Demystifying Models: Approachable and Practical Modeling in the Science Classroom
HELLO!

Thank you for attending our session!

A Quick Introduction from Your Presenters

Brittany Blair
Grade 5 Science Teacher
Charles H. Barrows STEM Academy
North Windham, CT
bblair@windham.k12.ct.us

Nicole Vitello
Grade 6 Science Teacher
Charles H. Barrows STEM Academy
North Windham, CT
nvitello@windham.k12.ct.us
Session Objective:
The goal of this session is to provide attendees with practical visual modeling concepts that can be used in a variety of ways and can be adaptable to fit all classroom needs.

Common Vocabulary for Today’s Presentation:
Phenomenon: a natural/observable event
Visual Model: a scientific diagram outlining a phenomena and new learning over time
Let's start with getting to know you and what you need from this session!

Question 1: What grade level(s) do you teach?

Corner 1: K-4
Corner 2: 5-8
Corner 3: 9-12
Corner 4: Other (Specials, Support Staff, Admin., etc.)
Let’s start with getting to know you and what you need from this session!

Question 2:
What is your comfort level with visual modeling?

Corner 1: I have never have done a model before.
Corner 2: I have some experience using models with students.
Corner 3: I use models regularly in my classroom.
Corner 4: I could teach someone else how to use models.
Let’s start with getting to know you and what you need from this session!

Question 3:

What are your areas of struggle with visual models?

Corner 1: I need help getting started in using them.

Corner 2: Differentiation

Corner 3: Students “not knowing what to do” (Expectations)

Corner 4: Assessing models
Modeling is a way to see what your students are thinking. The models should reflect their learning over time by communicating the science concepts covered in class.
Modeling in Science!

A scientific visual model should:

★ Be specific to one phenomenon
★ Be used to explain and predict patterns within a phenomenon
★ Include labeled pictures/diagrams to help illustrate student thinking about the cause of the phenomenon
★ Shows learning change over time (though colors, symbols...)}
Ways to Use Models in Your Classroom Routines:

- Pre-assessments
- Post-assessments
- Station activities
- Whole-class discussions
- Talk circles
- Mini-lessons
- “Anchoring Phenomena” for Unit
- Spiral Review
- And many more!!!
Getting started with our models!

Today’s Questions

What is happening when the boiling water hits the cold air?

If you were in Corner 1, please use page 4 of the packet.
If you were in Corner 2, please use page 4 of the packet.
If you were in Core 3, please use page 3 of the packet.
If you were in Corner 4, please use page 2 of the packet.
Today’s Phenomenon

Today’s Question:
What is happening when the boiling water hits the cold air?

https://www.youtube.com/watch?v=B3VHGTQQs-4&feature=youtu.be
Exemplary Scientific Explanations at Various Grade-Levels

The model should serve to explain the scientific concepts taught in class

<table>
<thead>
<tr>
<th>Grade Level</th>
<th>Essential Components of the Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>*showing idea of Water Cycle
identifying condensation and evaporation</td>
</tr>
<tr>
<td>5</td>
<td>All of Grade 3, and identifying a phase change as a physical change caused by temperature
showing how the particles look in each state of matter</td>
</tr>
<tr>
<td>Middle School</td>
<td>*When water particles are heated, they begin to move faster until they gain enough energy to change state.
When water particles are cooled, they slow down and their energy loss causes a phase change.</td>
</tr>
<tr>
<td>High School</td>
<td>All of Middle School, and describing intermolecular forces between water particles</td>
</tr>
</tbody>
</table>
"What is happening with the boiling water when it hits the cold air?"

<table>
<thead>
<tr>
<th>Student Group</th>
<th>Features Correctly Represented</th>
<th>Features Missing / Incorrectly shown</th>
<th>Order and Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Evidence and connection to the water cycle</td>
<td>Something new was created</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Changing state of matter</td>
<td>The water froze in the pot, and then it was thrown into the air</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evidence the water was boiling and the water froze</td>
<td>No/incomplete explanation of how water shifted phases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Understanding of differences in before, during, and after</td>
<td>Missing Labels or unclear explanation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evidence of how the water molecules act in each stage of matter</td>
<td>Wrong vocabulary use</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Connect systems, components</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Student Modeling Rubric

Student/Group Name(s):

<table>
<thead>
<tr>
<th>Category</th>
<th>4: Exceeds Expectations</th>
<th>3: Proficient</th>
<th>2: Approaching</th>
<th>1: Beginning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detail
How well does the model match the actual phenomenon?
Is the model complex or simple?</td>
<td>Few labels and/or arrows are present in the model to show the science ideas to explain the phenomenon. The labels and/or arrows are correct and easy to understand.</td>
<td>Many labels and/or arrows are present in the model to show the science ideas to explain the phenomenon. The labels and/or arrows are correct and easy to understand.</td>
<td>Very few labels and/or arrows are present to show the science ideas to explain the phenomenon.</td>
<td>No labels and/or arrows to show the science ideas behind the phenomenon.</td>
</tr>
<tr>
<td>Predictive
How well can the model be used to make predictions based on evidence?</td>
<td>If the same phenomenon were to happen in the future, the model can be used to make a reasonable prediction based on evidence. Very little scientific vocabulary is used.</td>
<td>If the same phenomenon were to happen in the future, the model can be used to make a reasonable prediction based on evidence. Very little scientific vocabulary is used.</td>
<td>If the same phenomenon were to happen in the future, the model can be used to make a reasonable prediction based on evidence. Very little scientific vocabulary is used.</td>
<td>The model is not an accurate representation of the phenomenon.</td>
</tr>
<tr>
<td>Accuracy
How well does the model match the actual phenomenon?
Is the model complex or simple?</td>
<td>The model is an accurate representation of the phenomenon. The model is a somewhat accurate representation of the phenomenon.</td>
<td>The model is an accurate representation of the phenomenon.</td>
<td>The model is a somewhat accurate representation of the phenomenon.</td>
<td>The model is not an accurate representation of the phenomenon.</td>
</tr>
<tr>
<td>Conclusiveness
How well does the model support the conclusion?</td>
<td>The model clearly communicates the student/group’s thinking to others. It is neat, organized, and easy to follow.</td>
<td>The model clearly communicates the student/group’s thinking to others. It is neat, organized, and easy to follow.</td>
<td>The model clearly communicates the student/group’s thinking to others. It is neat, organized, and easy to follow.</td>
<td>The model does not communicate the student/group’s thinking.</td>
</tr>
<tr>
<td>Revisions
How well have you revised your model?</td>
<td>The model has been revised to include new understandings and/or new evidence. The revisions are clearly shown.</td>
<td>The model has been revised to include new understandings and/or new evidence. The revisions are clearly shown.</td>
<td>The model has not been revised to include new understandings and/or new evidence. The revisions are not clearly shown.</td>
<td>The model has not been revised.</td>
</tr>
</tbody>
</table>

[Link to Document: https://tinyurl.com/vd7awqn](https://tinyurl.com/vd7awqn)
Breakout Sessions!
Student Work Sample Gallery Walk

https://docs.google.com/presentation/d/1eCQTMXxMM4l0__vz_tuGssGkc0FCSXm_sZwjM0Hy3Q/edit#slide=id.p
THANKS!

We hope you enjoyed learning about models!

Any questions?