

LIVE INTERACTIVE LEARNING @ YOUR DESKTOP

NGSS Core Ideas: Heredity: Inheritance and Variation of Traits

Presented by: Ravit Golan Duncan

February 25, 2014 6:30 p.m. ET / 5:30 p.m. CT / 4:30 p.m. MT / 3:30 p.m. PT

1

ENALearning Center Search Resources and Opportunities Search the Learning Center NSTA Learning Center My PD Tools Subjects Learning Resources Help Community Education Home Home & Opportunities Forums Administrator Welcome, Brynn # W View Cart | Admin | Log Out My Learning Center Welcome My PD Plan My PD Record My My My Community My Help My My. My Profile Library PD Indexer and Portfolio and Certificates Calendar Notepad Forums Desk

Teacher Learning Journeys: Learn Today...Your Way

Create your personalized learning journey based on your own unique learning needs and preferences where you can plan, track, and assess your progress over time. You can start at "Explore Learning Resources and Opportunities" below or by creating your game plan with the PD Plan and Portfolio tool. You may also review an <u>archived Web Seminar overview</u> of the Learning Center.

SEARCH COMMUNITY

http://learningcenter.nsta.org

NSTA Learning Center

- Discover over 11,400 resources
 - 4,000+ free!
 - Add to "My Library" and bundle in collections
 - Access collections made by NSTA and other teachers

http://learningcenter.nsta.org

- Connect in the community forums
- Get help from online advisors
- Plan/document learning with free tools

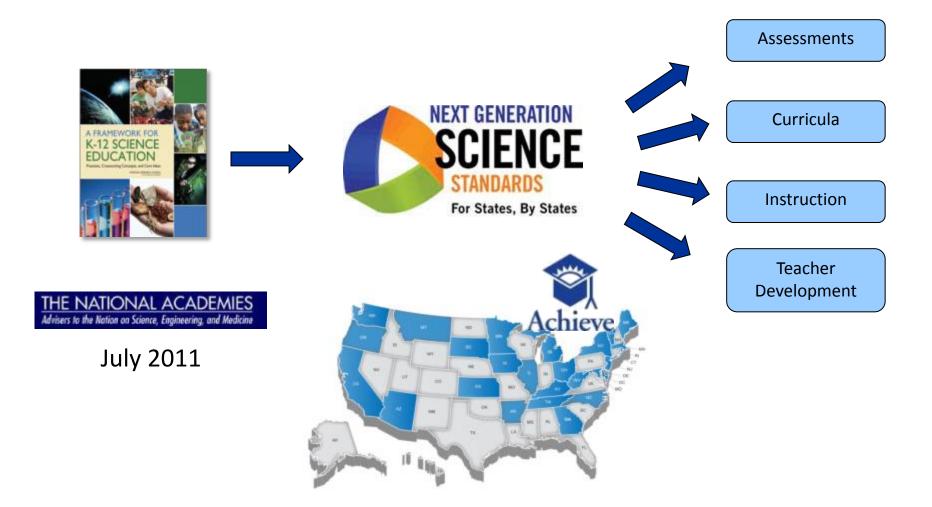
Introducing today's presenters...

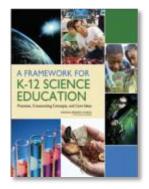
Ted Willard

Director, NGSS@NSTA National Science Teachers Association

Ravit Golan Duncan

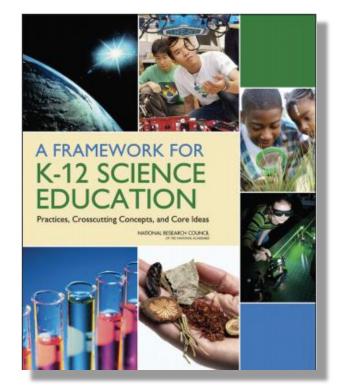
Associate Professor of Science Education Rutgers University





6

THE NATIONAL ACADEMIES Advisers to the Nation on Science, Engineering, and Medicine


July 2011

7

A Framework for K-12 Science Education

Three-Dimensions:

- Scientific and Engineering Practices
- Crosscutting Concepts
- Disciplinary Core Ideas

View free PDF from The National Academies Press at www.nap.edu Secure your own copy from **Secure your own copy from Secure your own copy from to be an event own copy from to be an event own copy from to be an event own c**

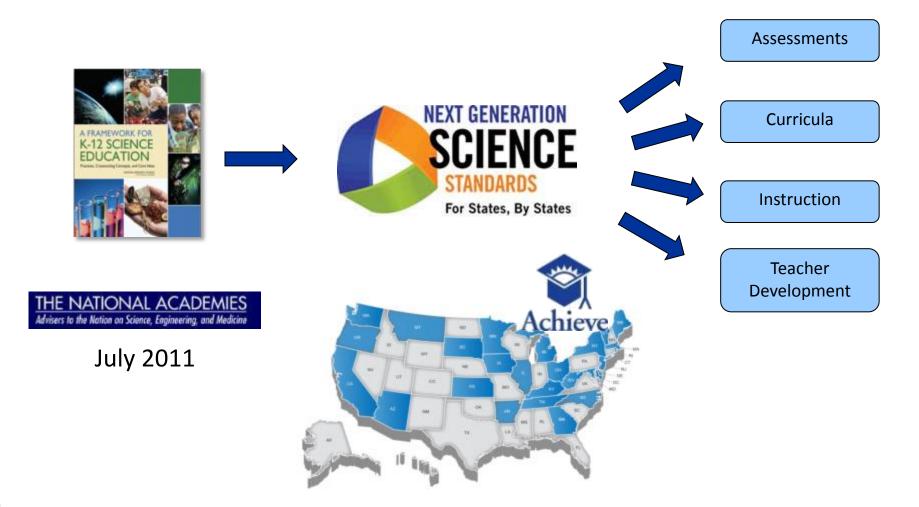
- Asking questions (for science) and defining problems (for engineering)
- 2. Developing and using models
- 3. Planning and carrying out investigations
- 4. Analyzing and interpreting data
- 5. Using mathematics and computational thinking
- 6. Constructing explanations (for science) and designing solutions (for engineering)
- 7. Engaging in argument from evidence
- 8. Obtaining, evaluating, and communicating information

- 1. Patterns
- 2. Cause and effect: Mechanism and explanation
- 3. Scale, proportion, and quantity
- 4. Systems and system models
- 5. Energy and matter: Flows, cycles, and conservation
- 6. Structure and function
- 7. Stability and change

