the two group sample sizes
GROUPWEIGHTS= Specifies the sample size allocation weights for the two groups
NFRACTIONAL Enables fractional input and output for sample sizes
NPERGROUP= Specifies the common sample size per group
NTOTAL= Specifies the sample size

Specify power
POWER= Specifies the desired power of the test

Control ordering in output
OUTPUTORDER= Controls the output order of parameters

Table 77.20 summarizes the valid result parameters for different analyses in the TWOSAMPLEFREQ
statement.

Table 77.20 Summary of Result Parameters in the
TWOSAMPLEFREQ Statement

Analyses Solve For Syntax

TEST=FISHER Power POWER=.
Sample size NTOTAL=.

NPERGROUP=.
TEST=FM Power POWER=.

Sample size NTOTAL=.
NPERGROUP=.
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Table 77.20 continued

Analyses Solve For Syntax

TEST=LRCHI Power POWER=.
Sample size NTOTAL=.

NPERGROUP=.
TEST=PCHI Power POWER=.

Sample size NTOTAL=.
NPERGROUP=.

Dictionary of Options

ALPHA=number-list
specifies the level of significance of the statistical test. The default is 0.05, corresponding to the usual
0.05 � 100% = 5% level of significance. For information about specifying the number-list , see the
section “Specifying Value Lists in Analysis Statements” on page 6366.

GROUPPROPORTIONS=grouped-number-list

GPROPORTIONS=grouped-number-list

GROUPPS=grouped-number-list

GPS=grouped-number-list
specifies the two independent proportions, p1 and p2. For information about specifying the grouped-
number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

GROUPNS=grouped-number-list

GNS=grouped-number-list
specifies the two group sample sizes. For information about specifying the grouped-number-list , see
the section “Specifying Value Lists in Analysis Statements” on page 6366.

GROUPWEIGHTS=grouped-number-list

GWEIGHTS=grouped-number-list
specifies the sample size allocation weights for the two groups. This option controls how the total
sample size is divided between the two groups. Each pair of values for the two groups represents
relative allocation weights. Additionally, if the NFRACTIONAL option is not used, the total sample
size is restricted to be equal to a multiple of the sum of the two group weights (so that the resulting
design has an integer sample size for each group while adhering exactly to the group allocation
weights). Values must be integers unless the NFRACTIONAL option is used. The default value is
(1 1), a balanced design with a weight of 1 for each group. For information about specifying the
grouped-number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

NFRACTIONAL

NFRAC
enables fractional input and output for sample sizes. See the section “Sample Size Adjustment
Options” on page 6369 for information about the ramifications of the presence (and absence) of the
NFRACTIONAL option.
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NPERGROUP=number-list

NPERG=number-list
specifies the common sample size per group or requests a solution for the common sample size per
group with a missing value (NPERGROUP=.). Use of this option implicitly specifies a balanced design.
For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

NTOTAL=number-list
specifies the sample size or requests a solution for the sample size with a missing value (NTOTAL=.).
For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

NULLODDSRATIO=number-list

NULLOR=number-list
specifies the null odds ratio. You can specify this option only if you also specify the ODDSRATIO= and
TEST=PCHI options. For information about specifying the number-list , see the section “Specifying
Value Lists in Analysis Statements” on page 6366. By default, NULLOR=1.

NULLPROPORTIONDIFF=number-list

NULLPDIFF=number-list
specifies the null proportion difference. You can specify this option only if you also specify the
GROUPPROPORTIONS= or PROPORTIONDIFF= option and the TEST=FM or TEST=PCHI option.
If you are using a non-default null value, then TEST=FM is recommended. For information about spec-
ifying the number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.
By default, NULLPDIFF=0.

NULLRELATIVERISK=number-list

NULLRR=number-list
specifies the null relative risk. You can specify this option only if you also specify the RELA-
TIVERISK= and TEST=PCHI options. For information about specifying the number-list , see the
section “Specifying Value Lists in Analysis Statements” on page 6366. By default, NULLRR=1.

ODDSRATIO=number-list

OR=number-list
specifies the odds ratio Œp2=.1 � p2/� = Œp1=.1 � p1/�. For information about specifying the number-
list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

OUTPUTORDER=INTERNAL | REVERSE | SYNTAX
controls how the input and default analysis parameters are ordered in the output. OUT-
PUTORDER=INTERNAL (the default) arranges the parameters in the output according to the following
order of their corresponding options:

• SIDES=
• NULLPROPORTIONDIFF=
• NULLODDSRATIO=
• NULLRELATIVERISK=
• ALPHA=
• GROUPPROPORTIONS=
• REFPROPORTION=
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• PROPORTIONDIFF=
• ODDSRATIO=
• RELATIVERISK=
• GROUPWEIGHTS=
• NTOTAL=
• NPERGROUP=
• GROUPNS=
• POWER=

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the same order
in which their corresponding options are specified in the TWOSAMPLEFREQ statement. The
OUTPUTORDER=REVERSE option arranges the parameters in the output in the reverse of the order
in which their corresponding options are specified in the TWOSAMPLEFREQ statement.

POWER=number-list
specifies the desired power of the test or requests a solution for the power with a missing value
(POWER=.). The power is expressed as a probability, a number between 0 and 1, rather than as a
percentage. For information about specifying the number-list , see the section “Specifying Value Lists
in Analysis Statements” on page 6366.

PROPORTIONDIFF=number-list

PDIFF=number-list
specifies the proportion difference p2 � p1. For information about specifying the number-list , see the
section “Specifying Value Lists in Analysis Statements” on page 6366.

REFPROPORTION=number-list

REFP=number-list
specifies the reference proportion p1. For information about specifying the number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 6366.

RELATIVERISK=number-list

RR=number-list
specifies the relative risk p2=p1. For information about specifying the number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 6366.

SIDES=keyword-list
specifies the number of sides (or tails) and the direction of the statistical test or confidence interval.
For information about specifying the keyword-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366. Valid keywords and their interpretation are as follows:

1 one-sided with alternative hypothesis in same direction as effect

2 two-sided

U upper one-sided with alternative greater than null value

L lower one-sided with alternative less than null value

If the effect size is zero, then SIDES=1 is not permitted; instead, specify the direction of the test
explicitly in this case with either SIDES=L or SIDES=U. The default value is 2.
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TEST=FISHER | FM | LRCHI | PCHI
specifies the statistical analysis. You can specify the following values:

FISHER specifies Fisher’s exact test.

FM specifies the score test of Farrington and Manning (1990).

LRCHI specifies the likelihood ratio chi-square test.

PCHI specifies Pearson’s chi-square test.

If you are using a non-default null value for a noninferiority or superiority test, then TEST=FM is the
most appropriate choice. For information about the power and sample size computational methods and
formulas, see the section “Analyses in the TWOSAMPLEFREQ Statement” on page 6413. By default,
TEST=PCHI.

Restrictions on Option Combinations

To specify the proportions, choose one of the following parameterizations:

• individual proportions (by using the GROUPPROPORTIONS= option)

• difference between proportions and reference proportion (by using the PROPORTIONDIFF= and
REFPROPORTION= options)

• odds ratio and reference proportion (by using the ODDSRATIO= and REFPROPORTION= options)

• relative risk and reference proportion (by using the RELATIVERISK= and REFPROPORTION=
options)

To specify the sample size and allocation, choose one of the following parameterizations:

• sample size per group in a balanced design (by using the NPERGROUP= option)

• total sample size and allocation weights (by using the NTOTAL= and GROUPWEIGHTS= options)

• individual group sample sizes (by using the GROUPNS= option)

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses supported in the TWOSAMPLEFREQ state-
ment.

Pearson Chi-Square Test for Two Proportions
You can use the NPERGROUP= option in a balanced design and express effects in terms of the individual
proportions, as in the following statements. Default values for the SIDES= and ALPHA= options specify a
two-sided test with a significance level of 0.05.
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proc power;
twosamplefreq test=pchi

groupproportions = (.15 .25)
nullproportiondiff = .03
npergroup = 50
power = .;

run;

You can also specify an unbalanced design by using the NTOTAL= and GROUPWEIGHTS= options and
express effects in terms of the odds ratio. The default value of the NULLODDSRATIO= option specifies a
test of no effect.

proc power;
twosamplefreq test=pchi

oddsratio = 2.5
refproportion = 0.3
groupweights = (1 2)
ntotal = .
power = 0.8;

run;

You can also specify sample sizes with the GROUPNS= option and express effects in terms of relative risks.
The default value of the NULLRELATIVERISK= option specifies a test of no effect.

proc power;
twosamplefreq test=pchi

relativerisk = 1.5
refproportion = 0.2
groupns = 40 | 60
power = .;

run;

You can also express effects in terms of the proportion difference. The default value of the NULLPROPOR-
TIONDIFF= option specifies a test of no effect, and the default value of the GROUPWEIGHTS= option
specifies a balanced design.

proc power;
twosamplefreq test=pchi

proportiondiff = 0.15
refproportion = 0.4
ntotal = 100
power = .;

run;

Farrington-Manning Score Test for Two Proportions
The following statements demonstrate a sample size computation for the Farrington-Manning score test for
two proportions:

proc power;
twosamplefreq test=fm

proportiondiff = 0.06
refproportion = 0.32
nullproportiondiff = -0.02
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sides = u
ntotal = .
power = 0.85;

run;

Fisher’s Exact Conditional Test for Two Proportions
The following statements demonstrate a power computation for Fisher’s exact conditional test for two
proportions. Default values for the SIDES= and ALPHA= options specify a two-sided test with a significance
level of 0.05.

proc power;
twosamplefreq test=fisher

groupproportions = (.35 .15)
npergroup = 50
power = .;

run;

Likelihood Ratio Chi-Square Test for Two Proportions
The following statements demonstrate a sample size computation for the likelihood ratio chi-square test
for two proportions. Default values for the SIDES= and ALPHA= options specify a two-sided test with a
significance level of 0.05.

proc power;
twosamplefreq test=lrchi

oddsratio = 2
refproportion = 0.4
npergroup = .
power = 0.9;

run;

TWOSAMPLEMEANS Statement
TWOSAMPLEMEANS < options > ;

The TWOSAMPLEMEANS statement performs power and sample size analyses for pooled and unpooled t
tests, equivalence tests, and confidence interval precision involving two independent samples.

Summary of Options

Table 77.21 summarizes the options available in the TWOSAMPLEMEANS statement.

Table 77.21 TWOSAMPLEMEANS Statement Options

Option Description

Define analysis
CI= Specifies an analysis of precision of the confidence interval
DIST= Specifies the underlying distribution assumed for the test statistic
TEST= Specifies the statistical analysis

Specify analysis information
ALPHA= Specifies the significance level
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Table 77.21 continued

Option Description

LOWER= Specifies the lower equivalence bound
NULLDIFF= Specifies the null mean difference
NULLRATIO= Specifies the null mean ratio
SIDES= Specifies the number of sides and the direction of the statistical test or

confidence interval
UPPER= Specifies the upper equivalence bound

Specify effects
HALFWIDTH= Specifies the desired confidence interval half-width
GROUPMEANS= Specifies the two group means
MEANDIFF= Specifies the mean difference
MEANRATIO= Specifies the geometric mean ratio, 2=1
Specify variability
CV= Specifies the common coefficient of variation
GROUPSTDDEVS= Specifies the standard deviation of each group
STDDEV= Specifies the common standard deviation

Specify sample size and allocation
GROUPNS= Specifies the two group sample sizes
GROUPWEIGHTS= Specifies the sample size allocation weights for the two groups
NFRACTIONAL Enables fractional input and output for sample sizes
NPERGROUP= Specifies the common sample size per group
NTOTAL= Specifies the sample size

Specify power and related probabilities
POWER= Specifies the desired power of the test
PROBTYPE= Specifies the type of probability for the PROBWIDTH= option
PROBWIDTH= Specifies the desired probability of obtaining a confidence interval half-

width less than or equal to the value specified

Control ordering in output
OUTPUTORDER= Controls the output order of parameters

Table 77.22 summarizes the valid result parameters for different analyses in the TWOSAMPLEMEANS
statement.

Table 77.22 Summary of Result Parameters in the
TWOSAMPLEMEANS Statement

Analyses Solve For Syntax

TEST=DIFF Power POWER=.
Sample size NTOTAL=.

NPERGROUP=.
Group sample size GROUPNS= n1 | .

GROUPNS=. | n2
GROUPNS= (n1 .)
GROUPNS= (. n2)
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Table 77.22 continued

Analyses Solve For Syntax

Group weight GROUPWEIGHTS= w1 | .
GROUPWEIGHTS=. | w2
GROUPWEIGHTS= (w1 .)
GROUPWEIGHTS= (. w2)

Alpha ALPHA=.
Group mean GROUPMEANS= mean1 | .

GROUPMEANS=. | mean2
GROUPMEANS= (mean1 .)
GROUPMEANS= (. mean2)

Mean difference MEANDIFF=.
Standard deviation STDDEV=.

TEST=DIFF_SATT Power POWER=.
Sample size NTOTAL=.

NPERGROUP=.

TEST=RATIO Power POWER=.
Sample size NTOTAL=.

NPERGROUP=.

TEST=EQUIV_DIFF Power POWER=.
Sample size NTOTAL=.

NPERGROUP=.

TEST=EQUIV_RATIO Power POWER=.
Sample size NTOTAL=.

NPERGROUP=.

CI=DIFF Prob(width) PROBWIDTH=.
Sample size NTOTAL=.

NPERGROUP=.

Dictionary of Options

ALPHA=number-list
specifies the level of significance of the statistical test or requests a solution for alpha with a missing
value (ALPHA=.). The default is 0.05, corresponding to the usual 0.05 � 100% = 5% level of
significance. If the CI= and SIDES=1 options are used, then the value must be less than 0.5. For
information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

CI

CI=DIFF
specifies an analysis of precision of the confidence interval for the mean difference, assuming equal
variances. Instead of power, the relevant probability for this analysis is the probability that the interval



6340 F Chapter 77: The POWER Procedure

half-width is at most the value specified by the HALFWIDTH= option. If neither the TEST= option
nor the CI= option is used, the default is TEST=DIFF.

CV=number-list
specifies the coefficient of variation assumed to be common to both groups. The coefficient of variation
is defined as the ratio of the standard deviation to the mean on the original data scale. You can use this
option only with DIST=LOGNORMAL. For information about specifying the number-list , see the
section “Specifying Value Lists in Analysis Statements” on page 6366.

DIST=LOGNORMAL | NORMAL
specifies the underlying distribution assumed for the test statistic. NORMAL corresponds
the normal distribution, and LOGNORMAL corresponds to the lognormal distribution. The
default value (also the only acceptable value in each case) is NORMAL for TEST=DIFF,
TEST=DIFF_SATT, TEST=EQUIV_DIFF, and CI=DIFF; and LOGNORMAL for TEST=RATIO and
TEST=EQUIV_RATIO.

GROUPMEANS=grouped-number-list
GMEANS=grouped-number-list

specifies the two group means or requests a solution for one group mean given the other. Means are in
the original scale. They are arithmetic if DIST=NORMAL and geometric if DIST=LOGNORMAL.
This option cannot be used with the CI=DIFF analysis. When TEST=EQUIV_DIFF, the means are
interpreted as the reference mean (first) and the treatment mean (second). For information about
specifying the grouped-number-list , see the section “Specifying Value Lists in Analysis Statements”
on page 6366.

GROUPNS=grouped-number-list
GNS=grouped-number-list

specifies the two group sample sizes or requests a solution for one group sample size given the other.
For information about specifying the grouped-number-list , see the section “Specifying Value Lists in
Analysis Statements” on page 6366.

GROUPSTDDEVS=grouped-number-list
GSTDDEVS=grouped-number-list
GROUPSTDS=grouped-number-list
GSTDS=grouped-number-list

specifies the standard deviation of each group. Unlike the STDDEV= option, the GROUPSTD-
DEVS== option supports different values for each group. It is valid only for the Satterthwaite t test
(TEST=DIFF_SATT DIST=NORMAL). For information about specifying the grouped-number-list ,
see the section “Specifying Value Lists in Analysis Statements” on page 6366.

GROUPWEIGHTS=grouped-number-list
GWEIGHTS=grouped-number-list

specifies the sample size allocation weights for the two groups, or requests a solution for one group
weight given the other. This option controls how the total sample size is divided between the two
groups. Each pair of values for the two groups represents relative allocation weights. Additionally, if
the NFRACTIONAL option is not used, the total sample size is restricted to be equal to a multiple
of the sum of the two group weights (so that the resulting design has an integer sample size for each
group while adhering exactly to the group allocation weights). Values must be integers unless the
NFRACTIONAL option is used. The default value is (1 1), a balanced design with a weight of 1 for
each group. For information about specifying the grouped-number-list , see the section “Specifying
Value Lists in Analysis Statements” on page 6366.
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HALFWIDTH=number-list
specifies the desired confidence interval half-width. The half-width is defined as the distance between
the point estimate and a finite endpoint. This option can be used only with the CI=DIFF analysis.
For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

LOWER=number-list
specifies the lower equivalence bound for the mean difference or mean ratio, in the origi-
nal scale (whether DIST=NORMAL or DIST=LOGNORMAL). Values must be greater than 0
when DIST=LOGNORMAL. This option can be used only with the TEST=EQUIV_DIFF and
TEST=EQUIV_RATIO analyses. For information about specifying the number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 6366.

MEANDIFF=number-list
specifies the mean difference, defined as �2 ��1, or requests a solution for the mean difference with a
missing value (MEANDIFF=.). This option can be used only with the TEST=DIFF, TEST=DIFF_SATT,
and TEST=EQUIV_DIFF analyses. When TEST=EQUIV_DIFF, the mean difference is interpreted as
the treatment mean minus the reference mean. For information about specifying the number-list , see
the section “Specifying Value Lists in Analysis Statements” on page 6366.

MEANRATIO=number-list
specifies the geometric mean ratio, defined as 2=1. This option can be used only with the
TEST=RATIO and TEST=EQUIV_RATIO analyses. When TEST=EQUIV_RATIO, the mean ratio is
interpreted as the treatment mean divided by the reference mean. For information about specifying the
number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

NFRACTIONAL

NFRAC
enables fractional input and output for sample sizes. See the section “Sample Size Adjustment
Options” on page 6369 for information about the ramifications of the presence (and absence) of the
NFRACTIONAL option.

NPERGROUP=number-list

NPERG=number-list
specifies the common sample size per group or requests a solution for the common sample size per
group with a missing value (NPERGROUP=.). Use of this option implicitly specifies a balanced design.
For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

NTOTAL=number-list
specifies the sample size or requests a solution for the sample size with a missing value (NTOTAL=.).
For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

NULLDIFF=number-list

NULLD=number-list
specifies the null mean difference. The default value is 0. This option can be used only with the
TEST=DIFF and TEST=DIFF_SATT analyses. For information about specifying the number-list , see
the section “Specifying Value Lists in Analysis Statements” on page 6366.
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NULLRATIO=number-list

NULLR=number-list
specifies the null mean ratio. The default value is 1. This option can be used only with the
TEST=RATIO analysis. For information about specifying the number-list , see the section “Spec-
ifying Value Lists in Analysis Statements” on page 6366.

OUTPUTORDER=INTERNAL | REVERSE | SYNTAX
controls how the input and default analysis parameters are ordered in the output. OUT-
PUTORDER=INTERNAL (the default) arranges the parameters in the output according to the following
order of their corresponding options:

• SIDES=
• NULLDIFF=
• NULLRATIO=
• LOWER=
• UPPER=
• ALPHA=
• GROUPMEANS=
• MEANDIFF=
• MEANRATIO=
• HALFWIDTH=
• STDDEV=
• GROUPSTDDEVS==
• CV=
• GROUPWEIGHTS=
• NTOTAL=
• NPERGROUP=
• GROUPNS=
• POWER=
• PROBTYPE=
• PROBWIDTH=

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the same order
in which their corresponding options are specified in the TWOSAMPLEMEANS statement. The
OUTPUTORDER=REVERSE option arranges the parameters in the output in the reverse of the order
in which their corresponding options are specified in the TWOSAMPLEMEANS statement.

POWER=number-list
specifies the desired power of the test or requests a solution for the power with a missing value
(POWER=.). The power is expressed as a probability, a number between 0 and 1, rather than as a
percentage. This option cannot be used with the CI=DIFF analysis. For information about specifying
the number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

PROBTYPE=keyword-list
specifies the type of probability for the PROBWIDTH= option. A value of CONDITIONAL (the
default) indicates the conditional probability that the confidence interval half-width is at most the
value specified by the HALFWIDTH= option, given that the true mean difference is captured by the
confidence interval. A value of UNCONDITIONAL indicates the unconditional probability that the
confidence interval half-width is at most the value specified by the HALFWIDTH= option. you can
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use the alias GIVENVALIDITY for CONDITIONAL. The PROBTYPE= option can be used only with
the CI=DIFF analysis. For information about specifying the keyword-list , see the section “Specifying
Value Lists in Analysis Statements” on page 6366.

CONDITIONAL width probability conditional on interval containing the mean

UNCONDITIONAL unconditional width probability

PROBWIDTH=number-list
specifies the desired probability of obtaining a confidence interval half-width less than or equal to the
value specified by the HALFWIDTH= option. A missing value (PROBWIDTH=.) requests a solution
for this probability. The type of probability is controlled with the PROBTYPE= option. Values are
expressed as probabilities (for example, 0.9) rather than percentages. This option can be used only with
the CI=DIFF analysis. For information about specifying the number-list , see the section “Specifying
Value Lists in Analysis Statements” on page 6366.

SIDES=keyword-list
specifies the number of sides (or tails) and the direction of the statistical test or confidence interval.
For information about specifying the keyword-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366. Valid keywords and their interpretation for the TEST= analyses are as
follows:

1 one-sided with alternative hypothesis in same direction as effect

2 two-sided

U upper one-sided with alternative greater than null value

L lower one-sided with alternative less than null value

For confidence intervals, SIDES=U refers to an interval between the lower confidence limit and infinity,
and SIDES=L refers to an interval between minus infinity and the upper confidence limit. For both of
these cases and SIDES=1, the confidence interval computations are equivalent. The SIDES= option
cannot be used with the TEST=EQUIV_DIFF and TEST=EQUIV_RATIO analyses. The default value
is 2.

STDDEV=number-list

STD=number-list
specifies the standard deviation assumed to be common to both groups, or requests a solution for the
common standard deviation with a missing value (STDDEV=.). This option can be used only with
DIST=NORMAL. For information about specifying the number-list , see the section “Specifying Value
Lists in Analysis Statements” on page 6366.

TEST=DIFF | DIFF_SATT | EQUIV_DIFF | EQUIV_RATIO | RATIO
TEST

specifies the statistical analysis. TEST or TEST=DIFF (the default) specifies a pooled t test on the
mean difference, assuming equal variances. TEST=DIFF_SATT specifies a Satterthwaite unpooled t
test on the mean difference, assuming unequal variances. TEST=EQUIV_DIFF specifies an additive
equivalence test of the mean difference by using a two one-sided tests (TOST) analysis (Schuirmann
1987). TEST=EQUIV_RATIO specifies a multiplicative equivalence test of the mean ratio by using a
TOST analysis. TEST=RATIO specifies a pooled t test on the mean ratio, assuming equal coefficients
of variation. If neither the TEST= option nor the CI= option is used, the default is TEST=DIFF.
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UPPER=number-list
specifies the upper equivalence bound for the mean difference or mean ratio, in the original scale
(whether DIST=NORMAL or DIST=LOGNORMAL). This option can be used only with the
TEST=EQUIV_DIFF and TEST=EQUIV_RATIO analyses. For information about specifying the
number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

Restrictions on Option Combinations

To define the analysis, choose one of the following parameterizations:

• a statistical test (by using the TEST= option)

• confidence interval precision (by using the CI= option)

To specify the means, choose one of the following parameterizations:

• individual group means (by using the GROUPMEANS= option)

• mean difference (by using the MEANDIFF= option)

• mean ratio (by using the MEANRATIO= option)

To specify standard deviations in the Satterthwaite t test (TEST=DIFF_SATT), choose one of the following
parameterizations:

• common standard deviation (by using the STDDEV= option)

• individual group standard deviations (by using the GROUPSTDDEVS== option)

To specify the sample sizes and allocation, choose one of the following parameterizations:

• sample size per group in a balanced design (by using the NPERGROUP= option)

• total sample size and allocation weights (by using the NTOTAL= and GROUPWEIGHTS= options)

• individual group sample sizes (by using the GROUPNS= option)

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses supported in the TWOSAMPLEMEANS
statement.

Two-Sample t Test Assuming Equal Variances
You can use the NPERGROUP= option in a balanced design and express effects in terms of the mean
difference, as in the following statements. Default values for the DIST=, SIDES=, NULLDIFF=, and
ALPHA= options specify a two-sided test for no difference with a normal distribution and a significance
level of 0.05.
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proc power;
twosamplemeans test=diff

meandiff = 7
stddev = 12
npergroup = 50
power = .;

run;

You can also specify an unbalanced design by using the NTOTAL= and GROUPWEIGHTS= options and
express effects in terms of individual group means:

proc power;
twosamplemeans test=diff

groupmeans = 8 | 15
stddev = 4
groupweights = (2 3)
ntotal = .
power = 0.9;

run;

Another way to specify the sample sizes is with the GROUPNS= option:

proc power;
twosamplemeans test=diff

groupmeans = 8 | 15
stddev = 4
groupns = (25 40)
power = .;

run;

Two-Sample Satterthwaite t Test Assuming Unequal Variances
The following statements demonstrate a power computation for the two-sample Satterthwaite t test allowing
unequal variances. Default values for the DIST=, SIDES=, NULLDIFF=, and ALPHA= options specify a
two-sided test for no difference with a normal distribution and a significance level of 0.05.

proc power;
twosamplemeans test=diff_satt

meandiff = 3
groupstddevs = 5 | 8
groupweights = (1 2)
ntotal = 60
power = .;

run;

Two-Sample Pooled t Test of Mean Ratio with Lognormal Data
The following statements demonstrate a power computation for the pooled t test of a lognormal mean ratio.
Default values for the DIST=, SIDES=, NULLRATIO=, and ALPHA= options specify a two-sided test of
mean ratio = 1 assuming a lognormal distribution and a significance level of 0.05.

proc power;
twosamplemeans test=ratio

meanratio = 7
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cv = 0.8
groupns = 50 | 70
power = .;

run;

Additive Equivalence Test for Mean Difference with Normal Data
The following statements demonstrate a sample size computation for the TOST equivalence test for a normal
mean difference. A default value of GROUPWEIGHTS=(1 1) specifies a balanced design. Default values
for the DIST= and ALPHA= options specify a significance level of 0.05 and an assumption of normally
distributed data.

proc power;
twosamplemeans test=equiv_diff

lower = 2
upper = 5
meandiff = 4
stddev = 8
ntotal = .
power = 0.9;

run;

Multiplicative Equivalence Test for Mean Ratio with Lognormal Data
The following statements demonstrate a power computation for the TOST equivalence test for a lognormal
mean ratio. Default values for the DIST= and ALPHA= options specify a significance level of 0.05 and an
assumption of lognormally distributed data.

proc power;
twosamplemeans test=equiv_ratio

lower = 3
upper = 7
meanratio = 5
cv = 0.75
npergroup = 50
power = .;

run;

Confidence Interval for Mean Difference
By default CI=DIFF analyzes the conditional probability of obtaining the desired precision, given that the
interval contains the true mean difference, as in the following statements. The defaults of SIDES=2 and
ALPHA=0.05 specify a two-sided interval with a confidence level of 0.95.

proc power;
twosamplemeans ci = diff

halfwidth = 4
stddev = 8
groupns = (30 35)
probwidth = .;

run;
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TWOSAMPLESURVIVAL Statement
TWOSAMPLESURVIVAL < options > ;

The TWOSAMPLESURVIVAL statement performs power and sample size analyses for comparing two
survival curves. The log-rank, Gehan, and Tarone-Ware rank tests are supported.

Summary of Options

Table 77.23 summarizes the options available in the TWOSAMPLESURVIVAL statement.

Table 77.23 TWOSAMPLESURVIVAL Statement Options

Option Description

Define analysis
TEST= Specifies the statistical analysis

Specify analysis information
ACCRUALTIME= Specifies the accrual time
ALPHA= Specifies the significance level
FOLLOWUPTIME= Specifies the follow-up time
SIDES= Specifies the number of sides and the direction of the statistical test or

confidence interval
TOTALTIME= Specifies the total time

Specify effects
CURVE= Defines a survival curve
GROUPMEDSURVTIMES= Specifies the median survival times in each group
GROUPSURVEXPHAZARDS= Specifies exponential hazard rates of the survival curve for each group
GROUPSURVIVAL= Specifies the survival curve for each group
HAZARDRATIO= Specifies the hazard ratio
REFSURVEXPHAZARD= Specifies the exponential hazard rate of the survival curve for the reference

group
REFSURVIVAL= Specifies the survival curve for the reference group

Specify loss information
GROUPLOSS= Specifies the exponential loss survival curve for each group
GROUPLOSSEXPHAZARDS= Specifies the exponential hazards of the loss in each group
GROUPMEDLOSSTIMES= Specifies the median times of the loss in each group

Specify sample size and allocation
ACCRUALRATEPERGROUP= Specifies the common accrual rate per group
ACCRUALRATETOTAL= Specifies the total accrual rate
EVENTSTOTAL= Specifies the expected total number of events
GROUPACCRUALRATES= Specifies the accrual rate for each group
GROUPNS= Specifies the two group sample sizes
GROUPWEIGHTS= Specifies the sample size allocation weights for the two groups
NFRACTIONAL Enables fractional input and output for sample sizes
NPERGROUP= Specifies the common sample size per group
NTOTAL= Specifies the sample size
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Table 77.23 continued

Option Description

Specify power
POWER= Specifies the desired power of the test

Specify computational method
NSUBINTERVAL= Specifies the number of subintervals per unit time

Control ordering in output
OUTPUTORDER= Controls the output order of parameters

Table 77.24 summarizes the valid result parameters for different analyses in the TWOSAMPLESURVIVAL
statement.

Table 77.24 Summary of Result Parameters in the
TWOSAMPLESURVIVAL Statement

Analyses Solve For Syntax

TEST=GEHAN Power POWER=.
Sample size NTOTAL=.

NPERGROUP=.
EVENTSTOTAL=.
ACCRUALRATETOTAL=.
ACCRUALRATEPERGROUP=.

TEST=LOGRANK Power POWER=.
Sample size NTOTAL=.

NPERGROUP=.
EVENTSTOTAL=.
ACCRUALRATETOTAL=.
ACCRUALRATEPERGROUP=.

TEST=TARONEWARE Power POWER=.
Sample size NTOTAL=.

NPERGROUP=.
EVENTSTOTAL=.
ACCRUALRATETOTAL=.
ACCRUALRATEPERGROUP=.

Dictionary of Options

ACCRUALRATEPERGROUP=number-list

ACCRUALRATEPERG=number-list

ARPERGROUP=number-list

ARPERG=number-list
specifies the common accrual rate per group or requests a solution for the common accrual rate per
group with a missing value (ACCRUALRATEPERGROUP=.). The accrual rate per group is the
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number of subjects in each group that enters the study per time unit during the accrual period. Use
of this option implicitly specifies a balanced design. The NFRACTIONAL option is automatically
enabled when the ACCRUALRATEPERGROUP= option is used. For information about specifying
the number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

ACCRUALRATETOTAL=number-list

ARTOTAL=number-list
specifies the total accrual rate or requests a solution for the accrual rate with a missing value (AC-
CRUALRATETOTAL=.). The total accrual rate is the total number of subjects that enter the study per
time unit during the accrual period. The NFRACTIONAL option is automatically enabled when the
ACCRUALRATETOTAL= option is used. For information about specifying the number-list , see the
section “Specifying Value Lists in Analysis Statements” on page 6366.

ACCRUALTIME=number-list | MAX

ACCTIME=number-list | MAX

ACCRUALT=number-list | MAX

ACCT=number-list | MAX
specifies the accrual time. Accrual is assumed to occur uniformly from time 0 to the time specified by
the ACCRUALTIME= option. If the GROUPSURVIVAL= or REFSURVIVAL= option is used, then
the value of the total time (the sum of accrual and follow-up times) must be less than or equal to the
largest time in each multipoint (piecewise linear) survival curve. If the ACCRUALRATEPERGROUP=,
ACCRUALRATETOTAL=, or GROUPACCRUALRATES= option is used, then the accrual time must
be greater than 0. For information about specifying the number-list , see the section “Specifying Value
Lists in Analysis Statements” on page 6366.

ACCRUALTIME=MAX can be used when each scenario in the analysis contains at least one piece-
wise linear survival curve (in the GROUPSURVIVAL= or REFSURVIVAL= option). It causes the
accrual time to be automatically set, separately for each scenario, to the maximum possible time
supported by the piecewise linear survival curve(s) in that scenario. It is not compatible with the
FOLLOWUPTIME=MAX option or the TOTALTIME= option.

ALPHA=number-list
specifies the level of significance of the statistical test. The default is 0.05, corresponding to the usual
0.05 � 100% = 5% level of significance. For information about specifying the number-list , see the
section “Specifying Value Lists in Analysis Statements” on page 6366.

CURVE("label")=points
defines a survival curve.

For the CURVE= option,

label identifies the curve in the output and with the GROUPLOSS=, GROUPSUR-
VIVAL=, and REFSURVIVAL= options.

points specifies one or more (time, survival) pairs on the curve, where the survival value
denotes the probability of surviving until at least the specified time.

A single-point curve is interpreted as exponential, and a multipoint curve is interpreted as piecewise
linear. Points can be expressed in either of two forms:



6350 F Chapter 77: The POWER Procedure

• a series of time:survival pairs separated by spaces. For example:

1:0.9 2:0.7 3:0.6

• a DOLIST of times enclosed in parentheses, followed by a colon (:), followed by a DOLIST of
survival values enclosed in parentheses. For example:

(1 to 3 by 1):(0.9 0.7 0.6)

The DOLIST format is the same as in the DATA step.

Points can also be expressed as combinations of the two forms. For example:

1:0.9 2:0.8 (3 to 6 by 1):(0.7 0.65 0.6 0.55)

The points have the following restrictions:

• The time values must be nonnegative and strictly increasing.

• The survival values must be strictly decreasing.

• The survival value at a time of 0 must be equal to 1.

• If there is only one point, then the time must be greater than 0, and the survival value cannot be 0
or 1.

EVENTSTOTAL=number-list

EVENTTOTAL=number-list

EETOTAL=number-list
specifies the expected total number of events—that is, deaths, whether observed or censored—during
the entire study period, or requests a solution for this parameter with a missing value (EVENTSTO-
TAL=.). The NFRACTIONAL option is automatically enabled when the EVENTSTOTAL= option
is used. For information about specifying the number-list , see the section “Specifying Value Lists in
Analysis Statements” on page 6366.

FOLLOWUPTIME=number-list | MAX

FUTIME=number-list | MAX

FOLLOWUPT=number-list | MAX

FUT=number-list | MAX
specifies the follow-up time, the amount of time in the study past the accrual time. If the GROUPSUR-
VIVAL= or REFSURVIVAL= option is used, then the value of the total time (the sum of accrual and
follow-up times) must be less than or equal to the largest time in each multipoint (piecewise linear)
survival curve. For information about specifying the number-list , see the section “Specifying Value
Lists in Analysis Statements” on page 6366.

FOLLOWUPTIME=MAX can be used when each scenario in the analysis contains at least one
piecewise linear survival curve (in the GROUPSURVIVAL= or REFSURVIVAL= option). It causes
the follow-up time to be automatically set, separately for each scenario, to the maximum possible
time supported by the piecewise linear survival curve(s) in that scenario. It is not compatible with the
ACCRUALTIME=MAX option or the TOTALTIME= option.
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GROUPACCRUALRATES=grouped-number-list

GACCRUALRATES=grouped-number-list

GROUPARS=grouped-number-list

GARS=grouped-number-list
specifies the accrual rate for each group. The groupwise accrual rates are the numbers of subjects in
each group that enters the study per time unit during the accrual period. The NFRACTIONAL option
is automatically enabled when the GROUPACCRUALRATES= option is used. For information about
specifying the grouped-number-list , see the section “Specifying Value Lists in Analysis Statements”
on page 6366.

GROUPLOSS=grouped-name-list

GLOSS=grouped-name-list
specifies the exponential loss survival curve for each group, by using labels specified with the CURVE=
option. Loss is assumed to follow an exponential curve, indicating the expected rate of censoring (in
other words, loss to follow-up) over time. For information about specifying the grouped-name-list , see
the section “Specifying Value Lists in Analysis Statements” on page 6366.

GROUPLOSSEXPHAZARDS=grouped-number-list

GLOSSEXPHAZARDS=grouped-number-list

GROUPLOSSEXPHS=grouped-number-list

GLOSSEXPHS=grouped-number-list
specifies the exponential hazards of the loss in each group. Loss is assumed to follow an exponential
curve, indicating the expected rate of censoring (in other words, loss to follow-up) over time. If none
of the GROUPLOSSEXPHAZARDS=, GROUPLOSS=, and GROUPMEDLOSSTIMES= options
are used, the default of GROUPLOSSEXPHAZARDS=(0 0) indicates no loss to follow-up. For
information about specifying the grouped-number-list , see the section “Specifying Value Lists in
Analysis Statements” on page 6366.

GROUPMEDLOSSTIMES=grouped-number-list

GMEDLOSSTIMES=grouped-number-list

GROUPMEDLOSSTS=grouped-number-list

GMEDLOSSTS=grouped-number-list
specifies the median times of the loss in each group. Loss is assumed to follow an exponential
curve, indicating the expected rate of censoring (in other words, loss to follow-up) over time. For
information about specifying the grouped-number-list , see the section “Specifying Value Lists in
Analysis Statements” on page 6366.

GROUPMEDSURVTIMES=grouped-number-list

GMEDSURVTIMES=grouped-number-list

GROUPMEDSURVTS=grouped-number-list

GMEDSURVTS=grouped-number-list
specifies the median survival times in each group. When the GROUPMEDSURVTIMES= option is
used, the survival curve in each group is assumed to be exponential. For information about specifying
the grouped-number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.
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GROUPNS=grouped-number-list

GNS=grouped-number-list
specifies the two group sample sizes. For information about specifying the grouped-number-list , see
the section “Specifying Value Lists in Analysis Statements” on page 6366.

GROUPSURVEXPHAZARDS=grouped-number-list

GSURVEXPHAZARDS=grouped-number-list

GROUPSURVEXPHS=grouped-number-list

GEXPHS=grouped-number-list
specifies exponential hazard rates of the survival curve for each group. For information about specifying
the grouped-number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

GROUPSURVIVAL=grouped-name-list

GSURVIVAL=grouped-name-list

GROUPSURV=grouped-name-list

GSURV=grouped-name-list
specifies the survival curve for each group, by using labels specified with the CURVE= option. For
information about specifying the grouped-name-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

GROUPWEIGHTS=grouped-number-list

GWEIGHTS=grouped-number-list
specifies the sample size allocation weights for the two groups. This option controls how the total
sample size is divided between the two groups. Each pair of values for the two groups represents
relative allocation weights. Additionally, if the NFRACTIONAL option is not used, the total sample
size is restricted to be equal to a multiple of the sum of the two group weights (so that the resulting
design has an integer sample size for each group while adhering exactly to the group allocation
weights). Values must be integers unless the NFRACTIONAL option is used. The default value is
(1 1), a balanced design with a weight of 1 for each group. For information about specifying the
grouped-number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

HAZARDRATIO=number-list

HR=number-list
specifies the hazard ratio of the second group’s survival curve to the first group’s survival curve. For
information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

NFRACTIONAL

NFRAC
enables fractional input and output for sample sizes. This option is automatically enabled when
any of the following options are used: ACCRUALRATEPERGROUP=, ACCRUALRATETOTAL=,
EVENTSTOTAL=, and GROUPACCRUALRATES=. See the section “Sample Size Adjustment
Options” on page 6369 for information about the ramifications of the presence (and absence) of the
NFRACTIONAL option.



TWOSAMPLESURVIVAL Statement F 6353

NPERGROUP=number-list

NPERG=number-list
specifies the common sample size per group or requests a solution for the common sample size per
group with a missing value (NPERGROUP=.). Use of this option implicitly specifies a balanced design.
For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

NSUBINTERVAL=number-list

NSUBINTERVALS=number-list

NSUB=number-list

NSUBS=number-list
specifies the number of subintervals per unit time to use in internal calculations. Higher values increase
computational time and memory requirements but generally lead to more accurate results. The default
value is 12. For information about specifying the number-list , see the section “Specifying Value Lists
in Analysis Statements” on page 6366.

