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PUBLIC SUMMARY

One of the most important reasons we study climate change is to understand how it may
exacerbate existing vulnerabilities in both human systems and the natural environment.
We know that coastal flooding and storm damage will occur as a result of rising sea level
and increasingly more powerful tropical cyclones and hurricanes. In the case of Puerto Rico
and other Caribbean islands, however, other key vulnerabilities to climate change relate to
the issue of how to sustain growing populations and unique ecosystems with limited land
area and scarce water resources.

This project laid the foundation to explore the potential impacts of climate change on
Puerto Rico and other Caribbean islands. First, we quantified the ability of global climate
models to reproduce the large-scale atmosphere and ocean dynamics that control
temperature and rainfall variability in the Caribbean. Then, we generated high-resolution
projections of daily maximum and minimum temperature and 24h cumulative precipitation
for over 200 long-term weather stations. These simulations capture the range of changes
projected by 32 different climate models under a higher and lower emissions future. Next,
for Puerto Rico, we derived and analyzed projected changes in 85 secondary climate
indicators, including seasonal averages, thresholds, and extremes.

Puerto Rico is expected to warm faster than the global average, with increases in both
mean and extreme temperatures, including days per year over 95°F and nights warmer
than 85°F. Rainfall is projected to decrease, particularly in the wet season, with more
frequent dry days. The frequency of “moderate extreme” precipitation (e.g. more than 1
inch of rain) is projected to decrease, while more extreme precipitation (e.g. more than 3
inches of rain in a day) is expected to become more common. Projected temperature
changes are large enough to affect temperature-sensitive crops, species, and ecosystems,
while the combined effects of changes in temperature and precipitation are likely to
increase the demand for energy, the risk of water stress and drought, and the risk of
impacts from heavy rainfall events.
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GUIDELINES FOR USE OF CARIBBEAN HIGH-RESOLUTION CLIMATE PROJECTIONS

This project has conducted a comprehensive dynamical analysis of the ability of 32 different global climate models
to simulate observed temperature and rainfall variability over the Caribbean, used these models to generate
future projections of temperature and precipitation, and calculated projected changes in 85 secondary climate
indicators for long-term weather stations in Puerto Rico.

Based on this analysis, we conclude the following:

For temperature, there is no set of generally “better-performing” models. All models display a lag in seasonal
air and sea surface temperature that is seen in both higher- and lower-resolution models as well as in both
atmosphere-only and coupled atmosphere-ocean models. The recommended course of action is to use as
many global climate models as is feasible for any given impact analysis.

For precipitation, projected changes in seasonal precipitation and precipitation extremes simulated by models
that are able to reproduce the observed large-scale dynamics that control precipitation over the Caribbean are
noticeably different than projected changes from models that are not. The recommended course of action is to
use global climate models that have been proven capable of simulating the processes that drive changes in
precipitation over the Caribbean. A list of these models is provided in Table 3.

For precipitation, there is a larger difference between seasonal and extreme precipitation projections
simulated by “good” CMIP3 vs. CMIP5 models than between the projections simulated by the “good” models
vs. “poor” models. It is likely (although not yet proven) that these differences are due to CMIP3-based
projections primarily being driven by increases in carbon dioxide, while CMIP5-based projections are driven by
changes in both carbon dioxide and aerosols, which can affect cloud properties and hence rainfall. Because of
the substantial differences in the projected changes in wet season and extreme rainfall between CMIP3 vs.
CMIP5 simulations, the recommended course of action is to preferentially use CMIP5 simulations only for any
projections of changes in wet season rainfall or extreme rainfall.

In addition to these Caribbean-specific recommendations, we also recommend the following best practices:

Do not attempt to select a single “best” model by comparing biases in seasonal temperature or precipitation
for a location of interest. This evaluation method offers no guarantee that the top-performing models in terms
of historical biases will also be the top-performing models in terms of simulating the impacts of global change
on the same location.

When using multiple climate model simulations as input to an impact analysis, always average across climate
models as the very last step in the analysis. Unless the relationships between climate change and the impacts
being studied are entirely linear, averaging across climate models too early in the analysis will artificially
average across, and remove, the temporal variability from the climate projections, leading to incorrect results.

Do not average across multiple future scenarios. Scenarios are not like physical systems, where averages may
yield the most likely value. Scenarios are entirely separate, independent pictures of what the future may look
like, given a set of assumptions regarding socio-economic and technological development. Results of any
analysis can be averaged across climate models, but should be presented independently for each scenario.

There is no one most likely future scenario. It is impossible to predict human behavior. The most frequently
recommended course of action is to consider the impacts resulting from a higher vs. a lower future scenario,
as this will cover the range of projected changes from the full range of scenarios.

Climate simulations are intended to match observations over climate time scales of decades, not days. Do not
expect a climate simulation to match day-to-day observations at any given location. The averages should
match over 20-30 years, but climate models are allowed to develop their own unique patterns of day-to-day
climate variability.

Uncertainty in future projections is the result of multiple factors. Over the next decade or two, the most
important source of uncertainty in future projections is natural variability. Scientific uncertainty in the
response of the climate system to human activities is the main source of uncertainty in temperature over the
next few decades, and in precipitation through the end of the century. Human or scenario uncertainty (what
our emissions will be) is the largest source of uncertainty in temperature past mid-century.




