Connecting Three-Dimensional Learning to Upcoming Out-of-this-World Phenomena

Dennis Schatz
Immediate Past President - NSTA
Senior Fellow – Institute for Learning Innovation
October 14, 2023 Annular Solar Eclipse
April 8, 2024 Total Solar Eclipse
1. Aligned with the Framework for K-12 Science Education and the Next Generation Science Standards (NGSS)

2. Uses the BSCS 5E approach to organizing student experience around each topic – Engage, Explore, Explain, Elaborate, Evaluate

3. Indicates connections to the language arts and mathematics standards in the Common Core State Standards

4. Includes resources to provide interdisciplinary experiences.
Incorporates the three key dimensions of effective science learning from the Framework for K-12 Science Education.

1. **Disciplinary Core Ideas** (DCIs) – The most important science and engineering ideas that students should know.

2. **Science and Engineering Practices** (SEPs) – Behaviors that students need to investigate and build models and theories about the natural world.

3. **Crosscutting Concepts** (CCCs) – Science concepts that have application across all domains of science.
Provides Examples of Three-Dimensional Learning

- Interweaves the dimensions, so students see them as a connected whole.

- Not every individual activity lends itself to incorporating all three dimensions.

- It is only when you look at a sequence of learning experiences that one can identify effective ways to incorporate 3D Learning.
CONTENTS

About the Authors x
Introduction xiii

CHAPTER 1 Understanding and Tracking the Daily Motion of the Sun 1

Learning Goals of the Chapter 2
Overview of Student Experiences 2
Recommended Teaching Time for Each Experience 4
Connecting With Standards 4
Content Background 7

ENGAGE
1.1. Cast Away: What Do We Think We Know? 13
1.2. Your Personal Pocket Sun Clock 16

EXPLORE
1.3. Shadow and Sun Tracking 23

EXPLAIN
1.4. Modeling the Sun–Earth Relationship 32
1.5. Noontime Around the World 36

ELABORATE
1.6. Pocket Sun Compass 43
1.7. High Noon 47

EVALUATE
1.8. Write a Picture Book for Kids 51
1.9. Where Is It Night When We Have Noon? 53
1.10. What Do We Think We Know? Revisited 57

Video Connections 59
Math Connections 59
Literacy Connections 60
Cross-Curricular Connections 60
Resources for Teachers 63
March 22

gnome = 22cm tall
(standard time)

[Diagram of a circle with a compass orientation]
Modeling Relationship Between Earth and Sun

Students now develop their modeling skills using a simple model of the Earth and Sun
CHAPTER 2

Understanding and Tracking the Annual Motion of the Sun

Learning Goals of the Chapter | 68
Overview of Student Experiences | 68
Recommended Teaching Time for Each Experience | 70
Connecting With Standards | 70
Content Background | 72

ENGAGE

2.1. What Do We Think We Know? | 79
2.2. How Can This Be True? | 81

EXPLORE

2.3. Sun Tracking Throughout the Year | 84
2.4. High Noon Throughout the Year | 90

EXPLAIN

2.5. Reasons for the Seasons Symposium | 93

ELABORATE

2.6. Length of Day Around the World | 116
2.7. Seasons on Other Planets | 125
2.8. I Can't Make it Come Out Even: Fitting Days and Years into a Workable Calendar | 132

EVALUATE

2.9. Write a Picture Book for Kids | 139
2.10. E-mail Response to “How Can This Be True?” | 141
2.11. Reasons for the Seasons Revisited | 143
2.12. What Do We Think We Know? Revisited | 146

Video Connections | Math Connections | Literacy Connections | Cross-Curricular Connections | Resources for Teachers
148 | 148 | 149 | 149 | 151
March 22

Gnomon = 22 cm tall (standard time)
CHAPTER 3

Solar Activity and Space Weather

Learning Goals of the Chapter 156
Overview of Student Experiences 156
Recommended Teaching Time for Each Experience 158
Connecting With Standards 158
Content Background 161

ENGAGE
3.1. What Do We Think We Know? 173
3.2. Be a Solar Astronomer 175

EXPLORE
3.3. Safe Solar Viewing: Project and Record Your Own Images of the Sun 178
3.4. Discover the Sunspot Cycle 182