NTOTAL=number-list
specifies the sample size or requests a solution for the sample size with a missing value (NTOTAL=.).
For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

OUTPUTORDER=INTERNAL | REVERSE | SYNTAX
controls how the input and default analysis parameters are ordered in the output. OUT-
PUTORDER=INTERNAL (the default) arranges the parameters in the output according to the following
order of their corresponding options:

• SIDES=
• ACCRUALTIME=
• FOLLOWUPTIME=
• TOTALTIME=
• NSUBINTERVAL=
• ALPHA=
• REFSURVIVAL=
• GROUPSURVIVAL=
• REFSURVEXPHAZARD=
• HAZARDRATIO=
• GROUPSURVEXPHAZARDS=
• GROUPMEDSURVTIMES=
• GROUPLOSSEXPHAZARDS=
• GROUPLOSS=
• GROUPMEDLOSSTIMES=
• GROUPWEIGHTS=
• NTOTAL=
• ACCRUALRATETOTAL=
• EVENTSTOTAL=
• NPERGROUP=
• ACCRUALRATEPERGROUP=
• GROUPNS=
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• GROUPACCRUALRATES=
• POWER=

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the same order in
which their corresponding options are specified in the TWOSAMPLESURVIVAL statement. The
OUTPUTORDER=REVERSE option arranges the parameters in the output in the reverse of the order
in which their corresponding options are specified in the TWOSAMPLESURVIVAL statement.

POWER=number-list
specifies the desired power of the test or requests a solution for the power with a missing value
(POWER=.). The power is expressed as a probability, a number between 0 and 1, rather than as a
percentage. For information about specifying the number-list , see the section “Specifying Value Lists
in Analysis Statements” on page 6366.

REFSURVEXPHAZARD=number-list

REFSURVEXPH=number-list
specifies the exponential hazard rate of the survival curve for the first (reference) group. For information
about specifying the number-list , see the section “Specifying Value Lists in Analysis Statements” on
page 6366.

REFSURVIVAL=name-list

REFSURV=name-list
specifies the survival curve for the first (reference) group, by using labels specified with the CURVE=
option. For information about specifying the name-list , see the section “Specifying Value Lists in
Analysis Statements” on page 6366.

SIDES=keyword-list
specifies the number of sides (or tails) and the direction of the statistical test or confidence interval.
For information about specifying the keyword-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366. Valid keywords and their interpretation are as follows:

1 one-sided with alternative hypothesis in same direction as effect

2 two-sided

U upper one-sided with the alternative hypothesis favoring better survival in the second group

L lower one-sided with the alternative hypothesis favoring better survival in the first (reference)
group

The default value is 2.

TEST=GEHAN | LOGRANK | TARONEWARE
specifies the statistical analysis. TEST=GEHAN specifies the Gehan rank test. TEST=LOGRANK
(the default) specifies the log-rank test. TEST=TARONEWARE specifies the Tarone-Ware rank test.

TOTALTIME=number-list | MAX

TOTALT=number-list | MAX
specifies the total time, which is equal to the sum of accrual and follow-up times. If the GROUP-
SURVIVAL= or REFSURVIVAL= option is used, then the value of the total time must be less than
or equal to the largest time in each multipoint (piecewise linear) survival curve. For information
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about specifying the number-list , see the section “Specifying Value Lists in Analysis Statements” on
page 6366.

TOTALTIME=MAX can be used when each scenario in the analysis contains at least one piecewise
linear survival curve (in the GROUPSURVIVAL= or REFSURVIVAL= option). It causes the total time
to be automatically set, separately for each scenario, to the maximum possible time supported by the
piecewise linear survival curve(s) in that scenario. It is not compatible with the ACCRUALTIME=MAX
option or the FOLLOWUPTIME=MAX option.

Restrictions on Option Combinations

To specify the survival curves, choose one of the following parameterizations:

• arbitrary piecewise linear or exponential curves (by using the CURVE= and GROUPSURVIVAL=
options)

• curves with proportional hazards (by using the CURVE=, REFSURVIVAL=, and HAZARDRATIO=
options)

• exponential curves, by using one of the following parameterizations:

– median survival times (by using the GROUPMEDSURVTIMES= option)

– the hazard ratio and the hazard of the reference curve (by using the HAZARDRATIO= and
REFSURVEXPHAZARD= options)

– the individual hazards (by using the GROUPSURVEXPHAZARDS= option)

To specify the study time, use any two of the following three options:

• accrual time (by using the ACCRUALTIME= option)

• follow-up time (by using the FOLLOWUPTIME= option)

• total time, the sum of accrual and follow-up times (by using the TOTALTIME= option)

To specify the sample size and allocation, choose one of the following parameterizations:

• sample size per group in a balanced design (by using the NPERGROUP= option)

• accrual rate per group in a balanced design (by using the ACCRUALRATEPERGROUP= option)

• total sample size and allocation weights (by using the NTOTAL= and GROUPWEIGHTS= options)

• total accrual rate and allocation weights (by using the ACCRUALRATETOTAL= and GROUP-
WEIGHTS= options)

• expected total number of events and allocation weights (by using the EVENTSTOTAL= and GROUP-
WEIGHTS= options)

• individual group sample sizes (by using the GROUPNS= option)

• individual group accrual rates (by using the GROUPACCRUALRATES= option)
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The values of parameters that involve expected number of events or accrual rate are converted internally to
the analogous sample size parameterization (that is, the NPERGROUP=, NTOTAL=, or GROUPNS= option)
for the purpose of sample size adjustments according to the presence or absence of the NFRACTIONAL
option.

To specify the exponential loss curves, choose one of the following parameterizations:

• a point on the loss curve of each group (by using the CURVE= and GROUPLOSS= options)

• median loss times (by using the GROUPMEDLOSSTIMES= option)

• the individual loss hazards (by using the GROUPLOSSEXPHAZARDS= option)

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses supported in the TWOSAMPLESURVIVAL
statement.

Log-Rank Test for Two Survival Curves
You can use the NPERGROUP= option in a balanced design and specify piecewise linear or exponential
survival curves by using the CURVE= and GROUPSURVIVAL= options, as in the following statements.
Default values for the SIDES=, ALPHA=, NSUBINTERVAL=, and GROUPLOSSEXPHAZARDS= options
specify a two-sided test with a significance level of 0.05, an assumption of no loss to follow-up, and the use
of 12 subintervals per unit time in computations.

proc power;
twosamplesurvival test=logrank

curve("Control") = (1 2 3):(0.8 0.7 0.6)
curve("Treatment") = (5):(.6)
groupsurvival = "Control" | "Treatment"
accrualtime = 2
followuptime = 1
npergroup = 50
power = .;

run;

In the preceding example, the “Control” curve is piecewise linear (since it has more than one point), and the
“Treatment” curve is exponential (since it has only one point).

You can also specify an unbalanced design by using the NTOTAL= and GROUPWEIGHTS= options and
specify piecewise linear or exponential survival curves with proportional hazards by using the CURVE=,
REFSURVIVAL=, and HAZARDRATIO= options:

proc power;
twosamplesurvival test=logrank

curve("Control") = (1 2 3):(0.8 0.7 0.6)
refsurvival = "Control"
hazardratio = 1.5
accrualtime = 2
followuptime = 1
groupweights = (1 2)
ntotal = .
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power = 0.8;
run;

Instead of computing sample size, you can compute the accrual rate by using the ACCRUALRATETOTAL=
option:

proc power;
twosamplesurvival test=logrank

curve("Control") = (1 2 3):(0.8 0.7 0.6)
refsurvival = "Control"
hazardratio = 1.5
accrualtime = 2
followuptime = 1
groupweights = (1 2)
accrualratetotal = .
power = 0.8;

run;

or the expected number of events by using the EVENTSTOTAL= option:

proc power;
twosamplesurvival test=logrank

curve("Control") = (1 2 3):(0.8 0.7 0.6)
refsurvival = "Control"
hazardratio = 1.5
accrualtime = 2
followuptime = 1
groupweights = (1 2)
eventstotal = .
power = 0.8;

run;

You can also specify sample sizes with the GROUPNS= option and specify exponential survival curves in
terms of median survival times:

proc power;
twosamplesurvival test=logrank

groupmedsurvtimes = (16 22)
accrualtime = 6
totaltime = 18
groupns = 40 | 60
power = .;

run;

You can also specify exponential survival curves in terms of the hazard ratio and reference hazard. The
default value of the GROUPWEIGHTS= option specifies a balanced design.

proc power;
twosamplesurvival test=logrank

hazardratio = 1.2
refsurvexphazard = 0.7
accrualtime = 2
totaltime = 4
ntotal = 100
power = .;

run;
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You can also specify exponential survival curves in terms of the individual hazards, as in the following
statements:

proc power;
twosamplesurvival test=logrank

groupsurvexphazards = 0.7 | 0.84
accrualtime = 2
totaltime = 4
ntotal = .
power = 0.9;

run;

Gehan Rank Test for Two Survival Curves
In addition to the log-rank test, you can also specify the Gehan tank test, as in the following statements.
Default values for the SIDES=, ALPHA=, NSUBINTERVAL=, and GROUPLOSSEXPHAZARDS= options
specify a two-sided test with a significance level of 0.05, an assumption of no loss to follow-up, and the use
of 12 subintervals per unit time in computations.

proc power;
twosamplesurvival test=gehan

groupmedsurvtimes = 5 | 7
accrualtime = 3
totaltime = 6
npergroup = .
power = 0.8;

run;

Tarone-Ware Rank Test for Two Survival Curves
You can also specify the Tarone-Ware tank test, as in the following statements. Default values for the SIDES=,
ALPHA=, NSUBINTERVAL=, and GROUPLOSSEXPHAZARDS= options specify a two-sided test with a
significance level of 0.05, an assumption of no loss to follow-up, and the use of 12 subintervals per unit time
in computations.

proc power;
twosamplesurvival test=taroneware

groupmedsurvtimes = 5 | 7
accrualtime = 3
totaltime = 6
npergroup = 100
power = .;

run;

TWOSAMPLEWILCOXON Statement
TWOSAMPLEWILCOXON < options > ;

The TWOSAMPLEWILCOXON statement performs power and sample size analyses for the Wilcoxon-
Mann-Whitney test (also called the Wilcoxon rank-sum test, Mann-Whitney-Wilcoxon test, or Mann-Whitney
U test) for two independent groups.
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Note that the O’Brien-Castelloe approach to computing power for the Wilcoxon test is approximate, based on
asymptotic behavior as the total sample size gets large. The quality of the power approximation degrades for
small sample sizes; conversely, the quality of the sample size approximation degrades if the two distributions
are far apart, so that only a small sample is needed to detect a significant difference. But this degradation
is rarely a problem in practical situations, in which experiments are usually performed for relatively close
distributions.

Summary of Options

Table 77.25 summarizes the options available in the TWOSAMPLEWILCOXON statement.

Table 77.25 TWOSAMPLEWILCOXON Statement Options

Option Description

Define analysis
TEST= Specifies the statistical analysis

Specify analysis information
ALPHA= Specifies the significance level
SIDES= Specifies the number of sides and the direction of the statistical test

Specify distributions
VARDIST= Defines a distribution for a variable
VARIABLES= Specifies the distributions of two or more variables

Specify sample size and allocation
GROUPNS= Specifies the two group sample sizes
GROUPWEIGHTS= Specifies the sample size allocation weights for the two groups
NFRACTIONAL Enables fractional input and output for sample sizes
NPERGROUP= Specifies the common sample size per group
NTOTAL= Specifies the sample size

Specify power
POWER= Specifies the desired power of the test

Specify computational options
NBINS= Specifies the number of categories for each variable

Control ordering in output
OUTPUTORDER= Controls the output order of parameters

Table 77.26 summarizes the valid result parameters in the TWOSAMPLEWILCOXON statement.

Table 77.26 Summary of Result Parameters in the
TWOSAMPLEWILCOXON Statement

Analyses Solve For Syntax

TEST=WMW Power POWER=.
Sample size NTOTAL=.

NPERGROUP=.
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Dictionary of Options

ALPHA=number-list
specifies the level of significance of the statistical test. The default is 0.05, corresponding to the usual
0.05 � 100% = 5% level of significance. For information about specifying the number-list , see the
section “Specifying Value Lists in Analysis Statements” on page 6366.

GROUPNS=grouped-number-list

GNS=grouped-number-list
specifies the two group sample sizes. For information about specifying the grouped-number-list , see
the section “Specifying Value Lists in Analysis Statements” on page 6366.

GROUPWEIGHTS=grouped-number-list

GWEIGHTS=grouped-number-list
specifies the sample size allocation weights for the two groups. This option controls how the total
sample size is divided between the two groups. Each pair of values for the two groups represents
relative allocation weights. Additionally, if the NFRACTIONAL option is not used, the total sample
size is restricted to be equal to a multiple of the sum of the two group weights (so that the resulting
design has an integer sample size for each group while adhering exactly to the group allocation
weights). Values must be integers unless the NFRACTIONAL option is used. The default value is
(1 1), a balanced design with a weight of 1 for each group. For information about specifying the
grouped-number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

NBINS=number-list
specifies the number of categories (or “bins”) each variable’s distribution is divided into (unless it is
ordinal, in which case the categories remain intact) in internal calculations. Higher values increase
computational time and memory requirements but generally lead to more accurate results. However, if
the value is too high, then numerical instability can occur. Lower values are less likely to produce “No
solution computed” errors. The default value is 1000. For information about specifying the number-list ,
see the section “Specifying Value Lists in Analysis Statements” on page 6366.

NFRACTIONAL

NFRAC
enables fractional input and output for sample sizes. See the section “Sample Size Adjustment
Options” on page 6369 for information about the ramifications of the presence (and absence) of the
NFRACTIONAL option.

NPERGROUP=number-list

NPERG=number-list
specifies the common sample size per group or requests a solution for the common sample size per
group with a missing value (NPERGROUP=.). Use of this option implicitly specifies a balanced design.
For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

NTOTAL=number-list
specifies the sample size or requests a solution for the sample size with a missing value (NTOTAL=.).
For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.
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OUTPUTORDER=INTERNAL | REVERSE | SYNTAX
controls how the input and default analysis parameters are ordered in the output. OUT-
PUTORDER=INTERNAL (the default) arranges the parameters in the output according to the following
order of their corresponding options:

• SIDES
• NBINS=
• ALPHA=
• VARIABLES=
• GROUPWEIGHTS=
• NTOTAL=
• NPERGROUP=
• GROUPNS=
• POWER=

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the same order in
which their corresponding options are specified in the TWOSAMPLEWILCOXON statement. The
OUTPUTORDER=REVERSE option arranges the parameters in the output in the reverse of the order
in which their corresponding options are specified in the TWOSAMPLEWILCOXON statement.

POWER=number-list
specifies the desired power of the test or requests a solution for the power with a missing value
(POWER=.). The power is expressed as a probability, a number between 0 and 1, rather than as a
percentage. For information about specifying the number-list , see the section “Specifying Value Lists
in Analysis Statements” on page 6366.

SIDES=keyword-list
specifies the number of sides (or tails) and the direction of the statistical test. Valid keywords are as
follows:

1 one-sided with alternative hypothesis in same direction as effect

2 two-sided

U upper one-sided with alternative greater than null value

L lower one-sided with alternative less than null value

The default value is 2.

TEST=WMW
specifies the Wilcoxon-Mann-Whitney test for two independent groups This is the default test option.

VARDIST("label")=distribution (parameters)
defines a distribution for a variable.

For the VARDIST= option,

label identifies the variable distribution in the output and with the VARIABLES= option.

distribution specifies the distributional form of the variable.

parameters specifies one or more parameters associated with the distribution.
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The distributions and parameters are named and defined in the same way as the distributions and
arguments in the CDF SAS function; for more information, see SAS Language Reference: Dictionary.
Choices for distributional forms and their parameters are as follows:

ORDINAL ((values) : (probabilities)) is an ordered categorical distribution. The values are any
numbers separated by spaces. The probabilities are numbers between 0 and 1 (inclusive)
separated by spaces. Their sum must be exactly 1. The number of probabilities must match the
number of values.

BETA (a, b <, l , r >) is a beta distribution with shape parameters a and b and optional location
parameters l and r . The values of a and b must be greater than 0, and l must be less than r . The
default values for l and r are 0 and 1, respectively.

BINOMIAL (p, n) is a binomial distribution with probability of success p and number of independent
Bernoulli trials n. The value of p must be greater than 0 and less than 1, and n must be an integer
greater than 0. If n = 1, then the distribution is binary.

EXPONENTIAL (�) is an exponential distribution with scale �, which must be greater than 0.

GAMMA (a, �) is a gamma distribution with shape a and scale �. The values of a and � must be
greater than 0.

LAPLACE (� , �) is a Laplace distribution with location � and scale �. The value of � must be
greater than 0.

LOGISTIC (� , �) is a logistic distribution with location � and scale �. The value of �must be greater
than 0.

LOGNORMAL (� , �) is a lognormal distribution with location � and scale �. The value of � must
be greater than 0.

NORMAL (� , �) is a normal distribution with mean � and standard deviation �. The value of � must
be greater than 0.

POISSON (m) is a Poisson distribution with mean m. The value of m must be greater than 0.

UNIFORM (l , r ) is a uniform distribution on the interval Œ l , r �, where l < r .

VARIABLES=grouped-name-list

VARS=grouped-name-list
specifies the distributions of two or more variables, using labels specified with the VARDIST= option.
For information about specifying the grouped-name-list , see the section “Specifying Value Lists in
Analysis Statements” on page 6366.

Restrictions on Option Combinations

To specify the sample size and allocation, choose one of the following parameterizations:

• sample size per group in a balanced design (using the NPERGROUP= option)

• total sample size and allocation weights (using the NTOTAL= and GROUPWEIGHTS= options)

• individual group sample sizes (using the GROUPNS= option)
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Option Groups for Common Analyses

This section summarizes the syntax for the common analyses supported in the TWOSAMPLEWILCOXON
statement.

Wilcoxon-Mann-Whitney Test for Comparing Two Distributions
The following statements performs a power analysis for Wilcoxon-Mann-Whitney tests comparing an ordinal
variable with each other type of distribution. Default values for the ALPHA=, NBINS=, SIDES=, and
TEST= options specify a two-sided test with a significance level of 0.05 and the use of 1000 categories per
distribution when discretization is needed.

proc power;
twosamplewilcoxon

vardist("myordinal") = ordinal ((0 1 2) : (.2 .3 .5))
vardist("mybeta1") = beta (1, 2)
vardist("mybeta2") = beta (1, 2, 0, 2)
vardist("mybinomial") = binomial (.3, 3)
vardist("myexponential") = exponential (2)
vardist("mygamma") = gamma (1.5, 2)
vardist("mylaplace") = laplace (1, 2)
vardist("mylogistic") = logistic (1, 2)
vardist("mylognormal") = lognormal (1, 2)
vardist("mynormal") = normal (3, 2)
vardist("mypoisson") = poisson (2)
vardist("myuniform") = uniform (0, 2)
variables = "myordinal" | "mybeta1" "mybeta2" "mybinomial"

"myexponential" "mygamma" "mylaplace"
"mylogistic" "mylognormal" "mynormal"
"mypoisson" "myuniform"

ntotal = 40
power = .;

run;

Details: POWER Procedure

Overview of Power Concepts
In statistical hypothesis testing, you typically express the belief that some effect exists in a population by
specifying an alternative hypothesis H1. You state a null hypothesis H0 as the assertion that the effect does
not exist and attempt to gather evidence to reject H0 in favor of H1. Evidence is gathered in the form of
sample data, and a statistical test is used to assess H0. If H0 is rejected but there really is no effect, this is
called a Type I error. The probability of a Type I error is usually designated “alpha” or ˛, and statistical tests
are designed to ensure that ˛ is suitably small (for example, less than 0.05).

If there really is an effect in the population but H0 is not rejected in the statistical test, then a Type II error
has been made. The probability of a Type II error is usually designated “beta” or ˇ. The probability 1 – ˇ of
avoiding a Type II error—that is, correctly rejecting H0 and achieving statistical significance—is called the
power. (NOTE: Another more general definition of power is the probability of rejecting H0 for any given set



6364 F Chapter 77: The POWER Procedure

of circumstances, even those corresponding to H0 being true. The POWER procedure uses this more general
definition.)

An important goal in study planning is to ensure an acceptably high level of power. Sample size plays a
prominent role in power computations because the focus is often on determining a sufficient sample size to
achieve a certain power, or assessing the power for a range of different sample sizes.

Some of the analyses in the POWER procedure focus on precision rather than power. An analysis of
confidence interval precision is analogous to a traditional power analysis, with “CI Half-Width” taking
the place of effect size and “Prob(Width)” taking the place of power. The CI Half-Width is the margin of
error associated with the confidence interval, the distance between the point estimate and an endpoint. The
Prob(Width) is the probability of obtaining a confidence interval with at most a target half-width.

Summary of Analyses
Table 77.27 gives a summary of the analyses supported in the POWER procedure. The name of the analysis
statement reflects the type of data and design. The TEST=, CI=, and DIST= options specify the focus of
the statistical hypothesis (in other words, the criterion on which the research question is based) and the test
statistic to be used in data analysis.

Table 77.27 Summary of Analyses

Analysis Statement Options

Logistic regression: likelihood ratio
chi-square test

LOGISTIC

Multiple linear regression: Type III F test MULTREG

Correlation: Fisher’s z test ONECORR DIST=FISHERZ

Correlation: t test ONECORR DIST=T

Binomial proportion: exact test ONESAMPLEFREQ TEST=EXACT

Binomial proportion: z test ONESAMPLEFREQ TEST=Z

Binomial proportion: z test with continuity
adjustment

ONESAMPLEFREQ TEST=ADJZ

Binomial proportion: exact equivalence test ONESAMPLEFREQ TEST=EQUIV_EXACT

Binomial proportion: z equivalence test ONESAMPLEFREQ TEST=EQUIV_Z

Binomial proportion: z test with continuity
adjustment

ONESAMPLEFREQ TEST=EQUIV_ADJZ

Binomial proportion: confidence interval ONESAMPLEFREQ CI=AGRESTICOULL

CI=JEFFREYS

CI=EXACT

CI=WALD

CI=WALD_CORRECT

CI=WILSON

One-sample t test ONESAMPLEMEANS TEST=T



Summary of Analyses F 6365

Table 77.27 continued

Analysis Statement Options

One-sample t test with lognormal data ONESAMPLEMEANS TEST=T
DIST=LOGNORMAL

One-sample equivalence test for mean of
normal data

ONESAMPLEMEANS TEST=EQUIV

One-sample equivalence test for mean of
lognormal data

ONESAMPLEMEANS TEST=EQUIV
DIST=LOGNORMAL

Confidence interval for a mean ONESAMPLEMEANS CI=T

One-way ANOVA: one-degree-of-freedom
contrast

ONEWAYANOVA TEST=CONTRAST

One-way ANOVA: overall F test ONEWAYANOVA TEST=OVERALL

McNemar exact conditional test PAIREDFREQ

McNemar normal approximation test PAIREDFREQ DIST=NORMAL

Paired t test PAIREDMEANS TEST=DIFF

Paired t test of mean ratio with lognormal data PAIREDMEANS TEST=RATIO

Paired additive equivalence of mean
difference with normal data

PAIREDMEANS TEST=EQUIV_DIFF

Paired multiplicative equivalence of mean
ratio with lognormal data

PAIREDMEANS TEST=EQUIV_RATIO

Confidence interval for mean of paired
differences

PAIREDMEANS CI=DIFF

Farrington-Manning score test for two
independent proportions

TWOSAMPLEFREQ TEST=FM

Pearson chi-square test for two independent
proportions

TWOSAMPLEFREQ TEST=PCHI

Fisher’s exact test for two independent
proportions

TWOSAMPLEFREQ TEST=FISHER

Likelihood ratio chi-square test for two
independent proportions

TWOSAMPLEFREQ TEST=LRCHI

Two-sample t test assuming equal variances TWOSAMPLEMEANS TEST=DIFF

Two-sample Satterthwaite t test assuming
unequal variances

TWOSAMPLEMEANS TEST=DIFF_SATT

Two-sample pooled t test of mean ratio with
lognormal data

TWOSAMPLEMEANS TEST=RATIO

Two-sample additive equivalence of mean
difference with normal data

TWOSAMPLEMEANS TEST=EQUIV_DIFF

Two-sample multiplicative equivalence of
mean ratio with lognormal data

TWOSAMPLEMEANS TEST=EQUIV_RATIO

Two-sample confidence interval for mean
difference

TWOSAMPLEMEANS CI=DIFF

Log-rank test for comparing two survival
curves

TWOSAMPLESURVIVAL TEST=LOGRANK
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Table 77.27 continued

Analysis Statement Options

Gehan rank test for comparing two survival
curves

TWOSAMPLESURVIVAL TEST=GEHAN

Tarone-Ware rank test for comparing two
survival curves

TWOSAMPLESURVIVAL TEST=TARONEWARE

Wilcoxon-Mann-Whitney (rank-sum) test TWOSAMPLEWILCOXON

Specifying Value Lists in Analysis Statements
To specify one or more scenarios for an analysis parameter (or set of parameters), you provide a list of values
for the statement option that corresponds to the parameter(s). To identify the parameter you want to solve for,
you place missing values in the appropriate list.

There are five basic types of such lists: keyword-lists, number-lists, grouped-number-lists, name-lists, and
grouped-name-lists. Some parameters, such as the direction of a test, have values represented by one or
more keywords in a keyword-list . Scenarios for scalar-valued parameters, such as power, are represented by a
number-list . Scenarios for groups of scalar-valued parameters, such as group sample sizes in a multigroup
design, are represented by a grouped-number-list . Scenarios for named parameters, such as reference survival
curves, are represented by a name-list . Scenarios for groups of named parameters, such as group survival
curves, are represented by a grouped-name-list .

The following subsections explain these five basic types of lists.

Keyword-Lists

A keyword-list is a list of one or more keywords, separated by spaces. For example, you can specify both
two-sided and upper-tailed versions of a one-sample t test as follows:

SIDES = 2 U

Number-Lists

A number-list can be one of two things: a series of one or more numbers expressed in the form of one or
more DOLISTs, or a missing value indicator (.).

The DOLIST format is the same as in the DATA step language. For example, for the one-sample t test you
can specify four scenarios (30, 50, 70, and 100) for a total sample size in any of the following ways.

NTOTAL = 30 50 70 100
NTOTAL = 30 to 70 by 20 100

A missing value identifies a parameter as the result parameter; it is valid only with options representing
parameters you can solve for in a given analysis. For example, you can request a solution for NTOTAL as
follows:

NTOTAL = .
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Grouped-Number-Lists

A grouped-number-list specifies multiple scenarios for numeric values in two or more groups, possibly
including missing value indicators to solve for a specific group. The list can assume one of two general forms,
a “crossed” version and a “matched” version.

Crossed Grouped-Number-Lists
The crossed version of a grouped number list consists of a series of number-lists (see the section “Number-
Lists” on page 6366), one representing each group, with groups separated by a vertical bar (|). The values
for each group represent multiple scenarios for that group, and the scenarios for each individual group are
crossed to produce the set of all scenarios for the analysis option. For example, you can specify the following
six scenarios for the sizes .n1; n2/ of two groups

.20; 30/.20; 40/.20; 50/

.25; 30/.25; 40/.25; 50/

as follows:

GROUPNS = 20 25 | 30 40 50

If the analysis can solve for a value in one group given the other groups, then one of the number-lists in a
crossed grouped-number-list can be a missing value indicator (.). For example, in a two-sample t test you
can posit three scenarios for the group 2 sample size while solving for the group 1 sample size:

GROUPNS = . | 30 40 50

Some analyses can involve more than two groups. For example, you can specify 2 � 3 � 1 = 6 scenarios for
the means of three groups in a one-way ANOVA as follows:

GROUPMEANS = 10 12 | 10 to 20 by 5 | 24

Matched Grouped-Number-Lists
The matched version of a grouped number list consists of a series of numeric lists, each enclosed in
parentheses. Each list consists of a value for each group and represents a single scenario for the analysis
option. Multiple scenarios for the analysis option are represented by multiple lists. For example, you can
express the crossed grouped-number-list

GROUPNS = 20 25 | 30 40 50

alternatively in a matched format:

GROUPNS = (20 30) (20 40) (20 50) (25 30) (25 40) (25 50)

The matched version is particularly useful when you want to include only a subset of all combinations of
individual group values. For example, you might want to pair 20 only with 50, and 25 only with 30 and 40:

GROUPNS = (20 50) (25 30) (25 40)
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If the analysis can solve for a value in one group given the other groups, then you can replace the value for
that group with a missing value indicator (.). If used, the missing value indicator must occur in the same
group in every scenario. For example, you can solve for the group 1 sample size (as in the section “Crossed
Grouped-Number-Lists” on page 6367) by using a matched format:

GROUPNS = (. 30) (. 40) (. 50)

Some analyses can involve more than two groups. For example, you can specify two scenarios for the means
of three groups in a one-way ANOVA:

GROUPMEANS = (15 24 32) (12 25 36)

Name-Lists

A name-list is a list of one or more names that are enclosed in single or double quotation marks and separated
by spaces. For example, you can specify two scenarios for the reference survival curve in a log-rank test as
follows:

REFSURVIVAL = "Curve A" "Curve B"

Grouped-Name-Lists

A grouped-name-list specifies multiple scenarios for names in two or more groups. The list can assume one
of two general forms, a “crossed” version and a “matched” version.

Crossed Grouped-Name-Lists
The crossed version of a grouped name list consists of a series of name-lists (see the section “Name-Lists”
on page 6368), one representing each group, with groups separated by a vertical bar (|). The values for each
group represent multiple scenarios for that group, and the scenarios for each individual group are crossed
to produce the set of all scenarios for the analysis option. For example, you can specify the following six
scenarios for the survival curves .c1; c2/ of two groups

."Curve A"; "Curve C"/."Curve A"; "Curve D"/."Curve A"; "Curve E"/

."Curve B"; "Curve C"/."Curve B"; "Curve D"/."Curve B"; "Curve E"/

as follows:

GROUPSURVIVAL = "Curve A" "Curve B" | "Curve C" "Curve D"
"Curve E"

Matched Grouped-Name-Lists
The matched version of a grouped name list consists of a series of name lists, each enclosed in parentheses.
Each list consists of a name for each group and represents a single scenario for the analysis option. Multiple
scenarios for the analysis option are represented by multiple lists. For example, you can express the crossed
grouped-name-list
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GROUPSURVIVAL = "Curve A" "Curve B" | "Curve C" "Curve D"
"Curve E"

alternatively in a matched format:

GROUPSURVIVAL = ("Curve A" "Curve C")
("Curve A" "Curve D")
("Curve A" "Curve E")
("Curve B" "Curve C")
("Curve B" "Curve D")
("Curve B" "Curve E")

The matched version is particularly useful when you want to include only a subset of all combinations of
individual group values. For example, you might want to pair “Curve A” only with “Curve C”, and “Curve B”
only with “Curve D” and “Curve E”:

GROUPSURVIVAL = ("Curve A" "Curve C")
("Curve B" "Curve D")
("Curve B" "Curve E")

Sample Size Adjustment Options
By default, PROC POWER rounds sample sizes conservatively (down in the input, up in the output) so that
all total sizes (and individual group sample sizes, if a multigroup design) are integers. This is generally
considered conservative because it selects the closest realistic design providing at most the power of the
(possibly fractional) input or mathematically optimized design. In addition, in a multigroup design, all group
sizes are adjusted to be multiples of the corresponding group weights. For example, if GROUPWEIGHTS =
(2 6), then all group 1 sample sizes become multiples of 2, and all group 2 sample sizes become multiples of
6 (and all total sample sizes become multiples of 8).

With the NFRACTIONAL option, sample size input is not rounded, and sample size output (whether total or
groupwise) are reported in two versions, a raw “fractional” version and a “ceiling” version rounded up to the
nearest integer.

Whenever an input sample size is adjusted, both the original (“nominal”) and adjusted (“actual”) sample
sizes are reported. Whenever computed output sample sizes are adjusted, both the original input (“nominal”)
power and the achieved (“actual”) power at the adjusted sample size are reported.

Error and Information Output
The Error column in the main output table provides reasons for missing results and flags numerical results
that are bounds rather than exact answers. For example, consider the sample size analysis implemented by
the following statements:
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proc power;
twosamplefreq test=pchi

method=normal
oddsratio= 1.0001
refproportion=.4
nulloddsratio=1
power=.9
ntotal=.;

run;

Figure 77.6 Error Column

The POWER Procedure
Pearson Chi-square Test for Two Proportions

The POWER Procedure
Pearson Chi-square Test for Two Proportions

Fixed Scenario Elements

Distribution Asymptotic normal

Method Normal approximation

Null Odds Ratio 1

Reference (Group 1) Proportion 0.4

Odds Ratio 1.0001

Nominal Power 0.9

Number of Sides 2

Alpha 0.05

Group 1 Weight 1

Group 2 Weight 1

Computed N Total

Actual
Power N Total Error

0.206 2.15E+09 Solution is a lower bound

The output in Figure 77.6 reveals that the sample size to achieve a power of 0.9 could not be computed, but
that the sample size 2.15E+09 achieves a power of 0.206.

The Info column provides further details about Error column entries, warnings about any boundary conditions
detected, and notes about any adjustments to input. Note that the Info column is hidden by default in the
main output. You can view it by using the ODS OUTPUT statement to save the output as a data set and the
PRINT procedure. For example, the following SAS statements print both the Error and Info columns for a
power computation in a two-sample t test:

proc power;
twosamplemeans

meandiff= 0 7
stddev=2
ntotal=2 5
power=.;

ods output output=Power;
run;
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proc print noobs data=Power;
var MeanDiff NominalNTotal NTotal Power Error Info;

run;

The output is shown in Figure 77.7.

Figure 77.7 Error and Info Columns

MeanDiff NominalNTotal NTotal Power Error Info

0 2 2 . Invalid input N too small / No effect

0 5 4 0.050 Input N adjusted / No effect

7 2 2 . Invalid input N too small

7 5 4 0.477 Input N adjusted

The mean difference of 0 specified with the MEANDIFF= option leads to a “No effect” message to appear
in the Info column. The sample size of 2 specified with the NTOTAL= option leads to an “Invalid input”
message in the Error column and an “NTotal too small” message in the Info column. The sample size of 5
leads to an “Input N adjusted” message in the Info column because it is rounded down to 4 to produce integer
group sizes of 2 per group.

Displayed Output
If you use the PLOTONLY option in the PROC POWER statement, the procedure displays only graphical
output. Otherwise, the displayed output of the POWER procedure includes the following:

• the “Fixed Scenario Elements” table, which shows all applicable single-valued analysis parameters, in
the following order: distribution, method, parameters that are input explicitly, and parameters that are
supplied with defaults

• an output table that shows the following when applicable (in order): the index of the scenario, all
multivalued input, ancillary results, the primary computed result, and error descriptions

• plots (if requested)

For each input parameter, the order of the input values is preserved in the output.

Ancillary results include the following:

• Actual Power, the achieved power, if it differs from the input (Nominal) power value

• Actual Prob(Width), the achieved precision probability, if it differs from the input (Nominal) probability
value

• Actual Alpha, the achieved significance level, if it differs from the input (Nominal) alpha value

• fractional sample size, if the NFRACTIONAL option is used in the analysis statement
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If sample size is the result parameter and the NFRACTIONAL option is used in the analysis statement, then
both “Fractional” and “Ceiling” sample size results are displayed. Fractional sample sizes correspond to the
“Nominal” values of power or precision probability. Ceiling sample sizes are simply the fractional sample
sizes rounded up to the nearest integer; they correspond to “Actual” values of power or precision probability.

ODS Table Names
PROC POWER assigns a name to each table that it creates. You can use these names to reference the table
when using the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in Table 77.28. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 77.28 ODS Tables Produced by PROC POWER

ODS Table Name Description Statement

FixedElements Factoid with single-valued analysis parameters Default*
Output All input and computed analysis parameters, error messages, and

information messages for each scenario
Default

PlotContent Data contained in plots, including analysis parameters and indices
identifying plot features. (NOTE: This table is saved as a data set
and not displayed in PROC POWER output.)

PLOT

*Depends on input.

Computational Resources

Memory

In the TWOSAMPLESURVIVAL statement, the amount of required memory is roughly proportional to the
product of the number of subintervals (specified by the NSUBINTERVAL= option) and the total time of the
study (specified by the ACCRUALTIME=, FOLLOWUPTIME=, and TOTALTIME= options). If you run out
of memory, then you can try either specifying a smaller number of subintervals, changing the time scale to a
use a longer time unit (for example, years instead of months), or both.

CPU Time

In the Satterthwaite t test analysis (TWOSAMPLEMEANS TEST=DIFF_SATT), the required CPU time
grows as the mean difference decreases relative to the standard deviations. In the PAIREDFREQ statement,
the required CPU time for the exact power computation (METHOD=EXACT) grows with the sample size.
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Computational Methods and Formulas
This section describes the approaches that PROC POWER uses to compute power for each analysis. The first
subsection defines some common notation. The following subsections describe the various power analyses,
including discussions of the data, statistical test, and power formula for each analysis. Unless otherwise
indicated, computed values for parameters besides power (for example, sample size) are obtained by solving
power formulas for the desired parameters.

Common Notation

Table 77.29 displays notation for some of the more common parameters across analyses. The Associated
Syntax column shows examples of relevant analysis statement options, where applicable.

Table 77.29 Common Notation

Symbol Description Associated Syntax

˛ Significance level ALPHA=
N Total sample size NTOTAL=, NPAIRS=
ni Sample size in ith group NPERGROUP=,

GROUPNS=
wi Allocation weight for ith group (standardized to sum

to 1)
GROUPWEIGHTS=

� (Arithmetic) mean MEAN=
�i (Arithmetic) mean in ith group GROUPMEANS=,

PAIREDMEANS=
�diff (Arithmetic) mean difference, �2 � �1 or �T � �R MEANDIFF=
�0 Null mean or mean difference (arithmetic) NULL=, NULLDIFF=
 Geometric mean MEAN=
i Geometric mean in ith group GROUPMEANS=,

PAIREDMEANS=
0 Null mean or mean ratio (geometric) NULL=, NULLRATIO=
� Standard deviation (or common standard deviation per

group)
STDDEV=

�i Standard deviation in ith group GROUPSTDDEVS=,
PAIREDSTDDEVS=

�diff Standard deviation of differences
CV Coefficient of variation, defined as the ratio of the

standard deviation to the (arithmetic) mean on the
original data scale

CV=, PAIREDCVS=

� Correlation CORR=
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Table 77.29 continued

Symbol Description Associated Syntax

�T ; �R Treatment and reference (arithmetic) means for
equivalence test

GROUPMEANS=,
PAIREDMEANS=

T ; R Treatment and reference geometric means for
equivalence test

GROUPMEANS=,
PAIREDMEANS=

�L Lower equivalence bound LOWER=
�U Upper equivalence bound UPPER=
t .�; ı/ t distribution with df � and noncentrality ı
F.�1; �2; �/ F distribution with numerator df �1, denominator df

�2, and noncentrality �
tpI� pth percentile of t distribution with df �
FpI�1;�2 pth percentile of F distribution with numerator df �1

and denominator df �2
Bin.N; p/ Binomial distribution with sample size N and

proportion p

A “lower one-sided” test is associated with SIDES=L (or SIDES=1 with the effect smaller than the null
value), and an “upper one-sided” test is associated with SIDES=U (or SIDES=1 with the effect larger than
the null value).

Owen (1965) defines a function, known as Owen’s Q, that is convenient for representing terms in power
formulas for confidence intervals and equivalence tests:

Q�.t; ıI a; b/ D

p
2�

�.�
2
/2
��2
2

Z b

a

ˆ

�
tx
p
�
� ı

�
x��1�.x/dx

where �.�/ and ˆ.�/ are the density and cumulative distribution function of the standard normal distribution,
respectively.

