Teaching Genetics and Evolution in the midst of a pandemic: how a real-world example helps students learn better

Kerry Cheesman, PhD
Biological and Environmental Sciences Dept.
Capital University, Columbus, OH
kcheesma@capital.edu

NSTA National Conference, 2021
Background

• Freshman (1st semester) course in Biology
 • Mostly science majors but also 25% general education students
 • Many first-generation students
 • Conservative school systems in much of Ohio (some do not teach evolution at all, or teach a very biased view)
 • Students have a hard time connecting with some topics (why am I learning this?)
 • Many students arrive at their freshman year with poor learning/study habits
Background

• Freshman (1st semester) course in Biology
 • Follow typical pattern of topics
 • Processes of science
 • Basic biochemistry
 • Cells and their parts
 • Basic genetics
 • Evolution basics
 • Have used the MATE assessment tool for past 5 years
 • Significant gains due to low starting point overall
 • Use case studies when teaching genetics and evolution
 • NCCSTS https://sciencecases.lib.buffalo.edu/
 • Create real-world examples with the case studies (relevance)
 • Project-based learning in lab sections
Background

• Genetics course (sophomore) for majors
 • Pick up on first-year course and go deeper
 • RELEVANCE
 • It’s not just about the MCAT
 • What do students need to know in today’s society
 • Current topics / applications are the most relevant to students
 • Use case studies
 • Use current events
 • Project-based and problem-based learning in lab sections
Pandemic Year

• Connecting learning to their daily lives
 • Relevance of COVID 19 *(once in a lifetime)*
 • Opportunities to make genetics and evolution “come alive”
 • Real-time learning (daily updates)
 • Students are concerned / afraid
 • Students are being subjected to misinformation
 • Family, friends, social media

• Day 1 (both courses) – survey
 • What do they know about the coronavirus and viruses in general?
 • What do they know about COVID?
 • What do they know about the development of immunizations?
 • What are the concerns they have?
Pandemic Year

• Topics in first-year course – GENETICS
 • Most of these topics were learned to some extent in high school biology classes
 • Go over basics, but with a tie to the pandemic
 • DNA vs. RNA
 • Two types of viruses
 • Coronavirus is which type?
 • Interactions with human cells / DNA
 • mRNA (leading to mRNA vaccines)
 • Reverse transcription
Pandemic Year

• Topics in first-year course – GENETICS
 • Transcription and Translation
 • Production of proteins
 • What proteins are part of the virus?
 • How is the virus producing those proteins?
 • What changes are made in our cells by the virus?
 • Dominant, recessive, co-dominant
 • Human blood types
 • Case study
 • Students scrambled to find out what blood type they are
Pandemic Year

• Topics in first-year course - GENETICS
 • Mutations
 • What causes viruses to mutate?
 • “Variants” (another name for mutations)
 • Speed of mutations – comparing humans to viruses
 • Role of the environment
 • Epigenetics
 • Are changes passed on?
 • Will we ever get the virus ‘under control’?
 • Will viral proteins be passed on to our children?
Pandemic Year

• Topics in sophomore course - GENETICS
 • Many of the same topics – more in-depth
 • Students assigned to find the relevant information
 • Original articles and reviews assigned for reading and understanding
 • Students teach each other in groups
 • Think, pair, share and other models
 • Case studies
Pandemic Year

• Topics in **sophomore** course - **GENETICS**

 • Additional Topics
 • Genomics and proteomics
 • How did they find the viral genome so quickly?
 • What is the technology for doing that?
 • Estimating mutation rates
 • Case study
 • Forward and backward mutation
Pandemic Year

• Topics in sophomore course - GENETICS
 • Additional Topics
 • Using NCBI Blast to find genome sequences
 • Case study
 • Understanding the role of the CDC
 • Public health and genetics
 • Personalized medicine based on genomics
Pandemic Year

• Topics in sophomore course - GENETICS
 • Additional Topics
 • Biotechnology – expanded
 • Tracing genome across species
 • Contact tracing in human populations
 • Developing new tests for coronavirus mutations
 • Viruses and cancer
 • Can the coronavirus cause cancer?
 • What is cancer?
 • Will a vaccine stop cancers?
Pandemic Year

• Topics in first-year course - **EVOLUTION**
 • How does our definition of species hold up with viruses?
 • Are they alive?
 • Do they fit the definition (reproduction, viable offspring, etc)?
 • **Why did Darwin not mention viruses?**
 • What does “survival of the fittest” mean in a pandemic?
 • Viral mutations = survival
 • Human (host) genetics versus ability to fight coronavirus
 • Over-riding factors of socioeconomics
 • Herd immunity concepts
 • Problems with social media and family ideas
Pandemic Year

• Topics in first-year course - **EVOLUTION**

 • **Speed of evolution**
 • Does it really take millions of years?
 • Can we watch it happening?
 • How many mutations does it take?

 • **Drop in the average age of the US population**
 • Evolution, fitness, selection pressure?
 • Loss of elderly, but also decline in birth rate

 • **What happens to the species (humans) when we remove more people of color or more people with diabetes or**
 • Questions that overlap socioeconomics with biology
 • Mechanisms for evolution seen in human populations
 • Very small percentages, but
Pandemic Year

• Topics in first-year course - **EVOLUTION**
 • Change of hosts as a mechanism of evolution
 • How did it get to humans?
 • Other species likely involved
 • Mutations allow new hosts
 • How many mutations does it take?
 • Increase in species survival (virus)
Assessment

- First-year course
 - Students have always rated the case studies well
 - Rated case studies as extremely helpful in learning concepts
 - Noted the relevance of the case studies
 - Thanks to NCCSTS for publishing several quickly
 - Students noted
 - They were able to teach their family and friends (or at least have dialog with them)
 - They felt confident about coronavirus biology and the dangers of COVID
 - They were looking forward to a vaccine and to being vaccinated
 - They saw evolution in a broader way than what they had learned in high school
 - They saw humans as interconnected with the environment
Assessment

• Second-year Genetics course
 • Students rated the case studies highly
 • Relevance to their lives
 • Better understanding of clinical and technological issues
 • Students noted
 • They enjoyed reading primary literature and sharing in groups
 • They were able to share better with family and friends
 • They felt better informed
 • Many commented about the lack of connections (to coronavirus and the pandemic) in other courses they were taking
Assessment

• Grades and attendance?
 • Because both of these classes were completely online (Zoom) we were unable to compare attendance rates or grades with previous semesters
 • Comparing apples and oranges
 • No basis for rates of attendance in online science classes
 • May be literature cases, but not with our particular population of students
Bottom Line

• Regardless of whether we are teaching high school or undergraduate, our curriculum needs to be relevant for the times we are in and the students we have in our classrooms
 • When the pandemic hit it gave us an opportunity to teach the same subjects in a new and more relevant way
 • Students tend to learn better (as a whole) when they can see the relevance in what they are learning
 • Students are better ambassadors for science (to family, friends, and community) when they understand more completely
BUT.....

• We as faculty have to be willing to step out of our comfort zone and our ‘traditional’ way of teaching
 • “just in time” changes in the curriculum
• We need to always be looking for relevant new ways to teach the same topics
 • Daily updates and conversations
• We need to understand where our students are coming from in any given generation
Thank You

• QUESTIONS?

• Kerry Cheesman
• kcheesma@capital.edu