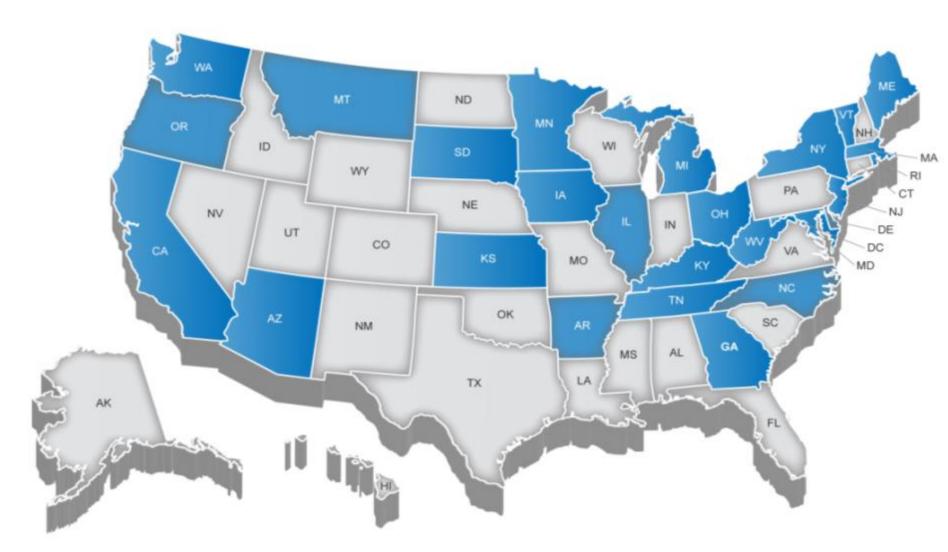
Disciplinary Core Ideas

Life Science	Physical Science
LS1: From Molecules to Organisms: Structures and Processes	PS1: Matter and Its Interactions PS2: Motion and Stability: Forces and
 LS2: Ecosystems: Interactions, Energy, and Dynamics LS3: Heredity: Inheritance and Variation of Traits LS4: Biological Evolution: Unity and Diversity 	Interactions PS3: Energy PS4: Waves and Their Applications in Technologies for Information Transfer
Earth & Space Science	Engineering & Technology
ESS1: Earth's Place in the Universe ESS2: Earth's Systems ESS3: Earth and Human Activity	ETS1: Engineering Design ETS2: Links Among Engineering, Technology, Science, and Society

12


Disciplinary Core Ideas

Life Science	Earth & Space Science	Physical Science	Engineering & Technology
LS1: From Molecules to Organisms:	ESS1: Earth's Place in the Universe	PS1: Matter and Its Interactions	ETS1: Engineering Design
Structures and Processes	ESS1. Earth's Place in the Universe ESS1.A: The Universe and Its Stars	PS1.A: Structure and Properties of	ETS1.A: Defining and Delimiting an
LS1.A: Structure and Function	ESS1.B: Earth and the Solar System	Matter	Engineering Problem
LS1.B: Growth and Development of	ESS1.C: The History of Planet Earth	PS1.B: Chemical Reactions	ETS1.B: Developing Possible Solutions
Organisms		PS1.C: Nuclear Processes	ETS1.C: Optimizing the Design Solution
LS1.C: Organization for Matter and	ESS2: Earth's Systems		
Energy Flow in Organisms	ESS2.A: Earth Materials and Systems	PS2: Motion and Stability: Forces	ETS2: Links Among Engineering,
LS1.D: Information Processing	ESS2.B: Plate Tectonics and Large-Scale	and Interactions	Technology, Science, and
	System Interactions	PS2.A: Forces and Motion	Society
LS2: Ecosystems: Interactions, Energy,	ESS2.C: The Roles of Water in Earth's	PS2.B: Types of Interactions	ETS2.A: Interdependence of Science,
and Dynamics	Surface Processes	PS2.C: Stability and Instability in	Engineering, and Technology
LS2.A: Interdependent Relationships	ESS2.D: Weather and Climate	Physical Systems	ETS2.B: Influence of Engineering,
in Ecosystems	ESS2.E: Biogeology	PS3: Energy	Technology, and Science on
LS2.B: Cycles of Matter and Energy	ESS3: Earth and Human Activity	PS3.A: Definitions of Energy	Society and the Natural World
Transfer in Ecosystems	ESS3.A: Natural Resources	PS3.B: Conservation of Energy and	
LS2.C: Ecosystem Dynamics,	ESS3.B: Natural Hazards	Energy Transfer	
Functioning, and Resilience	ESS3.C: Human Impacts on Earth	PS3.C: Relationship Between Energy	
LS2.D: Social Interactions and Group	Systems	and Forces	
Behavior	ESS3.D: Global Climate Change	PS3.D:Energy in Chemical Processes	
LS3: Heredity: Inheritance and		and Everyday Life	Note: In NGCC the same ideas
Variation of Traits			Note : In NGSS, the core ideas
LS3.A: Inheritance of Traits		PS4: Waves and Their Applications in	for Engineering, Technology, and the Application of Science
LS3.B: Variation of Traits		Technologies for Information	are integrated with the Life
		Transfer	Science, Earth & Space Science,
LS4: Biological Evolution: Unity		PS4.A: Wave Properties	and Physical Science core ideas
and Diversity		PS4.B: Electromagnetic Radiation	
LS4.A: Evidence of Common Ancestry		PS4.C: Information Technologies	
and Diversity		and Instrumentation	
LS4.B: Natural Selection			
LS4.C: Adaptation			
LS4.D: Biodiversity and Humans			



NGSS Lead State Partners

Adoption of NGSS

MS-PS1 Matter and Its Interactions Students who demonstrate understanding can: MS-PS1-d. Develop molecular models of re and therefore mass, are conserv models and drawings that represent atoms rath use of atomic masses is not required. Balancing The performance expectations above were developed using t	ved in a chemical er than symbols. The focu symbolic equations (e.g.	reaction. [Clarificati us is on law of conservation N2 + H2 -> NH3) is not	on Statement: Models can include physical on of matter.] [Assessment Boundary: The required.]
Science and Engineering Practices Developing and Using Models Modeling in 6–8 builds on K–5 and progresses to developing, using and revising models to support explanations, describe, test, and predict more abstract phenomena and design systems. • Use and/or develop models to predict, describe, support explanation, and/or collect data to test ideas about phenomena in natural or designed systems, including those representing inputs and outputs, and those at unobservable scales. (MS-PS1-a), (MS-PS1-c), (MS-PS1-d)	 PS1.B: Chemical Re Substances react characteristic way process, the atom original substance different molecule substances have from those of the (MS-PS1-d), (MS The total number 	chemically in ys. In a chemical hs that make up the es are regrouped into es, and these new different properties reactants. -PS1-e), (MS-PS1-f) of each type of atom thus the mass does	Crosscutting Concepts Energy and Matter • Matter is conserved because atoms are conserved in physical and chemical processes. (MS-PS1-d)
 Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Laws are regularities or mathematical descriptions of natural phenomena. (MS-PS1-d) 		practices, core	ance expectations combine ideas, and crosscutting a single statement of what I.
		They are not ir	nstructional strategies or