Analyses in the LOGISTIC Statement

Likelihood Ratio Chi-Square Test for One Predictor (TEST=LRCHI)
The power computing formula is based on Shieh and O’Brien (1998); Shieh (2000); Self, Mauritsen, and
Ohara (1992), and Hsieh (1989).
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Define the following notation for a logistic regression analysis:

N D #subjects .NTOTAL/

K D #predictors (not counting intercept)

x D .x1; : : : ; xK/0 D random variables for predictor vector

x�1 D .x2; : : : ; xK/0

� D .�1; : : : ; �K/
0
D Ex D mean predictor vector

xi D .xi1; : : : ; xiK/0 D predictor vector for subject i .i 2 1; : : : ; N /

Y D random variable for response (0 or 1)

Yi D response for subject i .i 2 1; : : : ; N /

pi D Prob.Yi D 1jxi / .i 2 1; : : : ; N /

� D Prob.Yi D 1jxi D �/ .RESPONSEPROB/

Uj D unit change for j th predictor .UNITS/

ORj D Odds.Yi D 1jxij D c/=Odds.Yi D 1jxij D c � Uj / .c arbitrary; i 2 1; : : : ; N;

j 2 1; : : : ; K/ (TESTODDSRATIO if j D 1;COVODDSRATIOS if j > 1/

‰0 D intercept in full model (INTERCEPT)

‰ D .‰1; : : : ; ‰K/
0
D regression coefficients in full model

.‰1 D TESTREGCOEFF, others = COVREGCOEFFS/

� D Corr.x�1; x1/ .CORR/

cj D #distinct possible values of xij .j 2 1; : : : ; K/.for any i/ .NBINS/

x?gj D gth possible value of xij .g 2 1; : : : ; cj /.j 2 1; : : : ; K/

.for any i/ .VARDIST/

�gj D Prob
�
xij D x

?
gj

�
.g 2 1; : : : ; cj /.j 2 1; : : : ; K/

.for any i/ .VARDIST/

C D

KY
jD1

cj D #possible values of xi .for any i/

x?m D mth possible value of xi .m 2 1; : : : ; C /

�m D Prob
�
xi D x?m

�
.m 2 1; : : : ; C /

The logistic regression model is

log
�

pi

1 � pi

�
D ‰0 C‰

0xi

The hypothesis test of the first predictor variable is

H0W‰1 D 0

H1W‰1 ¤ 0
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Assuming independence among all predictor variables, �m is defined as follows:

�m D

KY
jD1

�h.m;j /j .m 2 1; : : : ; C /

where h.m; j / is calculated according to the following algorithm:

z D mI

do j D K to 1I

h.m; j / D mod.z � 1; cj /C 1I
z D floor..z � 1/=cj /C 1I

endI

This algorithm causes the elements of the transposed vector fh.m; 1/; : : : ; h.m;K/g to vary fastest to slowest
from right to left as m increases, as shown in the following table of h.m; j / values:

j

h.m; j / 1 2 � � � K � 1 K

1 1 1 � � � 1 1

1 1 1 � � � 1 2
:::

:::
::: 1 1 � � � 1 cK
::: 1 1 � � � 2 1
::: 1 1 � � � 2 2
:::

:::

m
::: 1 1 � � � 2 cK
:::

:::
::: c1 c2 � � � cK�1 1
::: c1 c2 � � � cK�1 2
:::

:::

C c1 c2 � � � cK�1 cK

The x?m values are determined in a completely analogous manner.

The discretization is handled as follows (unless the distribution is ordinal, or binomial with sample size
parameter at least as large as requested number of bins): for xj , generate cj quantiles at evenly spaced
probability values such that each such quantile is at the midpoint of a bin with probability 1

cj
. In other words,

x?gj D

�
g � 0:5

cj

�
th quantile of relevant distribution

.g 2 1; : : : ; cj /.j 2 1; : : : ; K/

�gj D
1

cj
(same for all g)



Computational Methods and Formulas F 6377

The primary noncentrality for the power computation is

�? D 2

CX
mD1

�m
�
b0.�m/

�
�m � �

?
m

�
�
�
b.�m/ � b.�

?
m/
��

where

b0.�/ D
exp.�/

1C exp.�/
b.�/ D log .1C exp.�//
�m D ‰0 C‰

0x?m
�?m D ‰

?
0 C‰

?0x?m

where

‰?0 D ‰0 C‰1�1 D intercept in reduced model, absorbing the tested predictor

‰? D .0;‰2; : : : ; ‰K/
0
D coefficients in reduced model

The power is

power D P
�
�2.1;�?N.1 � �2// � �21�˛.1/

�
The factor .1 � �2/ is the adjustment for correlation between the predictor that is being tested and other
predictors, from Hsieh (1989).

Alternative input parameterizations are handled by the following transformations:

‰0 D log
�

�

1 � �

�
�‰ 0�

‰j D
log.ORj /

Uj
.j 2 1; : : : ; K/

Analyses in the MULTREG Statement

Type III F Test in Multiple Regression (TEST=TYPE3)
Maxwell (2000) discusses a number of different ways to represent effect sizes (and to compute exact power
based on them) in multiple regression. PROC POWER supports two of these, multiple partial correlation and
R2 in full and reduced models.

Let p denote the total number of predictors in the full model (excluding the intercept), and let Y denote the
response variable. You are testing that the coefficients of p1 � 1 predictors in a set X1 are 0, controlling for
all of the other predictors X�1, which consists of p � p1 � 0 variables.

The hypotheses can be expressed in two different ways. The first is in terms of �YX1jX�1 , the multiple partial
correlation between the predictors in X1 and the response Y adjusting for the predictors in X�1:

H0W�
2
YX1jX�1

D 0

H1W�
2
YX1jX�1

> 0
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The second is in terms of the multiple correlations in full (�Y j.X1;X�1/) and reduced (�Y jX�1) nested models:

H0W�
2
Y j.X1;X�1/

� �2Y jX�1 D 0

H1W�
2
Y j.X1;X�1/

� �2Y jX�1 > 0

Note that the squared values of �Y j.X1;X�1/ and �Y jX�1 are the population R2 values for full and reduced
models.

The test statistic can be written in terms of the sample multiple partial correlation RYX1jX�1 ,

F D

8̂̂<̂
:̂
.N � 1 � p/

R2
YX1jX�1

1�R2
YX1jX�1

; intercept

.N � p/
R2
YX1jX�1

1�R2
YX1jX�1

; no intercept

or the sample multiple correlations in full (RY j.X1;X�1/) and reduced (RY jX�1) models,

F D

8̂̂<̂
:̂
.N � 1 � p/

R2
Y j.X1;X�1/

�R2
Y jX�1

1�R2
Y j.X1;X�1/

; intercept

.N � p/
R2
Y j.X1;X�1/

�R2
Y jX�1

1�R2
Y j.X1;X�1/

; no intercept

The test is the usual Type III F test in multiple regression:

Reject H0 if
�
F � F1�˛.p1; N � 1 � p/; intercept
F � F1�˛.p1; N � p/; no intercept

Although the test is invariant to whether the predictors are assumed to be random or fixed, the power is
affected by this assumption. If the response and predictors are assumed to have a joint multivariate normal
distribution, then the exact power is given by the following formula:

power D

8̂̂<̂
:̂
P

��
N�1�p
p1

�� R2
YX1jX�1

1�R2
YX1jX�1

�
� F1�˛.p1; N � 1 � p/

�
; intercept

P

��
N�p
p1

�� R2
YX1jX�1

1�R2
YX1jX�1

�
� F1�˛.p1; N � p/

�
; no intercept

D

8̂̂<̂
:̂
P

�
R2
YX1jX�1

�
F1�˛.p1;N�1�p/

F1�˛.p1;N�1�p/C
N�1�p
p1

�
; intercept

P

�
R2
YX1jX�1

�
F1�˛.p1;N�p/

F1�˛.p1;N�p/C
N�p
p1

�
; no intercept

The distribution of R2
YX1jX�1

(for any �2
YX1jX�1

) is given in Chapter 32 of Johnson, Kotz, and Balakrishnan
(1995). Sample size tables are presented in Gatsonis and Sampson (1989).

If the predictors are assumed to have fixed values, then the exact power is given by the noncentral F
distribution. The noncentrality parameter is

� D N
�2
YX1jX�1

1 � �2
YX1jX�1
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or equivalently,

� D N
�2
Y j.X1;X�1/

� �2
Y jX�1

1 � �2
Y j.X1;X�1/

The power is

power D
�
P .F.p1; N � 1 � p; �/ � F1�˛.p1; N � 1 � p// ; intercept
P .F.p1; N � p; �/ � F1�˛.p1; N � p// ; no intercept

The minimum acceptable input value of N depends on several factors, as shown in Table 77.30.

Table 77.30 Minimum Acceptable Sample Size Values in the MULTREG Statement

Predictor Type Intercept in Model? p1 D 1? Minimum N

Random Yes Yes p + 3
Random Yes No p + 2
Random No Yes p + 2
Random No No p + 1
Fixed Yes Yes or No p + 2
Fixed No Yes or No p + 1

Analyses in the ONECORR Statement

Fisher’s z Test for Pearson Correlation (TEST=PEARSON DIST=FISHERZ)
Fisher’s z transformation (Fisher 1921) of the sample correlation RY j.X1;X�1/ is defined as

z D
1

2
log

�
1CRY j.X1;X�1/

1 �RY j.X1;X�1/

�
Fisher’s z test assumes the approximate normal distribution N.�; �2/ for z, where

� D
1

2
log

�
1C �Y j.X1;X�1/

1 � �Y j.X1;X�1/

�
C

�Y j.X1;X�1/

2.N � 1 � p?/

and

�2 D
1

N � 3 � p?

where p? is the number of variables partialed out (Anderson 1984, pp. 132–133) and �Y j.X1;X�1/ is the
partial correlation between Y and X1 adjusting for the set of zero or more variables X�1.

The test statistic

z? D .N � 3 � p?/
1
2

�
z �

1

2
log

�
1C �0

1 � �0

�
�

�0

2.N � 1 � p?/

�
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is assumed to have a normal distribution N.ı; �/, where �0 is the null partial correlation and ı and � are
derived from Section 16.33 of Stuart and Ord (1994):

ı D .N � 3 � p?/
1
2

"
1

2
log

�
1C �Y j.X1;X�1/

1 � �Y j.X1;X�1/

�
C

�Y j.X1;X�1/

2.N � 1 � p?/

 
1C

5C �2
Y j.X1;X�1/

4.N � 1 � p?/
C

11C 2�2
Y j.X1;X�1/

C 3�4
Y j.X1;X�1/

8.N � 1 � p?/2

!
�
1

2
log

�
1C �0

1 � �0

�
�

�0

2.N � 1 � p?/

#

� D
N � 3 � p?

N � 1 � p?

"
1C

4 � �2
Y j.X1;X�1/

2.N � 1 � p?/
C

22 � 6�2
Y j.X1;X�1/

� 3�4
Y j.X1;X�1/

6.N � 1 � p?/2

#

The approximate power is computed as

power D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

ˆ

�
ı�z1�˛

�
1
2

�
; upper one-sided

ˆ

�
�ı�z1�˛

�
1
2

�
; lower one-sided

ˆ

�
ı�z1�˛

2

�
1
2

�
Cˆ

�
�ı�z1�˛

2

�
1
2

�
; two-sided

Because the test is biased, the achieved significance level might differ from the nominal significance level.
The actual alpha is computed in the same way as the power, except that the correlation �Y j.X1;X�1/ is replaced
by the null correlation �0.

t Test for Pearson Correlation (TEST=PEARSON DIST=T)
The two-sided case is identical to multiple regression with an intercept and p1 D 1, which is discussed in the
section “Analyses in the MULTREG Statement” on page 6377.

Let p? denote the number of variables partialed out. For the one-sided cases, the test statistic is

t D .N � 2 � p?/
1
2

RYX1jX�1�
1 �R2

YX1jX�1

� 1
2

which is assumed to have a null distribution of t .N � 2 � p?/.

If the X and Y variables are assumed to have a joint multivariate normal distribution, then the exact power is
given by the following formula:
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power D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:
P

24.N � 2 � p?/ 12 RYX1jX�1�
1�R2

YX1jX�1

� 1
2

� t1�˛.N � 2 � p
?/

35 ; upper one-sided

P

24.N � 2 � p?/ 12 RYX1jX�1�
1�R2

YX1jX�1

� 1
2

� t˛.N � 2 � p
?/

35 ; lower one-sided

D

8̂̂̂̂
<̂
ˆ̂̂:
P

"
RY j.X1;X�1/ �

t1�˛.N�2�p
?/

.t21�˛.N�2�p?/CN�2�p?/
1
2

#
; upper one-sided

P

"
RY j.X1;X�1/ �

t˛.N�2�p
?/

.t2˛.N�2�p?/CN�2�p?/
1
2

#
; lower one-sided

The distribution of RY j.X1;X�1/ (given the underlying true correlation �Y j.X1;X�1/) is given in Chapter 32 of
Johnson, Kotz, and Balakrishnan (1995).

If the X variables are assumed to have fixed values, then the exact power is given by the noncentral t
distribution t .N � 2 � p?; ı/, where the noncentrality is

ı D N
1
2

�YX1jX�1�
1 � �2

YX1jX�1

� 1
2

The power is

power D
�
P .t.N � 2 � p?; ı/ � t1�˛.N � 2 � p

?// ; upper one-sided
P .t.N � 2 � p?; ı/ � t˛.N � 2 � p

?// ; lower one-sided

Analyses in the ONESAMPLEFREQ Statement

Exact Test of a Binomial Proportion (TEST=EXACT)
Let X be distributed as Bin.N; p/. The hypotheses for the test of the proportion p are as follows:

H0Wp D p0

H1W

8<:
p ¤ p0; two-sided
p > p0; upper one-sided
p < p0; lower one-sided

The exact test assumes binomially distributed data and requires N � 1 and 0 < p0 < 1. The test statistic is

X D number of successes Ï Bin.N; p/

The significance probability ˛ is split symmetrically for two-sided tests, in the sense that each tail is filled
with as much as possible up to ˛=2.
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Exact power computations are based on the binomial distribution and computing formulas such as the
following from Johnson, Kotz, and Kemp (1992, equation 3.20):

P.X � C jN;p/ D P

�
F�1;�2 �

�2p

�1.1 � p/

�
where �1 D 2C and �2 D 2.N � C C 1/

Let CL and CU denote lower and upper critical values, respectively. Let ˛a denote the achieved (actual)
significance level, which for two-sided tests is the sum of the favorable major tail (˛M ) and the opposite
minor tail (˛m).

For the upper one-sided case,

CU D minfC W P.X � C jp0/ � ˛g
Reject H0 if X � CU

˛a D P.X � CU jp0/

power D P.X � CU jp/

For the lower one-sided case,

CL D maxfC W P.X � C jp0/ � ˛g
Reject H0 if X � CL

˛a D P.X � CLjp0/

power D P.X � CLjp/

For the two-sided case,

CL D maxfC W P.X � C jp0/ �
˛

2
g

CU D minfC W P.X � C jp0/ �
˛

2
g

Reject H0 if X � CL orX � CU
˛a D P.X � CL orX � CU jp0/

power D P.X � CL orX � CU jp/

z Test for Binomial Proportion Using Null Variance (TEST=Z VAREST=NULL)
For the normal approximation test, the test statistic is

Z.X/ D
X �Np0

ŒNp0.1 � p0/�
1
2

For the METHOD=EXACT option, the computations are the same as described in the section “Exact Test of
a Binomial Proportion (TEST=EXACT)” on page 6381 except for the definitions of the critical values.

For the upper one-sided case,

CU D minfC W Z.C/ � z1�˛g
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For the lower one-sided case,

CL D maxfC W Z.C/ � z˛g

For the two-sided case,

CL D maxfC W Z.C/ � z˛
2
g

CU D minfC W Z.C/ � z1�˛
2
g

For the METHOD=NORMAL option, the test statistic Z.X/ is assumed to have the normal distribution

N

 
N
1
2 .p � p0/

Œp0.1 � p0/�
1
2

;
p.1 � p/

p0.1 � p0/

!
The approximate power is computed as

power D

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

ˆ

 
z˛C
p
N

p�p0p
p0.1�p0/q

p.1�p/
p0.1�p0/

!
; upper one-sided

ˆ

 
z˛�
p
N

p�p0p
p0.1�p0/q

p.1�p/
p0.1�p0/

!
; lower one-sided

ˆ

 
z˛
2
C
p
N

p�p0p
p0.1�p0/q

p.1�p/
p0.1�p0/

!
Cˆ

 
z˛
2
�
p
N

p�p0p
p0.1�p0/q

p.1�p/
p0.1�p0/

!
; two-sided

The approximate sample size is computed in closed form for the one-sided cases by inverting the power
equation,

N D

 
zpower

p
p.1 � p/C z1�˛

p
p0.1 � p0/

p � p0

!2
and by numerical inversion for the two-sided case.

z Test for Binomial Proportion Using Sample Variance (TEST=Z VAREST=SAMPLE)
For the normal approximation test using the sample variance, the test statistic is

Zs.X/ D
X �Np0

ŒN Op.1 � Op/�
1
2

where Op D X=N .

For the METHOD=EXACT option, the computations are the same as described in the section “Exact Test of
a Binomial Proportion (TEST=EXACT)” on page 6381 except for the definitions of the critical values.

For the upper one-sided case,

CU D minfC W Zs.C / � z1�˛g
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For the lower one-sided case,

CL D maxfC W Zs.C / � z˛g

For the two-sided case,

CL D maxfC W Zs.C / � z˛
2
g

CU D minfC W Zs.C / � z1�˛
2
g

For the METHOD=NORMAL option, the test statistic Zs.X/ is assumed to have the normal distribution

N

 
N

1
2 .p � p0/

Œp.1 � p/�
1
2

; 1

!

(see Chow, Shao, and Wang (2003, p. 82)).

The approximate power is computed as

power D

8̂̂̂<̂
ˆ̂:
ˆ
�
z˛ C

p
N p�p0p

p.1�p/

�
; upper one-sided

ˆ
�
z˛ �

p
N p�p0p

p.1�p/

�
; lower one-sided

ˆ
�
z˛
2
C
p
N p�p0p

p.1�p/

�
Cˆ

�
z˛
2
�
p
N p�p0p

p.1�p/

�
; two-sided

The approximate sample size is computed in closed form for the one-sided cases by inverting the power
equation,

N D p.1 � p/

�
zpower C z1�˛

p � p0

�2
and by numerical inversion for the two-sided case.

z Test for Binomial Proportion with Continuity Adjustment Using Null Variance (TEST=ADJZ
VAREST=NULL)
For the normal approximation test with continuity adjustment, the test statistic is (Pagano and Gauvreau
1993, p. 295):

Zc.X/ D
X �Np0 C 0:5.1fX<Np0g/ � 0:5.1fX>Np0g/

ŒNp0.1 � p0/�
1
2

For the METHOD=EXACT option, the computations are the same as described in the section “Exact Test of
a Binomial Proportion (TEST=EXACT)” on page 6381 except for the definitions of the critical values.

For the upper one-sided case,

CU D minfC W Zc.C / � z1�˛g
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For the lower one-sided case,

CL D maxfC W Zc.C / � z˛g

For the two-sided case,

CL D maxfC W Zc.C / � z˛
2
g

CU D minfC W Zc.C / � z1�˛
2
g

For the METHOD=NORMAL option, the test statistic Zc.X/ is assumed to have the normal distribution
N.�; �2/, where � and �2 are derived as follows.

For convenience of notation, define

k D
1

2
p
Np0.1 � p0/

Then

E ŒZc.X/� D 2kNp � 2kNp0 C kP.X < Np0/ � kP.X > Np0/

and

Var ŒZc.X/� D 4k2Np.1 � p/C k2 Œ1 � P.X D Np0/� � k2 ŒP.X < Np0/ � P.X > Np0/�
2

C 4k2
�
E
�
X1fX<Np0g

�
�E

�
X1fX>Np0g

��
� 4k2Np ŒP.X < Np0/ � P.X > Np0/�

The probabilities P.X D Np0/, P.X < Np0/, and P.X > Np0/ and the truncated expectations
E
�
X1fX<Np0g

�
and E

�
X1fX>Np0g

�
are approximated by assuming the normal-approximate distribution of

X, N.Np;Np.1 � p//. Letting �.�/ and ˆ.�/ denote the standard normal PDF and CDF, respectively, and
defining d as

d D
Np0 �Np

ŒNp.1 � p/�
1
2

the terms are computed as follows:

P.X D Np0/ D 0

P.X < Np0/ D ˆ.d/

P.X > Np0/ D 1 �ˆ.d/

E
�
X1fX<Np0g

�
D Npˆ.d/ � ŒNp.1 � p/�

1
2 �.d/

E
�
X1fX>Np0g

�
D Np Œ1 �ˆ.d/�C ŒNp.1 � p/�

1
2 �.d/

The mean and variance of Zc.X/ are thus approximated by

� D k Œ2Np � 2Np0 C 2ˆ.d/ � 1�
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and

�2 D 4k2
h
Np.1 � p/Cˆ.d/ .1 �ˆ.d// � 2 .Np.1 � p//

1
2 �.d/

i
The approximate power is computed as

power D

8̂̂̂<̂
ˆ̂:
ˆ
�
z˛C�
�

�
; upper one-sided

ˆ
�z˛��

�

�
; lower one-sided

ˆ

�
z˛
2
C�

�

�
Cˆ

�z˛
2
��

�

�
; two-sided

The approximate sample size is computed by numerical inversion.

z Test for Binomial Proportion with Continuity Adjustment Using Sample Variance (TEST=ADJZ
VAREST=SAMPLE)
For the normal approximation test with continuity adjustment using the sample variance, the test statistic is

Zcs.X/ D
X �Np0 C 0:5.1fX<Np0g/ � 0:5.1fX>Np0g/

ŒN Op.1 � Op/�
1
2

where Op D X=N .

For the METHOD=EXACT option, the computations are the same as described in the section “Exact Test of
a Binomial Proportion (TEST=EXACT)” on page 6381 except for the definitions of the critical values.

For the upper one-sided case,

CU D minfC W Zcs.C / � z1�˛g

For the lower one-sided case,

CL D maxfC W Zcs.C / � z˛g

For the two-sided case,

CL D maxfC W Zcs.C / � z˛
2
g

CU D minfC W Zcs.C / � z1�˛
2
g

For the METHOD=NORMAL option, the test statistic Zcs.X/ is assumed to have the normal distribution
N.�; �2/, where � and �2 are derived as follows.

For convenience of notation, define

k D
1

2
p
Np.1 � p/
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Then

E ŒZcs.X/� � 2kNp � 2kNp0 C kP.X < Np0/ � kP.X > Np0/

and

Var ŒZcs.X/� � 4k2Np.1 � p/C k2 Œ1 � P.X D Np0/� � k2 ŒP.X < Np0/ � P.X > Np0/�
2

C 4k2
�
E
�
X1fX<Np0g

�
�E

�
X1fX>Np0g

��
� 4k2Np ŒP.X < Np0/ � P.X > Np0/�

The probabilities P.X D Np0/, P.X < Np0/, and P.X > Np0/ and the truncated expectations
E
�
X1fX<Np0g

�
and E

�
X1fX>Np0g

�
are approximated by assuming the normal-approximate distribution of

X, N.Np;Np.1 � p//. Letting �.�/ and ˆ.�/ denote the standard normal PDF and CDF, respectively, and
defining d as

d D
Np0 �Np

ŒNp.1 � p/�
1
2

the terms are computed as follows:

P.X D Np0/ D 0

P.X < Np0/ D ˆ.d/

P.X > Np0/ D 1 �ˆ.d/

E
�
X1fX<Np0g

�
D Npˆ.d/ � ŒNp.1 � p/�

1
2 �.d/

E
�
X1fX>Np0g

�
D Np Œ1 �ˆ.d/�C ŒNp.1 � p/�

1
2 �.d/

The mean and variance of Zcs.X/ are thus approximated by

� D k Œ2Np � 2Np0 C 2ˆ.d/ � 1�

and

�2 D 4k2
h
Np.1 � p/Cˆ.d/ .1 �ˆ.d// � 2 .Np.1 � p//

1
2 �.d/

i
The approximate power is computed as

power D

8̂̂̂<̂
ˆ̂:
ˆ
�
z˛C�
�

�
; upper one-sided

ˆ
�z˛��

�

�
; lower one-sided

ˆ

�
z˛
2
C�

�

�
Cˆ

�z˛
2
��

�

�
; two-sided

The approximate sample size is computed by numerical inversion.
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Exact Equivalence Test of a Binomial Proportion (TEST=EQUIV_EXACT)
The hypotheses for the equivalence test are

H0Wp < �L or p > �U

H1W�L � p � �U

where �L and �U are the lower and upper equivalence bounds, respectively.

The analysis is the two one-sided tests (TOST) procedure as described in Chow, Shao, and Wang (2003) on p.
84, but using exact critical values as on p. 116 instead of normal-based critical values.

Two different hypothesis tests are carried out:

Ha0Wp < �L

Ha1Wp � �L

and

Hb0Wp > �U

Hb1Wp � �U

If Ha0 is rejected in favor of Ha1 and Hb0 is rejected in favor of Hb1, then H0 is rejected in favor of H1.

The test statistic for each of the two tests (Ha0 versus Ha1 and Hb0 versus Hb1) is

X D number of successes Ï Bin.N; p/

Let CU denote the critical value of the exact upper one-sided test of Ha0 versus Ha1, and let CL denote the
critical value of the exact lower one-sided test of Hb0 versus Hb1. These critical values are computed in
the section “Exact Test of a Binomial Proportion (TEST=EXACT)” on page 6381. Both of these tests are
rejected if and only if CU � X � CL. Thus, the exact power of the equivalence test is

power D P .CU � X � CL/
D P .X � CU / � P .X � CL C 1/

The probabilities are computed using Johnson and Kotz (1970, equation 3.20).

z Equivalence Test for Binomial Proportion Using Null Variance (TEST=EQUIV_Z VAREST=NULL)
The hypotheses for the equivalence test are

H0Wp < �L or p > �U

H1W�L � p � �U

where �L and �U are the lower and upper equivalence bounds, respectively.

The analysis is the two one-sided tests (TOST) procedure as described in Chow, Shao, and Wang (2003) on p.
84, but using the null variance instead of the sample variance.
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Two different hypothesis tests are carried out:

Ha0Wp < �L

Ha1Wp � �L

and

Hb0Wp > �U

Hb1Wp � �U

If Ha0 is rejected in favor of Ha1 and Hb0 is rejected in favor of Hb1, then H0 is rejected in favor of H1.

The test statistic for the test of Ha0 versus Ha1 is

ZL.X/ D
X �N�L

ŒN�L.1 � �L/�
1
2

The test statistic for the test of Hb0 versus Hb1 is

ZU .X/ D
X �N�U

ŒN�U .1 � �U /�
1
2

For the METHOD=EXACT option, let CU denote the critical value of the exact upper one-sided test of Ha0
versus Ha1 using ZL.X/. This critical value is computed in the section “z Test for Binomial Proportion
Using Null Variance (TEST=Z VAREST=NULL)” on page 6382. Similarly, let CL denote the critical value
of the exact lower one-sided test of Hb0 versus Hb1 using ZU .X/. Both of these tests are rejected if and
only if CU � X � CL. Thus, the exact power of the equivalence test is

power D P .CU � X � CL/
D P .X � CU / � P .X � CL C 1/

The probabilities are computed using Johnson and Kotz (1970, equation 3.20).

For the METHOD=NORMAL option, the test statistic ZL.X/ is assumed to have the normal distribution

N

 
N
1
2 .p � �L/

Œ�L.1 � �L/�
1
2

;
p.1 � p/

�L.1 � �L/

!
and the test statistic ZU .X/ is assumed to have the normal distribution

N

 
N
1
2 .p � �U /

Œ�U .1 � �U /�
1
2

;
p.1 � p/

�U .1 � �U /

!
(see Chow, Shao, and Wang (2003, p. 84)). The approximate power is computed as

power D ˆ

0B@z˛ �
p
N p��Up

�U .1��U /q
p.1�p/
�U .1��U /

1CACˆ
0B@z˛ C

p
N p��Lp

�L.1��L/q
p.1�p/
�L.1��L/

1CA � 1
The approximate sample size is computed by numerically inverting the power formula, using the sample size
estimate N0 of Chow, Shao, and Wang (2003, p. 85) as an initial guess:

N0 D p.1 � p/

�
z1�˛ C z.1Cpower/=2

0:5.�U � �L/� j p � 0:5.�L C �U / j

�2
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z Equivalence Test for Binomial Proportion Using Sample Variance (TEST=EQUIV_Z
VAREST=SAMPLE)
The hypotheses for the equivalence test are

H0Wp < �L or p > �U

H1W�L � p � �U

where �L and �U are the lower and upper equivalence bounds, respectively.

The analysis is the two one-sided tests (TOST) procedure as described in Chow, Shao, and Wang (2003) on p.
84.

Two different hypothesis tests are carried out:

Ha0Wp < �L

Ha1Wp � �L

and

Hb0Wp > �U

Hb1Wp � �U

If Ha0 is rejected in favor of Ha1 and Hb0 is rejected in favor of Hb1, then H0 is rejected in favor of H1.

The test statistic for the test of Ha0 versus Ha1 is

ZsL.X/ D
X �N�L

ŒN Op.1 � Op/�
1
2

where Op D X=N .

The test statistic for the test of Hb0 versus Hb1 is

ZsU .X/ D
X �N�U

ŒN Op.1 � Op/�
1
2

For the METHOD=EXACT option, let CU denote the critical value of the exact upper one-sided test of Ha0
versus Ha1 using ZsL.X/. This critical value is computed in the section “z Test for Binomial Proportion
Using Sample Variance (TEST=Z VAREST=SAMPLE)” on page 6383. Similarly, let CL denote the critical
value of the exact lower one-sided test of Hb0 versus Hb1 using ZsU .X/. Both of these tests are rejected if
and only if CU � X � CL. Thus, the exact power of the equivalence test is

power D P .CU � X � CL/
D P .X � CU / � P .X � CL C 1/

The probabilities are computed using Johnson and Kotz (1970, equation 3.20).

For the METHOD=NORMAL option, the test statistic ZsL.X/ is assumed to have the normal distribution

N

 
N

1
2 .p � �L/

Œp.1 � p/�
1
2

; 1

!
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and the test statistic ZsU .X/ is assumed to have the normal distribution

N

 
N
1
2 .p � �U /

Œp.1 � p/�
1
2

; 1

!
(see Chow, Shao, and Wang (2003), p. 84).

The approximate power is computed as

power D ˆ

 
z˛ �

p
N

p � �Up
p.1 � p/

!
Cˆ

 
z˛ C

p
N

p � �Lp
p.1 � p/

!
� 1

The approximate sample size is computed by numerically inverting the power formula, using the sample size
estimate N0 of Chow, Shao, and Wang (2003, p. 85) as an initial guess:

N0 D p.1 � p/

�
z1�˛ C z.1Cpower/=2

0:5.�U � �L/� j p � 0:5.�L C �U / j

�2
z Equivalence Test for Binomial Proportion with Continuity Adjustment Using Null Variance
(TEST=EQUIV_ADJZ VAREST=NULL)
The hypotheses for the equivalence test are

H0Wp < �L or p > �U

H1W�L � p � �U

where �L and �U are the lower and upper equivalence bounds, respectively.

The analysis is the two one-sided tests (TOST) procedure as described in Chow, Shao, and Wang (2003) on p.
84, but using the null variance instead of the sample variance.

Two different hypothesis tests are carried out:

Ha0Wp < �L

Ha1Wp � �L

and

Hb0Wp > �U

Hb1Wp � �U

If Ha0 is rejected in favor of Ha1 and Hb0 is rejected in favor of Hb1, then H0 is rejected in favor of H1.

The test statistic for the test of Ha0 versus Ha1 is

ZcL.X/ D
X �N�L C 0:5.1fX<N�Lg/ � 0:5.1fX>N�Lg/h

N O�L.1 � O�L/
i 1
2

where Op D X=N .

The test statistic for the test of Hb0 versus Hb1 is

ZcU .X/ D
X �N�U C 0:5.1fX<N�U g/ � 0:5.1fX>N�U g/h

N O�U .1 � O�U /
i 1
2
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For the METHOD=EXACT option, let CU denote the critical value of the exact upper one-sided test of Ha0
versus Ha1 using ZcL.X/. This critical value is computed in the section “z Test for Binomial Proportion
with Continuity Adjustment Using Null Variance (TEST=ADJZ VAREST=NULL)” on page 6384. Similarly,
let CL denote the critical value of the exact lower one-sided test of Hb0 versus Hb1 using ZcU .X/. Both of
these tests are rejected if and only if CU � X � CL. Thus, the exact power of the equivalence test is

power D P .CU � X � CL/
D P .X � CU / � P .X � CL C 1/

The probabilities are computed using Johnson and Kotz (1970, equation 3.20).

For the METHOD=NORMAL option, the test statistic ZcL.X/ is assumed to have the normal distribution
N.�L; �

2
L/, and ZcU .X/ is assumed to have the normal distribution N.�U ; �2U /, where �L, �U , �2L, and

�2U are derived as follows.

For convenience of notation, define

kL D
1

2
p
N�L.1 � �L/

kU D
1

2
p
N�U .1 � �U /

Then

E ŒZcL.X/� � 2kLNp � 2kLN�L C kLP.X < N�L/ � kLP.X > N�L/

E ŒZcU .X/� � 2kUNp � 2kUN�U C kUP.X < N�U / � kUP.X > N�U /

and

Var ŒZcL.X/� � 4k2LNp.1 � p/C k
2
L Œ1 � P.X D N�L/� � k

2
L ŒP.X < N�L/ � P.X > N�L/�

2

C 4k2L
�
E
�
X1fX<N�Lg

�
�E

�
X1fX>N�Lg

��
� 4k2LNp ŒP.X < N�L/ � P.X > N�L/�

Var ŒZcU .X/� � 4k2UNp.1 � p/C k
2
U Œ1 � P.X D N�U /� � k

2
U ŒP.X < N�U / � P.X > N�U /�

2

C 4k2U
�
E
�
X1fX<N�U g

�
�E

�
X1fX>N�U g

��
� 4k2UNp ŒP.X < N�U / � P.X > N�U /�

The probabilities P.X D N�L/, P.X < N�L/, P.X > N�L/, P.X D N�U /, P.X < N�U /, and
P.X > N�U / and the truncated expectations E

�
X1fX<N�Lg

�
, E

�
X1fX>N�Lg

�
, E

�
X1fX<N�Lg

�
, and

E
�
X1fX>N�Lg

�
are approximated by assuming the normal-approximate distribution of X,N.Np;Np.1�p//.

Letting �.�/ and ˆ.�/ denote the standard normal PDF and CDF, respectively, and defining dL and dU as

dL D
N�L �Np

ŒNp.1 � p/�
1
2

dU D
N�U �Np

ŒNp.1 � p/�
1
2
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the terms are computed as follows:

P.X D N�L/ D 0

P.X D N�U / D 0

P.X < N�L/ D ˆ.dL/

P.X < N�U / D ˆ.dU /

P.X > N�L/ D 1 �ˆ.dL/

P.X > N�U / D 1 �ˆ.dU /

E
�
X1fX<N�Lg

�
D Npˆ.dL/ � ŒNp.1 � p/�

1
2 �.dL/

E
�
X1fX<N�U g

�
D Npˆ.dU / � ŒNp.1 � p/�

1
2 �.dU /

E
�
X1fX>N�Lg

�
D Np Œ1 �ˆ.dL/�C ŒNp.1 � p/�

1
2 �.dL/

E
�
X1fX>N�U g

�
D Np Œ1 �ˆ.dU /�C ŒNp.1 � p/�

1
2 �.dU /

The mean and variance of ZcL.X/ and ZcU .X/ are thus approximated by

�L D kL Œ2Np � 2N�L C 2ˆ.dL/ � 1�

�U D kU Œ2Np � 2N�U C 2ˆ.dU / � 1�

and

�2L D 4k
2
L

h
Np.1 � p/Cˆ.dL/ .1 �ˆ.dL// � 2 .Np.1 � p//

1
2 �.dL/

i
�2U D 4k

2
U

h
Np.1 � p/Cˆ.dU / .1 �ˆ.dU // � 2 .Np.1 � p//

1
2 �.dU /

i

The approximate power is computed as

power D ˆ
�
z˛ � �U

�U

�
Cˆ

�
z˛ C �L

�L

�
� 1

The approximate sample size is computed by numerically inverting the power formula.

z Equivalence Test for Binomial Proportion with Continuity Adjustment Using Sample Variance
(TEST=EQUIV_ADJZ VAREST=SAMPLE)
The hypotheses for the equivalence test are

H0Wp < �L or p > �U

H1W�L � p � �U

where �L and �U are the lower and upper equivalence bounds, respectively.

The analysis is the two one-sided tests (TOST) procedure as described in Chow, Shao, and Wang (2003) on p.
84.
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Two different hypothesis tests are carried out:

Ha0Wp < �L

Ha1Wp � �L

and

Hb0Wp > �U

Hb1Wp � �U

If Ha0 is rejected in favor of Ha1 and Hb0 is rejected in favor of Hb1, then H0 is rejected in favor of H1.

The test statistic for the test of Ha0 versus Ha1 is

ZcsL.X/ D
X �N�L C 0:5.1fX<N�Lg/ � 0:5.1fX>N�Lg/

ŒN Op.1 � Op/�
1
2

where Op D X=N .

The test statistic for the test of Hb0 versus Hb1 is

ZcsU .X/ D
X �N�U C 0:5.1fX<N�U g/ � 0:5.1fX>N�U g/

ŒN Op.1 � Op/�
1
2

For the METHOD=EXACT option, let CU denote the critical value of the exact upper one-sided test of Ha0
versus Ha1 using ZcsL.X/. This critical value is computed in the section “z Test for Binomial Proportion
with Continuity Adjustment Using Sample Variance (TEST=ADJZ VAREST=SAMPLE)” on page 6386.
Similarly, let CL denote the critical value of the exact lower one-sided test ofHb0 versusHb1 usingZcsU .X/.
Both of these tests are rejected if and only if CU � X � CL. Thus, the exact power of the equivalence test is

power D P .CU � X � CL/
D P .X � CU / � P .X � CL C 1/

The probabilities are computed using Johnson and Kotz (1970, equation 3.20).

For the METHOD=NORMAL option, the test statistic ZcsL.X/ is assumed to have the normal distribution
N.�L; �

2
L/, and ZcsU .X/ is assumed to have the normal distribution N.�U ; �2U /, where �L, �U , �2L and

�2U are derived as follows.

For convenience of notation, define

k D
1

2
p
Np.1 � p/

Then

E ŒZcsL.X/� � 2kNp � 2kN�L C kP.X < N�L/ � kP.X > N�L/

E ŒZcsU .X/� � 2kNp � 2kN�U C kP.X < N�U / � kP.X > N�U /
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and

Var ŒZcsL.X/� � 4k2Np.1 � p/C k2 Œ1 � P.X D N�L/� � k2 ŒP.X < N�L/ � P.X > N�L/�
2

C 4k2
�
E
�
X1fX<N�Lg

�
�E

�
X1fX>N�Lg

��
� 4k2Np ŒP.X < N�L/ � P.X > N�L/�

Var ŒZcsU .X/� � 4k2Np.1 � p/C k2 Œ1 � P.X D N�U /� � k2 ŒP.X < N�U / � P.X > N�U /�
2

C 4k2
�
E
�
X1fX<N�U g

�
�E

�
X1fX>N�U g

��
� 4k2Np ŒP.X < N�U / � P.X > N�U /�

The probabilities P.X D N�L/, P.X < N�L/, P.X > N�L/, P.X D N�U /, P.X < N�U /, and
P.X > N�U / and the truncated expectations E

�
X1fX<N�Lg

�
, E

�
X1fX>N�Lg

�
, E

�
X1fX<N�Lg

�
, and

E
�
X1fX>N�Lg

�
are approximated by assuming the normal-approximate distribution of X,N.Np;Np.1�p//.

Letting �.�/ and ˆ.�/ denote the standard normal PDF and CDF, respectively, and defining dL and dU as

dL D
N�L �Np

ŒNp.1 � p/�
1
2

dU D
N�U �Np

ŒNp.1 � p/�
1
2

the terms are computed as follows:

P.X D N�L/ D 0

P.X D N�U / D 0

P.X < N�L/ D ˆ.dL/

P.X < N�U / D ˆ.dU /

P.X > N�L/ D 1 �ˆ.dL/

P.X > N�U / D 1 �ˆ.dU /

E
�
X1fX<N�Lg

�
D Npˆ.dL/ � ŒNp.1 � p/�

1
2 �.dL/

E
�
X1fX<N�U g

�
D Npˆ.dU / � ŒNp.1 � p/�

1
2 �.dU /

E
�
X1fX>N�Lg

�
D Np Œ1 �ˆ.dL/�C ŒNp.1 � p/�

1
2 �.dL/

E
�
X1fX>N�U g

�
D Np Œ1 �ˆ.dU /�C ŒNp.1 � p/�

1
2 �.dU /

The mean and variance of ZcsL.X/ and ZcsU .X/ are thus approximated by

�L D k Œ2Np � 2N�L C 2ˆ.dL/ � 1�

�U D k Œ2Np � 2N�U C 2ˆ.dU / � 1�

and

�2L D 4k
2
h
Np.1 � p/Cˆ.dL/ .1 �ˆ.dL// � 2 .Np.1 � p//

1
2 �.dL/

i
�2U D 4k

2
h
Np.1 � p/Cˆ.dU / .1 �ˆ.dU // � 2 .Np.1 � p//

1
2 �.dU /

i
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The approximate power is computed as

power D ˆ
�
z˛ � �U

�U

�
Cˆ

�
z˛ C �L

�L

�
� 1

The approximate sample size is computed by numerically inverting the power formula.

Wilson Score Confidence Interval for Binomial Proportion (CI=WILSON)
The two-sided 100.1 � ˛/% confidence interval for p is

X C
z2
1�˛=2

2

N C z2
1�˛=2

˙
z1�˛=2N

1
2

N C z2
1�˛=2

 
Op.1 � Op/C

z2
1�˛=2

4N

! 1
2

So the half-width for the two-sided 100.1 � ˛/% confidence interval is

half-width D
z1�˛=2N

1
2

N C z2
1�˛=2

 
Op.1 � Op/C

z2
1�˛=2

4N

! 1
2

Prob(Width) is calculated exactly by adding up the probabilities of observing each X 2 f1; : : : ; N g that
produces a confidence interval whose half-width is at most a target value h:

Prob.Width/ D
NX
iD0

P.X D i/1half-width<h

For references and more details about this and all other confidence intervals associated with the CI= option,
see “Binomial Proportion” on page 2663 in Chapter 40, “The FREQ Procedure.”