EXPLAIN
3.5. How Fast Does the Sun Rotate? 196
3.6. Space Weather: Storms From the Sun 206
3.7. What Else Cycles Like the Sun? 218

ELABORATE
3.8. The Multicolored Sun 230
3.9. Student Detectives and the Ultraviolet Sun 243
3.10. Additional Ways of Observing the Sun Safely 250

EVALUATE
3.11. Space Weather Report 257
3.12. Predict the Next Sunspot Maximum and Minimum 259

Follow-Up (Extension) Activities for This Chapter 263

Video Connections 264
Math Connections 264
Literacy Connections 266
Cross-Curricular Connections 266
Resources for Teachers 268
SHEET 1: IMAGES OF THE SUN FROM THE SOLAR DYNAMICS OBSERVATORY IN MAY 2014

May 8, 2014

May 11, 2014
DCI Related to Solar and Lunar Eclipses

Performance Expectation associated with MS-ESS1.A

Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons.
Students also engage with the following key Scientific Practices

- **Analyze and interpret data** during their efforts to predict the order of the lunar phases and then as they make regular observations of the Moon in the sky.

- **Use a model of the Earth-Moon-Sun system** to describe the relationship between them and to help them develop an understanding of what causes the Moon’s phases and eclipses.

- **Engage in argumentation** based on evidence as they compare their predictions for the order of lunar photographs and their daily observations of the Moon.
Students also engage with the following Crosscutting Concepts

- **Patterns** observed in the experiences can identify cause-and-effect relationships, as seen in how the relative position of the Earth, Moon and Sun produce the Moon’s phases.

- **Science assumes that objects and events in natural systems occur in consistent patterns** that are understandable through measurement and observation, as demonstrated by observations of the Moon and Sun leading to an understanding of when solar and lunar eclipses occur.

- **System models** provide an opportunity for understanding and testing ideas, as seen in the student’s head, Styrofoam ball and light bulb model of the Earth- Moon-Sun system.
Six Lunar Photographs, Set 2

Source:
Fred Espenak
Lunar Observing Record Chart

<table>
<thead>
<tr>
<th>Sunday</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>Date</td>
<td>Date</td>
<td>Date</td>
<td>Date</td>
<td>Date</td>
<td>Date</td>
</tr>
<tr>
<td>Time</td>
<td>Time</td>
<td>Time</td>
<td>Time</td>
<td>Time</td>
<td>Time</td>
<td>Time</td>
</tr>
</tbody>
</table>

Location

Location

Location

Location

Location

Location

Location

Location

Location
Modeling Lunar Phases and Eclipses

Students now develop their modeling skills using a simple model of the Earth and Sun
Modeling Lunar Phases and Eclipses

We now add a model Moon to expand and deepen their understanding of the relevant DCI and continue their practice using models.
Modeling Lunar Phases and Eclipses

Students then explore moving their model Moon in its orbit to determine what phase the Moon has to be in to block the Sun’s light from reaching the Earth (a solar eclipse) and when the Earth can block the Sun’s light from getting to the Moon (a lunar eclipse)
More Questions Than Answers

• If a full Moon and new Moon happen every month, shouldn’t we have eclipses every month?

• Why was the 2017 total solar eclipse the first one in the US in almost 40 years?

• Why do people spend thousands of dollars and travel thousands of miles to see a solar eclipse, but don’t travel to see a lunar eclipse?
Experience 4.6
• One Hula Hoop is the orbit of the Moon around the Earth.
• The other Hula Hoop is the apparent path of the Sun around the Earth.
• Normally the Moon and Sun are not lined up to produce an eclipse.
• Eclipses only occur when Moon and Sun are at crossing points.
• Solar and lunar eclipses happen every six months (separated by two weeks).

Experience 4.7
• Uses the Earth-Sun-Moon model to show only a small area on the Earth sees a solar eclipse.
• While half the Earth gets to see a lunar eclipse.
• Thus, people travel thousands of miles to see a total solar eclipse.
Your Students Will Now Be All Set for the October 14, 2023 Annular Solar Eclipse
AND the
April 8, 2024 Total Solar Eclipse
I wish you clear skies and great solar viewing.