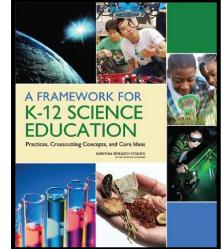
models and drawings that represent atoms rath use of atomic masses is not required. Balancing	ved in a chemical reacti er than symbols. The focus is on la symbolic equations (e.g. N2 + H2	On. [Clarification Statement: Models can include physical w of conservation of matter.] [Assessment Boundary: The -> NH3) is not required.]
The performance expectations above were developed using t Science and Engineering Practices	he following elements from the NR Disciplinary Core	
 Developing and Using Models Modeling in 6–8 builds on K–5 and progresses to developing, using and revising models to support explanations, describe, test, and predict more abstract phenomena and design systems. Use and/or develop models to predict, describe, support explanation, and/or collect data to test ideas about phenomena in natural or designed systems, including those representing inputs and outputs, and those at unobservable scales. (MS-PS1-a), (MS-PS1-c), (MS-PS1-d) 	 PS1.B: Chemical Reactions Substances react chemical characteristic ways. In a comprocess, the atoms that moriginal substances are readifferent molecules, and the substances have different from those of the reactant (MS-PS1-d), (MS-PS1-e), The total number of each is conserved, and thus the not change. (MS-PS1-d) 	Ily in hemical aake up the grouped into nese new properties• Matter is conserved because atoms are conserved in physical and chemical processes. (MS-PS1-d)(MS-PS1-d)(MS-PS1-f) type of atom
 Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Laws are regularities or mathematical descriptions of natural phenomena. (MS-PS1-d) 	prac conc	Performance expectations combinent tices, core ideas, and crosscutting epts into a single statement of what a ssessed.
	They	are not instructional strategies or

MS-PS1 Matter and Its Interactions Students who demonstrate understanding can: MS-PS1-d. Develop molecular models of re and therefore mass, are conserved models and drawings that represent atoms rath use of atomic masses is not required. Balancing	ved in a chemical er than symbols. The focu symbolic equations (e.g.	reaction. [Clarificati us is on law of conservation N2 + H2 -> NH3) is not	on Statement: Models can include physical on of matter.] [Assessment Boundary: The required.]
 The performance expectations above were developed using to Science and Engineering Practices Developing and Using Models Modeling in 6–8 builds on K–5 and progresses to developing, using and revising models to support explanations, describe, test, and predict more abstract phenomena and design systems. Use and/or develop models to predict, describe, support explanation, and/or collect data to test ideas about phenomena in natural or designed systems, including those representing inputs and outputs, and those at unobservable scales. (MS-PS1-a), (MS-PS1-c), (MS-PS1-d) 	Disciplinary PS1.B: Chemical Re • Substances react characteristic way process, the atom original substance different molecule substances have from those of the (MS-PS1-d), (MS • The total number	Core Ideas chemically in vs. In a chemical hs that make up the es are regrouped into es, and these new different properties reactants. -PS1-e), (MS-PS1-f) of each type of atom thus the mass does	 Crosscutting Concepts Energy and Matter Matter is conserved because atoms are conserved in physical and chemical processes. (MS-PS1-d)
Connections to Nature of Science Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena • Laws are regularities or mathematical descriptions of natural phenomena. (MS-PS1-d)		Note: Performance expectations combine practices, core ideas, and crosscutting concepts into a single statement of what i to be assessed.	
		They are not in	nstructional strategies or

 Is. The focus is on law of conservation of matter.] [Assessment Boundary: The ations (e.g. N2 + H2 -> NH3) is not required.] Iements from the NRC document A Framework for K-12 Science Education:
iplinary Core IdeasCrosscutting Conceptsemical ReactionsEnergy and Matternces react chemically in eristic ways. In a chemical s, the atoms that make up the substances are regrouped into at molecules, and these new nces have different properties ose of the reactants. 1-d), (MS-PS1-e), (MS-PS1-f) al number of each type of atom erved, and thus the mass does inge. (MS-PS1-d)Energy and Matter • Matter is conserved because atoms are conserved in physical and chemical processes. (MS-PS1-d)
Note: Performance expectations combine practices, core ideas, and crosscutting concepts into a single statement of what i . to be assessed .

Core Idea LS3: Heredity

Inheritance and Variation of Traits


Ravit Golan Duncan

Rutgers University

Who am I?

- Learning Scientist and Science Education researcher
 - Joint appointment at the School of Education and the School of Environmental and Biological Sciences
- Study student learning in genetics at the middle, high school, and college level
 - Learning progressions in geneticshow big ideas develop over time
- Reviewer of the NRC framework

Poll: Who are You?

Grades K-2

Grades 3-5

Middle School

High School

Please place a mark next to the grade/s you teach

Overview

- LS3: Heredity, why is it a core idea?
 - LS3A: Inheritance of traits
 - LS3B: Variation of traits

Q&A

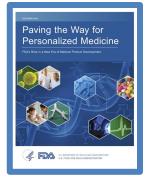
- Progression of LS3 across grade bands
- Student difficulties in mastering this core idea Q&A
- Effective teaching strategies and resources

Integration of science practices and LS3

We will also have a few poll questions along the way

Why is Heredity a DCI?

LAIR STOP THE RUSH TO WAR


Why is Heredity a DCI?