Agresti-Coull “Add k Successes and Failures” Confidence Interval for Binomial Proportion
(CI=AGRESTICOULL)
The two-sided 100.1 � ˛/% confidence interval for p is

X C
z2
1�˛=2

2

N C z2
1�˛=2

˙ z1�˛=2

0BBBBB@
XC

z2
1�˛=2
2

NCz2
1�˛=2

 
1 �

XC
z2
1�˛=2
2

NCz2
1�˛=2

!
N C z2

1�˛=2

1CCCCCA

1
2

So the half-width for the two-sided 100.1 � ˛/% confidence interval is
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half-width D z1�˛=2

0BBBBB@
XC

z2
1�˛=2
2

NCz2
1�˛=2

 
1 �

XC
z2
1�˛=2
2

NCz2
1�˛=2

!
N C z2

1�˛=2

1CCCCCA

1
2

Prob(Width) is calculated exactly by adding up the probabilities of observing each X 2 f1; : : : ; N g that
produces a confidence interval whose half-width is at most a target value h:

Prob.Width/ D
NX
iD0

P.X D i/1half-width<h

Jeffreys Confidence Interval for Binomial Proportion (CI=JEFFREYS)
The two-sided 100.1 � ˛/% confidence interval for p is

ŒLJ .X/; UJ .X/�

where

LJ .X/ D

�
0; X D 0

Beta˛=2IXC1=2;N�XC1=2; X > 0

and

UJ .X/ D

�
Beta1�˛=2IXC1=2;N�XC1=2; X < N

1; X D N

The half-width of this two-sided 100.1 � ˛/% confidence interval is defined as half the width of the full
interval:

half-width D
1

2
.UJ .X/ � LJ .X//

Prob(Width) is calculated exactly by adding up the probabilities of observing each X 2 f1; : : : ; N g that
produces a confidence interval whose half-width is at most a target value h:

Prob.Width/ D
NX
iD0

P.X D i/1half-width<h
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Exact Clopper-Pearson Confidence Interval for Binomial Proportion (CI=EXACT)
The two-sided 100.1 � ˛/% confidence interval for p is

ŒLE .X/; UE .X/�

where

LE .X/ D

�
0; X D 0

Beta˛=2IX;N�XC1; X > 0

and

UE .X/ D

�
Beta1�˛=2IXC1;N�X ; X < N

1; X D N

The half-width of this two-sided 100.1 � ˛/% confidence interval is defined as half the width of the full
interval:

half-width D
1

2
.UE .X/ � LE .X//

Prob(Width) is calculated exactly by adding up the probabilities of observing each X 2 f1; : : : ; N g that
produces a confidence interval whose half-width is at most a target value h:

Prob.Width/ D
NX
iD0

P.X D i/1half-width<h

Wald Confidence Interval for Binomial Proportion (CI=WALD)
The two-sided 100.1 � ˛/% confidence interval for p is

Op ˙ z1�˛=2

�
Op.1 � Op/

N

� 1
2

So the half-width for the two-sided 100.1 � ˛/% confidence interval is

half-width D z1�˛=2

�
Op.1 � Op/

N

� 1
2

Prob(Width) is calculated exactly by adding up the probabilities of observing each X 2 f1; : : : ; N g that
produces a confidence interval whose half-width is at most a target value h:

Prob.Width/ D
NX
iD0

P.X D i/1half-width<h
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Continuity-Corrected Wald Confidence Interval for Binomial Proportion (CI=WALD_CORRECT)
The two-sided 100.1 � ˛/% confidence interval for p is

Op ˙

"
z1�˛=2

�
Op.1 � Op/

N

� 1
2

C
1

2N

#

So the half-width for the two-sided 100.1 � ˛/% confidence interval is

half-width D z1�˛=2

�
Op.1 � Op/

N

� 1
2

C
1

2N

Prob(Width) is calculated exactly by adding up the probabilities of observing each X 2 f1; : : : ; N g that
produces a confidence interval whose half-width is at most a target value h:

Prob.Width/ D
NX
iD0

P.X D i/1half-width<h

Analyses in the ONESAMPLEMEANS Statement

One-Sample t Test (TEST=T)
The hypotheses for the one-sample t test are

H0W� D �0

H1W

8<:
� ¤ �0; two-sided
� > �0; upper one-sided
� < �0; lower one-sided

The test assumes normally distributed data and requires N � 2. The test statistics are

t D N
1
2

�
Nx � �0

s

�
Ï t .N � 1; ı/

t2 Ï F.1;N � 1; ı2/

where Nx is the sample mean, s is the sample standard deviation, and

ı D N
1
2

�� � �0
�

�
The test is

Reject H0 if

8<:
t2 � F1�˛.1;N � 1/; two-sided
t � t1�˛.N � 1/; upper one-sided
t � t˛.N � 1/; lower one-sided
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Exact power computations for t tests are discussed in O’Brien and Muller (1993, Section 8.2), although not
specifically for the one-sample case. The power is based on the noncentral t and F distributions:

power D

8<:
P
�
F.1;N � 1; ı2/ � F1�˛.1;N � 1/

�
; two-sided

P .t.N � 1; ı/ � t1�˛.N � 1// ; upper one-sided
P .t.N � 1; ı/ � t˛.N � 1// ; lower one-sided

Solutions for N, ˛, and ı are obtained by numerically inverting the power equation. Closed-form solutions
for other parameters, in terms of ı, are as follows:

� D ı�N�
1
2 C �0

� D

(
ı�1N

1
2 .� � �0/; jıj > 0

undefined; otherwise

One-Sample t Test with Lognormal Data (TEST=T DIST=LOGNORMAL)
The lognormal case is handled by reexpressing the analysis equivalently as a normality-based test on the
log-transformed data, by using properties of the lognormal distribution as discussed in Johnson, Kotz, and
Balakrishnan (1994, Chapter 14). The approaches in the section “One-Sample t Test (TEST=T)” on page 6399
then apply.

In contrast to the usual t test on normal data, the hypotheses with lognormal data are defined in terms of
geometric means rather than arithmetic means. This is because the transformation of a null arithmetic mean
of lognormal data to the normal scale depends on the unknown coefficient of variation, resulting in an
ill-defined hypothesis on the log-transformed data. Geometric means transform cleanly and are more natural
for lognormal data.

The hypotheses for the one-sample t test with lognormal data are

H0W


0
D 1

H1W

8̂<̂
:


0
¤ 1; two-sided


0
> 1; upper one-sided


0
< 1; lower one-sided

Let �? and �? be the (arithmetic) mean and standard deviation of the normal distribution of the log-
transformed data. The hypotheses can be rewritten as follows:

H0W�
?
D log.0/

H1W

8<:
�? ¤ log.0/; two-sided
�? > log.0/; upper one-sided
�? < log.0/; lower one-sided

where �? D log./.
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The test assumes lognormally distributed data and requires N � 2.

The power is

power D

8<:
P
�
F.1;N � 1; ı2/ � F1�˛.1;N � 1/

�
; two-sided

P .t.N � 1; ı/ � t1�˛.N � 1// ; upper one-sided
P .t.N � 1; ı/ � t˛.N � 1// ; lower one-sided

where

ı D N
1
2

�
�? � log.0/

�?

�
�? D

�
log.CV2 C 1/

� 1
2

Equivalence Test for Mean of Normal Data (TEST=EQUIV DIST=NORMAL)
The hypotheses for the equivalence test are

H0W� < �L or � > �U

H1W�L � � � �U

The analysis is the two one-sided tests (TOST) procedure of Schuirmann (1987). The test assumes normally
distributed data and requires N � 2. Phillips (1990) derives an expression for the exact power assuming a
two-sample balanced design; the results are easily adapted to a one-sample design:

power D QN�1

 
.�t1�˛.N � 1//;

� � �U

�N�
1
2

I 0;
.N � 1/

1
2 .�U � �L/

2�N�
1
2 .t1�˛.N � 1//

!
�

QN�1

 
.t1�˛.N � 1//;

� � �L

�N�
1
2

I 0;
.N � 1/

1
2 .�U � �L/

2�N�
1
2 .t1�˛.N � 1//

!

where Q�.�; �I �; �/ is Owen’s Q function, defined in the section “Common Notation” on page 6373.

Equivalence Test for Mean of Lognormal Data (TEST=EQUIV DIST=LOGNORMAL)
The lognormal case is handled by reexpressing the analysis equivalently as a normality-based test on the
log-transformed data, by using properties of the lognormal distribution as discussed in Johnson, Kotz, and
Balakrishnan (1994, Chapter 14). The approaches in the section “Equivalence Test for Mean of Normal Data
(TEST=EQUIV DIST=NORMAL)” on page 6401 then apply.

In contrast to the additive equivalence test on normal data, the hypotheses with lognormal data are defined in
terms of geometric means rather than arithmetic means. This is because the transformation of an arithmetic
mean of lognormal data to the normal scale depends on the unknown coefficient of variation, resulting in an
ill-defined hypothesis on the log-transformed data. Geometric means transform cleanly and are more natural
for lognormal data.
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The hypotheses for the equivalence test are

H0W � �L or  � �U

H1W�L <  < �U

where 0 < �L < �U

The analysis is the two one-sided tests (TOST) procedure of Schuirmann (1987) on the log-transformed data.
The test assumes lognormally distributed data and requires N � 2. Diletti, Hauschke, and Steinijans (1991)
derive an expression for the exact power assuming a crossover design; the results are easily adapted to a
one-sample design:

power D QN�1

 
.�t1�˛.N � 1//;

log ./ � log.�U /

�?N�
1
2

I 0;
.N � 1/

1
2 .log.�U / � log.�L//

2�?N�
1
2 .t1�˛.N � 1//

!
�

QN�1

 
.t1�˛.N � 1//;

log ./ � log.�L/

�?N�
1
2

I 0;
.N � 1/

1
2 .log.�U / � log.�L//

2�?N�
1
2 .t1�˛.N � 1//

!
where

�? D
�
log.CV2 C 1/

� 1
2

is the standard deviation of the log-transformed data, and Q�.�; �I �; �/ is Owen’s Q function, defined in the
section “Common Notation” on page 6373.

Confidence Interval for Mean (CI=T)
This analysis of precision applies to the standard t-based confidence interval:h

Nx � t1�˛
2
.N � 1/ sp

N
; Nx C t1�˛

2
.N � 1/ sp

N

i
; two-sidedh

Nx � t1�˛.N � 1/
sp
N
; 1

�
; upper one-sided�

�1; Nx C t1�˛.N � 1/
sp
N

i
; lower one-sided

where Nx is the sample mean and s is the sample standard deviation. The “half-width” is defined as the distance
from the point estimate Nx to a finite endpoint,

half-width D

(
t1�˛

2
.N � 1/ sp

N
; two-sided

t1�˛.N � 1/
sp
N
; one-sided

A “valid” conference interval captures the true mean. The exact probability of obtaining at most the target
confidence interval half-width h, unconditional or conditional on validity, is given by Beal (1989):

Pr.half-width � h/ D

8̂̂̂<̂
ˆ̂:
P

 
�2.N � 1/ � h2N.N�1/

�2.t2
1�˛

2

.N�1//

!
; two-sided

P

�
�2.N � 1/ � h2N.N�1/

�2.t21�˛.N�1//

�
; one-sided

Pr.half-width � hj
validity/

D

8̂<̂
:
�
1
1�˛

�
2
h
QN�1

�
.t1�˛

2
.N � 1//; 0I

0; b1/ �QN�1.0; 0I 0; b1/� ; two-sided�
1
1�˛

�
QN�1 ..t1�˛.N � 1//; 0I 0; b1/ ; one-sided
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where

b1 D
h.N � 1/

1
2

�.t1�˛
c
.N � 1//N�

1
2

c D number of sides

and Q�.�; �I �; �/ is Owen’s Q function, defined in the section “Common Notation” on page 6373.

A “quality” confidence interval is both sufficiently narrow (half-width � h) and valid:

Pr(quality) D Pr.half-width � h and validity/

D Pr.half-width � hjvalidity/.1 � ˛/

Analyses in the ONEWAYANOVA Statement

One-Degree-of-Freedom Contrast (TEST=CONTRAST)
The hypotheses are

H0Wc1�1 C � � � C cG�G D c0

H1W

8<:
c1�1 C � � � C cG�G ¤ c0; two-sided
c1�1 C � � � C cG�G > c0; upper one-sided
c1�1 C � � � C cG�G < c0; lower one-sided

where G is the number of groups, fc1; : : : ; cGg are the contrast coefficients, and c0 is the null contrast value.

The test is the usual F test for a contrast in one-way ANOVA. It assumes normal data with common group
variances and requires N � G C 1 and ni � 1.

O’Brien and Muller (1993, Section 8.2.3.2) give the exact power as

power D

8<:
P
�
F.1;N �G; ı2/ � F1�˛.1;N �G/

�
; two-sided

P .t.N �G; ı/ � t1�˛.N �G// ; upper one-sided
P .t.N �G; ı/ � t˛.N �G// ; lower one-sided

where

ı D N
1
2

0BBBB@
PG
iD1 ci�i � c0

�

�PG
iD1

c2
i

wi

� 1
2

1CCCCA
Overall F Test (TEST=OVERALL)
The hypotheses are

H0W�1 D �2 D � � � D �G

H1W�i ¤ �j for some i; j

where G is the number of groups.
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The test is the usual overall F test for equality of means in one-way ANOVA. It assumes normal data with
common group variances and requires N � G C 1 and ni � 1.

O’Brien and Muller (1993, Section 8.2.3.1) give the exact power as

power D P .F.G � 1;N �G; �/ � F1�˛.G � 1;N �G//

where the noncentrality is

� D N

 PG
iD1wi .�i � N�/

2

�2

!

and

N� D

GX
iD1

wi�i

Analyses in the PAIREDFREQ Statement

Overview of Conditional McNemar Tests
Notation:

Case
Failure Success

Control Failure n00 n01 n0�
Success n10 n11 n1�

n�0 n�1 N

n00 D #fcontrol=failure, case=failureg

n01 D #fcontrol=failure, case=successg

n10 D #fcontrol=success, case=failureg

n11 D #fcontrol=success, case=successg

N D n00 C n01 C n10 C n11

nD D n01 C n10 � #discordant pairs

O�ij D
nij

N

�ij D theoretical population value of O�ij
�1� D �10 C �11

��1 D �01 C �11

� D Corr.control observation; case observation/ (within a pair)

DPR D "discordant proportion ratio" D
�01

�10

DPR0 D null DPR
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Power formulas are given here in terms of the discordant proportions �10 and �01. If the input is specified in
terms of f�1�; ��1; �g, then it can be converted into values for f�10; �01g as follows:

�01 D ��1.1 � �1�/ � �..1 � �1�/�1�.1 � ��1/��1/
1
2

�10 D �01 C �1� � ��1

All McNemar tests covered in PROC POWER are conditional, meaning that nD is assumed fixed at its
observed value.

For the usual DPR0 D 1, the hypotheses are

H0W��1 D �1�

H1W

8<:
��1 ¤ �1�; two-sided
��1 > �1�; upper one-sided
��1 < �1�; lower one-sided

The test statistic for both tests covered in PROC POWER (DIST=EXACT_COND and DIST=NORMAL) is
the McNemar statistic QM , which has the following form when DPR0 D 1:

QM0 D
.n01 � n10/

2

n01 C n10

For the conditional McNemar tests, this is equivalent to the square of the Z.X/ statistic for the test of a
single proportion (normal approximation to binomial), where the proportion is �01

�01C�10
, the null is 0.5, and

“N” is nD (see, for example, Schork and Williams 1980):

Z.X/ D
n01 � nD.0:5/

ŒnD0:5.1 � 0:5/�
1
2

�Ï N

0@n 12D. �01
�01C�10

� 0:5/

Œ0:5.1 � 0:5/�
1
2

;

�01
�01C�10

�
1 � �01

�01C�10

�
0:5.1 � 0:5/

1A
D

n01 � .n01 C n10/.0:5/

Œ.n01 C n10/0:5.1 � 0:5/�
1
2

D
n01 � n10

Œn01 C n10�
1
2

D
p
QM0

This can be generalized to a custom null for �01
�01C�10

, which is equivalent to specifying a custom null DPR:

�
�01

�01 C �10

�
0

�

264 1

1C 1
�01
�10

375
0

�
1

1C 1
DPR0

So, a conditional McNemar test (asymptotic or exact) with a custom null is equivalent to the test of a single
proportion p1 � �01

�01C�10
with a null value p0 � 1

1C 1
DPR0

, with a sample size of nD:

H0Wp1 D p0

H1W

8<:
p1 ¤ p0; two-sided
p1 > p0; one-sided U
p1 < p0; one-sided L
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which is equivalent to

H0WDPR D DPR0

H1W

8<:
DPR ¤ DPR0; two-sided
DPR > DPR0; one-sided U
DPR < DPR0; one-sided L

The general form of the test statistic is thus

QM D
.n01 � nDp0/

2

nDp0.1 � p0/

The two most common conditional McNemar tests assume either the exact conditional distribution of QM
(covered by the DIST=EXACT_COND analysis) or a standard normal distribution for QM (covered by the
DIST=NORMAL analysis).

McNemar Exact Conditional Test (TEST=MCNEMAR DIST=EXACT_COND)
For DIST=EXACT_COND, the power is calculated assuming that the test is conducted by using the exact
conditional distribution of QM (conditional on nD). The power is calculated by first computing the
conditional power for each possible nD . The unconditional power is computed as a weighted average over
all possible outcomes of nD:

power D
NX

nDD0

P.nD/P.Reject p1 D p0jnD/

where nD Ï Bin.�01C �10; N /, and P.Reject p1 D p0jnD/ is calculated by using the exact method in the
section “Exact Test of a Binomial Proportion (TEST=EXACT)” on page 6381.

The achieved significance level, reported as “Actual Alpha” in the analysis, is computed in the same way
except by using the actual alpha of the one-sample test in place of its power:

actual alpha D
NX

nDD0

P.nD/˛
?.p1; p0jnD/

where ˛?.p1; p0jnD/ is the actual alpha calculated by using the exact method in the section “Exact Test of a
Binomial Proportion (TEST=EXACT)” on page 6381 with proportion p1, null p0, and sample size nD .

McNemar Normal Approximation Test (TEST=MCNEMAR DIST=NORMAL)
For DIST=NORMAL, power is calculated assuming the test is conducted by using the normal-approximate
distribution of QM (conditional on nD).

For the METHOD=EXACT option, the power is calculated in the same way as described in the section
“McNemar Exact Conditional Test (TEST=MCNEMAR DIST=EXACT_COND)” on page 6406, except
that P.Reject p1 D p0jnD/ is calculated by using the exact method in the section “z Test for Binomial
Proportion Using Null Variance (TEST=Z VAREST=NULL)” on page 6382. The achieved significance
level is calculated in the same way as described at the end of the section “McNemar Exact Conditional Test
(TEST=MCNEMAR DIST=EXACT_COND)” on page 6406.
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For the METHOD=MIETTINEN option, approximate sample size for the one-sided cases is computed
according to equation (5.6) in Miettinen (1968):

N D

�
z1�˛.p10 C p01/C zpower

�
.p10 C p01/

2 �
1
4
.p01 � p10/

2.3C p10 C p01/
� 1
2

�2
.p10 C p01/.p01 � p10/2

Approximate power for the one-sided cases is computed by solving the sample size equation for power, and
approximate power for the two-sided case follows easily by summing the one-sided powers each at ˛=2:

power D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

ˆ

 
.p01�p10/ŒN.p10Cp01/�

1
2�z1�˛.p10Cp01/

Œ.p10Cp01/2� 14 .p01�p10/
2.3Cp10Cp01/�

1
2

!
; upper one-sided

ˆ

 
�.p01�p10/ŒN.p10Cp01/�

1
2�z1�˛.p10Cp01/

Œ.p10Cp01/2� 14 .p01�p10/
2.3Cp10Cp01/�

1
2

!
; lower one-sided

ˆ

 
.p01�p10/ŒN.p10Cp01/�

1
2�z1�˛

2
.p10Cp01/

Œ.p10Cp01/2� 14 .p01�p10/
2.3Cp10Cp01/�

1
2

!
C

ˆ

 
�.p01�p10/ŒN.p10Cp01/�

1
2�z1�˛

2
.p10Cp01/

Œ.p10Cp01/2� 14 .p01�p10/
2.3Cp10Cp01/�

1
2

!
; two-sided

The two-sided solution for N is obtained by numerically inverting the power equation.

In general, compared to METHOD=CONNOR, the METHOD=MIETTINEN approximation tends to be
slightly more accurate but can be slightly anticonservative in the sense of underestimating sample size and
overestimating power (Lachin 1992, p. 1250).

For the METHOD=CONNOR option, approximate sample size for the one-sided cases is computed according
to equation (3) in Connor (1987):

N D

�
z1�˛.p10 C p01/

1
2 C zpower

�
p10 C p01 � .p01 � p10/

2
� 1
2

�2
.p01 � p10/2

Approximate power for the one-sided cases is computed by solving the sample size equation for power, and
approximate power for the two-sided case follows easily by summing the one-sided powers each at ˛=2:

power D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

ˆ

 
.p01�p10/N

1
2�z1�˛.p10Cp01/

1
2

Œp10Cp01�.p01�p10/2�
1
2

!
; upper one-sided

ˆ

 
�.p01�p10/N

1
2�z1�˛.p10Cp01/

1
2

Œp10Cp01�.p01�p10/2�
1
2

!
; lower one-sided

ˆ

 
.p01�p10/N

1
2�z1�˛

2
.p10Cp01/

1
2

Œp10Cp01�.p01�p10/2�
1
2

!
C

ˆ

 
�.p01�p10/N

1
2�z1�˛

2
.p10Cp01/

1
2

Œp10Cp01�.p01�p10/2�
1
2

!
; two-sided

The two-sided solution for N is obtained by numerically inverting the power equation.

In general, compared to METHOD=MIETTINEN, the METHOD=CONNOR approximation tends to be
slightly less accurate but slightly conservative in the sense of overestimating sample size and underestimating
power (Lachin 1992, p. 1250).
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Analyses in the PAIREDMEANS Statement

Paired t Test (TEST=DIFF)
The hypotheses for the paired t test are

H0W�diff D �0

H1W

8<:
�diff ¤ �0; two-sided
�diff > �0; upper one-sided
�diff < �0; lower one-sided

The test assumes normally distributed data and requires N � 2. The test statistics are

t D N
1
2

 
Nd � �0

sd

!
Ï t .N � 1; ı/

t2 Ï F.1;N � 1; ı2/

where Nd and sd are the sample mean and standard deviation of the differences and

ı D N
1
2

�
�diff � �0

�diff

�
and

�diff D
�
�21 C �

2
2 � 2��1�2

� 1
2

The test is

Reject H0 if

8<:
t2 � F1�˛.1;N � 1/; two-sided
t � t1�˛.N � 1/; upper one-sided
t � t˛.N � 1/; lower one-sided

Exact power computations for t tests are given in O’Brien and Muller (1993, Section 8.2.2):

power D

8<:
P
�
F.1;N � 1; ı2/ � F1�˛.1;N � 1/

�
; two-sided

P .t.N � 1; ı/ � t1�˛.N � 1// ; upper one-sided
P .t.N � 1; ı/ � t˛.N � 1// ; lower one-sided

Paired t Test for Mean Ratio with Lognormal Data (TEST=RATIO)
The lognormal case is handled by reexpressing the analysis equivalently as a normality-based test on the
log-transformed data, by using properties of the lognormal distribution as discussed in Johnson, Kotz, and
Balakrishnan (1994, Chapter 14). The approaches in the section “Paired t Test (TEST=DIFF)” on page 6408
then apply.

In contrast to the usual t test on normal data, the hypotheses with lognormal data are defined in terms of
geometric means rather than arithmetic means.
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The hypotheses for the paired t test with lognormal pairs fY1; Y2g are

H0W
2

1
D 0

H1W

8̂<̂
:

2
1
¤ 0; two-sided

2
1
> 0; upper one-sided

2
1
< 0; lower one-sided

Let �?1 , �?2 , �?1 , �?2 , and �? be the (arithmetic) means, standard deviations, and correlation of the bivariate
normal distribution of the log-transformed data flog Y1; log Y2g. The hypotheses can be rewritten as follows:

H0W�
?
2 � �

?
1 D log.0/

H1W

8<:
�?2 � �

?
1 ¤ log.0/; two-sided

�?2 � �
?
1 > log.0/; upper one-sided

�?2 � �
?
1 < log.0/; lower one-sided

where

�?1 D log 1
�?2 D log 2

�?1 D
�
log.CV21 C 1/

� 1
2

�?2 D
�
log.CV22 C 1/

� 1
2

�? D
log f�CV1CV2 C 1g

�?1 �
?
2

and CV1, CV2, and � are the coefficients of variation and the correlation of the original untransformed pairs
fY1; Y2g. The conversion from � to �? is given by equation (44.36) on page 27 of Kotz, Balakrishnan, and
Johnson (2000) and due to Jones and Miller (1966).

The valid range of � is restricted to .�L; �U /, where

�L D

exp
�
�
�
log.CV21 C 1/ log.CV

2
2 C 1/

� 1
2

�
� 1

CV1CV2

�U D

exp
��

log.CV21 C 1/ log.CV
2
2 C 1/

� 1
2

�
� 1

CV1CV2
These bounds are computed from equation (44.36) on page 27 of Kotz, Balakrishnan, and Johnson (2000)
by observing that � is a monotonically increasing function of �? and plugging in the values �? D �1 and
�? D 1. Note that when the coefficients of variation are equal (CV1 D CV2 D CV), the bounds simplify to

�L D
�1

CV2 C 1
�U D 1
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The test assumes lognormally distributed data and requires N � 2. The power is

power D

8<:
P
�
F.1;N � 1; ı2/ � F1�˛.1;N � 1/

�
; two-sided

P .t.N � 1; ı/ � t1�˛.N � 1// ; upper one-sided
P .t.N � 1; ı/ � t˛.N � 1// ; lower one-sided

where

ı D N
1
2

�
�?1 � �

?
2 � log.0/
�?

�
and

�? D
�
�?21 C �

?2
2 � 2�

?�?1 �
?
2

� 1
2

Additive Equivalence Test for Mean Difference with Normal Data (TEST=EQUIV_DIFF)
The hypotheses for the equivalence test are

H0W�diff < �L or �diff > �U

H1W�L � �diff � �U

The analysis is the two one-sided tests (TOST) procedure of Schuirmann (1987). The test assumes normally
distributed data and requires N � 2. Phillips (1990) derives an expression for the exact power assuming a
two-sample balanced design; the results are easily adapted to a paired design:

power D QN�1

 
.�t1�˛.N � 1//;

�diff � �U

�diffN
� 1
2

I 0;
.N � 1/

1
2 .�U � �L/

2�diffN
� 1
2 .t1�˛.N � 1//

!
�

QN�1

 
.t1�˛.N � 1//;

�diff � �L

�diffN
� 1
2

I 0;
.N � 1/

1
2 .�U � �L/

2�diffN
� 1
2 .t1�˛.N � 1//

!
where

�diff D
�
�21 C �

2
2 � 2��1�2

� 1
2

and Q�.�; �I �; �/ is Owen’s Q function, defined in the section “Common Notation” on page 6373.

Multiplicative Equivalence Test for Mean Ratio with Lognormal Data (TEST=EQUIV_RATIO)
The lognormal case is handled by reexpressing the analysis equivalently as a normality-based test on the
log-transformed data, by using properties of the lognormal distribution as discussed in Johnson, Kotz, and
Balakrishnan (1994, Chapter 14). The approaches in the section “Additive Equivalence Test for Mean
Difference with Normal Data (TEST=EQUIV_DIFF)” on page 6410 then apply.

In contrast to the additive equivalence test on normal data, the hypotheses with lognormal data are defined in
terms of geometric means rather than arithmetic means.

The hypotheses for the equivalence test are

H0W
T

R
� �L or

T

R
� �U

H1W�L <
T

R
< �U
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where 0 < �L < �U

The analysis is the two one-sided tests (TOST) procedure of Schuirmann (1987) on the log-transformed data.
The test assumes lognormally distributed data and requires N � 2. Diletti, Hauschke, and Steinijans (1991)
derive an expression for the exact power assuming a crossover design; the results are easily adapted to a
paired design:

power D QN�1

0@.�t1�˛.N � 1//; log
�
T
R

�
� log.�U /

�?N�
1
2

I 0;
.N � 1/

1
2 .log.�U / � log.�L//

2�?N�
1
2 .t1�˛.N � 1//

1A�
QN�1

0@.t1�˛.N � 1//; log
�
T
R

�
� log.�L/

�?N�
1
2

I 0;
.N � 1/

1
2 .log.�U / � log.�L//

2�?N�
1
2 .t1�˛.N � 1//

1A
where �? is the standard deviation of the differences between the log-transformed pairs (in other words,
the standard deviation of log.YT / � log.YR/, where YT and YR are observations from the treatment and
reference, respectively), computed as

�? D
�
�?2R C �

?2
T � 2�

?�?R�
?
T

� 1
2

�?R D
�
log.CV2R C 1/

� 1
2

�?T D
�
log.CV2T C 1/

� 1
2

�? D
log f�CVRCVT C 1g

�?R�
?
T

where CVR, CVT , and � are the coefficients of variation and the correlation of the original untransformed
pairs fYT ; YRg, and Q�.�; �I �; �/ is Owen’s Q function. The conversion from � to �? is given by equation
(44.36) on page 27 of Kotz, Balakrishnan, and Johnson (2000) and due to Jones and Miller (1966), and
Owen’s Q function is defined in the section “Common Notation” on page 6373.

The valid range of � is restricted to .�L; �U /, where

�L D

exp
�
�
�
log.CV2R C 1/ log.CV

2
T C 1/

� 1
2

�
� 1

CVRCVT

�U D

exp
��

log.CV2R C 1/ log.CV
2
T C 1/

� 1
2

�
� 1

CVRCVT

These bounds are computed from equation (44.36) on page 27 of Kotz, Balakrishnan, and Johnson (2000)
by observing that � is a monotonically increasing function of �? and plugging in the values �? D �1 and
�? D 1. Note that when the coefficients of variation are equal (CVR D CVT D CV), the bounds simplify to

�L D
�1

CV2 C 1
�U D 1



6412 F Chapter 77: The POWER Procedure

Confidence Interval for Mean Difference (CI=DIFF)
This analysis of precision applies to the standard t-based confidence interval:h

Nd � t1�˛
2
.N � 1/ sdp

N
; Nd C t1�˛

2
.N � 1/ sdp

N

i
; two-sidedh

Nd � t1�˛.N � 1/
sdp
N
; 1

�
; upper one-sided�

�1; Nd C t1�˛.N � 1/
sdp
N

i
; lower one-sided

where Nd and sd are the sample mean and standard deviation of the differences. The “half-width” is defined
as the distance from the point estimate Nd to a finite endpoint,

half-width D

(
t1�˛

2
.N � 1/ sdp

N
; two-sided

t1�˛.N � 1/
sdp
N
; one-sided

A “valid” conference interval captures the true mean difference. The exact probability of obtaining at most
the target confidence interval half-width h, unconditional or conditional on validity, is given by Beal (1989):

Pr.half-width � h/ D

8̂̂̂<̂
ˆ̂:
P

 
�2.N � 1/ � h2N.N�1/

�2diff.t
2

1�˛
2

.N�1//

!
; two-sided

P

�
�2.N � 1/ � h2N.N�1/

�2diff.t
2
1�˛.N�1//

�
; one-sided

Pr.half-width � hj
validity/

D

8̂<̂
:
�
1
1�˛

�
2
h
QN�1

�
.t1�˛

2
.N � 1//; 0I

0; b1/ �QN�1.0; 0I 0; b1/� ; two-sided�
1
1�˛

�
QN�1 ..t1�˛.N � 1//; 0I 0; b1/ ; one-sided

where

�diff D
�
�21 C �

2
2 � 2��1�2

� 1
2

b1 D
h.N � 1/

1
2

�diff.t1�˛
c
.N � 1//N�

1
2

c D number of sides

and Q�.�; �I �; �/ is Owen’s Q function, defined in the section “Common Notation” on page 6373.

A “quality” confidence interval is both sufficiently narrow (half-width � h) and valid:

Pr(quality) D Pr.half-width � hand validity/

D Pr.half-width � hjvalidity/.1 � ˛/
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Analyses in the TWOSAMPLEFREQ Statement

Overview of the 2 � 2 Table
Notation:

Outcome
Failure Success

Group 1 n1 � x1 x1 n1
2 n2 � x2 x2 n2

N �m m N

x1 D #successes in group 1

x2 D #successes in group 2

m D x1 C x2 D total #successes

Op1 D
x1

n1

Op2 D
x2

n2

Op D
m

N
D w1 Op1 C w2 Op2

The hypotheses are

H0Wp2 � p1 D p0

H1W

8<:
p2 � p1 ¤ p0; two-sided
p2 � p1 > p0; upper one-sided
p2 � p1 < p0; lower one-sided

where p0 is constrained to be 0 for the likelihood ratio and Fisher’s exact tests. If p0 < 0 in an upper one-sided
test or p0 > 0 in a lower one-sided test, then the test is a noninferiority test. If p0 > 0 in an upper one-sided
test or p0 < 0 in a lower one-sided test, then the test is a superiority test. Although p0 is unconstrained for
the Pearson chi-square test, p0 ¤ 0 is not recommended for that test. The Farrington-Manning score test is a
better choice when p0 ¤ 0.

Internal calculations are performed in terms of p1, p2, and p0. An input set consisting of OR, p1, and OR0
is transformed as follows:

p2 D
.OR/p1

1 � p1 C .OR/p1
p10 D p1

p20 D
OR0p10

1 � p10 C .OR0/p10
p0 D p20 � p10
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An input set consisting of RR, p1, and RR0 is transformed as follows:

p2 D .RR/p1
p10 D p1

p20 D .RR0/p10
p0 D p20 � p10

Note that the transformation of either OR0 or RR0 to p0 is not unique. The chosen parameterization fixes
the null value p10 at the input value of p1. Some values of OR0 or RR0 might lead to invalid values of p0
(p0 � 0 or p0 � 1), in which case an “Invalid input” error occurs.

Farrington-Manning Score Test for Two Proportions (TEST=FM)
The Farrington-Manning score test is based on equations (1), (2), and (12) in Farrington and Manning (1990).
The test statistic, which is assumed to have a null distribution of N.0; 1/ under H0, is

zFM D
Op2 � Op1 � p0h

Qp1.1� Qp1/
n1

C
Qp2.1� Qp2/
n2

i 1
2

D ŒNw1w2�
1
2

Op2 � Op1 � p0

Œw2 Qp1.1 � Qp1/C w1 Qp2.1 � Qp2/�
1
2

where Qp1 and Qp2 are the maximum likelihood estimates of the proportions under the restriction Qp2� Qp1 D p0.

Sample size for the one-sided cases is given by equations (4) and (12) in Farrington and Manning (1990).
One-sided power is computed by inverting the sample size formula. Power for the two-sided case is computed
by adding the lower-sided and upper-sided powers, each evaluated at ˛=2. Sample size for the two-sided case
is obtained by numerically inverting the power formula,

power D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

ˆ

�
.p2�p1�p0/.Nw1w2/

1
2�z1�˛Œw2 Qp1.1� Qp1/Cw1 Qp2.1� Qp2/�

1
2

Œw2p1.1�p1/Cw1p2.1�p2/�
1
2

�
; upper one-sided

ˆ

�
�.p2�p1�p0/.Nw1w2/

1
2�z1�˛Œw2 Qp1.1� Qp1/Cw1 Qp2.1� Qp2/�

1
2

Œw2p1.1�p1/Cw1p2.1�p2/�
1
2

�
; lower one-sided

ˆ

 
.p2�p1�p0/.Nw1w2/

1
2�z1�˛

2
Œw2 Qp1.1� Qp1/Cw1 Qp2.1� Qp2/�

1
2

Œw2p1.1�p1/Cw1p2.1�p2/�
1
2

!
C

ˆ

 
�.p2�p1�p0/.Nw1w2/

1
2�z1�˛

2
Œw2 Qp1.1� Qp1/Cw1 Qp2.1� Qp2/�

1
2

Œw2p1.1�p1/Cw1p2.1�p2/�
1
2

!
; two-sided

where

Qp2 D 2u cos.w/ � b=.3a/
Qp1 D Qp2 � p0

w D .� C cos�1.v=u3//=3
v D b3=.3a/3 � bc=.6a2/C d=.2a/

u D sign.v/
q
b2=.3a/2 � c=.3a/

a D 1C w1=w2

b D � Œ1C w1=w2 C p2 C .w1=w2/p1 C p0.w1=w2 C 2/�

c D p20 C p0.2p2 C w1=w2 C 1/C p2 C .w1=w2/p1

d D �p2p0.1C p0/
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For the one-sided cases, a closed-form inversion of the power equation yields an approximate total sample
size of

N D

h
z1�˛ fw2 Qp1.1 � Qp1/C w1 Qp2.1 � Qp2/g

1
2 C zpower fw2p1.1 � p1/C w1p2.1 � p2/g

1
2

i2
w1w2.p2 � p1 � p0/2

For the two-sided case, the solution for N is obtained by numerically inverting the power equation.

Pearson Chi-Square Test for Two Proportions (TEST=PCHI)
The usual Pearson chi-square test is unconditional. The test statistic

zP D
Op2 � Op1 � p0h

Op.1 � Op/
�
1
n1
C

1
n2

�i 1
2

D ŒNw1w2�
1
2
Op2 � Op1 � p0

Œ Op.1 � Op/�
1
2

is assumed to have a null distribution of N.0; 1/.

Sample size for the one-sided cases is given by equation (4) in Fleiss, Tytun, and Ury (1980). One-sided
power is computed as suggested by Diegert and Diegert (1981) by inverting the sample size formula. Power
for the two-sided case is computed by adding the lower-sided and upper-sided powers each evaluated at ˛=2.
Sample size for the two-sided case is obtained by numerically inverting the power formula. A custom null
value p0 for the proportion difference p2 � p1 is also supported, but it is not recommended. If you are using
a non-default null value, then the Farrington-Manning score test is a better choice.

power D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

ˆ

�
.p2�p1�p0/.Nw1w2/

1
2�z1�˛Œ.w1p1Cw2p2/.1�w1p1�w2p2/�

1
2

Œw2p1.1�p1/Cw1p2.1�p2/�
1
2

�
; upper one-sided

ˆ

�
�.p2�p1�p0/.Nw1w2/

1
2�z1�˛Œ.w1p1Cw2p2/.1�w1p1�w2p2/�

1
2

Œw2p1.1�p1/Cw1p2.1�p2/�
1
2

�
; lower one-sided

ˆ

 
.p2�p1�p0/.Nw1w2/

1
2�z1�˛

2
Œ.w1p1Cw2p2/.1�w1p1�w2p2/�

1
2

Œw2p1.1�p1/Cw1p2.1�p2/�
1
2

!
C

ˆ

 
�.p2�p1�p0/.Nw1w2/

1
2�z1�˛

2
Œ.w1p1Cw2p2/.1�w1p1�w2p2/�

1
2

Œw2p1.1�p1/Cw1p2.1�p2/�
1
2

!
; two-sided

For the one-sided cases, a closed-form inversion of the power equation yields an approximate total sample
size

N D

h
z1�˛ f.w1p1 C w2p2/.1 � w1p1 � w2p2/g

1
2 C zpower fw2p1.1 � p1/C w1p2.1 � p2/g

1
2

i2
w1w2.p2 � p1 � p0/2

For the two-sided case, the solution for N is obtained by numerically inverting the power equation.

Likelihood Ratio Chi-Square Test for Two Proportions (TEST=LRCHI)
The usual likelihood ratio chi-square test is unconditional. The test statistic

zLR D .�1fp2<p1g/

vuut2N

2X
iD1

�
wi Opi log

�
Opi

Op

�
C wi .1 � Opi / log

�
1 � Opi

1 � Op

��
is assumed to have a null distribution of N.0; 1/ and an alternative distribution of N.ı; 1/, where

ı D N
1
2 .�1fp2<p1g/

vuut2

2X
iD1

�
wipi log

�
pi

w1p1 C w2p2

�
C wi .1 � pi / log

�
1 � pi

1 � .w1p1 C w2p2/

��
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The approximate power is

power D

8̂<̂
:
ˆ.ı � z1�˛/ ; upper one-sided
ˆ.�ı � z1�˛/ ; lower one-sided

ˆ
�
ı � z1�˛

2

�
Cˆ

�
�ı � z1�˛

2

�
; two-sided

For the one-sided cases, a closed-form inversion of the power equation yield an approximate total sample size

N D

�
zpower C z1�˛

ı

�2
For the two-sided case, the solution for N is obtained by numerically inverting the power equation.

Fisher’s Exact Conditional Test for Two Proportions (Test=FISHER)
Fisher’s exact test is conditional on the observed total number of successes m. Power and sample size
computations are based on a test with similar power properties, the continuity-adjusted arcsine test. The test
statistic

zA D .4Nw1w2/
1
2

"
arcsin

 �
Op2 C

1

2Nw2
.1f Op2< Op1g � 1f Op2> Op1g/

� 1
2

!

�arcsin

 �
Op1 C

1

2Nw1
.1f Op1< Op2g � 1f Op1> Op2g/

� 1
2

!#
is assumed to have a null distribution of N.0; 1/ and an alternative distribution of N.ı; 1/, where

ı D .4Nw1w2/
1
2

"
arcsin

 �
p2 C

1

2Nw2
.1fp2<p1g � 1fp2>p1g/

� 1
2

!

�arcsin

 �
p1 C

1

2Nw1
.1fp1<p2g � 1fp1>p2g/

� 1
2

!#
The approximate power for the one-sided balanced case is given by Walters (1979) and is easily extended to
the unbalanced and two-sided cases:

power D

8̂<̂
:
ˆ.ı � z1�˛/ ; upper one-sided
ˆ.�ı � z1�˛/ ; lower one-sided

ˆ
�
ı � z1�˛

2

�
Cˆ

�
�ı � z1�˛

2

�
; two-sided

The approximation is valid only for N � 1=.2w1w2jp1 � p2j/.

Analyses in the TWOSAMPLEMEANS Statement

Two-Sample t Test Assuming Equal Variances (TEST=DIFF)
The hypotheses for the two-sample t test are

H0W�diff D �0

H1W

8<:
�diff ¤ �0; two-sided
�diff > �0; upper one-sided
�diff < �0; lower one-sided
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The test assumes normally distributed data and common standard deviation per group, and it requires N � 3,
n1 � 1, and n2 � 1. The test statistics are

t D N
1
2 .w1w2/

1
2

�
Nx2 � Nx1 � �0

sp

�
Ï t .N � 2; ı/

t2 Ï F.1;N � 2; ı2/

where Nx1 and Nx2 are the sample means and sp is the pooled standard deviation, and

ı D N
1
2 .w1w2/

1
2

��diff � �0

�

�
The test is

Reject H0 if

8<:
t2 � F1�˛.1;N � 2/; two-sided
t � t1�˛.N � 2/; upper one-sided
t � t˛.N � 2/; lower one-sided

Exact power computations for t tests are given in O’Brien and Muller (1993, Section 8.2.1):

power D

8<:
P
�
F.1;N � 2; ı2/ � F1�˛.1;N � 2/

�
; two-sided

P .t.N � 2; ı/ � t1�˛.N � 2// ; upper one-sided
P .t.N � 2; ı/ � t˛.N � 2// ; lower one-sided

Solutions for N, n1, n2, ˛, and ı are obtained by numerically inverting the power equation. Closed-form
solutions for other parameters, in terms of ı, are as follows:

�diff D ı�.Nw1w2/
� 1
2 C �0

�1 D ı�.Nw1w2/
� 1
2 C �0 � �2

�2 D ı�.Nw1w2/
� 1
2 C �0 � �1

� D

(
ı�1.Nw1w2/

1
2 .�diff � �0/; jıj > 0

undefined; otherwise

w1 D

8<: 1
2
˙

1
2

h
1 � 4ı2�2

N.�diff��0/2

i 1
2
; 0 < jıj � 1

2
N
1
2
j�diff��0j

�

undefined; otherwise

w2 D

8<: 1
2
˙

1
2

h
1 � 4ı2�2

N.�diff��0/2

i 1
2
; 0 < jıj � 1

2
N
1
2
j�diff��0j

�

undefined; otherwise

Finally, here is a derivation of the solution for w1:

Solve the ı equation for w1 (which requires the quadratic formula). Then determine the range of ı given w1:

min
w1
.ı/ D

(
0; when w1 D 0 or 1; if .�diff � �0/ � 0
1
2
N
1
2
.�diff��0/

�
; when w1 D

1
2
; if .�diff � �0/ < 0

max
w1

.ı/ D

(
0; when w1 D 0 or 1; if .�diff � �0/ < 0
1
2
N
1
2
.�diff��0/

�
; when w1 D

1
2
; if .�diff � �0/ � 0
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This implies

jıj �
1

2
N
1
2
j�diff � �0j

�

Two-Sample Satterthwaite t Test Assuming Unequal Variances (TEST=DIFF_SATT)
The hypotheses for the two-sample Satterthwaite t test are

H0W�diff D �0

H1W

8<:
�diff ¤ �0; two-sided
�diff > �0; upper one-sided
�diff < �0; lower one-sided

The test assumes normally distributed data and requires N � 3, n1 � 1, and n2 � 1. The test statistics are

t D
Nx2 � Nx1 � �0�
s21
n1
C

s22
n2

� 1
2

D N
1
2
Nx2 � Nx1 � �0�
s21
w1
C

s22
w2

� 1
2

F D t2

where Nx1 and Nx2 are the sample means and s1 and s2 are the sample standard deviations.

DiSantostefano and Muller (1995, p. 585) state, the test is based on assuming that under H0, F is distributed
as F.1; �/, where � is given by Satterthwaite’s approximation (Satterthwaite 1946),

� D

�
�21
n1
C

�22
n2

�2
�
�2
1
n1

�2
n1�1

C

�
�2
2
n2

�2
n2�1

D

�
�21
w1
C

�22
w2

�2
�
�2
1
w1

�2
Nw1�1

C

�
�2
2
w2

�2
Nw2�1

Since � is unknown, in practice it must be replaced by an estimate

O� D

�
s21
n1
C

s22
n2

�2
�
s2
1
n1

�2
n1�1

C

�
s2
2
n2

�2
n2�1

D

�
s21
w1
C

s22
w2

�2
�
s2
1
w1

�2
Nw1�1

C

�
s2
2
w2

�2
Nw2�1

So the test is

Reject H0 if

8<:
F � F1�˛.1; O�/; two-sided
t � t1�˛. O�/; upper one-sided
t � t˛. O�/; lower one-sided

Exact solutions for power for the two-sided and upper one-sided cases are given in Moser, Stevens, and Watts
(1989). The lower one-sided case follows easily by using symmetry. The equations are as follows:
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power D

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

R1
0 P .F.1;N � 2; �/ >

h.u/F1�˛.1; v.u//ju/ f .u/du; two-sidedR1
0 P

�
t .N � 2; �

1
2 / >

Œh.u/�
1
2 t1�˛.v.u//ju

�
f .u/du; upper one-sidedR1

0 P
�
t .N � 2; �

1
2 / <

Œh.u/�
1
2 t˛.v.u//ju

�
f .u/du; lower one-sided

where

h.u/ D

�
1
n1
C

u
n2

�
.n1 C n2 � 2/�

.n1 � 1/C .n2 � 1/
u�21
�22

��
1
n1
C

�22
�21n2

�

v.u/ D

�
1
n1
C

u
n2

�2
1

n21.n1�1/
C

u2

n22.n2�1/

� D
.�diff � �0/

2

�21
n1
C

�22
n2

f .u/ D
�
�
n1Cn2�2

2

�
�
�
n1�1
2

�
�
�
n2�1
2

� "�21 .n2 � 1/
�22 .n1 � 1/

#n2�1
2

u
n2�3

2

"
1C

�
n2 � 1

n1 � 1

�
u�21

�22

#��n1Cn2�2
2

�

The density f .u/ is obtained from the fact that

u�21

�22
� F.n2 � 1; n1 � 1/

Because the test is biased, the achieved significance level might differ from the nominal significance level.
The actual alpha is computed in the same way as the power, except that the mean difference �diff is replaced
by the null mean difference �0.

Two-Sample Pooled t Test of Mean Ratio with Lognormal Data (TEST=RATIO)
The lognormal case is handled by reexpressing the analysis equivalently as a normality-based test on the
log-transformed data, by using properties of the lognormal distribution as discussed in Johnson, Kotz, and
Balakrishnan (1994, Chapter 14). The approaches in the section “Two-Sample t Test Assuming Equal
Variances (TEST=DIFF)” on page 6416 then apply.

In contrast to the usual t test on normal data, the hypotheses with lognormal data are defined in terms of
geometric means rather than arithmetic means. The test assumes equal coefficients of variation in the two
groups.
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The hypotheses for the two-sample t test with lognormal data are

H0W
2

1
D 0

H1W

8̂<̂
:

2
1
¤ 0; two-sided

2
1
> 0; upper one-sided

2
1
< 0; lower one-sided

Let �?1 , �?2 , and �? be the (arithmetic) means and common standard deviation of the corresponding normal
distributions of the log-transformed data. The hypotheses can be rewritten as follows:

H0W�
?
2 � �

?
1 D log.0/

H1W

8<:
�?2 � �

?
1 ¤ log.0/; two-sided

�?2 � �
?
1 > log.0/; upper one-sided

�?2 � �
?
1 < log.0/; lower one-sided

where

�?1 D log 1
�?2 D log 2

The test assumes lognormally distributed data and requires N � 3, n1 � 1, and n2 � 1.

The power is

power D

8<:
P
�
F.1;N � 2; ı2/ � F1�˛.1;N � 2/

�
; two-sided

P .t.N � 2; ı/ � t1�˛.N � 2// ; upper one-sided
P .t.N � 2; ı/ � t˛.N � 2// ; lower one-sided

where

ı D N
1
2 .w1w2/

1
2

�
�?2 � �

?
1 � log.0/
�?

�
�? D

�
log.CV2 C 1/

� 1
2

Additive Equivalence Test for Mean Difference with Normal Data (TEST=EQUIV_DIFF)
The hypotheses for the equivalence test are

H0W�diff < �L or �diff > �U

H1W�L � �diff � �U
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The analysis is the two one-sided tests (TOST) procedure of Schuirmann (1987). The test assumes normally
distributed data and requires N � 3, n1 � 1, and n2 � 1. Phillips (1990) derives an expression for the exact
power assuming a balanced design; the results are easily adapted to an unbalanced design:

power D QN�2

 
.�t1�˛.N � 2//;

�diff � �U

�N�
1
2 .w1w2/

� 1
2

I 0;
.N � 2/

1
2 .�U � �L/

2�N�
1
2 .w1w2/

� 1
2 .t1�˛.N � 2//

!
�

QN�2

 
.t1�˛.N � 2//;

�diff � �L

�N�
1
2 .w1w2/

� 1
2

I 0;
.N � 2/

1
2 .�U � �L/

2�N�
1
2 .w1w2/

� 1
2 .t1�˛.N � 2//

!

where Q�.�; �I �; �/ is Owen’s Q function, defined in the section “Common Notation” on page 6373.

Multiplicative Equivalence Test for Mean Ratio with Lognormal Data (TEST=EQUIV_RATIO)
The lognormal case is handled by reexpressing the analysis equivalently as a normality-based test on the
log-transformed data, by using properties of the lognormal distribution as discussed in Johnson, Kotz, and
Balakrishnan (1994, Chapter 14). The approaches in the section “Additive Equivalence Test for Mean
Difference with Normal Data (TEST=EQUIV_DIFF)” on page 6420 then apply.

In contrast to the additive equivalence test on normal data, the hypotheses with lognormal data are defined in
terms of geometric means rather than arithmetic means.

The hypotheses for the equivalence test are

H0W
T

R
� �L or

T

R
� �U

H1W�L <
T

R
< �U

where 0 < �L < �U

The analysis is the two one-sided tests (TOST) procedure of Schuirmann (1987) on the log-transformed data.
The test assumes lognormally distributed data and requires N � 3, n1 � 1, and n2 � 1. Diletti, Hauschke,
and Steinijans (1991) derive an expression for the exact power assuming a crossover design; the results are
easily adapted to an unbalanced two-sample design:

power D QN�2

0@.�t1�˛.N � 2//; log
�
T
R

�
� log.�U /

�?N�
1
2 .w1w2/

� 1
2

I 0;
.N � 2/

1
2 .log.�U / � log.�L//

2�?N�
1
2 .w1w2/

� 1
2 .t1�˛.N � 2//

1A �

QN�2

0@.t1�˛.N � 2//; log
�
T
R

�
� log.�L/

�?N�
1
2 .w1w2/

� 1
2

I 0;
.N � 2/

1
2 .log.�U / � log.�L//

2�?N�
1
2 .w1w2/

� 1
2 .t1�˛.N � 2//

1A
where

�? D
�
log.CV2 C 1/

� 1
2

is the (assumed common) standard deviation of the normal distribution of the log-transformed data, and
Q�.�; �I �; �/ is Owen’s Q function, defined in the section “Common Notation” on page 6373.
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Confidence Interval for Mean Difference (CI=DIFF)
This analysis of precision applies to the standard t-based confidence interval:h

. Nx2 � Nx1/ � t1�˛
2
.N � 2/

spp
Nw1w2

;

. Nx2 � Nx1/C t1�˛
2
.N � 2/

spp
Nw1w2

i
; two-sidedh

. Nx2 � Nx1/ � t1�˛.N � 2/
spp
Nw1w2

; 1
�
; upper one-sided�

�1; . Nx2 � Nx1/C t1�˛.N � 2/
spp
Nw1w2

i
; lower one-sided

where Nx1 and Nx2 are the sample means and sp is the pooled standard deviation. The “half-width” is defined
as the distance from the point estimate Nx2 � Nx1 to a finite endpoint,

half-width D

(
t1�˛

2
.N � 2/

spp
Nw1w2

; two-sided
t1�˛.N � 2/

spp
Nw1w2

; one-sided

A “valid” conference interval captures the true mean. The exact probability of obtaining at most the target
confidence interval half-width h, unconditional or conditional on validity, is given by Beal (1989):

Pr.half-width � h/ D

8̂̂̂<̂
ˆ̂:
P

 
�2.N � 2/ � h2N.N�2/.w1w2/

�2.t2
1�˛

2

.N�2//

!
; two-sided

P

�
�2.N � 2/ � h2N.N�2/.w1w2/

�2.t21�˛.N�2//

�
; one-sided

Pr.half-width � hj
validity)

D

8̂<̂
:
�
1
1�˛

�
2
h
QN�2

�
.t1�˛

2
.N � 2//; 0I

0; b2/ �QN�2.0; 0I 0; b2/� ; two-sided�
1
1�˛

�
QN�2 ..t1�˛.N � 2//; 0I 0; b2/ ; one-sided

where

b2 D
h.N � 2/

1
2

�.t1�˛
c
.N � 2//N�

1
2 .w1w2/

� 1
2

c D number of sides

and Q�.�; �I �; �/ is Owen’s Q function, defined in the section “Common Notation” on page 6373.

A “quality” confidence interval is both sufficiently narrow (half-width � h) and valid:

Pr(quality) D Pr.half-width � hand validity/

D Pr.half-width � hjvalidity/.1 � ˛/

Analyses in the TWOSAMPLESURVIVAL Statement

Rank Tests for Two Survival Curves (TEST=LOGRANK, TEST=GEHAN, TEST=TARONEWARE)
The method is from Lakatos (1988) and Cantor (1997, pp. 83–92).
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Define the following notation:

Xj .i/ D i th input time point on survival curve for groupj

Sj .i/ D input survivor function value corresponding toXj .i/

hj .t/ D hazard rate for group j at time t

‰j .t/ D loss hazard rate for group j at time t

�j D exponential hazard rate for group j

R D hazard ratio of group 2 to group 1 � (assumed constant) value of
h2.t/

h1.t/

mj D median survival time for group j

b D number of subintervals per time unit

T D accrual time

� D follow-up time after accrual

Lj D exponential loss rate for group j

XLj D input time point on loss curve for group j

SLj D input survivor function value corresponding to XLj
mLj D median survival time for group j

ri D rank for i th time point

Each survival curve can be specified in one of several ways.

• For exponential curves:

– a single point .Xj .1/; Sj .1// on the curve

– median survival time

– hazard rate

– hazard ratio (for curve 2, with respect to curve 1)

• For piecewise linear curves with proportional hazards:

– a set of points f.X1.1/; S1.1//; .X1.2/; S1.2//; : : :g (for curve 1)

– hazard ratio (for curve 2, with respect to curve 1)

• For arbitrary piecewise linear curves:

– a set of points f.Xj .1/; Sj .1//; .Xj .2/; Sj .2//; : : :g

A total of M C 1 evenly spaced time points ft0 D 0; t1; t2; : : : ; tM D T C �g are used in calculations, where

M D floor ..T C �/b/
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The hazard function is calculated for each survival curve at each time point. For an exponential curve, the
(constant) hazard is given by one of the following, depending on the input parameterization:

hj .t/ D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

�j
�1R
� log. 1

2
/

mj
� log.Sj .1//
Xj .1/

� log.S1.1//
X1.1/

R

For a piecewise linear curve, define the following additional notation:

t�i D largest input time Xsuch that X � ti
tCi D smallest input time Xsuch that X > ti

The hazard is computed by using linear interpolation as follows:

hj .ti / D
Sj .t

�
i / � Sj .t

C
i /�

Sj .t
C
i / � Sj .t

�
i /
� �
ti � t

�
i

�
C Sj .t

�
i /
�
tCi � t

�
i

�
With proportional hazards, the hazard rate of group 2’s curve in terms of the hazard rate of group 1’s curve is

h2.t/ D h1.t/R

Hazard function values f‰j .ti /g for the loss curves are computed in an analogous way from
fLj ; XLj ; SLj ; mLj g.

The expected number at risk Nj .i/ at time i in group j is calculated for each group and time points 0 through
M – 1, as follows:

Nj .0/ D Nwj

Nj .i C 1/ D Nj .i/

�
1 � hj .ti /

�
1

b

�
�‰j .ti /

�
1

b

�
�

�
1

b.T C � � ti /

�
1fti>�g

�

Define �i as the ratio of hazards and �i as the ratio of expected numbers at risk for time ti :

�i D
h2.ti /

h1.ti /

�i D
N2.i/

N1.i/

The expected number of deaths in each subinterval is calculated as follows:

Di D Œh1.ti /N1.i/C h2.ti /N2.i/�

�
1

b

�
The rank values are calculated as follows according to which test statistic is used:

ri D

8<:
1; log-rank
N1.i/CN2.i/; Gehanp
N1.i/CN2.i/; Tarone-Ware



Computational Methods and Formulas F 6425

The distribution of the test statistic is approximated by N.E; 1/ where

E D

PM�1
iD0 Diri

h
�i�i
1C�i�i

�
�i
1C�i

i
qPM�1

iD0 Dir
2
i

�i
.1C�i /2

Note that N
1
2 can be factored out of the mean E, and so it can be expressed equivalently as

E D N
1
2E? D N

1
2

264
PM�1
iD0 D?i r

?
i

h
�i�i
1C�i�i

�
�i
1C�i

i
qPM�1

iD0 D?i r
?
i
2 �i
.1C�i /2

375
where E? is free of N and

D?i D
�
h1.ti /N

?
1 .i/C h2.ti /N

?
2 .i/

� �1
b

�

r?i D

8<:
1; log-rank
N ?
1 .i/CN

?
2 .i/; Gehanp

N ?
1 .i/CN

?
2 .i/; Tarone-Ware

N ?
j .0/ D wj

N ?
j .i C 1/ D N

?
j .i/

�
1 � hj .ti /

�
1

b

�
�‰j .ti /

�
1

b

�
�

�
1

b.T C � � ti /

�
1fti>�g

�

The approximate power is

power D

8̂̂̂<̂
ˆ̂:
ˆ
�
�N

1
2E? � z1�˛

�
; upper one-sided

ˆ
�
N
1
2E? � z1�˛

�
; lower one-sided

ˆ
�
�N

1
2E? � z1�˛

2

�
Cˆ

�
N

1
2E? � z1�˛

2

�
; two-sided

Note that the upper and lower one-sided cases are expressed differently than in other analyses. This is because
E? > 0 corresponds to a higher survival curve in group 1 and thus, by the convention used in PROC power
for two-group analyses, the lower side.

For the one-sided cases, a closed-form inversion of the power equation yield an approximate total sample size

N D

�
zpower C z1�˛

E?

�2
For the two-sided case, the solution for N is obtained by numerically inverting the power equation.

Accrual rates are converted to and from sample sizes according to the equation aj D nj =T , where aj is the
accrual rate for group j.

Expected numbers of events—that is, deaths, whether observed or censored—are converted to and from
sample sizes according to the equation

ej D

(
nj
�
1 � Sj .�/

�
; T D 0

nj

h
1 � 1

T

R T
0 Sj .T C � � t /dt

i
; T > 0
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where ej is the expected number of events in group j. For an exponential curve, the equation simplifies to

ej D

(
nj
�
1 � exp.��j �/

�
; T D 0

nj

h
1 � 1

�jT

�
exp.��j �/ � exp.��j .T C �//

�i
; T > 0

For a piecewise linear curve, first define Kj as the number of time points in the following collection: � ,
T C � , and input time points for group j strictly between � and T C � . Denote the ordered set of these points
as fuj1; : : : ; ujKj g. The survival function values Sj .�/ and Sj .T C �/ are calculated by linear interpolation
between adjacent input time points if they do not coincide with any input time points. Then the equation for
a piecewise linear curve simplifies to

ej D

(
nj
�
1 � Sj .�/

�
; T D 0

nj

h
1 � 1

2T

PKj�1

iD1

�
uj;iC1 � uj i

� �
Sj .uj i /C Sj .uj;iC1/

�i
; T > 0

Analyses in the TWOSAMPLEWILCOXON Statement

Wilcoxon-Mann-Whitney Test for Comparing Two Distributions (TEST=WMW)
The power approximation in this section is applicable to the Wilcoxon-Mann-Whitney (WMW) test as
invoked with the WILCOXON option in the PROC NPAR1WAY statement of the NPAR1WAY procedure.
The approximation is based on O’Brien and Castelloe (2006) and an estimator called 4WMWodds. See
O’Brien and Castelloe (2006) for a definition of 4WMWodds, which need not be derived in detail here for
purposes of explaining the power formula.

Let Y1 and Y2 be independent observations from any two distributions that you want to compare using the
WMW test. For purposes of deriving the asymptotic distribution of 4WMWodds (and consequently the power
computation as well), these distributions must be formulated as ordered categorical (“ordinal”) distributions.

If a distribution is continuous, it can be discretized using a large number of categories with negligible loss
of accuracy. Each nonordinal distribution is divided into b categories, where b is the value of the NBINS
parameter, with breakpoints evenly spaced on the probability scale. That is, each bin contains an equal
probability 1/b for that distribution. Then the breakpoints across both distributions are pooled to form
a collection of C bins (heretofore called “categories”), and the probabilities of bin membership for each
distribution are recalculated. The motivation for this method of binning is to avoid degenerate representations
of the distributions—that is, small handfuls of large probabilities among mostly empty bins—as can be
caused by something like an evenly spaced grid across raw values rather than probabilities.

After the discretization process just mentioned, there are now two ordinal distributions, each with a set of
probabilities across a common set of C ordered categories. For simplicity of notation, assume (without loss
of generality) the response values to be 1; : : : ; C . Represent the conditional probabilities as

Qpij D Prob .Yi D j j group D i/ ; i 2 f1; 2g and j 2 f1; : : : ; C g

and the group allocation weights as

wi D
ni

N
D Prob .group D i/ ; i 2 f1; 2g

The joint probabilities can then be calculated simply as

pij D Prob .group D i; Yi D j / D wi Qpij ; i 2 f1; 2g and j 2 f1; : : : ; C g
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The next step in the power computation is to compute the probabilities that a randomly chosen pair of
observations from the two groups is concordant, discordant, or tied. It is useful to define these probabilities
as functions of the terms Rsij and Rdij , defined as follows, where Y is a random observation drawn from the
joint distribution across groups and categories:

Rsij D Prob .Y is concordant with cell.i; j //C
1

2
Prob .Y is tied with cell.i; j //

D Prob ..group < i and Y < j / or .group > i and Y > j //C
1

2
Prob .group ¤ i and Y D j /

D

2X
gD1

CX
cD1

wg Qpgc

�
I.g�i/.c�j />0 C

1

2
Ig¤i;cDj

�
and

Rdij D Prob .Y is discordant with cell.i; j //C
1

2
Prob .Y is tied with cell.i; j //

D Prob ..group < i and Y > j / or .group > i and Y < j //C
1

2
Prob .group ¤ i and Y D j /

D

2X
gD1

CX
cD1

wg Qpgc

�
I.g�i/.c�j /<0 C

1

2
Ig¤i;cDj

�

For an independent random draw Y1; Y2 from the two distributions,

Pc D Prob .Y1; Y2 concordant/C
1

2
Prob .Y1; Y2 tied/

D

2X
iD1

CX
jD1

wi QpijRsij

and

Pd D Prob .Y1; Y2 discordant/C
1

2
Prob .Y1; Y2 tied/

D

2X
iD1

CX
jD1

wi QpijRdij

Then

WMWodds D
Pc

Pd

Proceeding to compute the theoretical standard error associated with WMWodds (that is, the population
analogue to the sample standard error),

SE.WMWodds/ D
2

Pd

24 2X
iD1

CX
jD1

wi Qpij
�
WMWoddsRdij �Rsij

�2
=N

35 1
2
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Converting to the natural log scale and using the delta method,

SE.log.WMWodds// D
SE.WMWodds/

WMWodds

The next step is to produce a “smoothed” version of the 2 � C cell probabilities that conforms to the null
hypothesis of the Wilcoxon-Mann-Whitney test (in other words, independence in the 2 � C contingency
table of probabilities). Let SEH0.log.WMWodds// denote the theoretical standard error of log.WMWodds/

assuming H0.

Finally, compute the power using the noncentral chi-square and normal distributions:

power D

8̂̂̂̂
<̂
ˆ̂̂:
P
�
Z �

SEH0 .log.WMWodds//

SE.log.WMWodds//
z1�˛ � ı

?N
1
2

�
; upper one-sided

P
�
Z �

SEH0 .log.WMWodds//

SE.log.WMWodds//
z˛ � ı

?N
1
2

�
; lower one-sided

P

�
�2.1; .ı?/2N/ �

h
SEH0 .log.WMWodds//

SE.log.WMWodds//

i2
�21�˛.1/

�
; two-sided

where

ı? D
log.WMWodds/

N
1
2SE.log.WMWodds//

is the primary noncentrality—that is, the “effect size” that quantifies how much the two conjectured distri-
butions differ. Z is a standard normal random variable, �2.df ;nc/ is a noncentral �2 random variable with
degrees of freedom df and noncentrality nc, and N is the total sample size.

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

If ODS Graphics is not enabled, then PROC POWER creates traditional graphics.

You can reference every graph produced through ODS Graphics with a name. The names of the graphs that
PROC POWER generates are listed in Table 77.31, along with the required statements and options.
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Table 77.31 Graphs Produced by PROC POWER

ODS Graph Name Plot Description Option

PowerPlot Plot with two of the following three parameters on the
X and Y axes: power, sample size, and effect size

PLOT

PowerAbort Empty plot that shows an error message when a plot
could not be produced

PLOT

Examples: POWER Procedure

Example 77.1: One-Way ANOVA
This example deals with the same situation as in Example 47.1 of Chapter 47, “The GLMPOWER Procedure.”

Hocking (1985, p. 109) describes a study of the effectiveness of electrolytes in reducing lactic acid buildup
for long-distance runners. You are planning a similar study in which you will allocate five different fluids to
runners on a 10-mile course and measure lactic acid buildup immediately after the run. The fluids consist of
water and two commercial electrolyte drinks, EZDure and LactoZap, each prepared at two concentrations,
low (EZD1 and LZ1) and high (EZD2 and LZ2).

You conjecture that the standard deviation of lactic acid measurements given any particular fluid is about
3.75, and that the expected lactic acid values will correspond roughly to those in Table 77.32. You are least
familiar with the LZ1 drink and hence decide to consider a range of reasonable values for that mean.

Table 77.32 Mean Lactic Acid Buildup by Fluid

Water EZD1 EZD2 LZ1 LZ2

35.6 33.7 30.2 29 or 28 25.9

You are interested in four different comparisons, shown in Table 77.33 with appropriate contrast coefficients.

Table 77.33 Planned Comparisons

Contrast Coefficients
Comparison Water EZD1 EZD2 LZ1 LZ2
Water versus electrolytes 4 –1 –1 –1 –1
EZD versus LZ 0 1 1 –1 –1
EZD1 versus EZD2 0 1 –1 0 0
LZ1 versus LZ2 0 0 0 1 –1
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For each of these contrasts you want to determine the sample size required to achieve a power of 0.9 for
detecting an effect with magnitude in accord with Table 77.32. You are not yet attempting to choose a single
sample size for the study, but rather checking the range of sample sizes needed for individual contrasts. You
plan to test each contrast at ˛ D 0:025. In the interests of reducing costs, you will provide twice as many
runners with water as with any of the electrolytes; in other words, you will use a sample size weighting
scheme of 2:1:1:1:1. Use the ONEWAYANOVA statement in the POWER procedure to compute the sample
sizes.

The statements required to perform this analysis are as follows:

proc power;
onewayanova

groupmeans = 35.6 | 33.7 | 30.2 | 29 28 | 25.9
stddev = 3.75
groupweights = (2 1 1 1 1)
alpha = 0.025
ntotal = .
power = 0.9
contrast = (4 -1 -1 -1 -1) (0 1 1 -1 -1)

(0 1 -1 0 0) (0 0 0 1 -1);
run;

The NTOTAL= option with a missing value (.) indicates total sample size as the result parameter. The
GROUPMEANS= option with values from Table 77.32 specifies your conjectures for the means. With only
one mean varying (the LZ1 mean), the “crossed” notation is simpler, showing scenarios for each group mean,
separated by vertical bars (|). For more information about crossed and matched notations for grouped values,
see the section “Specifying Value Lists in Analysis Statements” on page 6366. The contrasts in Table 77.33
are specified with the CONTRAST= option, by using the “matched” notation with each contrast enclosed
in parentheses. The STDDEV=, ALPHA=, and POWER= options specify the error standard deviation,
significance level, and power. The GROUPWEIGHTS= option specifies the weighting schemes. Default
values for the NULLCONTRAST= and SIDES= options specify a two-sided t test of the contrast equal to 0.
See Output 77.1.1 for the results.

Output 77.1.1 Sample Sizes for One-Way ANOVA Contrasts

The POWER Procedure
Single DF Contrast in One-Way ANOVA

The POWER Procedure
Single DF Contrast in One-Way ANOVA

Fixed Scenario Elements

Method Exact

Alpha 0.025

Standard Deviation 3.75

Group Weights 2 1 1 1 1

Nominal Power 0.9

Number of Sides 2

Null Contrast Value 0
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Output 77.1.1 continued

Computed N Total

Index Contrast Means
Actual
Power

N
Total

1 4 -1 -1 -1 -1 35.6 33.7 30.2 29 25.9 0.947 30

2 4 -1 -1 -1 -1 35.6 33.7 30.2 28 25.9 0.901 24

3 0 1 1 -1 -1 35.6 33.7 30.2 29 25.9 0.929 60

4 0 1 1 -1 -1 35.6 33.7 30.2 28 25.9 0.922 48

5 0 1 -1 0 0 35.6 33.7 30.2 29 25.9 0.901 174

6 0 1 -1 0 0 35.6 33.7 30.2 28 25.9 0.901 174

7 0 0 0 1 -1 35.6 33.7 30.2 29 25.9 0.902 222

8 0 0 0 1 -1 35.6 33.7 30.2 28 25.9 0.902 480

The sample sizes in Output 77.1.1 range from 24 for the comparison of water versus electrolytes to 480 for
the comparison of LZ1 versus LZ2, both assuming the smaller LZ1 mean. The sample size for the latter
comparison is relatively large because the small mean difference of 28 – 25.9 = 2.1 is hard to detect.

The Nominal Power of 0.9 in the “Fixed Scenario Elements” table in Output 77.1.1 represents the input
target power, and the Actual Power column in the “Computed N Total” table is the power at the sample size
(N Total) adjusted to achieve the specified sample weighting. Note that all of the sample sizes are rounded
up to multiples of 6 to preserve integer group sizes (since the group weights add up to 6). You can use the
NFRACTIONAL option in the ONEWAYANOVA statement to compute raw fractional sample sizes.

Suppose you want to plot the required sample size for the range of power values from 0.5 to 0.95. First,
define the analysis by specifying the same statements as before, but add the PLOTONLY option to the PROC
POWER statement to disable the nongraphical results. Next, specify the PLOT statement with X=POWER
to request a plot with power on the X axis. (The result parameter, here sample size, is always plotted on
the other axis.) Use the MIN= and MAX= options in the PLOT statement to specify the power range. The
following statements produce the plot shown in Output 77.1.2.

ods graphics on;

proc power plotonly;
onewayanova

groupmeans = 35.6 | 33.7 | 30.2 | 29 28 | 25.9
stddev = 3.75
groupweights = (2 1 1 1 1)
alpha = 0.025
ntotal = .
power = 0.9
contrast = (4 -1 -1 -1 -1) (0 1 1 -1 -1)

(0 1 -1 0 0) (0 0 0 1 -1);
plot x=power min=.5 max=.95;

run;
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Output 77.1.2 Plot of Sample Size versus Power for One-Way ANOVA Contrasts

In Output 77.1.2, the line style identifies the contrast, and the plotting symbol identifies the group means
scenario. The plot shows that the required sample size is highest for the (0 0 0 1 –1) contrast, corresponding
to the test of LZ1 versus LZ2 that was previously found to require the most resources, in either cell means
scenario.
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Note that some of the plotted points in Output 77.1.2 are unevenly spaced. This is because the plotted points
are the rounded sample size results at their corresponding actual power levels. The range specified with
the MIN= and MAX= values in the PLOT statement corresponds to nominal power levels. In some cases,
actual power is substantially higher than nominal power. To obtain plots with evenly spaced points (but with
fractional sample sizes at the computed points), you can use the NFRACTIONAL option in the analysis
statement preceding the PLOT statement.

Finally, suppose you want to plot the power for the range of sample sizes you will likely consider for the
study (the range of 24 to 480 that achieves 0.9 power for different comparisons). In the ONEWAYANOVA
statement, identify power as the result (POWER=.), and specify NTOTAL=24. The following statements
produce the plot:

proc power plotonly;
onewayanova

groupmeans = 35.6 | 33.7 | 30.2 | 29 28 | 25.9
stddev = 3.75
groupweights = (2 1 1 1 1)
alpha = 0.025
ntotal = 24
power = .
contrast = (4 -1 -1 -1 -1) (0 1 1 -1 -1)

(0 1 -1 0 0) (0 0 0 1 -1);
plot x=n min=24 max=480;

run;

ods graphics off;

The X=N option in the PLOT statement requests a plot with sample size on the X axis.

Note that the value specified with the NTOTAL=24 option is not used. It is overridden in the plot by
the MIN= and MAX= options in the PLOT statement, and the PLOTONLY option in the PROC POWER
statement disables nongraphical results. But the NTOTAL= option (along with a value) is still needed in the
ONEWAYANOVA statement as a placeholder, to identify the desired parameterization for sample size.

Output 77.1.3 shows the resulting plot.
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Output 77.1.3 Plot of Power versus Sample Size for One-Way ANOVA Contrasts

Although Output 77.1.2 and Output 77.1.3 surface essentially the same computations for practical power
ranges, they each provide a different quick visual assessment. Output 77.1.2 reveals the range of required
sample sizes for powers of interest, and Output 77.1.3 reveals the range of achieved powers for sample sizes
of interest.

Example 77.2: The Sawtooth Power Function in Proportion Analyses
For many common statistical analyses, the power curve is monotonically increasing: the more samples
you take, the more power you achieve. However, in statistical analyses of discrete data, such as tests of
proportions, the power curve is often nonmonotonic. A small increase in sample size can result in a decrease
in power, a decrease that is sometimes substantial. The explanation is that the actual significance level (in
other words, the achieved Type I error rate) for discrete tests strays below the target level and varies with
sample size. The power loss from a decrease in the Type I error rate can outweigh the power gain from
an increase in sample size. The example discussed here demonstrates this “sawtooth” phenomenon. For
additional discussion on the topic, see Chernick and Liu (2002).

Suppose you have a new scheduling system for an airline, and you want to determine how many flights you
must observe to have at least an 80% chance of establishing an improvement in the proportion of late arrivals



Example 77.2: The Sawtooth Power Function in Proportion Analyses F 6435

on a specific travel route. You will use a one-sided exact binomial proportion test with a null proportion of
30%, the frequency of late arrivals under the previous scheduling system, and a nominal significance level of
˛ = 0.05. Well-supported predictions estimate the new late arrival rate to be about 20%, and you will base
your sample size determination on this assumption.

The POWER procedure does not currently compute exact sample size directly for the exact binomial test.
But you can get an initial estimate by computing the approximate sample size required for a z test. Use
the ONESAMPLEFREQ statement in the POWER procedure with TEST=Z and METHOD=NORMAL to
compute the approximate sample size to achieve a power of 0.8 by using the z test. The following statements
perform the analysis:

proc power;
onesamplefreq test=z method=normal

sides = 1
alpha = 0.05
nullproportion = 0.3
proportion = 0.2
ntotal = .
power = 0.8;

run;

The NTOTAL= option with a missing value (.) indicates sample size as the result parameter. The SIDES=1
option specifies a one-sided test. The ALPHA=, NULLPROPORTION=, and POWER= options specify
the significance level of 0.05, null value of 0.3, and target power of 0.8, respectively. The PROPORTION=
option specifies your conjecture of 0.3 for the true proportion.

Output 77.2.1 Approximate Sample Size for z Test of a Proportion

The POWER Procedure
Z Test for Binomial Proportion

The POWER Procedure
Z Test for Binomial Proportion

Fixed Scenario Elements

Method Normal approximation

Number of Sides 1

Null Proportion 0.3

Alpha 0.05

Binomial Proportion 0.2

Nominal Power 0.8

Variance Estimate Null Variance

Computed N
Total

Actual
Power

N
Total

0.800 119

The results, shown in Output 77.2.1, indicate that you need to observe about N = 119 flights to have an 80%
chance of rejecting the hypothesis of a late arrival proportion of 30% or higher, if the true proportion is 20%,
by using the z test. A similar analysis (Output 77.2.2) reveals an approximate sample size of N = 129 for the
z test with continuity correction, which is performed by using TEST=ADJZ:
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proc power;
onesamplefreq test=adjz method=normal

sides = 1
alpha = 0.05
nullproportion = 0.3
proportion = 0.2
ntotal = .
power = 0.8;

run;

Output 77.2.2 Approximate Sample Size for z Test with Continuity Correction

The POWER Procedure
Z Test for Binomial Proportion with Continuity Adjustment

The POWER Procedure
Z Test for Binomial Proportion with Continuity Adjustment

Fixed Scenario Elements

Method Normal approximation

Number of Sides 1

Null Proportion 0.3

Alpha 0.05

Binomial Proportion 0.2

Nominal Power 0.8

Variance Estimate Null Variance

Computed N
Total

Actual
Power

N
Total

0.801 129

Based on the approximate sample size results, you decide to explore the power of the exact binomial test for
sample sizes between 110 and 140. The following statements produce the plot:

ods graphics on;

proc power plotonly;
onesamplefreq test=exact

sides = 1
alpha = 0.05
nullproportion = 0.3
proportion = 0.2
ntotal = 119
power = .;

plot x=n min=110 max=140 step=1
yopts=(ref=.8) xopts=(ref=119 129);

run;

The TEST=EXACT option in the ONESAMPLEFREQ statement specifies the exact binomial test, and the
missing value (.) for the POWER= option indicates power as the result parameter. The PLOTONLY option in
the PROC POWER statement disables nongraphical output. The PLOT statement with X=N requests a plot
with sample size on the X axis. The MIN= and MAX= options in the PLOT statement specify the sample size
range. The YOPTS=(REF=) and XOPTS=(REF=) options add reference lines to highlight the approximate
sample size results. The STEP=1 option produces a point at each integer sample size. The sample size value
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specified with the NTOTAL= option in the ONESAMPLEFREQ statement is overridden by the MIN= and
MAX= options in the PLOT statement. Output 77.2.3 shows the resulting plot.

Output 77.2.3 Plot of Power versus Sample Size for Exact Binomial Test

Note the sawtooth pattern in Output 77.2.3. Although the power surpasses the target level of 0.8 at N
= 119, it decreases to 0.79 with N = 120 and further to 0.76 with N = 122 before rising again to 0.81
with N = 123. Not until N = 130 does the power stay above the 0.8 target. Thus, a more conservative
sample size recommendation of 130 might be appropriate, depending on the precise goals of the sample size
determination.

In addition to considering alternative sample sizes, you might also want to assess the sensitivity of the power
to inaccuracies in assumptions about the true proportion. The following statements produce a plot including
true proportion values of 0.18 and 0.22. They are identical to the previous statements except for the additional
true proportion values specified with the PROPORTION= option in the ONESAMPLEFREQ statement.
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proc power plotonly;
onesamplefreq test=exact

sides = 1
alpha = 0.05
nullproportion = 0.3
proportion = 0.18 0.2 0.22
ntotal = 119
power = .;

plot x=n min=110 max=140 step=1
yopts=(ref=.8) xopts=(ref=119 129);

run;

Output 77.2.4 shows the resulting plot.