Genetics is to biology what atomic theory is to physics... John Stephen Jones

- Organizing idea in biology: helps explain other theories (evolution)
- **Powerful and generative:** allows you to explain a wide array of phenomena
- **Relevant:** individuals encounter genetics in many everyday contexts
 - Critical component of scientific literacy for both personal and civic engagement

Poll: Genetic Phenomena

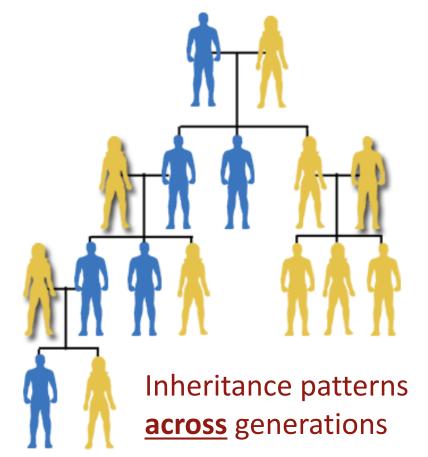
Which of the following is a real genetic phenomenon: (use pencil to select all that apply)

- A. Resistance to HIV B. Glow in the dark cats
- C. Genetic males [XY] that look like females
- **D**. Flies with eyes on their legs

Poll: Genetic Phenomena

Which of the following is a real genetic phenomenon:

- A. Resistance to HIV
- B. Glow in the dark cats
- C. Genetic males [XY] that look like females
- D. Flies with eyes on their legs

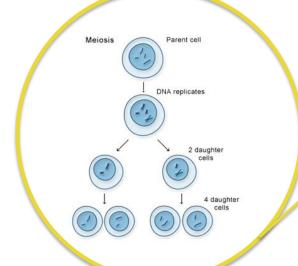

They ALL are!

LS3: Heredity

- "...focuses on the flow of genetic information between generations. This idea explains the mechanisms of genetic inheritance and describes the environmental and genetic causes of gene mutation and the alteration of gene expression." [NRC Framework]
- LS3A: Inheritance of traits
- LS3B: Variation of traits

Three Models:

- Each chromosome pair contains two variants of each of many distinct genes.
- Relative dominance of the variants (alleles) within a a pair determines how the trait is expressed.



But, how do variants from the parents end up in the offspring?

Three Models:

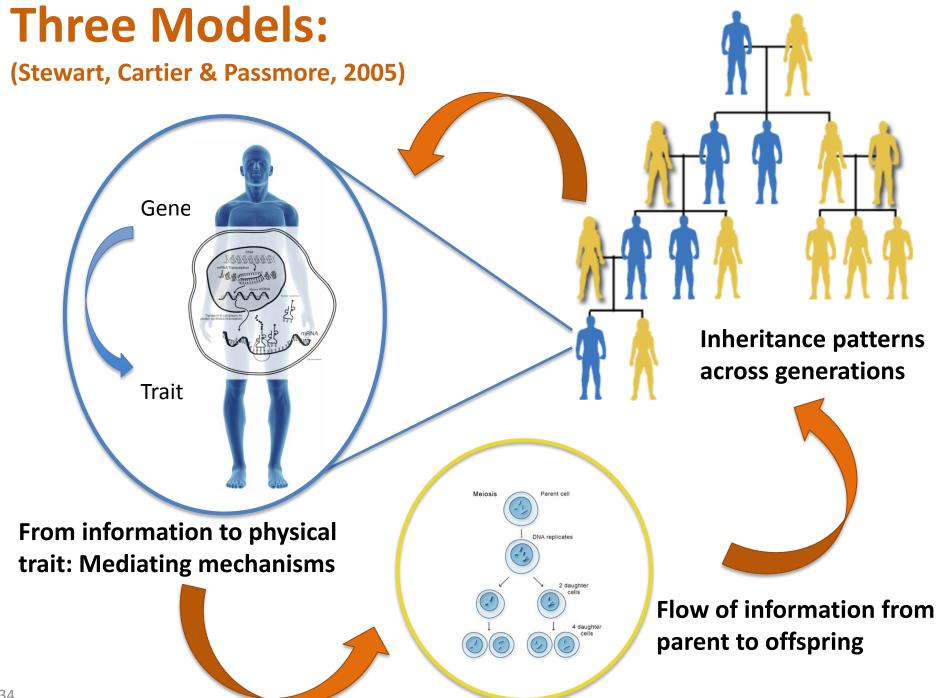
- Offspring get half a chromosomal set from each parent.
- This allows for flow of genetic information from across generations

Inheritance patterns across generations

But once you get your variants, how do you end up with the trait?

Flow of information from parent to offspring

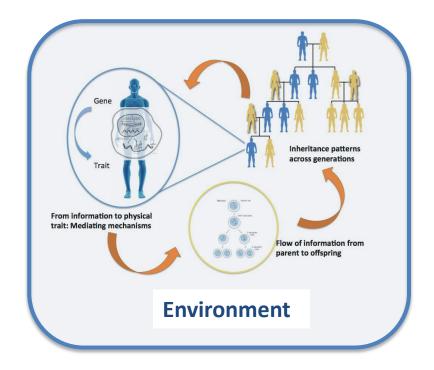
Three Models:


Gene

Trait

"Genes encode the information for making specific <u>proteins</u>, which are responsible for the specific traits..." NRC Framework

> Inheritance patterns across generations


From information to physical trait: Mediating mechanisms

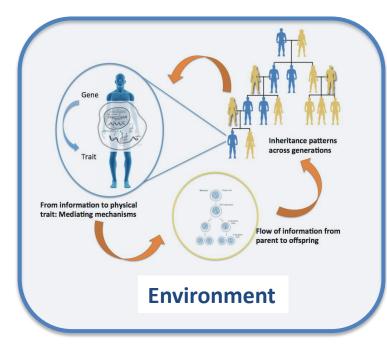
The Role of the Environment

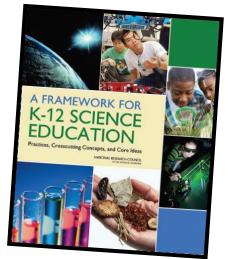
Two facets of the environment:

- The genome environment (complex interactions between genes)
- The **external** physical environment
 - The environment can alter genes- mutations
 - The environment can alter gene expression

LS3: Summary

- Meiosis is presented in terms of input (2n) and output (n). Main idea here is "half a set"
- Sources of variation:
 - Sexual reproduction (segregation, independent assortment, and recombination)
 - Mutations
 - Interactions with environment
- Focus on mediating mechanisms genes code for proteins, which are a key part of the story


Across generations


> Within an individual

Questions?

Poll: When Should We Start?

We said that understanding the gene-protein connection is central to reasoning about genetic phenomena.

How early should we introduce this idea?