Output 77.2.4 Plot for Assessing Sensitivity to True Proportion Value
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The plot reveals a dramatic sensitivity to the true proportion value. For N=119, the power is about 0.92 if the
true proportion is 0.18, and as low as 0.62 if the proportion is 0.22. Note also that the power jumps occur at
the same sample sizes in all three curves; the curves are only shifted and stretched vertically. This is because
spikes and valleys in power curves are invariant to the true proportion value; they are due to changes in the
critical value of the test.

A closer look at some ancillary output from the analysis sheds light on this property of the sawtooth pattern.
You can add an ODS OUTPUT statement to save the plot content corresponding to Output 77.2.3 to a data
set:

proc power plotonly;
ods output plotcontent=PlotData;
onesamplefreq test=exact

sides = 1
alpha = 0.05
nullproportion = 0.3
proportion = 0.2
ntotal = 119
power = .;

plot x=n min=110 max=140 step=1
yopts=(ref=.8) xopts=(ref=119 129);

run;

The PlotData data set contains parameter values for each point in the plot. The parameters include underlying
characteristics of the putative test. The following statements print the critical value and actual significance
level along with sample size and power:

proc print data=PlotData;
var NTotal LowerCritVal Alpha Power;

run;

Output 77.2.5 shows the plot data.
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Output 77.2.5 Numerical Content of Plot

Obs NTotal LowerCritVal Alpha Power

1 110 24 0.0356 0.729

2 111 24 0.0313 0.713

3 112 25 0.0446 0.771

4 113 25 0.0395 0.756

5 114 25 0.0349 0.741

6 115 26 0.0490 0.795

7 116 26 0.0435 0.781

8 117 26 0.0386 0.767

9 118 26 0.0341 0.752

10 119 27 0.0478 0.804

11 120 27 0.0425 0.790

12 121 27 0.0377 0.776

13 122 27 0.0334 0.762

14 123 28 0.0465 0.812

15 124 28 0.0414 0.799

16 125 28 0.0368 0.786

17 126 28 0.0327 0.772

18 127 29 0.0453 0.820

19 128 29 0.0404 0.807

20 129 29 0.0359 0.794

21 130 30 0.0493 0.838

22 131 30 0.0441 0.827

23 132 30 0.0394 0.815

24 133 30 0.0351 0.803

25 134 31 0.0480 0.845

26 135 31 0.0429 0.834

27 136 31 0.0384 0.823

28 137 31 0.0342 0.811

29 138 32 0.0466 0.851

30 139 32 0.0418 0.841

31 140 32 0.0374 0.830

Note that whenever the critical value changes, the actual ˛ jumps up to a value close to the nominal ˛ =
0.05, and the power also jumps up. Then while the critical value stays constant, the actual ˛ and power
slowly decrease. The critical value is independent of the true proportion value. So you can achieve a locally
maximal power by choosing a sample size corresponding to a spike on the sawtooth curve, and this choice is
locally optimal regardless of the unknown value of the true proportion. Locally optimal sample sizes in this
case include 115, 119, 123, 127, 130, and 134.

As a point of interest, the power does not always jump sharply and decrease gradually. The shape of the
sawtooth depends on the direction of the test and the location of the null proportion relative to 0.5. For
example, if the direction of the hypothesis in this example is reversed (by switching true and null proportion
values) so that the rejection region is in the upper tail, then the power curve exhibits sharp decreases and
gradual increases. The following statements are similar to those producing the plot in Output 77.2.3 but with
values of the PROPORTION= and NULLPROPORTION= options switched:
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proc power plotonly;
onesamplefreq test=exact

sides = 1
alpha = 0.05
nullproportion = 0.2
proportion = 0.3
ntotal = 119
power = .;

plot x=n min=110 max=140 step=1;
run;

The resulting plot is shown in Output 77.2.6.

Output 77.2.6 Plot of Power versus Sample Size for Another One-sided Test

Finally, two-sided tests can lead to even more irregular power curve shapes, since changes in lower and upper
critical values affect the power in different ways. The following statements produce a plot of power versus
sample size for the scenario of a two-sided test with high alpha and a true proportion close to the null value:
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proc power plotonly;
onesamplefreq test=exact

sides = 2
alpha = 0.2
nullproportion = 0.1
proportion = 0.09
ntotal = 10
power = .;

plot x=n min=2 max=100 step=1;
run;

ods graphics off;

Output 77.2.7 shows the resulting plot.

Output 77.2.7 Plot of Power versus Sample Size for a Two-Sided Test

Due to the irregular shapes of power curves for proportion tests, the question “Which sample size should I
use?” is often insufficient. A sample size solution produced directly in PROC POWER reveals the smallest
possible sample size to achieve your target power. But as the examples in this section demonstrate, it is
helpful to consult graphs for answers to questions such as the following:
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• Which sample size will guarantee that all higher sample sizes also achieve my target power?

• Given a candidate sample size, can I increase it slightly to achieve locally maximal power, or perhaps
even decrease it and get higher power?

Example 77.3: Simple AB/BA Crossover Designs
Crossover trials are experiments in which each subject is given a sequence of different treatments. They are
especially common in clinical trials for medical studies. The reduction in variability from taking multiple
measurements on a subject allows for more precise treatment comparisons. The simplest such design is the
AB/BA crossover, in which each subject receives each of two treatments in a randomized order.

Under certain simplifying assumptions, you can test the treatment difference in an AB/BA crossover trial by
using either a paired or two-sample t test (or equivalence test, depending on the hypothesis). This example
will demonstrate when and how you can use the PAIREDMEANS statement in PROC POWER to perform
power analyses for AB/BA crossover designs.

Senn (1993, Chapter 3) discusses a study comparing the effects of two bronchodilator medications in treatment
of asthma, by using an AB/BA crossover design. Suppose you want to plan a similar study comparing two
new medications, “Xilodol” and “Brantium.” Half of the patients would be assigned to sequence AB, getting
a dose of Xilodol in the first treatment period, a wash-out period of one week, and then a dose of Brantium in
the second treatment period. The other half would be assigned to sequence BA, following the same schedule
but with the drugs reversed. In each treatment period you would administer the drugs in the morning and then
measure peak expiratory flow (PEF) at the end of the day, with higher PEF representing better lung function.

You conjecture that the mean and standard deviation of PEF are about �A = 330 and �A = 40 for Xilodol
and �B = 310 and �B = 55 for Brantium, and that each pair of measurements on the same subject will have
a correlation of about 0.3. You want to compute the power of both one-sided and two-sided tests of mean
difference, with a significance level of ˛ = 0.01, for a sample size of 100 patients and also plot the power for
a range of 50 to 200 patients. Note that the allocation ratio of patients to the two sequences is irrelevant in
this analysis.

The choice of statistical test depends on which assumptions are reasonable. One possibility is a t test. A
paired or two-sample t test is valid when there is no carryover effect and no interactions between patients,
treatments, and periods. See Senn (1993, Chapter 3) for more details. The choice between a paired or
a two-sample test depends on what you assume about the period effect. If you assume no period effect,
then a paired t test is the appropriate analysis for the design, with the first member of each pair being the
Xilodol measurement (regardless of which sequence the patient belongs to). Otherwise, the two-sample t test
approach is called for, since this analysis adjusts for the period effect by using an extra degree of freedom.

Suppose you assume no period effect. Then you can use the PAIREDMEANS statement in PROC POWER
with the TEST=DIFF option to perform a sample size analysis for the paired t test. Indicate power as the
result parameter by specifying the POWER= option with a missing value (.). Specify the conjectured means
and standard deviations for each drug by using the PAIREDMEANS= and PAIREDSTDDEVS= options and
the correlation by using the CORR= option. Specify both one- and two-sided tests by using the SIDES=
option, the significance level by using the ALPHA= option, and the sample size (in terms of number of
pairs) by using the NPAIRS= option. Generate a plot of power versus sample size by specifying the PLOT
statement with X=N to request a plot with sample size on the X axis. (The result parameter, here power, is
always plotted on the other axis.) Use the MIN= and MAX= options in the PLOT statement to specify the
sample size range (as numbers of pairs).
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The following statements perform the sample size analysis:

ods graphics on;

proc power;
pairedmeans test=diff

pairedmeans = (330 310)
pairedstddevs = (40 55)
corr = 0.3
sides = 1 2
alpha = 0.01
npairs = 100
power = .;

plot x=n min=50 max=200;
run;

ods graphics off;

Default values for the NULLDIFF= and DIST= options specify a null mean difference of 0 and the assumption
of normally distributed data. The output is shown in Output 77.3.1 and Output 77.3.2.

Output 77.3.1 Power for Paired t Analysis of Crossover Design

The POWER Procedure
Paired t Test for Mean Difference

The POWER Procedure
Paired t Test for Mean Difference

Fixed Scenario Elements

Distribution Normal

Method Exact

Alpha 0.01

Mean 1 330

Mean 2 310

Standard Deviation 1 40

Standard Deviation 2 55

Correlation 0.3

Number of Pairs 100

Null Difference 0

Computed Power

Index Sides Power

1 1 0.865

2 2 0.801
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Output 77.3.2 Plot of Power versus Sample Size for Paired t Analysis of Crossover Design

The “Computed Power” table in Output 77.3.1 shows that the power with 100 patients is about 0.8 for the
two-sided test and 0.87 for the one-sided test with the alternative of larger Brantium mean. In Output 77.3.2,
the line style identifies the number of sides of the test. The plotting symbols identify locations of actual
computed powers; the curves are linear interpolations of these points. The plot demonstrates how much
higher the power is in the one-sided test than in the two-sided test for the range of sample sizes.

Suppose now that instead of detecting a difference between Xilodol and Brantium, you want to establish
that they are similar—in particular, that the absolute mean PEF difference is at most 35. You might consider
this goal if, for example, one of the drugs has fewer side effects and if a difference of no more than 35
is considered clinically small. Instead of a standard t test, you would conduct an equivalence test of the
treatment mean difference for the two drugs. You would test the hypothesis that the true difference is less
than –35 or more than 35 against the alternative that the mean difference is between –35 and 35, by using an
additive model and a two one-sided tests (“TOST”) analysis.

Assuming no period effect, you can use the PAIREDMEANS statement with the TEST=EQUIV_DIFF option
to perform a sample size analysis for the paired equivalence test. Indicate power as the result parameter by
specifying the POWER= option with a missing value (.). Use the LOWER= and UPPER= options to specify
the equivalence bounds of –35 and 35. Use the PAIREDMEANS=, PAIREDSTDDEVS=, CORR=, and
ALPHA= options in the same way as in the t test at the beginning of this example to specify the remaining
parameters.
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The following statements perform the sample size analysis:

proc power;
pairedmeans test=equiv_add

lower = -35
upper = 35
pairedmeans = (330 310)
pairedstddevs = (40 55)
corr = 0.3
alpha = 0.01
npairs = 100
power = .;

run;

The default option DIST=NORMAL specifies an assumption of normally distributed data. The output is
shown in Output 77.3.3.

Output 77.3.3 Power for Paired Equivalence Test for Crossover Design

The POWER Procedure
Equivalence Test for Paired Mean Difference

The POWER Procedure
Equivalence Test for Paired Mean Difference

Fixed Scenario Elements

Distribution Normal

Method Exact

Lower Equivalence Bound -35

Upper Equivalence Bound 35

Alpha 0.01

Reference Mean 330

Treatment Mean 310

Standard Deviation 1 40

Standard Deviation 2 55

Correlation 0.3

Number of Pairs 100

Computed
Power

Power

0.598

The power for the paired equivalence test with 100 patients is about 0.6.

Example 77.4: Noninferiority Test with Lognormal Data
The typical goal in noninferiority testing is to conclude that a new treatment or process or product is not
appreciably worse than some standard. This is accomplished by convincingly rejecting a one-sided null
hypothesis that the new treatment is appreciably worse than the standard. When designing such studies,
investigators must define precisely what constitutes “appreciably worse.”

You can use the POWER procedure for sample size analyses for a variety of noninferiority tests, by specifying
custom, one-sided null hypotheses for common tests. This example illustrates the strategy (often called
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Blackwelder’s scheme; Blackwelder 1982) by comparing the means of two independent lognormal samples.
The logic applies to one-sample, two-sample, and paired-sample problems involving normally distributed
measures and proportions.

Suppose you are designing a study hoping to show that a new (less expensive) manufacturing process does
not produce appreciably more pollution than the current process. Quantifying “appreciably worse” as 10%,
you seek to show that the mean pollutant level from the new process is less than 110% of that from the current
process. In standard hypothesis testing notation, you seek to reject

H0W
�new

�current
� 1:10

in favor of

HAW
�new

�current
< 1:10

This is described graphically in Figure 77.8. Mean ratios below 100% are better levels for the new process; a
ratio of 100% indicates absolute equivalence; ratios of 100–110% are “tolerably” worse; and ratios exceeding
110% are appreciably worse.

Figure 77.8 Hypotheses for the Pollutant Study

An appropriate test for this situation is the common two-group t test on log-transformed data. The hypotheses
become

H0W log .�new/ � log .�current/ � log.1:10/
HAW log .�new/ � log .�current/ < log.1:10/

Measurements of the pollutant level will be taken by using laboratory models of the two processes and will
be treated as independent lognormal observations with a coefficient of variation (�=�) between 0.5 and 0.6
for both processes. You will end up with 300 measurements for the current process and 180 for the new one.
It is important to avoid a Type I error here, so you set the Type I error rate to 0.01. Your theoretical work
suggests that the new process will actually reduce the pollutant by about 10% (to 90% of current), but you
need to compute and graph the power of the study if the new levels are actually between 70% and 120% of
current levels.

Implement the sample size analysis by using the TWOSAMPLEMEANS statement in PROC POWER
with the TEST=RATIO option. Indicate power as the result parameter by specifying the POWER= option
with a missing value (.). Specify a series of scenarios for the mean ratio between 0.7 and 1.2 by using
the MEANRATIO= option. Use the NULLRATIO= option to specify the null mean ratio of 1.10. Specify
SIDES=L to indicate a one-sided test with the alternative hypothesis stating that the mean ratio is lower than
the null value. Specify the significance level, scenarios for the coefficient of variation, and the group sample
sizes by using the ALPHA=, CV=, and GROUPNS= options. Generate a plot of power versus mean ratio by
specifying the PLOT statement with the X=EFFECT option to request a plot with mean ratio on the X axis.
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(The result parameter, here power, is always plotted on the other axis.) Use the STEP= option in the PLOT
statement to specify an interval of 0.05 between computed points in the plot.

The following statements perform the desired analysis:

ods graphics on;

proc power;
twosamplemeans test=ratio

meanratio = 0.7 to 1.2 by 0.1
nullratio = 1.10
sides = L
alpha = 0.01
cv = 0.5 0.6
groupns = (300 180)
power = .;

plot x=effect step=0.05;
run;

ods graphics off;

Note the use of SIDES=L, which forces computations for cases that need a rejection region that is opposite to
the one providing the most one-tailed power; in this case, it is the lower tail. Such cases will show power
that is less than the prescribed Type I error rate. The default option DIST=LOGNORMAL specifies the
assumption of lognormally distributed data. The default MIN= and MAX= options in the plot statement
specify an X axis range identical to the effect size range in the TWOSAMPLEMEANS statement (mean
ratios between 0.7 and 1.2).

Output 77.4.1 and Output 77.4.2 show the results.

Output 77.4.1 Power for Noninferiority Test of Ratio

The POWER Procedure
Two-Sample t Test for Mean Ratio

The POWER Procedure
Two-Sample t Test for Mean Ratio

Fixed Scenario Elements

Distribution Lognormal

Method Exact

Number of Sides L

Null Geometric Mean Ratio 1.1

Alpha 0.01

Group 1 Sample Size 300

Group 2 Sample Size 180
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Output 77.4.1 continued

Computed Power

Index

Geo
Mean
Ratio CV Power

1 0.7 0.5 >.999

2 0.7 0.6 >.999

3 0.8 0.5 >.999

4 0.8 0.6 >.999

5 0.9 0.5 0.985

6 0.9 0.6 0.933

7 1.0 0.5 0.424

8 1.0 0.6 0.306

9 1.1 0.5 0.010

10 1.1 0.6 0.010

11 1.2 0.5 <.001

12 1.2 0.6 <.001

Output 77.4.2 Plot of Power versus Mean Ratio for Noninferiority Test
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The “Computed Power” table in Output 77.4.1 shows that power exceeds 0.90 if the true mean ratio is
90% or less, as surmised. But power is unacceptably low (0.31–0.42) if the processes happen to be truly
equivalent. Note that the power is identical to the alpha level (0.01) if the true mean ratio is 1.10 and below
0.01 if the true mean ratio is appreciably worse (>110%). In Output 77.4.2, the line style identifies the
coefficient of variation. The plotting symbols identify locations of actual computed powers; the curves are
linear interpolations of these points.

Example 77.5: Multiple Regression and Correlation
You are working with a team of preventive cardiologists investigating whether elevated serum homocysteine
levels are linked to atherosclerosis (plaque buildup) in coronary arteries. The planned analysis is an ordinary
least squares regression to assess the relationship between total homocysteine level (tHcy) and a plaque
burden index (PBI), adjusting for six other variables: age, gender, plasma levels of folate, vitamin B6, vitamin
B12, and a serum cholesterol index. You will regress PBI on tHcy and the six other predictors (plus the
intercept) and use a Type III F test to assess whether tHcy is a significant predictor after adjusting for the
others. You wonder whether 100 subjects will provide adequate statistical power.

This is a correlational study at a single time. Subjects will be screened so that about half will have had a
heart problem. All eight variables will be measured during one visit. Most clinicians are familiar with simple
correlations between two variables, so you decide to pose the statistical problem in terms of estimating and
testing the partial correlation between X1 = tHcy and Y = PBI, controlling for the six other predictor variables
(RYX1jX�1). This greatly simplifies matters, especially the elicitation of the conjectured effect.

You use partial regression plots like that shown in Figure 77.9 to teach the team that the partial correlation
between PBI and tHcy is the correlation of two sets of residuals obtained from ordinary regression models,
one from regressing PBI on the six covariates and the other from regressing tHcy on the same covariates.
Thus each subject has “expected” tHcy and PBI values based on the six covariates. The cardiologists believe
that subjects whose tHcy is relatively higher than expected will also have a PBI that is relatively higher than
expected. The partial correlation quantifies that adjusted association just as a standard simple correlation
does with the unadjusted linear association between two variables.

Figure 77.9 Partial Regression Plot
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Based on previously published studies of various coronary risk factors and after viewing a set of scatterplots
showing various correlations, the team surmises that the true partial correlation is likely to be at least 0.35.

You want to compute the statistical power for a sample size of N = 100 by using ˛ = 0.05. You also want to
plot power for sample sizes between 50 and 150. Use the MULTREG statement to compute the power and the
PLOT statement to produce the graph. Since the predictors are observed rather than fixed in advanced, and a
joint multivariate normal assumption seems tenable, use MODEL=RANDOM. The following statements
perform the power analysis:

ods graphics on;

proc power;
multreg

model = random
nfullpredictors = 7
ntestpredictors = 1
partialcorr = 0.35
ntotal = 100
power = .;

plot x=n min=50 max=150;
run;

ods graphics off;

The POWER=. option identifies power as the parameter to compute. The NFULLPREDICTORS= option
specifies seven total predictors (not including the intercept), and the NTESTPREDICTORS= option indicates
that one of those predictors is being tested. The PARTIALCORR= and NTOTAL= options specify the partial
correlation and sample size, respectively. The default value for the ALPHA= option sets the significance
level to 0.05. The X=N option in the plot statement requests a plot of sample size on the X axis, and the
MIN= and MAX= options specify the sample size range.

Output 77.5.1 shows the output, and Output 77.5.2 shows the plot.

Output 77.5.1 Power Analysis for Multiple Regression

The POWER Procedure
Type III F Test in Multiple Regression

The POWER Procedure
Type III F Test in Multiple Regression

Fixed Scenario Elements

Method Exact

Model Random X

Number of Predictors in Full Model 7

Number of Test Predictors 1

Partial Correlation 0.35

Total Sample Size 100

Alpha 0.05

Computed
Power

Power

0.939
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Output 77.5.2 Plot of Power versus Sample Size for Multiple Regression

For the sample size N = 100, the study is almost balanced with respect to Type I and Type II error rates, with
˛ = 0.05 and ˇ = 1 – 0.937 = 0.063. The study thus seems well designed at this sample size.

Now suppose that in a follow-up meeting with the cardiologists, you discover that their specific intent is to
demonstrate that the (partial) correlation between PBI and tHcy is greater than 0.2. You suggest changing the
planned data analysis to a one-sided Fisher’s z test with a null correlation of 0.2. The following statements
perform a power analysis for this test:

proc power;
onecorr dist=fisherz

npvars = 6
corr = 0.35
nullcorr = 0.2
sides = 1
ntotal = 100
power = .;

run;
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The DIST=FISHERZ option in the ONECORR statement specifies Fisher’s z test. The NPARTIALVARS=
option specifies that six additional variables are adjusted for in the partial correlation. The CORR= option
specifies the conjectured correlation of 0.35, and the NULLCORR= option indicates the null value of 0.2.
The SIDES= option specifies a one-sided test.

Output 77.5.3 shows the output.

Output 77.5.3 Power Analysis for Fisher’s z Test

The POWER Procedure
Fisher's z Test for Pearson Correlation

The POWER Procedure
Fisher's z Test for Pearson Correlation

Fixed Scenario Elements

Distribution Fisher's z transformation of r

Method Normal approximation

Number of Sides 1

Null Correlation 0.2

Number of Variables Partialled Out 6

Correlation 0.35

Total Sample Size 100

Nominal Alpha 0.05

Computed
Power

Actual
Alpha Power

0.05 0.466

The power for Fisher’s z test is less than 50%, the decrease being mostly due to the smaller effect size (relative
to the null value). When asked for a recommendation for a new sample size goal, you compute the required
sample size to achieve a power of 0.95 (to balance Type I and Type II errors) and 0.85 (a threshold deemed to
be minimally acceptable to the team). The following statements perform the sample size determination:

proc power;
onecorr dist=fisherz

npvars = 6
corr = 0.35
nullcorr = 0.2
sides = 1
ntotal = .
power = 0.85 0.95;

run;

The NTOTAL=. option identifies sample size as the parameter to compute, and the POWER= option specifies
the target powers.
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Output 77.5.4 Sample Size Determination for Fisher’s z Test

The POWER Procedure
Fisher's z Test for Pearson Correlation

The POWER Procedure
Fisher's z Test for Pearson Correlation

Fixed Scenario Elements

Distribution Fisher's z transformation of r

Method Normal approximation

Number of Sides 1

Null Correlation 0.2

Number of Variables Partialled Out 6

Correlation 0.35

Nominal Alpha 0.05

Computed N Total

Index
Nominal

Power
Actual
Alpha

Actual
Power

N
Total

1 0.85 0.05 0.850 280

2 0.95 0.05 0.950 417

The results in Output 77.5.4 reveal a required sample size of 417 to achieve a power of 0.95 and a required
sample size of 280 to achieve a power of 0.85.

Example 77.6: Comparing Two Survival Curves
You are consulting for a clinical research group planning a trial to compare survival rates for proposed and
standard cancer treatments. The planned data analysis is a log-rank test to nonparametrically compare the
overall survival curves for the two treatments. Your goal is to determine an appropriate sample size to achieve
a power of 0.8 for a two-sided test with ˛ = 0.05 by using a balanced design.

The survival curve for patients on the standard treatment is well known to be approximately exponential with
a median survival time of five years. The research group conjectures that the new proposed treatment will
yield a (nonexponential) survival curve similar to the dashed line in Figure 77.6.1.

Patients will be accrued uniformly over two years and then followed for an additional three years past the
accrual period. Some loss to follow-up is expected, with roughly exponential rates that would result in about
50% loss with the standard treatment within 10 years. The loss to follow-up with the proposed treatment is
more difficult to predict, but 50% loss would be expected to occur sometime between years 5 and 20.
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Output 77.6.1 Survival Curves

Use the TWOSAMPLESURVIVAL statement with the TEST=LOGRANK option to compute the required
sample size for the log-rank test. The following statements perform the analysis:

proc power;
twosamplesurvival test=logrank

curve("Standard") = 5 : 0.5
curve("Proposed") = (1 to 5 by 1):(0.95 0.9 0.75 0.7 0.6)
groupsurvival = "Standard" | "Proposed"
accrualtime = 2
followuptime = 3
groupmedlosstimes = 10 | 20 5
power = 0.8
npergroup = .;

run;
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The CURVE= option defines the two survival curves. The “Standard” curve has only one point, specifying an
exponential form with a survival probability of 0.5 at year 5. The “Proposed” curve is a piecewise linear
curve defined by the five points shown in Figure 77.6.1. The GROUPSURVIVAL= option assigns the survival
curves to the two groups, and the ACCRUALTIME= and FOLLOWUPTIME= options specify the accrual and
follow-up times. The GROUPMEDLOSSTIMES= option specifies the years at which 50% loss is expected
to occur. The POWER= option specifies the target power, and the NPERGROUP=. option identifies sample
size per group as the parameter to compute. Default values for the SIDES= and ALPHA= options specify a
two-sided test with ˛ = 0.05.

Output 77.6.2 shows the results.

Output 77.6.2 Sample Size Determination for Log-Rank Test

The POWER Procedure
Log-Rank Test for Two Survival Curves

The POWER Procedure
Log-Rank Test for Two Survival Curves

Fixed Scenario Elements

Method Lakatos normal approximation

Accrual Time 2

Follow-up Time 3

Group 1 Survival Curve Standard

Form of Survival Curve 1 Exponential

Group 2 Survival Curve Proposed

Form of Survival Curve 2 Piecewise Linear

Group 1 Median Loss Time 10

Nominal Power 0.8

Number of Sides 2

Number of Time Sub-Intervals 12

Alpha 0.05

Computed N per Group

Index

Median
Loss

Time 2
Actual
Power

N per
Group

1 20 0.800 228

2 5 0.801 234

The required sample size per group to achieve a power of 0.8 is 228 if the median loss time is 20 years for
the proposed treatment. Only six more patients are required in each group if the median loss time is as short
as five years.
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Example 77.7: Confidence Interval Precision
An investment firm has hired you to help plan a study to estimate the success of a new investment strategy
called IntuiVest. The study involves complex simulations of market conditions over time, and it tracks the
balance of a hypothetical brokerage account starting with $50,000. Each simulation is very expensive in
terms of computing time. You are asked to determine an appropriate number of simulations to estimate
the average change in the account balance at the end of three years. The goal is to have a 95% chance of
obtaining a 90% confidence interval whose half-width is at most $1,000. That is, the firm wants to have
a 95% chance of being able to correctly claim at the end of the study that “Our research shows with 90%
confidence that IntuiVest yields a profit of $X +/– $1,000 at the end of three years on an initial investment of
$50,000 (under simulated market conditions).”

The probability of achieving the desired precision (that is, a small interval width) can be calculated either
unconditionally or conditionally given that the true mean is captured by the interval. You decide to use the
conditional form, considering two of its advantages:

• The conditional probability is usually lower than the unconditional probability for the same sample
size, meaning that the conditional form is generally conservative.

• The overall probability of achieving the desired precision and capturing the true mean is easily
computed as the product of the half-width probability and the confidence level. In this case, the overall
probability is 0.95 � 0.9 = 0.855.

Based on some initial simulations, you expect a standard deviation between $25,000 and $45,000 for the
ending account balance. You will consider both of these values in the sample size analysis.

As mentioned in the section “Overview of Power Concepts” on page 6363, an analysis of confidence interval
precision is analogous to a traditional power analysis, with “CI Half-Width” taking the place of effect size
and “Prob(Width)” taking the place of power. In this example, the target CI Half-Width is 1000, and the
desired Prob(Width) is 0.95.
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In addition to computing sample sizes for a half-width of $1,000, you are asked to plot the required number of
simulations for a range of half-widths between $500 and $2,000. Use the ONESAMPLEMEANS statement
with the CI=T option to implement the sample size determination. The following statements perform the
analysis:

ods graphics on;

proc power;
onesamplemeans ci=t

alpha = 0.1
halfwidth = 1000
stddev = 25000 45000
probwidth = 0.95
ntotal = .;

plot x=effect min=500 max=2000;
run;

ods graphics off;

The NTOTAL=. option identifies sample size as the parameter to compute. The ALPHA=0.1 option specifies
a confidence level of 1 – ˛ = 0.9. The HALFWIDTH= option specifies the target half-width, and the
STDDEV= option specifies the conjectured standard deviation values. The PROBWIDTH= option specifies
the desired probability of achieving the target precision. The default value PROBTYPE=CONDITIONAL
specifies that this probability is conditional on the true mean being captured by the interval. The default of
SIDES=2 indicates a two-sided interval.

Output 77.7.1 shows the output, and Output 77.7.2 shows the plot.

Output 77.7.1 Sample Size Determination for Confidence Interval Precision

The POWER Procedure
Confidence Interval for Mean

The POWER Procedure
Confidence Interval for Mean

Fixed Scenario Elements

Distribution Normal

Method Exact

Alpha 0.1

CI Half-Width 1000

Nominal Prob(Width) 0.95

Number of Sides 2

Prob Type Conditional

Computed N Total

Index
Std
Dev

Actual
Prob(Width)

N
Total

1 25000 0.951 1788

2 45000 0.950 5652
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Output 77.7.2 Plot of Sample Size versus Confidence Interval Half-Width

The number of simulations required in order to have a 95% chance of obtaining a half-width of at most 1000
is between 1788 and 5652, depending on the standard deviation. The plot reveals that more than 20,000
simulations would be required for a half-width of 500, assuming the higher standard deviation.

Example 77.8: Customizing Plots
This example demonstrates various ways you can modify and enhance plots:

• assigning analysis parameters to axes

• fine-tuning a sample size axis

• adding reference lines

• linking plot features to analysis parameters

• choosing key (legend) styles

• modifying symbol locations
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The example plots are all based on a sample size analysis for a two-sample t test of group mean difference.
You start by computing the sample size required to achieve a power of 0.9 by using a two-sided test with ˛ =
0.05, assuming the first mean is 12, the second mean is either 15 or 18, and the standard deviation is either 7
or 9.

Use the TWOSAMPLEMEANS statement with the TEST=DIFF option to compute the required sample sizes.
Indicate total sample size as the result parameter by supplying a missing value (.) with the NTOTAL= option.
Use the GROUPMEANS=, STDDEV=, and POWER= options to specify values of the other parameters. The
following statements perform the sample size computations:

proc power;
twosamplemeans test=diff

groupmeans = 12 | 15 18
stddev = 7 9
power = 0.9
ntotal = .;

run;

Default values for the NULLDIFF=, SIDES=, GROUPWEIGHTS=, and DIST= options specify a null mean
difference of 0, two-sided test, balanced design, and assumption of normally distributed data, respectively.

Output 77.8.1 shows that the required sample size ranges from 60 to 382, depending on the unknown standard
deviation and second mean.

Output 77.8.1 Computed Sample Sizes

The POWER Procedure
Two-Sample t Test for Mean Difference

The POWER Procedure
Two-Sample t Test for Mean Difference

Fixed Scenario
Elements

Distribution Normal

Method Exact

Group 1 Mean 12

Nominal Power 0.9

Number of Sides 2

Null Difference 0

Alpha 0.05

Group 1 Weight 1

Group 2 Weight 1

Computed N Total

Index Mean2
Std
Dev

Actual
Power

N
Total

1 15 7 0.902 232

2 15 9 0.901 382

3 18 7 0.904 60

4 18 9 0.904 98
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Assigning Analysis Parameters to Axes

Use the PLOT statement to produce plots for all power and sample size analyses in PROC POWER. For
the sample size analysis described at the beginning of this example, suppose you want to plot the required
sample size on the Y axis against a range of powers between 0.5 and 0.95 on the X axis. The X= and Y=
options specify which parameter to plot against the result and which axis to assign to this parameter. You
can use either the X= or the Y= option, but not both. Use the X=POWER option in the PLOT statement to
request a plot with power on the X axis. The result parameter, here total sample size, is always plotted on the
other axis. Use the MIN= and MAX= options to specify the range of the axis indicated with either the X= or
the Y= option. Here, specify MIN=0.5 and MAX=0.95 to specify the power range. The following statements
produce the plot:

ods graphics on;

proc power plotonly;
twosamplemeans test=diff

groupmeans = 12 | 15 18
stddev = 7 9
power = 0.9
ntotal = .;

plot x=power min=0.5 max=0.95;
run;

Note that the value (0.9) of the POWER= option in the TWOSAMPLEMEANS statement is only a placeholder
when the PLOTONLY option is used and both the MIN= and MAX= options are used, because the values of
the MIN= and MAX= options override the value of 0.9. But the POWER= option itself is still required in the
TWOSAMPLEMEANS statement, to provide a complete specification of the sample size analysis.

The resulting plot is shown in Output 77.8.2.
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Output 77.8.2 Plot of Sample Size versus Power

The line style identifies the group means scenario, and the plotting symbol identifies the standard deviation
scenario. The locations of plotting symbols indicate computed sample sizes; the curves are linear interpo-
lations of these points. By default, each curve consists of approximately 20 computed points (sometimes
slightly more or less, depending on the analysis).

If you would rather plot power on the Y axis versus sample size on the X axis, you have two general strategies
to choose from. One strategy is to use the Y= option instead of the X= option in the PLOT statement:

plot y=power min=0.5 max=0.95;
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Output 77.8.3 Plot of Power versus Sample Size using First Strategy

Note that the resulting plot (Output 77.8.3) is essentially a mirror image of Output 77.8.2. The axis ranges
are set such that each curve in Output 77.8.3 contains similar values of Y instead of X. Each plotted point
represents the computed value of the X axis at the input value of the Y axis.

A second strategy for plotting power versus sample size (when originally solving for sample size) is to invert
the analysis and base the plot on computed power for a given range of sample sizes. This strategy works
well for monotonic power curves (as is the case for the t test and most other continuous analyses). It is
advantageous in the sense of preserving the traditional role of the Y axis as the computed parameter. A
common way to implement this strategy is as follows:

• Determine the range of sample sizes sufficient to cover at the desired power range for all curves (where
each “curve” represents a scenario for standard deviation and second group mean).

• Use this range for the X axis of a plot.

To determine the required sample sizes for target powers of 0.5 and 0.95, change the values in the POWER=
option as follows to reflect this range:
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proc power;
twosamplemeans test=diff

groupmeans = 12 | 15 18
stddev = 7 9
power = 0.5 0.95
ntotal = .;

run;

Output 77.8.4 reveals that a sample size range of 24 to 470 is approximately sufficient to cover the desired
power range of 0.5 to 0.95 for all curves (“approximately” because the actual power at the rounded sample
size of 24 is slightly higher than the nominal power of 0.5).

Output 77.8.4 Computed Sample Sizes

The POWER Procedure
Two-Sample t Test for Mean Difference

The POWER Procedure
Two-Sample t Test for Mean Difference

Fixed Scenario
Elements

Distribution Normal

Method Exact

Group 1 Mean 12

Number of Sides 2

Null Difference 0

Alpha 0.05

Group 1 Weight 1

Group 2 Weight 1

Computed N Total

Index Mean2
Std
Dev

Nominal
Power

Actual
Power

N
Total

1 15 7 0.50 0.502 86

2 15 7 0.95 0.951 286

3 15 9 0.50 0.505 142

4 15 9 0.95 0.950 470

5 18 7 0.50 0.519 24

6 18 7 0.95 0.953 74

7 18 9 0.50 0.516 38

8 18 9 0.95 0.952 120

To plot power on the Y axis for sample sizes between 20 and 500, use the X=N option in the PLOT statement
with MIN=20 and MAX=500:

proc power plotonly;
twosamplemeans test=diff

groupmeans = 12 | 15 18
stddev = 7 9
power = .
ntotal = 200;

plot x=n min=20 max=500;
run;

Each curve in the resulting plot in Output 77.8.5 covers at least a power range of 0.5 to 0.95.
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Output 77.8.5 Plot of Power versus Sample Size Using Second Strategy

Finally, suppose you want to produce a plot of sample size versus effect size for a power of 0.9. In this case,
the “effect size” is defined to be the mean difference. You need to reparameterize the analysis by using the
MEANDIFF= option instead of the GROUPMEANS= option to produce a plot, since each plot axis must be
represented by a scalar parameter. Use the X=EFFECT option in the PLOT statement to assign the mean
difference to the X axis. The following statements produce a plot of required sample size to detect mean
differences between 3 and 6:

proc power plotonly;
twosamplemeans test=diff

meandiff = 3 6
stddev = 7 9
power = 0.9
ntotal = .;

plot x=effect min=3 max=6;
run;

The resulting plot Output 77.8.6 shows how the required sample size decreases with increasing mean
difference.
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Output 77.8.6 Plot of Sample Size versus Mean Difference

Fine-Tuning a Sample Size Axis

Consider the following plot request for a sample size analysis similar to the one in Output 77.8.1 but with
only a single scenario, and with unbalanced sample size allocation of 2:1:

proc power plotonly;
ods output plotcontent=PlotData;
twosamplemeans test=diff

groupmeans = 12 | 18
stddev = 7
groupweights = 2 | 1
power = .
ntotal = 20;

plot x=n min=20 max=50 npoints=20;
run;

The MIN=, MAX=, and NPOINTS= options in the PLOT statement request a plot with 20 points between 20
and 50. But the resulting plot (Output 77.8.7) appears to have only 11 points, and they range from 18 to 48.
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Output 77.8.7 Plot with Overlapping Points

The reason that this plot has fewer points than usual is due to the rounding of sample sizes. If you do not use
the NFRACTIONAL option in the analysis statement (here, the TWOSAMPLEMEANS statement), then the
set of sample size points determined by the MIN=, MAX=, NPOINTS=, and STEP= options in the PLOT
statement can be rounded to satisfy the allocation weights. In this case, they are rounded down to the nearest
multiples of 3 (the sum of the weights), and many of the points overlap. To see the overlap, you can print the
NominalNTotal (unadjusted) and NTotal (rounded) variables in the PlotContent ODS object (here saved to a
data set called PlotData):

proc print data=PlotData;
var NominalNTotal NTotal;

run;

The output is shown in Output 77.8.8.
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Output 77.8.8 Sample Sizes

Obs NominalNTotal NTotal

1 18.0 18

2 19.6 18

3 21.2 21

4 22.7 21

5 24.3 24

6 25.9 24

7 27.5 27

8 29.1 27

9 30.6 30

10 32.2 30

11 33.8 33

12 35.4 33

13 36.9 36

14 38.5 36

15 40.1 39

16 41.7 39

17 43.3 42

18 44.8 42

19 46.4 45

20 48.0 48

Besides overlapping of sample size points, another peculiarity that might occur without the NFRACTIONAL
option is unequal spacing—for example, in the plot in Output 77.8.9, created with the following statements:

proc power plotonly;
twosamplemeans test=diff

groupmeans = 12 | 18
stddev = 7
groupweights = 2 | 1
power = .
ntotal = 20;

plot x=n min=20 max=50 npoints=5;
run;
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Output 77.8.9 Plot with Unequally Spaced Points

If you want to guarantee evenly spaced, nonoverlapping sample size points in your plots, you can either
(1) use the NFRACTIONAL option in the analysis statement preceding the PLOT statement or (2) use the
STEP= option and provide values for the MIN=, MAX=, and STEP= options in the PLOT statement that
are multiples of the sum of the allocation weights. Note that this sum is simply 1 for one-sample and paired
designs and 2 for balanced two-sample designs. So any integer step value works well for one-sample and
paired designs, and any even step value works well for balanced two-sample designs. Both of these strategies
will avoid rounding adjustments.

The following statements implement the first strategy to create the plot in Output 77.8.10, by using the
NFRACTIONAL option in the TWOSAMPLEMEANS statement:

proc power plotonly;
twosamplemeans test=diff

nfractional
groupmeans = 12 | 18
stddev = 7
groupweights = 2 | 1
power = .
ntotal = 20;

plot x=n min=20 max=50 npoints=20;
run;
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Output 77.8.10 Plot with Fractional Sample Sizes

To implement the second strategy, use multiples of 3 for the STEP=, MIN=, and MAX= options in the
PLOT statement (because the sum of the allocation weights is 2 + 1 = 3). The following statements use
STEP=3, MIN=18, and MAX=48 to create a plot that looks identical to the plot in Output 77.8.7 but suffers
no overlapping of points:

proc power plotonly;
twosamplemeans test=diff

groupmeans = 12 | 18
stddev = 7
groupweights = 2 | 1
power = .
ntotal = 20;

plot x=n min=18 max=48 step=3;
run;

Adding Reference Lines

Suppose you want to add reference lines to highlight power=0.8 and power=0.9 on the plot in Output 77.8.5.
You can add simple reference lines by using the YOPTS= option and REF= suboption in the PLOT statement
to produce Output 77.8.11, with the following statements:
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proc power plotonly;
twosamplemeans test=diff

groupmeans = 12 | 15 18
stddev = 7 9
power = .
ntotal = 100;

plot x=n min=20 max=500
yopts=(ref=0.8 0.9);

run;

Output 77.8.11 Plot with Simple Reference Lines on Y Axis

Or you can specify CROSSREF=YES to add reference lines that intersect each curve and cross over to the
other axis:

plot x=n min=20 max=500
yopts=(ref=0.8 0.9 crossref=yes);

The resulting plot is shown in Output 77.8.12.
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Output 77.8.12 Plot with CROSSREF=YES Style Reference Lines from Y Axis

You can also add reference lines for the X axis by using the XOPTS= option instead of the YOPTS= option.
For example, the following PLOT statement produces Output 77.8.13, which has crossing reference lines
highlighting the sample size of 100:

plot x=n min=20 max=500
xopts=(ref=100 crossref=yes);

Note that the values that label the reference lines at the X axis in Output 77.8.12 and at the Y axis in Out-
put 77.8.13 are linearly interpolated from two neighboring points on the curves. Thus they might not exactly
match corresponding values that are computed directly from the methods in the section “Computational
Methods and Formulas” on page 6373—that is, computed by PROC POWER in the absence of a PLOT
statement. The two ways of computing these values generally differ by a negligible amount.
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Output 77.8.13 Plot with CROSSREF=YES Style Reference Lines from X Axis

Linking Plot Features to Analysis Parameters

You can use the VARY option in the PLOT statement to specify which of the following features you want to
associate with analysis parameters.