- A. Elementary school; even such young students can reason about abstract ideas.
- **B.** Middle school; students at this level are ready for thinking about unfamiliar and unseen entities.
- C. High school; younger students do not have sufficient knowledge of chemistry and would struggle to reason about molecular structures.

Poll: When Should We Start?

We said that understanding the gene-protein connection is central to reasoning about genetic phenomena. How early should we introduce this idea?

B. Middle school; students at this level are ready for thinking about unfamiliar and unseen entities.

Framework's expectation for the end of 8th grade:

"Each gene chiefly controls the production of a specific protein, which in turn affects the traits of the individual.....Changes to genes (mutations) can result in changes to proteins, which can affect the structures and functions of the organism and thereby change traits". [NRC Framework]

Learning Progression: Appendix E

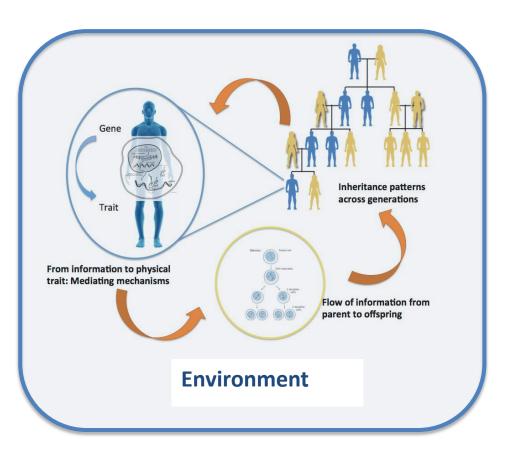
High School	DNA carries the genetic information. Each cell in an organism has the same genetic information, but may express different genes.
Middle school	Genes chiefly regulate the production of a specific protein, which affects an individual's traits. Mutations to genes can alter proteins and subsequently the trait.
Late elementary	Organisms vary in how they look and function because they have different inherited information. The environment also affects traits that an organism develops.
Early Elementary	Young organisms are very similar, but not exactly the same as their parents and other members of their kind.

LS3A: Inheritance of Traits

Learning Progression: Appendix E

High School	Variation can arise from: sexual reproduction, including chromosomes swapping sections; mutations from environmental factors, or from errors in replication; and environmental impact on gene expression.
Middle school	Each chromosome pair has 2 variants (alleles) for each of many genes. Offspring receive one variant from each parent (half a set). Sexual reproduction and mutations drive variation in traits.
Late elementary	Organisms vary in how they look and function because they have different inherited information. The environment also affects traits that an organism develops.
Early Elementary	Young organisms are very similar, but not exactly the same as their parents and other members of their kind.

LS3B: Variation of Traits


What is Progressing?

- Macro micro: Movement from explanations at the macro level to ones that connect the macro to the micro
- **Deepening of causal mechanism**: from genes as information for traits -- to genes as productive instructions for proteins
- Adding complexity and explanatory scope: from variation due to random assortment -- to variation due to: (a) recombination, (b) mutation, and (c) environmental effects on gene expression

What is Progressing?

Connecting all three explanatory models:

- inheritance patterns,
- meiotic model,
- molecular model, and,
- the role of the environment

Building and deepening rather than repeating

Poll: Common Conceptual Obstacles

How do you think a typical <u>high school</u> student would answer this question:

Which of the following does DNA provide information for: (Choose most accurate answer)

- **A.** The structure and function of a protein.
- **B.** The traits that an individual inherits.
- **C.** Assembling amino acids into protein molecules.
- **D**. Assembling protein molecules into amino acids.

Poll: Common Conceptual Obstacles

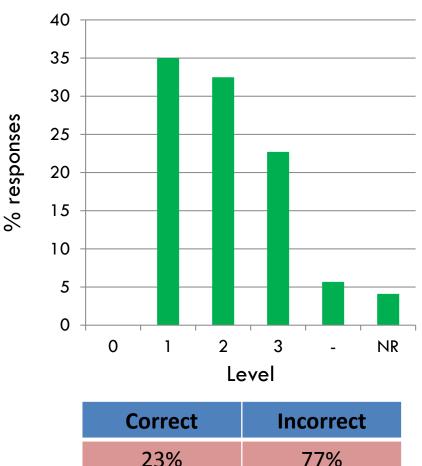
Which of the following does DNA provide information for: (Choose most accurate answer)

A. The structure and function of a protein.

B. The traits that an individual inherits.

C. Assembling amino acids into protein molecules.

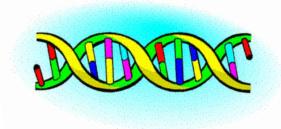
D. Assembling protein molecules into amino acids.

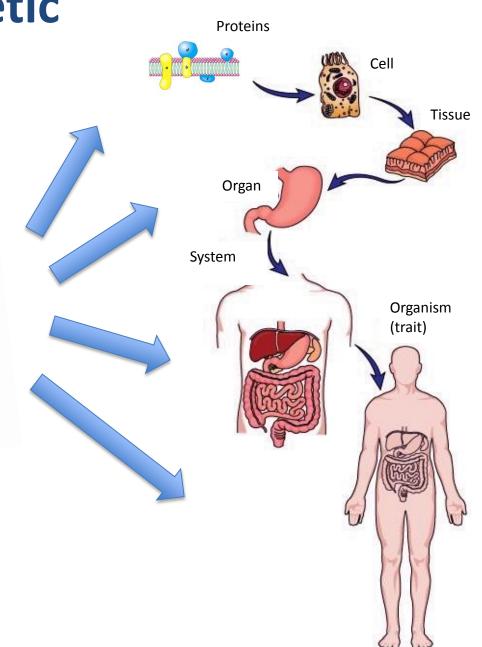

In a recent pilot with over 300 high school biology students:

Correct	Incorrect
23%	77%

Poll: Common Conceptual Obstacles

Which of the following does DNA provide information for: (Choose most accurate answer)


- A. The structure and function of a protein. [L2]
- B. The traits that an individual inherits. [L1]
- C. Assembling amino acids into protein molecules. [L3]
- D. Assembling protein molecules into amino acids. [L-]


aminoacidchoose-%responses

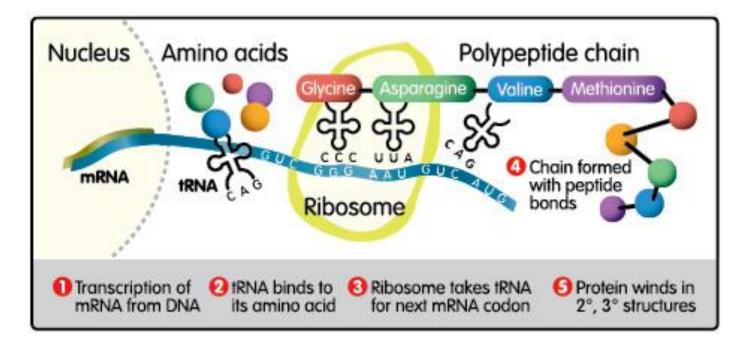
Nature of the Genetic Information

Many biological organization levels...

Where does the genetic information come in?

Nature of the Genetic Information

Trajectory of conceptual change for the concept of gene: (Venville & Treagust, 1998)


Proteins	Cell
Organ System	
	Organism (trait)
on;	

Concept	Example
Genes as passive particles associated with traits	No sense of genetic information; genes and traits are the same
Genes as instructions	Genes have information for everything about you (all levels)
Genes as productive instructions for proteins	Genes have instructions for making proteins (only protein level)

Corollary: To truly understand the gene-trait connection you need to understand proteins and their biological role.

Proteins: The Missing Level

We explain the central dogma in relative detail...

But then drop the ball in terms of explaining what the resulting protein does.

Poll: The Role of Proteins

How do you think a typical <u>high school</u> student would answer the following item:

Janice and Bill are arguing about what proteins do in our bodies.

Janice says that proteins are important for making your hair, muscles, nails, and that they are also enzymes.

Bill agrees with Janice. But he also thinks that proteins do a lot more than what Janice said. They are also hormones, antibodies, and they can even give signals to cells.

Who is correct?

- A. Janice is correct. B. Bill is correct.
- C. Janice is mostly correct, except that she left out that proteins give us energy.
- D. Bill is mostly correct, except that proteins do not give signals to cells.

Role of Proteins

Janice and Bill are arguing about what proteins do in our bodies.

Janice says that proteins are important for making your hair, muscles, nails, and that they are also enzymes.

Bill agrees with Janice. But he also thinks that proteins do a lot more than what Janice said. They are also hormones, antibodies, and they can even give signals to cells.

Who is correct?

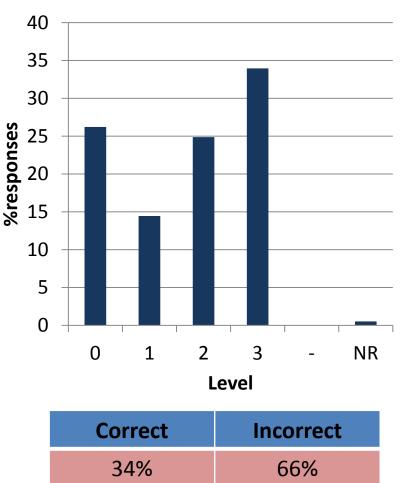
- A. Janice is correct. [L1]
- B. Bill is correct. [L3]
- C. Janice is mostly correct, except that she left out that proteins give us energy. [L0]
- D. Bill is mostly correct, except that proteins do not give signals to cells. [L2]

If we look at how many students got it right:

Correct	Incorrect
34%	66%

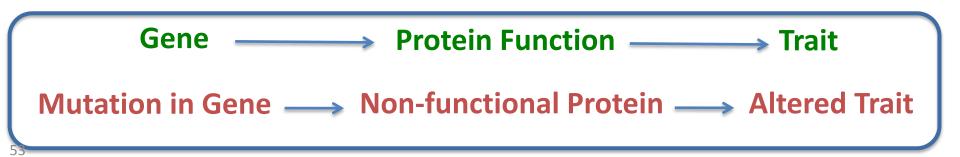
Role of Proteins

Janice and Bill are arguing about what proteins do in our bodies.

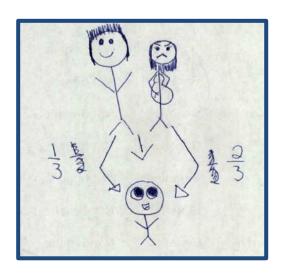

Janice says that proteins are important for making your hair, muscles, nails, and that they are also enzymes.

Bill agrees with Janice. But he also thinks that proteins do a lot more than what Janice said. They are also hormones, antibodies, and they can even give signals to cells.

Who is correct?


- A. Janice is correct. [L1]
- B. Bill is correct. [L3]
- C. Janice is mostly correct, except that she left out that proteins give us energy. [L0]
- D. Bill is mostly correct, except that proteins do not give signals to cells. [L2]

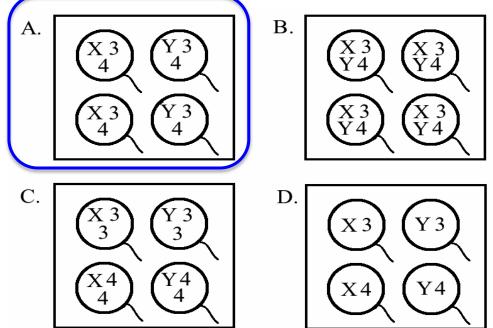
Argueprotein-%responses



A Few Key Points

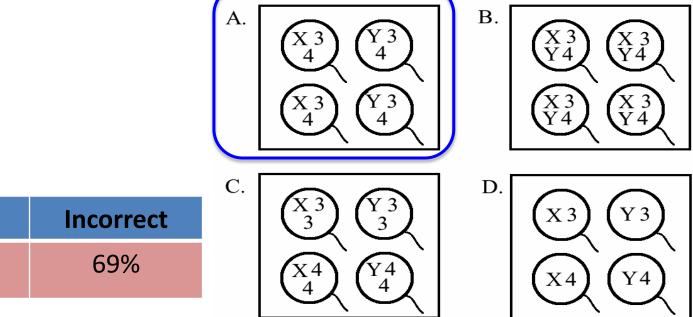
- Viewing genes as productive instructions for proteins is a <u>big</u> conceptual jump
- It is important to build up students' conceptual toolkit of protein functions
- Less focus on details, more focus on domainappropriate reasoning - a generalized schema:

Conceptual Obstacles for Classical Genetics


- Students begin with a theory of kinship offspring look like their parents - that is nonmechanistic. (Springer & Kiel, 1989)
- They do not always assume equal contribution by parents. (Engel, Clough & Wood-Robinson, 1985)
- The idea of 2 alleles is not obvious.
- They may be able to use terms and representations but often they do not have a firm grasp of the underlying concept. (Stewart, 1982; Lewis & Wood-Robinson, 2000)

Conceptual Hurdles for Classical Genetics

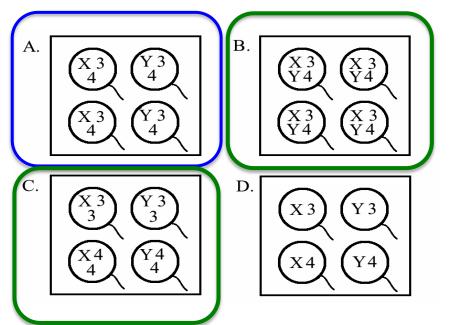
How do you think a typical <u>high school</u> student would answer the following item:


A human male has the following chromosome pairs in his body cells: [X,Y; 3, 3; 4, 4] which chromosome combinations will be in his sperm cells?