• line style

• plotting symbol

• color

• panel

You can specify mappings between each of these features and one or more analysis parameters, or you can
simply choose a subset of these features to use (and rely on default settings to associate these features with
multiple-valued analysis parameters).
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Suppose you supplement the sample size analysis in Output 77.8.5 to include three values of alpha, by using
the following statements:

proc power plotonly;
twosamplemeans test=diff

groupmeans = 12 | 15 18
stddev = 7 9
alpha = 0.01 0.025 0.1
power = .
ntotal = 100;

plot x=n min=20 max=500;
run;

The defaults for the VARY option in the PLOT statement specify line style varying by the ALPHA= parameter,
plotting symbol varying by the GROUPMEANS= parameter, panel varying by the STDDEV= parameter, and
color remaining constant. The resulting plot, consisting of two panels, is shown in Output 77.8.14.

Output 77.8.14 Plot with Default VARY Settings
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Output 77.8.14 continued

Suppose you want to produce a plot with only one panel that varies color in addition to line style and plotting
symbol. Include the LINESTYLE, SYMBOL, and COLOR keywords in the VARY option in the PLOT
statement, as follows, to produce the plot in Output 77.8.15:

plot x=n min=20 max=500
vary (linestyle, symbol, color);
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Output 77.8.15 Plot with Varying Color Instead of Panel

Finally, suppose you want to specify which features are used and which analysis parameters they are linked
to. The following PLOT statement produces a two-panel plot (shown in Output 77.8.16) in which line style
varies by standard deviation, plotting symbol varies by both alpha and sides, and panel varies by means:

plot x=n min=20 max=500
vary (linestyle by stddev,

symbol by alpha sides,
panel by groupmeans);
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Output 77.8.16 Plot with Features Explicitly Linked to Parameters
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Output 77.8.16 continued

Choosing Key (Legend) Styles

The default style for the key (or “legend”) is one that displays the association between levels of features and
levels of analysis parameters, located below the X axis. For example, Output 77.8.5 demonstrates this style
of key.

You can reproduce Output 77.8.5 with the same key but a different location, inside the plotting region, by
using the POS=INSET option within the KEY=BYFEATURE option in the PLOT statement. The following
statements product the plot in Output 77.8.17:

proc power plotonly;
twosamplemeans test=diff

groupmeans = 12 | 15 18
stddev = 7 9
power = .
ntotal = 200;

plot x=n min=20 max=500
key = byfeature(pos=inset);

run;
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Output 77.8.17 Plot with a By-Feature Key inside the Plotting Region

Alternatively, you can specify a key that identifies each individual curve separately by number by using the
KEY=BYCURVE option in the PLOT statement:

plot x=n min=20 max=500
key = bycurve;

The resulting plot is shown in Output 77.8.18.
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Output 77.8.18 Plot with a Numbered By-Curve Key

Use the NUMBERS=OFF option within the KEY=BYCURVE option to specify a nonnumbered key that
identifies curves with samples of line styles, symbols, and colors:

plot x=n min=20 max=500
key = bycurve(numbers=off pos=inset);

The POS=INSET suboption places the key within the plotting region. The resulting plot is shown in
Output 77.8.19.
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Output 77.8.19 Plot with a Nonnumbered By-Curve Key

Finally, you can attach labels directly to curves with the KEY=ONCURVES option. The following PLOT
statement produces Output 77.8.20:

plot x=n min=20 max=500
key = oncurves;
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Output 77.8.20 Plot with Directly Labeled Curves

Modifying Symbol Locations

The default locations for plotting symbols are the points computed directly from the power and sample
size algorithms. For example, Output 77.8.5 shows plotting symbols corresponding to computed points.
The curves connecting these points are interpolated (as indicated by the INTERPOL= option in the PLOT
statement).

You can modify the locations of plotting symbols by using the MARKERS= option in the PLOT statement.
The MARKERS=ANALYSIS option places plotting symbols at locations corresponding to the input specified
in the analysis statement preceding the PLOT statement. You might prefer this as an alternative to using
reference lines to highlight specific points. For example, you can reproduce Output 77.8.5, but with the
plotting symbols located at the sample sizes shown in Output 77.8.1, by using the following statements:

proc power plotonly;
twosamplemeans test=diff

groupmeans = 12 | 15 18
stddev = 7 9
power = .
ntotal = 232 382 60 98;
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plot x=n min=20 max=500
markers=analysis;

run;

The analysis statement here is the TWOSAMPLEMEANS statement. The MARKERS=ANALYSIS option in
the PLOT statement causes the plotting symbols to occur at sample sizes specified by the NTOTAL= option in
the TWOSAMPLEMEANS statement: 232, 382, 60, and 98. The resulting plot is shown in Output 77.8.21.

Output 77.8.21 Plot with MARKERS=ANALYSIS

You can also use the MARKERS=NICE option to align symbols with the tick marks on one of the axes (the
X axis when the X= option is used, or the Y axis when the Y= option is used):

plot x=n min=20 max=500
markers=nice;

The plot created by this PLOT statement is shown in Output 77.8.22.
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Output 77.8.22 Plot with MARKERS=NICE

Note that the plotting symbols are aligned with the tick marks on the X axis because the X= option is
specified.

Example 77.9: Binary Logistic Regression with Independent Predictors
Suppose you are planning an industrial experiment similar to the analysis in “Getting Started: LOGISTIC
Procedure” on page 4492 in Chapter 60, “The LOGISTIC Procedure,” but for a different type of ingot. The
primary test of interest is the likelihood ratio chi-square test of the effect of heating time on the readiness of
the ingots for rolling. Ingots will be randomized independently into one of four different heating times (5, 10,
15, and 20 minutes) with allocation ratios 2:3:3:2 and three different soaking times (2, 4, and 6 minutes) with
allocation ratios 2:2:1. The mass of each ingot will be measured as a covariate.

You want to know how many ingots you must sample to have a 90% chance of detecting an odds ratio as
small as 1.2 for a five-minute heating time increase. The odds ratio is defined here as the odds of the ingot
not being ready given a heating time of h minutes divided by the odds given a heating time of h – 5 minutes,
for any time h. You will use a significance level of ˛ = 0.1 to balance Type I and Type II errors since you
consider their importance to be roughly equal.
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The distributions of heating time and soaking time are determined by the design, but you must conjecture the
distribution of ingot mass. Suppose you expect its distribution to be approximately normal with mean 4 kg
and standard deviation between 1 kg and 2 kg.

You are powering the study for an odds ratio of 1.2 for the heating time, but you must also conjecture odds
ratios for soaking time and mass. You suspect that the odds ratio for a unit increase in soaking time is about
1.4, and the odds ratio for a unit increase in mass is between 1 and 1.3.

Finally, you must provide a guess for the average probability of an ingot not being ready for rolling, averaged
across all possible design profiles. Existing data suggest that this probability lies between 0.15 and 0.25.

You decide to evaluate sample size at the two extremes of each parameter for which you conjectured a range.
Use the following statements to perform the sample size determination:

proc power;
logistic

vardist("Heat") = ordinal((5 10 15 20) : (0.2 0.3 0.3 0.2))
vardist("Soak") = ordinal((2 4 6) : (0.4 0.4 0.2))
vardist("Mass1") = normal(4, 1)
vardist("Mass2") = normal(4, 2)
testpredictor = "Heat"
covariates = "Soak" | "Mass1" "Mass2"
responseprob = 0.15 0.25
testoddsratio = 1.2
units= ("Heat" = 5)
covoddsratios = 1.4 | 1 1.3
alpha = 0.1
power = 0.9
ntotal = .;

run;

The VARDIST= option is used to define the distributions of the predictor variables. The distributions
of heating and soaking times are defined by the experimental design, with ordinal probabilities derived
from the allocation ratios. The two conjectured standard deviations for the ingot mass are represented
in the Mass1 and Mass2 distributions. The TESTPREDICTOR= option identifies the predictor being
tested, and the COVARIATES= option specifies the scenarios for the remaining predictors in the model
(soaking time and mass). The RESPONSEPROB= option specifies the overall response probability, and
the TESTODDSRATIO= and UNITS= options indicate the odds ratio and increment for heating time. The
COVODDSRATIOS= option specifies the scenarios for the odds ratios of soaking time and mass. The default
DEFAULTUNIT=1 option specifies a unit change for both of these odds ratios. The ALPHA= option sets the
significance level, and the POWER= option defines the target power. Finally, the NTOTAL= option with a
missing value (.) identifies the parameter to solve for.

Output 77.9.1 shows the results.
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Output 77.9.1 Sample Sizes for Test of Heating Time in Logistic Regression

The POWER Procedure
Likelihood Ratio Chi-Square Test for One Predictor

The POWER Procedure
Likelihood Ratio Chi-Square Test for One Predictor

Fixed Scenario Elements

Method Shieh-O'Brien approximation

Alpha 0.1

Test Predictor Heat

Odds Ratio for Test Predictor 1.2

Unit for Test Pred Odds Ratio 5

Nominal Power 0.9

Computed N Total

Index
Response

Prob Covariates
Cov
ORs

Cov
Units

Total
N

Bins
Actual
Power

N
Total

1 0.15 Soak Mass1 1.4 1.0 1 1 120 0.900 1878

2 0.15 Soak Mass1 1.4 1.3 1 1 120 0.900 1872

3 0.15 Soak Mass2 1.4 1.0 1 1 120 0.900 1878

4 0.15 Soak Mass2 1.4 1.3 1 1 120 0.900 1857

5 0.25 Soak Mass1 1.4 1.0 1 1 120 0.900 1342

6 0.25 Soak Mass1 1.4 1.3 1 1 120 0.900 1348

7 0.25 Soak Mass2 1.4 1.0 1 1 120 0.900 1342

8 0.25 Soak Mass2 1.4 1.3 1 1 120 0.900 1369

The required sample size ranges from 1342 to 1878, depending on the unknown true values of the overall
response probability, mass standard deviation, and soaking time odds ratio. The overall response probability
clearly has the largest influence among these parameters, with a sample size increase of almost 40% going
from 0.25 to 0.15.

Example 77.10: Wilcoxon-Mann-Whitney Test
Consider a hypothetical clinical trial to treat interstitial cystitis (IC), a painful, chronic inflammatory condition
of the bladder with no known cause that most commonly affects women. Two treatments will be compared:
lidocaine alone (“lidocaine”) versus lidocaine plus a fictitious experimental drug called Mironel (“Mir+lido”).
The design is balanced, randomized, double-blind, and female-only. The primary outcome is a measure of
overall improvement at week 4 of the study, measured on a seven-point Likert scale as shown in Table 77.34.
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Table 77.34 Self-Report Improvement Scale

Compared to when I started
this study, my condition is:

Much worse –3
Worse –2
Slightly worse –1
The same 0
Slightly better +1
Better +2
Much better +3

The planned data analysis is a one-sided Wilcoxon-Mann-Whitney test with ˛ = 0.05 where the alternative
hypothesis represents greater improvement for “Mir+lido.”

You are asked to graphically assess the power of the planned trial for sample sizes between 100 and 250,
assuming that the conditional outcome probabilities given treatment are equal to the values in Table 77.35.

Table 77.35 Conjectured Conditional Probabilities

Response
Treatment –3 –2 –1 0 +1 +2 +3
Lidocaine 0.01 0.04 0.20 0.50 0.20 0.04 0.01
Mir+lido 0.01 0.03 0.15 0.35 0.30 0.10 0.06

Use the following statements to compute the power at sample sizes of 100 and 250 and generate a power
curve:

ods graphics on;

proc power;
twosamplewilcoxon

vardist("lidocaine") = ordinal ((-3 -2 -1 0 1 2 3) :
(.01 .04 .20 .50 .20 .04 .01))

vardist("Mir+lido") = ordinal ((-3 -2 -1 0 1 2 3) :
(.01 .03 .15 .35 .30 .10 .06))

variables = "lidocaine" | "Mir+lido"
sides = u
ntotal = 100 250
power = .;

plot step=10;
run;

ods graphics off;
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The VARDIST= option is used to define the distribution for each treatment, and the VARIABLES= option
specifies the distributions to compare. The SIDES=U option corresponds to the alternative hypothesis that
the second distribution ("Mir+lido") is more favorable. The NTOTAL= option specifies the total sample sizes
of interest, and the POWER= option with a missing value (.) identifies the parameter to solve for. The default
GROUPWEIGHTS= and ALPHA= options specify a balanced design and significance level ˛ = 0.05.

The STEP=10 option in the PLOT statement requests a point for each sample size increment of 10. The
default values for the X=, MIN=, and MAX= plot options specify a sample size range of 100 to 250 (the
same as in the analysis) for the X axis.

The tabular and graphical results are shown in Output 77.10.1 and Output 77.10.2, respectively.

Output 77.10.1 Power Values for Wilcoxon-Mann-Whitney Test

The POWER Procedure
Wilcoxon-Mann-Whitney Test

The POWER Procedure
Wilcoxon-Mann-Whitney Test

Fixed Scenario Elements

Method O'Brien-Castelloe approximation

Number of Sides U

Group 1 Variable lidocaine

Group 2 Variable Mir+lido

Pooled Number of Bins 7

Alpha 0.05

Group 1 Weight 1

Group 2 Weight 1

NBins per Group 1000

Computed Power

Index
N

Total Power

1 100 0.651

2 250 0.939
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Output 77.10.2 Plot of Power versus Sample Size for Wilcoxon Power Analysis

The achieved power ranges from 0.651 to 0.939, increasing with sample size.
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Overview: PSS Application

SAS Power and Sample Size
The SAS Power and Sample Size application (PSS) is a desktop application that provides easy access to
power analysis and sample size determination techniques. The application is intended for students and
researchers as well as experienced SAS users and statisticians.

Figure 78.1 shows the graphical user interface. PSS relies on the SAS/STAT procedures POWER and
GLMPOWER for its computations.

Figure 78.1 PSS Application
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This section describes the statistical tasks that are available with the application as well as its principal
features.

Analyses

PSS provides power and sample size computations for a variety of statistical analyses. Included are t tests for
means; equivalence tests and confidence intervals for means and proportions; exact binomial, chi-square,
Fisher’s exact, and McNemar tests for proportions; correlation and regression (multiple and logistic); one-way
analysis of variance; linear models; tests of distribution; and rank tests for comparing survival curves.

Table 78.1 lists the analyses that are available.

Table 78.1 Available Analyses

Category Analysis

Means One-sample t test
Paired t test
Two-sample t test

Confidence intervals One proportion
One-sample means
Paired means
Two-sample means

Equivalence tests One proportion
One-sample means
Paired means
Two-sample means

Proportions One proportion
Two correlated proportions
Two independent proportions

Correlation and regression Pearson correlation coefficient
Logistic regression with a binary response
Multiple regression

Analysis of variance and linear models One-way ANOVA
General linear univariate models

Survival analysis Two-sample survival rank tests
Distribution tests Wilcoxon Mann-Whitney test for two distributions

Features

PSS provides multiple input parameter options, stores the results in a project format, displays power curves,
and produces narratives for the results. Narratives are descriptions of the input parameters and include a
statement about the computed power or sample size. The SAS log and SAS code are also available.

All analyses offer computation of power or sample size. Some analyses offer computation of sample size per
group as well as total sample size.
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Where appropriate, several alternate ways of entering values for certain parameters are offered. For example,
in the two-sample t test analysis, means can be entered for individual groups or as a difference. The null
mean difference can be specified as a default of zero or can be explicitly entered.

Information about existing analyses is stored in a project format. You can access each project to review the
results or to edit your input parameters and produce another analysis.

Getting Started: PSS Application

Overview
This section is intended to get you off to a quick start with PSS. More detailed information about using the
application is found in “How to Use: PSS Application” on page 6512 and in the example sections.

To start the application on a PC using the Windows operating system, select StartIProgramsISASISAS
Power and Sample Size 3.1 (or the latest release).

When you first use the application for a release, you are asked some configuration questions. For more
information see the section “Configuration” on page 6528.

As an initial step, you also must define a SAS connection. If you have Foundation SAS software installed on
the PC that you are using for PSS, this step can be done for you automatically. To define a connection or to
determine whether one has already been defined, see the section “SAS Connections” on page 6512.

The Basic Steps
Here are the basic steps that you follow to use PSS.

1. Start a new project by selecting FileINew on the menu bar or clicking the New icon on the toolbar.

2. In the New window, select the desired analysis type and click OK.

A project window for the analysis type appears with the Edit Properties page displayed. (The tabs on
the Edit Properties page and their content vary according to the analysis type.)

3. Click each tab to enter the relevant data for the analysis. (For more information about the types of data
to enter, see the example sections.)

4. After you have entered all the data, click the Calculate button.

5. After PSS calculates the results, the project window displays the View Results page with the Summary
Table tab displayed by default.

6. To view other results or to review the SAS code or the SAS log, click any of the tabs on the left side of
the View Results page.

7. To print any results page, select FileIPrint on the menu bar.

The remainder of this section takes you through a simple example.
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A Simple Example
Suppose you want to determine the power for a new marketing study. You want to compare car sales in the
southeastern region to the national average of 1.0 car per salesperson per day. You believe that the actual
average for the region is 1.6 cars per salesperson per day. You want to test if the mean for a single group is
larger than a specific value, so the one-sample t test is the appropriate analysis. The conjectured mean is 1.6
and the null mean is 1.0. You intend to use a significance level of 0.05 for the one-sided test. You want to
calculate power for two standard deviations, 0.5 and 0.75, and two sample sizes, 10 and 20 dealerships.

First, open a new project by selecting FileINew on the menu bar or clicking the New icon on the toolbar.
The New window appears. Then, select the appropriate analysis.

Figure 78.2 New Window
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For this example, the selected analysis is the One-sample t test in the Means section, as shown at the top of
Figure 78.2. Select the analysis from the list and click OK. The One-sample t test project window appears
with the Edit Properties page displayed, as shown in Figure 78.3.

Figure 78.3 Edit Properties Page

Enter a descriptive label of the project in the Project: field. For the example, change the description to
Regional car sales versus the national average. The description is used to identify the project
when you reopen it from the Open window.
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Select FileISave to save the description change. Note in Figure 78.3 that the title bar of the window contains
your project description after you have saved the change.

Properties of the project are displayed on several tabs. You can change from tab to tab by clicking a tab or by
clicking the Next tab or Previous tab buttons. To display help about the properties for a tab, click the Help
button at the bottom of the Edit Properties page.

Entering Parameter Values

First, click the Solve For tab and choose to calculate power or sample size. For this example, select the
Power option, as shown in Figure 78.3.

Next, you must provide values for two analysis options and four parameters. These parameters are set in
separate tabs on the Edit Properties page and are labeled Distribution, Hypothesis, Alpha, Mean, Standard
Deviation, and Sample Size.

Distribution
Click the Distribution tab to select a Normal or Lognormal distribution. For the example, you are using
means rather than mean ratios, so select Normal, as shown in Figure 78.4.

Figure 78.4 Distribution Tab

Hypothesis
Click the Hypothesis tab to select a one- or two-sided test. Because you are interested only in whether the
southeastern region produces higher daily car sales than the national average, select One-sided test, as shown
in Figure 78.5.
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Figure 78.5 Hypothesis Tab

There are three one-sided test options: One-sided test, Upper one-sided test, and Lower one-sided test.
The Upper one-sided test option would also be appropriate for this example.

Alpha
Click the Alpha tab to specify one or more significance levels. Enter 0.05, as shown in Figure 78.6.

Figure 78.6 Alpha Tab
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This value will be the default unless the default has been changed in the Preferences window. To set
preferences, select ToolsIPreferences on the menu bar. For more information about setting preferences,
see the section “Setting Preferences” on page 6515.

Mean
Click the Means tab to enter one or more means and null means. For the example, enter 1.6 in the Mean
table and 1.0 in the Null Mean table. Figure 78.7 shows the entered values.

Figure 78.7 Means Tab

Note that additional input rows are available if you want to enter additional sets of parameters. You can also
append and delete rows using the and buttons beneath the table. In addition, by selecting a row and
right-clicking, you can choose to insert and delete rows in the body of the table from a pop-up menu.

Standard Deviation
Click the Standard Deviation tab to enter standard deviations. You are interested in two standard deviations,
0.5 and 0.75. Enter them in the table, as shown in Figure 78.8.
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Figure 78.8 Standard Deviation Tab

Sample Size
You want to be able to sample between 10 and 20 dealerships. Click the Sample Size tab and enter these two
values, as shown in Figure 78.9.

Figure 78.9 Sample Size Tab
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Scenarios
The input values are combined into one or more scenarios. In this case, each of the two standard deviations is
combined with each of the two sample sizes for a total of four scenarios. Then power is computed for each
scenario. In this example, only a single value or setting is present for the mean, null mean, and alpha level, so
they are common to all scenarios.

Results Options

Click the Results tab to select results options including a Summary Table and a Power by Sample Size graph.

Figure 78.10 Results Tab

For this example, select both results check boxes: Create summary table and Create power by sample
size graph, as shown in Figure 78.10. These selections can also be set as preferences; see the section “Setting
Preferences” on page 6515.

Customizing the Power by Sample Size Graph
Click the Customize button beside the Create power by sample size graph check box to customize the
graph. The Customize Graph window contains two tabs: Axis Orientation and Value Ranges, as shown in
Figure 78.11.
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Figure 78.11 Customize Graph Window with Axis Orientation Tab

Click the Axis Orientation tab to select which quantity you would like to plot on the vertical axis. You can
choose to display the quantity solved for (either power or sample size) on the vertical axis or you can choose
to display power or sample size on the vertical axis with the other quantity appearing on the horizontal axis.
The default is Quantity solved for (or power) on the vertical axis, which is appropriate for this graph.

The summary table is created using the two sample sizes specified in the Sample Size table, 10 and 20. If you
want to create a graph that contains more than these two sample sizes, you can do so by customizing the
value ranges for the graph. Click the Value Ranges tab to set the axis range for sample sizes, as shown in
Figure 78.12.
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Figure 78.12 Customize Graph Window with Value Ranges Tab

Enter 5 for the minimum and 30 for the maximum. Also, select Interval between points in the drop-down
list and enter a value of 1. These values set the sample size axis to range from 5 to 30 in increments of 1. The
completed Value Ranges section of the window is shown in Figure 78.12.

When you solve for power, you can set a range for sample size values, but not for the powers; and vice versa
when you solve for sample size. That is, you cannot set the range of axis values for the quantity that you are
solving for.

Click OK to save the values that you have entered and return to the Edit Properties page.

Performing the Analysis

You have now specified all of the necessary input values. Click Calculate to perform the analysis, as shown
in Figure 78.13.

Figure 78.13 Calculate Button on the Edit Properties Page
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Alternatively, you could choose to save the information that you have entered by selecting FileISave from
the menu bar or clicking the Save toolbar icon, and perform the analysis at another time. No error checking
is done when you save the project.

You can close the project by selecting FileIClose on the menu bar or clicking the window close X in the
upper right corner of the project window. You can reopen a project by selecting FileIOpen on the menu bar
or clicking the Open toolbar icon.

For this example, click Calculate.

Viewing the Results

Results appear on the View Results page and are viewable in separate tabs. The tabs include Summary
Table, Graph, Narratives, SAS Log, and SAS Code (located on the left side of the View Results page).
The Summary Table and Graph tabs appear if you selected those options on the Results tab of the Edit
Properties page. The other tabs always appear.

Summary Table
Click the Summary Table tab to view the summary table.

Figure 78.14 Summary Table Tab with Fixed Scenario Elements and Computed Power Tables
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The Summary table consists of two subtables, as shown in Figure 78.14. The Fixed Scenario Elements

table includes the parameters or options that have a single value for the analysis. The Computed Power table
contains the input parameters that have been given more than one value, and it shows the computed quantity,
power.

Thus, the Computed Power table contains four rows for the four combinations of standard deviation and
sample size. From the table you can see that all four powers are high. The smallest value of power, 0.754, is
associated with the largest standard deviation and the smallest sample size. In other words, the probability of
rejecting the null hypothesis is greater than 75% in all four scenarios.

Power by Sample Size Graph
Click the Graph tab to view the power by sample size graph.

The power by sample size graph in Figure 78.15 contains one curve for each standard deviation. For a
standard deviation of 0.5 (the upper curve), increasing sample size above 10 does not lead to much increase
in power. If you are satisfied with a power of 0.75 or greater, 10 samples would be adequate for standard
deviations between 0.5 and 0.75.

Figure 78.15 Graph Tab with Power by Sample Size Graph
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Narratives
Click the Narratives tab to display a facility for creating narratives.

Narratives are descriptions of the values that compose each scenario and include a statement about the
computed power or sample size.

To create narratives, choose one or more scenarios in the table at the bottom of the tab. A narrative for each
selected scenario is displayed in the top portion of the tab. See Figure 78.16.

Figure 78.16 Narrative Tab
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For the example, select the first row in the table. The following narrative is displayed for the scenario with a
standard deviation of 0.5 and a sample size of 10:

For a one-sample t test of a normal mean with a one-sided significance level of 0.05 and null
mean 1, assuming a standard deviation of 0.5, a sample size of 10 has a power of 0.967 to detect
a mean of 1.6.

You can select several rows in the table. As you select each one, a corresponding narrative is created and
displayed in the top portion of the table. Selecting a second scenario (the third row) produces the following
output, where the narrative for the first row is followed by the narrative for the third row:

For a one-sample t test of a normal mean with a one-sided significance level of 0.05 and null
mean 1, assuming a standard deviation of 0.5, a sample size of 10 has a power of 0.967 to detect
a mean of 1.6.

For a one-sample t test of a normal mean with a one-sided significance level of 0.05 and null
mean 1, assuming a standard deviation of 0.75, a sample size of 10 has a power of 0.754 to
detect a mean of 1.6.

Other Results
Other results include the SAS log and the SAS code.

The SAS log that was produced when the Calculate button was last clicked appears on the SAS Log tab.

The SAS statements that produced the results appear on the SAS Code tab.

Printing Results
To print one or more results, select FileIPrint from the menu bar or click the Print toolbar icon. A window
is displayed that lists all available results, as shown in Figure 78.17. Select the results that you want to print
and click OK.
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Figure 78.17 Print Selection Window

Changing Properties

If you want to change some values of the properties and rerun the analysis, change to the Edit Properties
page and continue. The icons for selecting the Edit Properties and View Results pages are in the command
bar just below the project window title.

Closing the Project

When you are finished working with a project, close it by clicking the X in the upper right corner of the
project window or selecting FileIClose on the menu bar. If you have not saved the project, you will be
asked if you want to save it before closing.

Opening a Project

You can reopen existing projects using the Open window. Select FileIOpen on the menu bar or click the
Open toolbar icon.
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Figure 78.18 Open Window Containing the Analysis Created in the Example

As shown in Figure 78.18, the analysis that you just completed is listed in the table. The label that you
assigned to it, Regional car sales versus the national average, appears in the Project column
of the table. The table also contains the date that the analysis was last modified. If you do not see the project
that you are looking for, change the value of the Display projects by date box to All by selecting All from
the drop-down list, and click the Change display button.

You can sort the projects in the table by clicking the header of the desired column. The sort direction is
indicated by arrows displayed in the column header.

Select the project that you want to open and click OK. You can also double-click the project entry to open it.

Changing Values and Rerunning the Analysis

After viewing the graph, you might want to re-create the graph with a different range for sample sizes. On
the Results tab of the Edit Properties page, click the Customize button for the power by sample size graph.
The Customize Graph window is displayed.

On the Value Ranges tab of the window, change the Maximum value in the Sample Size table from 30 to 20.
Click OK.

Rerun the analysis by clicking Calculate. The View Results page is displayed again and the graph now has
the new maximum value for the sample size axis.
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How to Use: PSS Application

Overview
The PSS application is an application that resides on your desktop. It requires a connection to SAS software
either on your desktop machine or a remote machine. You can set default values for several parameters and
options as preferences. More detail on creating and editing projects is provided. Projects can be imported
and exported.

SAS Connections
Connections to SAS servers are defined in the Preferences window. To access the Preferences window, select
ToolsIPreferences on the menu bar.

Click the SAS Connection tab to select or define a connection to a SAS server. A connection to a SAS server
is required in order to calculate results. The server can be on your local (desktop) machine or on a remote
machine.

You can define several SAS connections and choose the one you want to use. To select a previously defined
connection, choose it from the Connection list on the SAS Connection tab; see Figure 78.19.

Figure 78.19 SAS Connection Tab
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To define a SAS connection, click the Define connection button. The Connection List window appears, as
shown in Figure 78.20. To create a new connection, click Add. To edit an existing connection, select it in the
Connection List and click Edit.

Figure 78.20 Connection List

Defining a SAS Connection

After you click the Add or Edit button, the Define SAS Connection window appears, as shown in Figure 78.21.
If you clicked Edit, the previously defined information is available for editing.
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Figure 78.21 Define Connection Window

Enter a descriptive label for the connection. The label is used to distinguish among the connections in the
connections list.

Then, select Yes or No to specify whether the SAS connection is to the local machine (that is, the one on
which PSS is running) or to a remote machine, respectively.

Defining a Local Connection
To define a connection to the local machine, enter the full path name of (or browse for) the SAS executable
file (sas.exe on Microsoft Windows).

Test the SAS connection by clicking the Test SAS Connection button.
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Defining a Remote Connection
To define a connection to a remote machine, select either the UNIX or Windows option to indicate that the
remote SAS server is on a machine running the UNIX or Microsoft Windows operating systems, respectively.
Then, specify the machine name and port number that the SAS/Connect spawner is using on the remote
machine. Contact the SAS server administrator for this information.

If the remote machine is running Microsoft Windows, select the User id and password are required if
authentication is required to access the SAS server (that is, if the SAS -security option is used). By default,
authentication is required for SAS servers running on UNIX operating systems.

Test the SAS connection by clicking the Test SAS Connection button.

Additional Settings
Click the Settings button on the Define SAS Connection window to access some additional settings for a
remote connection to a SAS server. For the most part these settings are prompts that PSS expects to receive
from the SAS/CONNECT spawner on the remote machine, as shown in Figure 78.22.

If the remote SAS server is on a UNIX machine, you must specify the full pathname of the SAS command.
Contact the SAS server administrator for this information.

Figure 78.22 Connection Settings Window

Setting Preferences
In the Preferences window you can set default values for options that are used by all analyses.

To access the Preferences window, select ToolsIPreferences on the menu bar. Figure 78.23 shows the
Preferences window.
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Figure 78.23 Preferences Window

Preference values are used as the defaults for each newly opened project (that is, those that are opened from
the New window). For a specific project, each of these default values can be overridden on the Edit Properties
page.

Changes in preferences do not change the state of an existing analysis (that is, one that is accessed from the
Open window).

Selecting the Quantity to Solve For

Click the Solve For tab to select Power or Sample Size as the default value to be solved for; see Figure 78.23.
For confidence interval analyses, selecting Power is equivalent to selecting Prob(Width).

For analyses that offer both Sample size per group and Total sample size, the Sample size option on this
page corresponds to total sample size.
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Setting Alphas

Click the Alpha tab to enter one or more values for alpha. Alpha is the significance level (false positive
probability). For confidence interval analyses, alpha values are transformed into confidence levels by (1 –
alpha). For example, an alpha of 0.05 would represent a confidence level of 0.95.

To set default values of alpha, enter one or more values in the Alpha data entry table. See Figure 78.24. It is
not necessary to have any default values for alpha. Add more rows to the table as needed using the button
at the bottom of the table.

Figure 78.24 Alpha Preference Tab

Setting Powers

Click the Power tab to enter one or more values for power. It is not necessary to have any default values for
power. For confidence interval analyses, power values are treated as prob(width) values.

To set default values of power, enter one or more values in the Power data entry table; see Figure 78.25.
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Figure 78.25 Power Preference Tab

Setting Results Options

Click the Results tab to make default selections for the summary table and the power by sample size graph
options; see Figure 78.26.
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Figure 78.26 Results Options Preferences Tab

The summary table consists of the input parameter values and the calculated quantity (power or sample size).
Select the Create summary table check box to create the table by default.

To request that an analysis create a power by sample size graph by default, select the Create power by
sample size graph check box.

Creating and Editing PSS Projects
A PSS project is an instance of an analysis. The first decision in using PSS is to choose the appropriate test
or design. Select the FileINew on the menu bar or click the New icon on the toolbar. The New window
appears with a list of the available analyses. Select the type of analysis that you want from the list and click
OK.

When the project is first opened, the Edit Properties page is displayed. It is described in the section “Editing
Properties” on page 6520.

After the properties have been specified and the analysis is performed, the View Results page is displayed.
See the section “Viewing the Results” on page 6524.

A project that has been saved and closed can be reopened from the Open window. Select FileIOpen on the
menu bar or click the Open icon on the toolbar.
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Editing Properties

The Edit Properties page consists of several analysis options and input parameters that are relevant to the
particular analysis. These options and parameters are organized on several tabs, as shown in Figure 78.27.

Figure 78.27 Edit Properties Page
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The Edit Properties page contains various controls by which you can enter values or select choices. In
addition to the usual data entry controls such as text fields and check boxes, several specialized controls are
present: data entry tables and the Alternate Forms control. More detailed descriptions follow.

Using Data Tables
Data entry tables are composed of data entry fields for one or more rows and columns. Figure 78.28 shows a
two-row, two-column table.

Figure 78.28 Two-Column Data Entry Table with Controls

Type an appropriate value in each field. It is not necessary to type data in all rows or to delete empty rows.
However, if a table has more than one column, the cells of a row must be completely filled or completely
blank. Rows with values in some but not all cells are not allowed.

To append more rows, click the button beneath the table. To delete the last row of the table, click the
button.

Also, you can display a pop-up menu to perform additional actions such as inserting and deleting rows. First,
select the row to insert before or delete, then right-click to display the pop-menu and select the desired action.

Using Alternate Forms
For some input parameters, there are several ways in which data may be entered. For example, in the
two-sample t test analysis, group means can be entered as either individual means or a difference between
means.

The alternate forms are displayed in a drop-down list with an adjacent button, as shown in Figure 78.29.
The button enables you to cycle through the alternatives, displaying each one in turn. To see what forms
are available, you can open the drop-down list and select the one you want or you can click the button
until the form that you want is displayed.
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Figure 78.29 Select a form Drop-Down List and Button

The alternate form last used for an analysis is saved and displayed as the default when a new instance of the
analysis is opened.

Customizing Graphs
The Edit Properties page for all analyses contains a Results tab. You can choose to create a graph, and you
can optionally choose to customize the graph by clicking the Customize button that is beside the Create
power and sample size graph choice.

As shown in Figure 78.30, the Customize Graph window consists of an Axis Orientation tab and a Value
Ranges tab. Use the Axis Orientation options to specify which axes you want used for power and for sample
size. Use the Value Ranges settings to specify the axis range for the non-target quantity (that is, the power
axis if you are solving for sample size or the sample size axis if you are solving for power).
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Figure 78.30 Customize Graph Window

When specifying a value range, you can specify a minimum value and a maximum value. Also, you can
select either the Number of points or the Interval between points choice for the axis and specify a
value. All of these values are optional; specify only the ones you want.

Scenarios
A scenario is one instance of a complete set of values for an analysis. For example, if two alpha values and
two total sample size values are specified with all other input parameters taking only a single value, there
would be four scenarios—the four combinations of two alphas and two sample sizes.

Performing the Analysis
To perform the analysis, click Calculate at the lower right of the Edit Properties page. The input parameters
are checked for validity, and the analysis is performed. The View Results page is then displayed.
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Viewing the Results

The results appear in separate tabs on the View Results Page. These tabs include Summary Table, Graph,
Narratives, SAS Log, and SAS Code.

Viewing the Summary Table
Click the Summary Table tab to view the summary table. It consists of two subtables, as shown in
Figure 78.31. The Fixed Scenario Elements table includes the options and parameter values that are
constant for the analysis. The Computed Power table includes the calculated power or sample size values
and the values for input parameters that have multiple values specified for the analysis.

Figure 78.31 View Results Page with Summary Table
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Creating Narratives
Click the Narratives tab to display a facility to create narratives. Narratives are descriptions of the input
parameter values and calculated quantities in sentence or paragraph form. Each narrative corresponds to one
calculated quantity value.

The Narratives tab is divided into a narrative selector panel and a narrative display panel. To create a
narrative, select the row in the narrative selector panel that corresponds to it. You can select as many rows as
you want. See Figure 78.32.

Figure 78.32 Narrative Selector and Display

The narrative selector table often contains columns whose values do not vary. For example, in Figure 78.32,
the Sides, NullMean, Alpha, and Mean columns contain values that do not vary. You can hide these columns
by selecting the Hide columns with constant input values check box.

Viewing the SAS Log and Code
Click the SAS Code tab to view the SAS statements that are used to generate the analysis results. Click the
SAS Log tab to view the SAS log that corresponds to the analysis.
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The SAS code differs slightly from the statements in the SAS log. Statements that are used to place the results
in the location maintained by the application are not included. This is done to prevent you from overwriting
the results stored by the application if you run the SAS code outside of the application.

Printing Results
To print one or more results, click the Print icon on the toolbar or select FileIPrint on the menu bar. The
Select Results to Print window is displayed. You can choose to print one or more of the results by selecting
the corresponding options here.

Saving the Project

To save a project, click the Save toolbar icon or select FileISave from the menu bar. Projects can be saved
even if some of the information is invalid. Error checking is performed when the Calculate button is clicked.

Closing the Project

To close a project, click the X in the upper right corner of the project window or select FileIClose from the
menu bar.

Importing and Exporting Projects
PSS projects can be imported from the same machine or a different machine. Also, the active project (the
project that is open and on top of any other open projects) can be exported.

Importing Projects

A PSS project that was created on another machine or by another user can be imported and used. Also,
importing projects is the recommended way of moving existing PSS projects that were created with PSS
release 2.0 (a Web application) to PSS release 3.1 (a desktop application).

PSS files are stored in a folder entitled pss. The pss folder contains a project.xml file and individual folders
for each project. See Figure 78.33.
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Figure 78.33 PSS Directory Structure

If PSS files are on another machine, they must first be copied to a temporary location on the desktop machine
that is running PSS. The entire pss folder should be copied.

To import projects, select FileIImport from the menu bar. Then, specify the full pathname of the pss folder.

Figure 78.34 Import Projects Window
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To import PSS 2.0 files, you need to find the pss folder. The easiest way to do this is to search for the
project.xml file. If you find several files with this name, you need to decide which one or more to import.

Exporting the Active Project

If you want to send a PSS project to someone, you can export the active project. The active project is the one
that is open and that has focus (is displayed on top of any other open projects). Select FileIExport active
project and specify a temporary directory to hold the exported project.

The recipient must import the project using PSS.

Details: PSS Application

Software Requirements
PSS is available in SAS/STAT 13.2 or later for the following platforms: Microsoft Windows 7 and 8.

Two configurations are available for SAS connections: local and remote. With the local configuration, PSS
and SAS must reside on the same machine. With the remote configuration, PSS and SAS can reside on
different machines. SAS connections are defined and selected on the SAS Connection tab on the Preferences
window. More information about SAS connections is found in the section “SAS Connections” on page 6512.

For both configurations, Base SAS and SAS/STAT software must be installed and SAS/GRAPH software is
recommended.

For the remote configuration, SAS/CONNECT and SAS/IntrNet software must also be installed. For more
information about configuring the remote SAS server, click HelpIContents on the menu bar and then click
Configuring a Remote SAS Server under Special Topics in the table of contents.

Installation
SAS Power and Sample Size is installed separately from the SAS/STAT product. Contact your SAS site
representative to have the application installed.

SAS Power and Sample Size is installed using the SAS Software Deployment Wizard. It is listed as an
available product with, but separate from, Foundation SAS which contains the SAS/STAT and SAS/GRAPH
products that are required for using the application.

Configuration
When you first run SAS Power and Sample Size 3.1 (PSS), you are asked to provide configuration information.

First, you are asked for the name of a directory to contain the your power and sample size projects. A folder
named pss is created in the specified directory, and projects are stored in the pss folder. This directory cannot
be the same as the one used by PSS 2.0. If it is, PSS requires that another folder name be provided.
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Then, if the appropriate release of the SAS System is available on the desktop machine, you are asked whether
a connection should be automatically created to it. If you respond No, then PSS informs you that a connection
to the SAS server is necessary and asks if you want to select one now or later. A connection to a SAS server
is not necessary to use the application until the Calculate button on the Edit Properties page of a project is
clicked. More information about connections is available in the section “Setting Preferences” on page 6515.

Then, PSS displays a wizard to help you import existing PSS projects from either a previous release (PSS 2.0)
or the current one (PSS 3.1). More information is available in the section “Importing Projects” on page 6526.

Example: Two-Sample t Test

Overview
The one-sample t test compares the mean of a sample to a given value. The two-sample t test compares
the means of two samples. The paired t test compares the mean of the differences in the observations to a
given number. PSS provides power and sample size computations for all of these types of t tests. For more
information about power and sample size analysis for t tests, see Chapter 77, “The POWER Procedure.”

The two-sample t test tests for differences or ratios between means for two groups. The groups are assumed
to be independent. This example describes three examples using the two-sample t test: for equal variances,
for unequal variances, and for mean ratios.

Test of Two Independent Means for Equal Variances
Suppose you are interested in testing whether an experimental drug produces a lower systolic blood pressure
than a placebo does. Will 25 subjects per treatment group yield a satisfactory power for this test? From
previous work, you expect that the blood pressure is 132 for the control group and 120 for the drug treatment
group and that the standard deviation is 15 for both groups. You want to use a one-sided test with a
significance level of 0.05. Because there are two independent groups and you are assuming that blood
pressure is normally distributed, the two-sample t test is an appropriate analysis.

Start by creating a new project. Select FileINew. In the New window, select Two-sample t test from the
list. The Two-Sample t test project window appears, with the Edit Properties page displayed.

Editing Properties

On this page enter a name to describe the project and enter project properties. Click each tab on the Edit
Properties page to enter the desired properties. You can also change tabs by clicking the Next tab or Previous
tab buttons. See Figure 78.3.
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Figure 78.35 Two-Sample t Test

Project Description
The description is used to identify this particular project in the Open and Delete windows. Type a description
for your project in the Project: text box.

For this example, change the description to Experimental blood pressure drug with two groups,
as shown in Figure 78.35.

Solve For
For the two-sample t test analysis, you can choose to solve for power, sample size per group, or total sample
size. Specify the desired quantity type on the Solve For tab.

Click the Solve For tab and select the Power option as shown in Figure 78.35. For information about solving
for sample size, see the section “Solving for Sample Size” on page 6550.

Distribution
Click the Distribution tab to select a distribution option that specifies the underlying distribution for the test
statistic, as shown in Figure 78.36.
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Figure 78.36 Distribution Tab

For this example, you are interested in means rather than mean ratios, so select the Normal option.

Hypothesis
Click the Hypothesis tab to select the type of test; see Figure 78.37.

Figure 78.37 Hypothesis Tab

You can choose either a one- or two-sided test. If you do not know the direction of the effect (that is, whether
it is positive or negative), the two-sided test is appropriate. If you know the effect’s direction, the one-sided
test is appropriate. For the one-sided test, the alternative hypothesis is assumed to be in the same direction
as the effect. If you specify a one-sided test and the effect is in the unexpected direction, the results of the
analysis are invalid.



6532 F Chapter 78: The Power and Sample Size Application

The One-sided test option assumes that you know the correct direction of the test. Select the Lower
one-sided test and Upper one-sided test options to explicitly indicate the direction of the one-sided test.

Because you are interested only in whether the experimental drug lowers blood pressure, select the One-sided
test option on the Hypothesis tab.

Test
Click the Test tab to select either the pooled t test or the Satterthwaite t test.

Figure 78.38 Test Tab

With the independent variances that the example uses, select Pooled t test option. The Satterthwaite t test is
used with unequal variances; it is available only with the normal distribution.

Alpha
Click the Alpha tab to specify one or more significance levels, as shown in Figure 78.39.
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Figure 78.39 Alpha Tab

Alpha is the significance level (that is, the probability of falsely rejecting the null hypothesis). If you
frequently use the same values for alpha, set them as defaults in the Preferences window. See the section
“Setting Preferences” on page 6515 for more information about setting preferences.

Type the desired significance level of 0.05 in the first cell of the Alpha table (if it is not already the default
value).

Means
Click the Means tab to select one of four possible ways to enter the means and the null mean difference, as
shown in Figure 78.40.
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Figure 78.40 Means Tab

Select one of the following forms from the Select A Form list. The four available forms are:

Difference between means
Enter the difference between the group means. The null mean difference is assumed to be
0.

Group means
Enter the means for each group. The null mean difference is assumed to be 0. The
difference is formed by subtracting the mean for group 1 from the mean for group 2.

Difference between means, Null difference
Enter the difference between the group means and a null mean difference.

Group means, Null difference
Enter the means for each group and a null mean difference. The difference is formed by
subtracting the mean for group 1 from the mean for group 2.

For this analysis, you can enter the means for the two groups either individually or as a difference. If your
null mean difference is not zero, enter that value in the Null Mean table. (The Null Mean table is displayed
only for the Group means, Null Difference and Difference between means, Null difference forms.)

For this example, a null mean difference of 0 is reasonable, so select the Group means form from the list, as
shown in Figure 78.40. Enter the control mean of 132 in the first row of the first column and the experimental
mean of 120 in the first row of the second column.
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Standard Deviation
Click the Standard Deviation tab to enter the standard deviation for the two groups. It is assumed to be
equal for both groups.

For the example, enter a single value of 15, as shown in Figure 78.41.

Figure 78.41 Standard Deviation Tab

Sample Size
Click the Sample Size tab to select one of three possible ways to enter the sample sizes, as shown in
Figure 78.40.

Select one of the following forms from the Select A Form list:

Sample size per group
Enter the sample size for one of the two groups. The group sizes are assumed to be equal.

Group sample sizes
Enter the sample size for each of the two groups. The group sizes can be equal or unequal.

Total N, Group weights
Enter the total sample size for the two groups and the relative sample sizes for each group.
For more information about using relative sample sizes, see the section “Using Unequal
Group Sizes” on page 6551.

Examine the alternatives by clicking the Select a form down arrow. For this example, select the Sample size
per group form. You want to examine a curve of powers in the power by sample size graph, so enter the
values 20, 25, and 30 in the Sample Size table, as shown in Figure 78.42. If you need to add more rows to
the table, add them by clicking the button beneath the table.
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Figure 78.42 Sample Size Tab

Summary of Properties
Table 78.2 contains the values of the input parameters for the example.

Table 78.2 Summary of Input Properties

Parameter Value

Solve for Power
Distribution Normal
Hypothesis One-sided test
Test Pooled t test
Alpha 0.05
Means form Group means
Means 132, 120
Standard deviation 15
Sample size form Sample size per group
Sample size 20, 25, 30

Results
Click the Results tab to request desired results. Summary table and power by sample size graph options are
available.

For the example, select the Create summary table and Create power by sample size graph check boxes.

Click Calculate to perform the analysis. If there are no errors in the input values, the View Results page
appears. If there are errors in the input parameter values, you are prompted to correct them.
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Viewing Results

The results are listed on separate tabs on the View Results page. Click the tab of each result that you want to
view.

Summary Table
Click the Summary Table tab to view a table that includes the values of the input parameters and the
computed quantity (in this example, power). See Figure 78.43.

Figure 78.43 Results Page with Summary Table

The table consists of two subtables: the Fixed Scenario Elements table that contains the input parameters
that have only one value for the analysis, and the Computed Power table that contains the input parameters
that have more than one value for the analysis and the corresponding power. Only the N per group parameter
appears in the Computed Power table; all of the other input parameters have a single value. The computed
power for a sample size per group of 25 is 0.874. Thus, you have a probability of 0.87 that the study will find
the expected result if the assumptions and conjectured values are correct.
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Power by Sample Size Graph
Click the Graph tab to view a power by sample size graph that displays power on the vertical axis and
sample size per group on the horizontal axis. See Figure 78.44.

Figure 78.44 Power by Sample Size Graph

The range of values for the horizontal axis is 20 to 30, which were the smallest and largest values, respectively,
that you entered on the Sample Size tab. You can customize the graph by specifying the values for the sample
size axis (see the section “Customizing Graphs” on page 6522).

Narratives
Click the Narratives tab to create and display a sentence- or paragraph-length text summary of the input
parameter values and the computed quantity for combinations of the input parameter values; see Figure 78.45.
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Figure 78.45 Narrative Selector and Display

To create a narrative, selected the desired scenario (row) in the narrative selector table at the bottom of the
Narratives tab.

In this example, select the narrative for the sample size per group of 20, which yields a power of 0.799. The
following text summary is displayed:

For a two-sample pooled t test of a normal mean difference with a one-sided

significance level of 0.05, assuming a common standard deviation of

15, a sample size of 20 per group has a power of 0.799 to detect a

difference between the means 132 and 120.

To create other narratives, select the desired rows in the narrative selector table. If you also select the second
row for the sample size of 25, another text summary is displayed below the first one:

For a two-sample pooled t test of a normal mean difference with a one-sided

significance level of 0.05, assuming a common standard deviation of

15, a sample size of 20 per group has a power of 0.799 to detect a

difference between the means 132 and 120.
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For a two-sample pooled t test of a normal mean difference with a one-sided

significance level of 0.05, assuming a common standard deviation of

15, a sample size of 25 per group has a power of 0.874 to detect a

difference between the means 132 and 120.

To change some values of the analysis and rerun it, select the Edit Properties page, change the desired
properties, and click the Calculate button again.

Test of Two Independent Means for Unequal Variances
In the preceding example, you assumed that the population standard deviations were equal. If you believe
that the population standard deviations are not equal, use the same two-sample t test analysis as with the
preceding example, but change the test option and enter group standard deviations.

You can use the previous example to demonstrate this test. If the project is not already open, open it by
selecting FileIOpen on the menu bar, and then selecting the project that you have been using.

Make a copy of the project by selecting FileISave As. Enter a different project description, Experimental
blood pressure drug with two groups for unequal variances. Click OK.

The copy of the project is opened, and the current project is closed.

Editing Properties

Test
On the Test tab of the copied project, change the test to Satterthwaite t test, as shown in Figure 78.46.

Figure 78.46 Satterthwaite t Test Option

Specifying Group Standard Deviations
Click the Standard Deviation tab and enter the group standard deviations of 12 and 15 on a single row, as
shown in Figure 78.47.
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Figure 78.47 Group Standard Deviations

Summary of Input Parameters
Table 78.3 contains the values of the input parameters for the example.

Table 78.3 Summary of Input Parameters

Parameter Value

Distribution Normal
Hypothesis One-sided test
Test Satterthwaite t test
Alpha 0.05
Means form Group means
Means 132, 120
Standard deviation 12, 15
Sample size form Sample size per group
Sample size 20, 25, 30

Click Calculate to run the analysis.

Viewing Results

The power for a sample size per group of 25 is 0.924, as shown in Figure 78.48. Notice that the actual alpha
is 0.0499. This is because the Satterthwaite t test is (slightly) biased.
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Figure 78.48 Satterthwaite Test Results

If you modified the previous example, when you select the Narratives tab, the following message is displayed:

Previously selected narratives have been cleared because one or more input
parameter values have changed.
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In the previous analysis, you created narratives for two scenarios. Because this analysis uses group standard
deviations, those selected narratives were cleared. The message would also have appeared if you had changed
the number of scenarios.

Use the narrative selector table to create other narratives.

Test of Mean Ratios
Instead of comparing means for a control and drug treatment group, you might want to investigate whether
the blood pressure of the treatment group is lowered by a given percentage of the control group, say 10
percent. That is, you expect the ratio of the treatment group to the control group to be 90% or less.

PSS provides a two-sample t test of a mean ratio when the data are lognormally distributed.

For mean ratios, the coefficient of variation (CV) is used instead of standard deviation. In this example, you
can expect the CV to be between 0.5 and 0.6. You also want to compare an equally weighted sampling of
groups with an overweighted sampling in which the control group contains twice as many subjects as the
treatment group: 50 and 25, respectively.

Make a copy of the project by selecting FileISave As. Enter a different project description, Percent
improvement with blood pressure drug.

The copy of the project is opened.

Editing Properties

Several of the input parameters for the test of mean ratios differ from the ones described in the section “Test
of Two Independent Means for Equal Variances” on page 6529. Mean ratios and coefficients of variation are
used instead of mean differences and standard deviations. These two parameters are discussed in detail in
this section. For the input parameters and options that have been discussed previously in this example, only
the values for this example are given.

Solve For Tab
Click the Solve For tab to select the Power option as the quantity to be solved for, as shown in Figure 78.49.
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Figure 78.49 Project Description, Solve for Tab

Distribution
You are interested in mean ratios rather than means, so select the Lognormal option on the Distribution tab,
as shown in Figure 78.50.

Figure 78.50 Distribution Tab with Lognormal Option

Hypothesis and Alpha
Click the Hypothesis tab and select the One-sided test option.

Click the Alpha tab and type 0.05 as the significance level in the first cell of the table, if it is not already
there.
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Means
Click the Means tab to select the input form for entering mean ratios. There are four alternate forms for
entering means or mean ratios:

Mean ratio
Enter the ratio of the two group means—that is, the treatment mean divided by the
reference mean. The null ratio is assumed to be 1.

Group means
Enter the means for each group. The ratio of the means is formed by dividing the mean
for group 2 by the mean for group 1. The null ratio is assumed to be 1.

Mean ratio, Null ratio
Enter the ratio of the two group means—that is, the treatment mean divided by the
reference mean. Enter the null ratio.

Group means, Null ratio
Enter the means for each group. The ratio of the means is formed by dividing the mean
for group 2 by the mean for group 1. Enter the null ratio.

As shown in Figure 78.51, select the Mean ratio form which uses a default null ratio of 1. Enter a single
mean ratio value of 0.9.

Figure 78.51 Means Tab with Mean Ration Form and Values
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Coefficient of Variation
On the Coefficient of Variation tab, enter the coefficients of variation. They are assumed to be equal for the
two groups.

For this example, enter 0.5 and 0.6, as shown in Figure 78.52.

Figure 78.52 Coefficient of Variation Tab

Sample Size
On the Sample Size tab, select the Group sample sizes form and enter two sets of values: 25 and 25 in the
first row and 25 and 50 in the second row, as shown in Figure 78.53.

Figure 78.53 Sample Sizes
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Summary of Input Parameters
Table 78.4 contains the values of the input parameters for the example.

Table 78.4 Summary of Input Parameters

Parameter Value

Hypothesis One-sided test
Distribution Lognormal
Alpha 0.05
Means form Mean ratio
Mean ratio 0.9
Coefficients of variation 0.5, 0.6
Sample size form Group sample sizes
Sample Size (25, 25), (25, 50)

Results
On the Results tab, select the Create summary table and Create power by sample size graph check
boxes.

Click Calculate to perform the analysis.

In this case, the following message is displayed:

The power by sample size graph is not available when specifying sample
sizes for two groups.

If you want a power by sample size graph, you can choose to plot total sample size instead by using the
Total N, Group weights sample size form on the Sample Size tab. For more information about using
this input form, see the section “Using Unequal Group Sizes” on page 6551.

Viewing Results

The first thing that you notice from the summary table in Figure 78.54 is that the calculated powers are quite
low—they range from 0.163 to 0.229. You have less than a 25% probability of detecting the difference that
you are looking for. Clearly, this set of parameter values leads to insufficient power. To increase power, you
might choose a larger sample size or a larger alpha.
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Figure 78.54 Summary Table

You can also see that oversampling the control group improves power slightly, 0.229 versus 0.193 for the
coefficient of variation of 0.5. However, this is a marginal increase that is probably not worth the added
expense.

For the example, use larger sample sizes with equal cell sizes. Return to the Edit Properties page by clicking
the Edit Properties icon near the top of the window.

Then, on the Sample size tab, change to the Sample size per group form. Specify sample sizes of 50, 100,
150, and 200, as shown in Figure 78.55.
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Figure 78.55 Modified Sample Size Values

Table 78.5 contains the modified values of the input parameters for the example.

Table 78.5 Modified Summary of Input Parameters

Parameter Value

Sample size form Sample size per group
Sample size 50, 100, 150, 200

Rerun the analysis by clicking Calculate.

Figure 78.56 displays the summary table. The largest sample size of 200 (per group) yields a power of 0.72
for a coefficient of variation of 0.5, and 0.599 for one of 0.6. With a total of 400 subjects, you still have a
30% to 40% probability of not detecting the effect even if it exists.
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Figure 78.56 Summary Table for Modified Sample Sizes

Additional Topics

Solving for Sample Size

Several types of analysis enable you to solve for either total sample size or sample size per group. The sample
size per group choice assumes equal group sizes. When solving for total sample size, the group sizes can be
equal or unequal. Select the desired quantity on the Solve For tab. An example of these options is shown in
Figure 78.57.
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Figure 78.57 Solve For Tab with Sample Size Selected

For either of the two sample size options, you must specify one or more values for power on the Power tab.
If you frequently use the same values for power, set them as the default in the Preferences window, which is
accessed by ToolsIPreferences. Changing preferences affects only projects that you create after the change;
existing projects are not affected.

If you select total sample size, you must specify whether the group sizes are equal or unequal. Select the
appropriate option on the Sample Size tab. For unequal group sizes, you must specify the relative sample
sizes for the two groups. For information about providing relative sample sizes, see the section “Using
Unequal Group Sizes” on page 6551.

Using Unequal Group Sizes

When solving for either power or total sample size, you might have unequal group sizes. If so, you must
provide relative sample sizes for the groups. Weights must be greater than 0 but do not have to sum to 1.

Select the Total N, Group weights form on the Sample Size tab. Enter total sample sizes of 30 and 60 in
the Total N table. Select the Unequal group sizes option and click Enter Relative Sample Sizes, as seen
in Figure 78.58.
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Figure 78.58 Sample Size Tab with Group Weights Form

Figure 78.59 displays the window in which you can enter relative sample sizes. As an example, enter 2 for
the first group and 1 for the second. In this case, you are sampling the drug treatment group twice as often as
the control group.

Figure 78.59 Relative Sample Sizes Window
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The weights control how the total sample size is divided between the two groups. In the example, the sample
size for groups 1 and 2 is 20 and 10, respectively, for a total sample size of 30.

Click OK to save the values and return to the Edit Properties page.

Example: Analysis of Variance

Overview
PSS offers power and sample size calculations for analysis of variance in two tasks: one-way ANOVA and
general linear univariate models. Optional contrasts are available in both tasks.

In the one-way ANOVA task, you can solve for sample size per group as well as total sample size. The
contrast facility for the one-way ANOVA task enables you to select orthogonal polynomials as well as
to specify contrast coefficients. For more information about power and sample size analysis for one-way
ANOVA, see Chapter 77, “The POWER Procedure.”

In the general linear univariate models task, you specify linear models for a single dependent variable. Type III
tests and contrasts of fixed effects are included, and the model can include covariates. For more information
about power and sample size analysis for linear univariate models, see Chapter 47, “The GLMPOWER
Procedure.”

The Example
Suppose you are interested in testing how two experimental drugs affect systolic blood pressure relative to a
standard drug. You want to include both men and women in the study. You have a two-factor design: a drug
factor with three levels and a gender factor with two levels. You choose a main-effects-only model because
you do not expect a drug by gender interaction. You want to calculate the sample size that will produce a
power of 0.9 using a significance level of 0.05. You believe that the error standard deviation is between 5 and
7 mm pressure. This is a two-way analysis of variance, so the general linear univariate models task is the
appropriate one.

Editing Properties

Start by opening the New window (FileINew). In the Analysis of Variance and Linear models section of
the New window, select General linear univariate models. The General univariate linear models project
appears, with the Edit Properties page displayed.

Project Description
For the example, change the project description to Three blood pressure drugs and gender.

Solve For
Click the Solve For tab and select the Sample size option.
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Variables
Click the Variables tab to enter the names of the factors in the design. Click the Add button. The Factor
Definition window appears, as shown in Figure 78.60.

Figure 78.60 Factor Definition Window

Enter the name for the first factor, Drug, and enter the number of factor levels in the Number of levels: list
box. There are three levels for this factor. Optionally, you can provide a label for each factor level. This
label is used to identify factor levels on other tabs of the Edit Properties page. For this example enter the
labels Experimental 1, Experimental 2, and Standard for the three levels of the Drug factor. Click
OK when you are finished.

Click the Add button again and repeat the process for the second factor, Gender with two levels and labels
Female and Male.

Factors can contain blanks and other special characters. Do not use an asterisk (*) because a factor name
with an asterisk might be confused with an interaction effect. Factor names can be any length, but they must
be distinct from one another in the first 32 characters.

On the Variables tab, you can also specify the name of the dependent variable; in this example,
Blood pressure is used.
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The completed Variables tab is shown in Figure 78.61.

Figure 78.61 Variables Tab with Factors and Number of Levels

Model
Click the Model tab, then choose from three model options:

Main effects
Only the main effects are included in the model.

Main effects and all interactions
The main effects and all possible interactions are included in the model.

Custom model
Selected effects are included in the model. The effects are selected in a model builder that
is displayed when this model is selected. For more information about specifying a custom
model, see the section “Specifying a Custom Model” on page 6566.

For this example, choose the default Main effects model, as shown in Figure 78.62.
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Figure 78.62 Model Tab with Main Effects Selected

Alpha
Click the Alpha tab to specify one or more significance levels. For the example, specify a single significance
level of 0.05.

Alpha is the significance level (that is, the probability of falsely rejecting the null hypothesis). If you frequently
use the same values for alpha, set them as the defaults in the Preferences window (ToolsIPreferences).

Means
Click the Means tab to enter projected cell means for each cell of the design. The completed means for the
example are shown in Figure 78.63.

Figure 78.63 Means Tab with Cell Means
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Standard Deviation
Click the Standard Deviation tab to specify one or more conjectured error standard deviations. The standard
deviation is the same as the root mean squared error. For this example, enter two standard deviations, 5 and 7,
as shown in Figure 78.64.

Figure 78.64 Standard Deviations Tab

Relative Sample Size
Click the Sample Size tab to select whether cell sample sizes are equal or unequal.

Figure 78.65 Sample Size Tab with Equal Cell Sample Sizes

For the example, select the Equal cell sizes option, as shown in Figure 78.65.
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When solving for sample size, it is necessary to specify whether the cell sample sizes are equal or unequal.
If cell sizes are unequal, relative sample size weights must also be specified. For more information about
providing sample size weights, see the section “Using Unequal Cell Sizes” on page 6563.

Power
Click the Power tab to specify one or more powers. For this example, enter a single power of 0.9, as shown
in Figure 78.66.

Figure 78.66 Power Tab

Summary of Input Parameters
Table 78.6 contains the values of the input parameters for the example.

Table 78.6 Summary of Input Parameters

Parameter Value

Model Main effects
Alpha 0.05
Means See Table 78.7
Standard deviation 5, 7
Relative sample sizes Equal cell sizes
Power 0.9
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Table 78.7 Cell Means

Drug
Gender Experimental 1 Experimental 2 Standard

Female 125 121 118
Male 130 128 125

Results Options
Click the Results tab to select desired results. For the example, select both the Create summary table and
Create power by sample size graph check boxes.

The graph consists of four points, one for each of the four scenarios that were created by combining the two
factor main effects with the two standard deviations. This graph is not very informative, so specify a range of
powers for the horizontal power axis. To change the power axis of the graph, click the Customize button
beside the Create power by sample size graph check box to open the Customize Graph window.

Figure 78.67 Value Ranges on Customize Graph Window
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Click the Value Ranges tab and enter a minimum power of 0.75 and a maximum power of 0.95, as shown in
Figure 78.67. Click OK to close the window.

Now, click Calculate to perform the analysis.

Viewing Results

The results are displayed in separate tabs on the View Results page.

Click the Summary Table tab to view the summary table. In the Computed N Total table, sample sizes
are listed for each combination of factor and standard deviation (Figure 78.68). You need a total sample size
between 60 and 108 to yield a power of 0.9 for the Drug effect if the standard deviation is between 5 and 7.
You need a sample size of half that for the Gender effect.

Figure 78.68 Summary Table

Click the Graph tab to view the power by sample size graph, as shown in Figure 78.69. One approximately
linear curve is displayed for each standard deviation and factor combination.
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Figure 78.69 Power by Sample Size Graph

Click the Narratives tab to create narratives of one or more scenarios. Select the first scenario, the Drug
effect with the standard deviation of 5, in the narrative selector table. Note that the cell means are not included
in the following narrative description:

For the usual F test of the Drug effect in the general linear univariate

model with fixed class effects [Blood pressure = Drug Gender] using a

significance level of 0.05, assuming the specified cell means and an

error standard deviation of 5, a total sample size of 60 assuming a

balanced design is required to obtain a power of at least 0.9. The

actual power is 0.921.

For more information about using the narrative facility, see the section “Creating Narratives” on page 6525.
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Additional Topics

Adding Contrasts

Click the Contrasts tab to define one or more contrasts. Contrasts are optional. PSS allows contrasts to be
added when using either a main effects model or a main effects and interactions model. At least two factors
must have been specified in order to be able to enter contrasts. The contrast tab appears in Figure 78.70.

Figure 78.70 Contrast Tab with Coefficients

To create a contrast, click the New button. Then, select the newly created contrast (Contrast 1) from the
list.

Specify a label for the contrast in the Label field. The label should be different from all of the factor names
and all interactions in the model, as well as other contrast labels.

Then, for each term you want to include in the contrast, select the term in the Effects list and enter at least
two coefficients per term. It is not necessary to enter zeros; blanks are considered to be zeros.

To clear all of the contrast coefficients for a term, click the Clear button. To remove a previously defined
contrast, select it from the Contrasts list and click the Remove button.

In this example, you are interested in comparing the two experimental drugs to the standard drug. As shown
in Figure 78.70, the contrast coefficients are 0.5, 0.5, and –1 for the three levels of the Drug effect.
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Figure 78.71 shows the two scenarios for the contrast at the bottom of the Computed N Total table. The
two scenarios also appear in the graph but the graph is not shown here.

Figure 78.71 Computed N Total Table for the Contrast

Using Unequal Cell Sizes

Click the Sample Size tab to select the equal or unequal cell sizes option.

Figure 78.72 Sample Size Tab
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For the example, select the Unequal cell sizes option, as seen in Figure 78.72, and then click the Enter
Relative Sample Sizes button.

Figure 78.73 shows the window in which you can enter relative sample sizes. As an example, enter the
sample size weights from Table 78.8.

Table 78.8 Sample Size Weights

Drug
Gender Experimental 1 Experimental 2 Standard

Males 1 1 2
Females 1 1 2

If you have unequal cell sizes, you must enter relative sample size weights for the cells. Weights do not have
to sum to 1 across the cells. Some weights can be zero, but enough weights must be greater than zero so that
the effects and contrasts are estimable.

In this case, you want the sample size of the standard group to be twice that of each of the two experimental
groups. Click OK to save the values and return to the Edit Properties page.

Figure 78.73 Relative Sample Sizes Window
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Figure 78.74 shows the summary table for the Drug by Gender example.

Figure 78.74 Summary Table for Unbalanced Design Example

Solving for Power

In addition to solving for sample size, you can also solve for power. Figure 78.75 shows the two options.
Click the Solve For tab to select the Power option.

Figure 78.75 Solve For Tab with Power Option Selected
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When solving for power, you must provide sample size information. For the general linear univariate model
analysis, you provide this information by using one of two alternate forms. To choose the desired alternate
form, select the desired form from the Select a form list box on the Sample Size tab. The alternate forms
are:

Sample size per cell
Enter the sample size for a cell. Cell sizes are assumed to be equal. Sample size is reported
in the summary table as total sample size.

Total N, Cell weights
Enter the total sample size and specify whether cell sizes are to be equal or unequal.
Select the Equal cell sizes or Unequal cell sizes option. For unequal cell sizes, you also
enter cell weights. Click the Enter Relative Sample Sizes button to display a window
that is used to enter the data. For more information about using unequal cell sizes, see the
section “Using Unequal Cell Sizes” on page 6563.

Specifying a Custom Model

Click the Model tab to select from three types of models: a Main effects model, a Main effects and all interactions
model, and a Custom model.

To specify a custom model, select the Custom model option; then a model building facility is displayed.

The facility displays a list of the factors on the left. Construct the desired model using the Add, Cross, and
Factorial buttons. The example shown in Figure 78.76 has the three main effects and one of the four possible
interactions.
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Figure 78.76 Model Tab with Custom Model Builder Displayed

Add the three main effects (A, B, C) by selecting them in the Terms list and clicking the Add button. Add the
A*B interaction by selecting the A and B factors in the Terms list and clicking the Cross button.

To create the complete factorial design of several factors, select the factors in the Terms list, then click the
Factorial button. All possible main effects and interactions are added to the Model Effects list.

To remove effects, select them in the Model Effects list and click the Remove button. Clicking the Remove
All button removes all effects in the model.
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Including Covariates

Click the Covariates tab to enter covariate information.

Figure 78.77 Covariates Tab with Proportional Reduction in Variance Form

Figure 78.77 illustrates four covariates and a proportional reduction in variation of 0.3. The results for the
analysis are not shown.

Covariates are optional. If you have covariates, include the total number of degrees of freedom for all
covariates. To do this, add the number of continuous covariates and the sum of the degrees of freedom of
the classification covariates, and enter this total in the Number of Covariates list box. For example, with
two continuous covariates and a single classification covariate factor with three levels, the total would be
2C .3 � 1/ D 4.

Also, you must enter the correlation between the dependent variable and the set of covariates. Two alternate
forms are available: Multiple correlation and Proportional reduction in variance. Select the desired form
and enter one or more values.

The multiple correlation is between the set of covariates and the dependent variable. Proportional reduction
in variation is how much the variance of the dependent variable is reduced by the inclusion of the covariates,
expressed as a proportion between 0 and 1.
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Example: Two-Sample Survival Rank Tests

Overview
Survival analysis often involves the comparison of survival curves. PSS provides sample size and power
calculations for two-sample survival rank analyses. Several rank tests are available: Gehan, log-rank, and
Tarone-Ware. There are also several ways to specify the survival functions. For more information about
power and sample size analysis for survival rank tests, see Chapter 77, “The POWER Procedure.”

The Example
Suppose you want to compare survival rates for an existing cancer treatment and a new treatment. You intend
to use a log-rank test to compare the overall survival curves for the two treatments. You want to determine a
sample size to achieve a power of 0.8 for a two-sided test using a balanced design, with a significance level
of 0.05.

The survival curve of patients for the existing treatment is known to be approximately exponential with a
median survival time of five years. You think that the proposed treatment will yield a survival curve described
by the times and probabilities listed in Table 78.9. Patients are to be accrued uniformly over two years and
followed for three years.

Table 78.9 Survival Probabilities for Proposed Treatment

Time Probability

1 0.95
2 0.90
3 0.75
4 0.70
5 0.60

To create a new survival analysis project, select FileINew, Then, under the Survival Analysis section, select
Two-sample survival rank tests and click OK. The Two-sample survival rank tests project appears with
the Edit Properties page displayed.
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Editing Properties

Project Description
For the example, change the project description to Comparing cancer treatments using two-sample

survival rank test.

Figure 78.78 Project Description and Solve For Tab

Solve For
Click the Solve For tab to select the quantity to solve for. For this example, select the Sample size per group
option, as shown in Figure 78.78. For information about calculating total sample size, see the section “Solving
for Sample Size” on page 6550.

In this analysis you can solve for power, sample size per group, or total sample size.

Test
Click the Test tab to select a rank test. For this example, select the Log-rank option, as shown in Figure 78.79.
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Figure 78.79 Test Tab

Several rank tests are available: Gehan, log-rank, and Tarone-Ware. The Gehan test is most sensitive to
survival differences near the beginning of the study period, the log-rank test is uniformly sensitive throughout
the study period, and the Tarone-Ware test is somewhere in between.

Hypothesis
Click the Hypothesis tab to select a one- or two-sided test. For the example, select the Two-sided test option,
as shown in Figure 78.80.

Figure 78.80 Hypothesis Tab
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You can choose either a one- or two-sided test. For the one-sided test, the alternative hypothesis is assumed
to be in the same direction as the effect. If you do not know the direction of the effect (that is, whether it is
positive or negative), the two-sided test is appropriate. If you know the effect’s direction, the one-sided test is
appropriate. If you specify a one-sided test and the effect is in the unexpected direction, the results of the
analysis are invalid.

Alpha
Click the Alpha tab to enter one or more values for the significance level. For the example, enter the desired
significance level of 0.05 in the first cell of the Alpha table, as shown in Figure 78.81, if it is not already the
default value.

Figure 78.81 Alpha Tab

The significance level is the probability of falsely rejecting the null hypothesis. If you frequently use the
same values for alpha, set them as the defaults in the Preferences window.

Survival Functions
Click the Survival Functions tab to select the input form for the survival functions.
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Figure 78.82 Survival Functions Tab with Number of Curves

Examine the input alternatives available in the Select a form list. There are four alternate forms for entering
survival functions. The first three apply only to exponential curves; the fourth applies to both piecewise linear
and exponential curves.

Group median survival times
Enter median survival times for the two groups.

Group hazards
Enter hazards for the two groups.

Hazards, Hazard ratios
Enter hazards for the reference group and hazard ratios.

Survival curves
Enter survival probabilities and their associated times for each of several curves. Select
or enter the number of curves from the drop-down list; at least two curves are required.
Then, for each curve, select it in the left-hand list, select the Group 1 or Group 2 option,
and then define the survival curve by entering pairs of times and probabilities. Enter a
time and probability pair only if the probability is less than that of the previous pair.

For information about using the other forms, see the section “Using the Other Survival Curve Forms” on
page 6582.

For each survival curve, select the curve in the left-hand list. Then, enter a descriptive label and select which
group it is for. The labels should be unique. Finally, enter pairs of survival times and probabilities.
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When you enter probabilities, enter a time and probability pair only when the probability for a survival curve
changes. For example, if the probability for curve 1 at time 1 and 2 is 0.9 and at time 3 is 0.8, enter 0.9 for
time 1 and 0.8 for time 3.

To specify an exponential survival curve, enter a single time and probability pair. In the example, the
exponential curve for the existing treatment is defined by a probability of 0.5 at time 5.

The units of time for the survival curves must correspond to the units for the accrual, follow-up, and total
times, which are described in the section “Accrual Times” on page 6575.

You can also compare several survival curves. For example, if you have two scenarios, A and B, for group
1’s curve and two scenarios, C and D, for group 2’s curve, then specify probabilities for the four curves and
assign A and B to group 1 and C and D to group 2.

For the example, select the Survival curves form, as shown in Figure 78.82. Enter the value, 2, in the
Number of survival curves list box.

For the example enter the following values:

• For the first survival curve, enter a label of Existing treatment and select the Group 1 option. For
the first curve, enter a time of 5 and a probability of 0.5. Figure 78.83 shows the resulting values.

Figure 78.83 Survival Times and Probabilities for Curve 1
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• For the second curve select Function 2 in the selection list on the left side of the tab. Enter a label
of Proposed treatment and select the Group 2 option. Then, enter time values of 1 through 5 and
the corresponding probabilities of 0.95, 0.9, 0.75, 0.7, and 0.6. To add rows to the table, click the
button beneath the table.

Figure 78.84 shows these values; the last row of the time and probability table is not displayed.

Figure 78.84 Survival Times and Probabilities for Curve 2

Accrual Times
Click the Accrual times tab to select an input form for accrual times and to enter the times.
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Figure 78.85 Accrual Times Tab

Examine the alternatives available in the Select a form list.

Accrual time is the period during which subjects are brought into the study. Follow-up time is the period
during which subjects are observed after all subjects have been included in the study. Total time is the sum of
accrual and follow-up time. The units of time for the accrual, follow-up, and total times must correspond to
the units you used specified for the survival curves.

When you enter survival curves, the sum of the accrual and follow-up times must be less than the largest time
for each survival curve. This does not apply to survival curves represented by a single time, which represent
exponential curves.

On the Accrual Times tab, there are three alternate forms for entering accrual and follow-up times:

Accrual times, Follow-up times
Enter accrual and follow-up times.

Accrual times, Total times
Enter accrual and total times.

Follow-up times, Total times
Enter follow-up and total times.

For the example, select the Accrual times, Follow-up times form. Then enter a single value of 2 in the
Accrual table and a value of 3 in the Follow-up table, as shown in Figure 78.85.

Power
Click the Power tab to enter one or more power values. For the example, enter a single value of 0.8.

When you calculate sample size, it is necessary to specify one or more powers.
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Summary of Input Parameters
Table 78.10 contains the values of the input parameters for the example.

Table 78.10 Summary of Input Parameters

Parameter Value

Solve for Sample size per group
Test Log-rank
Hypothesis Two-sided test
Alpha 0.05
Survival function form Survival curves
Survival curves See Table 78.11 and Table 78.12
Accrual and follow-up times form Accrual time, Follow-up times
Accrual times 2
Follow-up times 3
Power 0.8

Table 78.11 and Table 78.12 contain times and probabilities for the two survival curves, respectively.

Table 78.11 Survival Times and Probabilities for Existing Treatment (Survival Curve 1)

Time Probability

5 0.5

Table 78.12 Survival Times and Probabilities for Proposed Treatment (Survival Curve 2)

Time Probability

1 0.95
2 0.90
3 0.75
4 0.70
5 0.60

Result Options
Click the Results tab to specify the desired result options. For the example, request both results by selecting
both the Create summary table and Create power by sample size graph check boxes.

Specifying only one power (as in this example) produces a graph with a single point. You might be interested
in a plot of sample sizes for a range of powers—say, between 0.75 and 0.85. You can customize the graph by
specifying the values for the power axis. Also, you might want to change the appearance of the graph to have
sample size (per group) on the vertical axis and power on the horizontal axis.
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Click the Customize button beside the Create power by sample size graph check box to customize the
graph. The Customize Graph window is displayed, as shown in Figure 78.86.

Figure 78.86 Customize Graph Window with Axis Orientation Tab

Click the Axis Orientation tab to select which variable to plot on the vertical axis. For the example, select
the Quantity solved for option, as shown in Figure 78.86. This option plots sample size on the vertical axis
and power on the horizontal axis. You could also have chosen the Sample size option.

Click the Value Ranges tab to enter minimum and maximum values for a plot axis. For the example, enter a
minimum of 0.75 and a maximum of 0.85 in the Powers text boxes. This sets the range of values on the
axis for powers. The completed Value Ranges tab of the window is displayed in Figure 78.87. You can set
the axis values only for the quantity that is not being solved for.
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Figure 78.87 Customize Graph Window with Value Ranges Tab

Click OK to save the values that you have entered and return to the Edit Properties page.

Then, click Calculate to perform the analysis. If there are no errors in the input parameter values, the View
Results page appears. If there are errors in the input parameter values, you are prompted to correct them.

Viewing Results

The results appear in separate tabs on the View Results page of the project. Select the tab of each result that
you want to view.

Summary Table
Click the Summary Table tab to view the summary table. It is composed of two subtables. As shown in
Figure 78.88, the Fixed Scenario Elements and Computed N Per Group tables include the values of
the input parameters and the computed quantity (in this case, sample size per group, N per group). The
sample size per group for the single requested scenario is 226.
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Figure 78.88 Summary Table

Power by Sample Size Graph
Click the Graph tab to view the power by sample size graph.
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Figure 78.89 Power by Sample Size Graph

As you can see in Figure 78.89, the graph is curved slightly upward with larger powers associated with larger
sample sizes. Sample size is plotted on the vertical axis as requested in the Customize Graph window.

Narratives
Click the Narratives tab to create one or more narratives. To generate a narrative, select the single scenario
in the narrative selector table at the bottom of the tab. The narrative for this task does not include the survival
times and probabilities for the survival curves:

For a log-rank test comparing two survival curves with a two-sided significance level of 0.05,
assuming uniform accrual with an accrual time of 2 and a follow-up time of 3, a sample size of
226 per group is required to obtain a power of at least 0.8 for the exponential curve, “Existing
treatment,” and the piecewise linear curve, “Proposed treatment.” The actual power is 0.800.

For information about selecting additional narratives when multiple scenarios are present, see the section
“Creating Narratives” on page 6525.
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Additional Topics

Using the Other Survival Curve Forms

Survival functions can be specified as median survival times, hazards, or a combination of hazards for one
group and hazard ratios. These all assume exponential curves.

Suppose you are interested in comparing the proposed and existing treatments using their median survival
times. The survival times are five years and four years for the two groups, respectively.

Figure 78.90 Median Survival Times and List of Alternate Forms

Click the Survival Functions tab and examine the list of alternate forms available in the Select a form: list.
For this example, select the Group median survival times option.

For the example, enter 5 and 4 in the first row of the table. The completed table is shown in Figure 78.90.

You can enter one or more sets of two median survival times. The results of the analysis are not shown.
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