Conceptual Hurdles for Classical Genetics

How do you think a typical <u>high school</u> student would answer the following item:

A human male has the following chromosome pairs in his body cells: [X,Y; 3, 3; 4, 4] which chromosome combinations will be in his sperm cells?

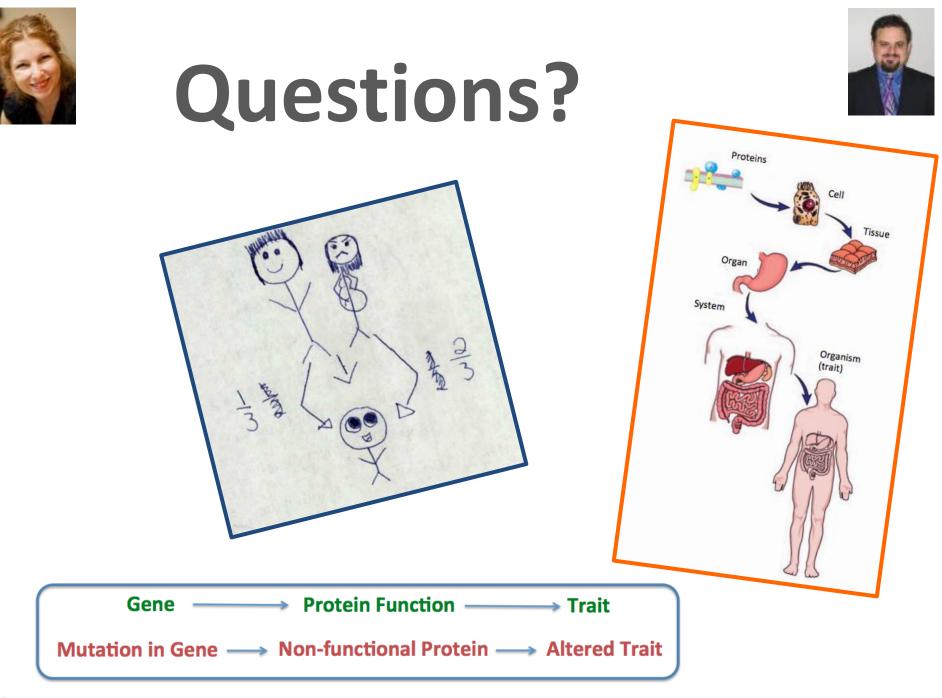


Correct

31%

Conceptual Hurdles for Classical Genetics

A human male has the following chromosome pairs in his body cells: **[X,Y; 3, 3; 4, 4]** which chromosome combinations will be in his sperm cells?



Malesperm-%responses

Students don't always understand "half" as "half a set"

A Few Key Points

- Focusing on the details of processes like meiosis does not necessarily lead to understanding the big idea
 - Similarly, students may be able to use genetic representations without fully understanding them
- Build ideas first and label them with terms later
 - Push for mechanism
- We need to help students integrate the many terms and ideas in genetics into a coherent model
 - There is robust confusion about the the relationship between DNA, chromosomes, alleles, and genes

Shifts in the Standards: NSES versus NGSS

- Earlier and more extensive focus on the mechanisms that link genes to traits (proteins)
- Greater stress on variation and its sources
- Emphasis on the interplay between genes and the environment
 - Mutations
 - Gene expression

Teaching Strategies and Resources

A key aspect of NGSS is the integration of **inquiry practices**:

Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism. **Middle School**

Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms. **3**rd **Grade**

Make observations to construct an evidence-based account

that young plants and animals are like, but not exactly like, their parents. 1st Grade

Teaching Strategies and Resources

Young students can identify similarities and differences between offspring and parents (humans, animals, and plants). They can identify inherited versus noninherited variations.

Make observations to construct an evidence-based account

that young plants and animals are like, but not exactly like, their parents. 1st Grade

63

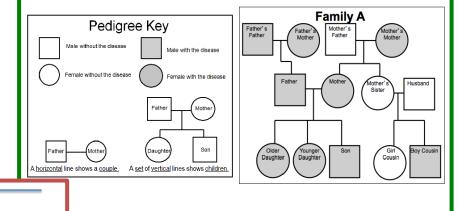
Teaching Strategies and Resources

Students can use fast plants to generate evidence about variation and heritability of traits:

- Make observations (color)
- Measure (height)
- Compare offspring to parents and to non-parent plants
- Chart variations in a population and in "families"

Analyze and interpret data to provide

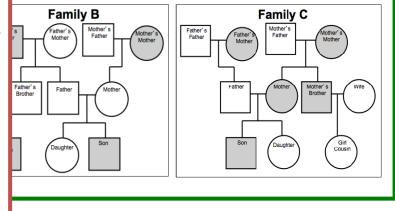
evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms. **3rd Grade**


Modeling in Genetics

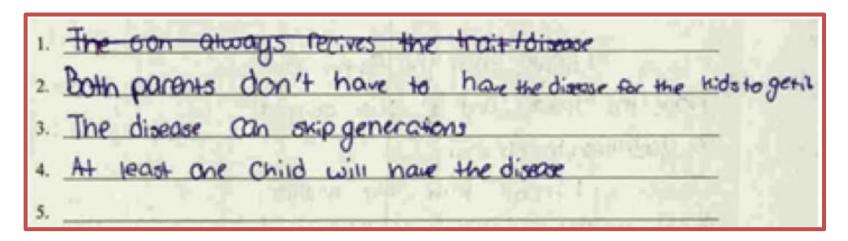
Older students can use evidence, such as pedigrees, to develop a model of how traits are inherited Genetics Lesson 3 Evidence 3 v3

Student ID:

Evidence 3

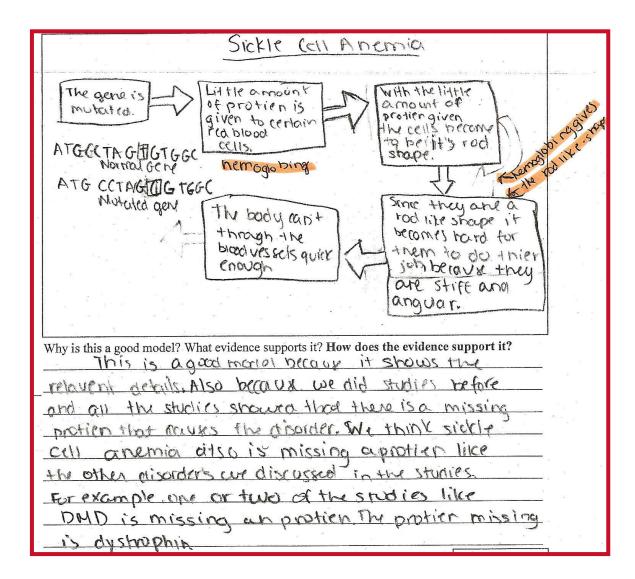

Below are three different pedigrees. Each pedigree shows a family of a mother, father, three children and their grandparents. For each person in each family write down what gene or genes you think they have. Write these in the squares and circles. You can work on this evidence in groups (2 pairs per group).

Evidence 1: Human Traits - Sara


Some New Jersey high school students were interested in understanding how people inherit their traits. To find out they first randomly chose a person in their class (Sara) and recorded her traits. They then observed Sara's parents and recorded their traits. Here are their findings:

Sara	Sara's Father	Sara's Mother
Dimples	Dimples	No Dimples
Unattached Earlobes	Unattached Earlobes	Attached Earlobes
Widow's Peak	Widow's Peak	Straight Hairline
Straight Thumb	Straight Thumb	Straight Thumb
Can Roll Tongue	Can't Roll Tongue	Can Roll Tongue
Can Taste PTC	Can Taste PTC	Can't Taste PTC

Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation. **Middle School**


Modeling in Genetics

Students develop and revise their "rule model" based on new evidence provided:

Modeling in Genetics

- This can also be done for molecular genetics:
- Students can develop a model for the biological basis of a genetic disorder

Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism. **Middle School**

Other Resources

- Concord Consortium
 <u>http://concord.org/</u>
 - Molecular Workbench
 - Geniverse

- AAAS Project 2061 science assessment
 - Assessment items and information about student performance on them: <u>http://assessment.aaas.org/topics/RH#</u>

• WISE

http://wise.berkeley.edu/

- Heredity modules for late elementary
- Includes FastPlants as a learning tool

Thank You!

I would also like to acknowledge the contribution of **Nicole Shea** to this presentation

ravit.duncan@gse.rutgers.edu

On the Web

Connect and Collaborate

Discussion forum on NGSS in the Learning center

SAMSUNG

January 28: From Molecules to Organisms: Structures and Processes

February 11: Interactions, Energy, and Dynamics

February 25: Heredity: Inheritance and Variation of Traits

March 11: Biological Evolution: Unity and Diversity

Coming in March/April: Engineering design and nature of science

Web Seminar Archives

- Practices (Fall 2012)
- Crosscutting Concepts (Spring 2013)
- Disciplinary Core Ideas (Fall 2013, Spring 2014)
- Assessment (January 2014)

NTA WEB

LIVE INTERACTIVE

LEARNING @ YOUR DESKTOP

SEMINA

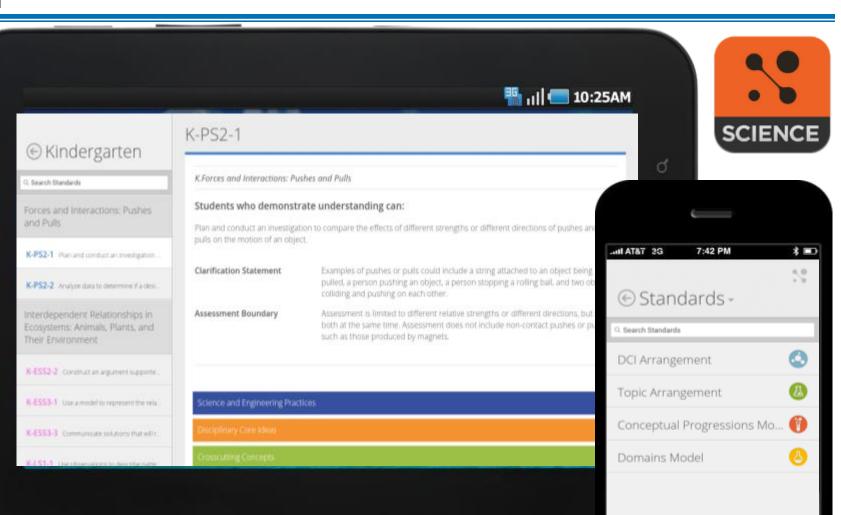
Journal Articles

- Science and Children
- Science Scope
- The Science Teacher

NGSS Practices in Action

Saturday, March 8, 10 a.m. – 6 p.m. ET NSTA members: \$79; Nonmembers \$99

- Sessions on modeling, explanation and argumentation, and engineering
- Breakouts by grade level and discipline
- Live chat discussions with *NGSS* experts and other teachers
- Register in the NSTA Learning Center


From the NSTA Bookstore

NGSS App

NGSS@**NSTA** STEM STARTS HERE

Future Conferences

National Conference

Boston – April 3-6, 2014

Thanks to today's presenters!

Ted Willard

Director, NGSS@NSTA National Science Teachers Association

Ravit Golan Duncan

Associate Professor of Science Education Rutgers University

Thank you to the sponsor of today's web seminar:

This web seminar contains information about programs, products, and services offered by third parties, as well as links to third-party websites. The presence of a listing or such information does not constitute an endorsement by NSTA of a particular company or organization, or its programs, products, or services.

National Science Teachers Association

David Evans, Ph.D., Executive Director Al Byers, Ph.D., Acting Associate Executive Director, Services

NSTA Web Seminar Team

 Flavio Mendez, Senior Director, NSTA Learning Center
 Brynn Slate, Manager, Web Seminars, Online Short
 Courses, and Symposia
 Jeff Layman, Technical Coordinator, Web Seminars, SciGuides, and Help Desk