TECHNICAL SUMMARY

This project laid the foundation of data and analyses required to assess the potential
impacts of changes in temperature and precipitation for Puerto Rico and other Caribbean
islands. The first step in this project was to compile, standardize, and (for station data)
quality-control available observations for the region. These consisted of:

¢ Station-based observations of daily maximum and minimum temperature (27 locations
in Puerto Rico and a total of 284 for maximum and 282 for minimum temperature in the
Caribbean) and 24h cumulative precipitation (77 locations in Puerto Rico and a total of
231 in the Caribbean) from the Global Historical Climatology Network, National
Climatic Data Center, and U.K. Met Office Land Surface Station datasets (variable record
length)

* Assimilated (station observations + satellite) monthly mean precipitation covering the
entire Caribbean, gridded at a resolution of 2.5 degrees, from the Global Precipitation
Climatology Project (1979-2008)

* Reanalysis-based 2-meter monthly mean temperature and upper air fields
(geopotential height, winds, vertical velocity and specific humidity) covering the entire
Caribbean, gridded at a resolution of 1.4 degrees, from the European Centre for
Medium-Range Weather Forecasts (1957-2002)

* Monthly mean sea surface temperature covering the entire Caribbean, gridded at a
resolution of 1 degree, from the National Oceanic and Atmospheric Administration
(1982-2008)

* Ocean mixed layer depth, gridded at a resolution of 0.25 degrees, from the Levitus
World Ocean Atlas (1900-1992)

The next step was to obtain and process global climate model (GCM) simulations of
relevant variables for the Caribbean. Two sets of GCM simulations were used, as follows:

* Coupled Model Intercomparison Project version 3 (CMIP3) simulations of daily
maximum and minimum temperature and precipitation and monthly sea surface
temperature, specific humidity, winds, and geopotential height from 16 global climate
models for historical and a range of future emission scenarios, from the World Climate
Research Program (1960-2099)

* Coupled Model Intercomparison Project version 5 (CMIP3) simulations of the same
variables from 16 global climate models for historical and a range of future
concentration scenarios, from the World Climate Research Program (1950-2100)

Since precipitation over the Caribbean is controlled by a complex pattern of large-scale
atmosphere and ocean dynamics, it was important to identify the main features affecting
variability in temperature and precipitation over the region (using the observed data
sources listed above) and assess the degree to which global climate models were able to
reproduce these features.

Temperature varies smoothly over the course of the year and is closely related to sea
surface temperature. Nearly every global model shows a significant lag in the seasonal
cycle of both sea surface temperature and air temperature, ranging from a week to a month
compared to observations. Our initial hypothesis that this lag was related to biases in



model simulation of the ocean mixed layer was not substantiated by analysis of the 7
models that had archived ocean mixed layer depth. Some improvement is seen when
comparing higher- to lower-resolution models from the same modeling group, atmosphere-
only to fully atmosphere-ocean coupled models, and newer (Coupled Model
Intercomparison Project version 5) to older (version 3) models. Overall, however, this lag
appears to be a general feature of global models primarily related to limitations in their
ability to simulate seasonal shifts in atmospheric, rather than ocean, circulation.

Precipitation in the Puerto Rico and the central Caribbean is characterized by a summer
wet season ranging from May to November, punctuated by a mid-summer drought (MSD).
In contrast to temperature, we found a clear difference in model ability to simulate the
seasonal cycle of precipitation. This difference was directly related to the ability of the
models to simulate the eastward extension of a warm pool of sea surface temperature
(initiating and ending the wet season) and the mid-summer extension of the semi-
permanent North Atlantic Subtropical High pressure system over the region (which
temporarily suppresses convection, creating the MSD). Both CMIP3 and CMIP5 GCMs fall
into three categories: (1) “good” models able to simulate the timing and magnitude of both
of these features; (2) “fair” models with too-strong and too-early shift of NASH over the
region, suppressing the early part of the wet season and creating an overly long MSD; and
(3) “poor” models with a too-weak NASH, unable to simulate the MSD at all. CMIP3 models
were evenly divided between these three groups while the majority of CMIP5 models were
in Group 1, suggesting that model ability to simulate these important large-scale drivers of
precipitation over the Caribbean has generally improved over time.

We then statistically downscaled outputs from 16 different CMIP3 and 16 more CMIP5
global climate models to each of the long-term station locations in the Caribbean to
generate daily simulations of maximum and minimum temperature and 24h cumulative
precipitation for the periods 1960 to 2099 (CMIP3) and 1950 to 2100 (CMIP5). The
statistical properties of simulated time series are trained to match observed conditions at
each station for the historical period, then diverge to capture the characteristics of a higher
vs. a lower emissions future over the coming century. For CMIP3, future scenarios consist
of the Special Report on Emission Scenarios (SRES) higher A1fi, mid-high A2, mid-low A1B
and lower B1 scenarios. For CMIP5, future scenarios consist of the Representative
Concentration Pathways (RCP) higher 8.5 and lower 4.5 pathways.

Finally, we calculated a series of 85 secondary climate indicators for Puerto Rico stations,
including seasonal changes, thresholds, and extremes. These future projections were
analyzed in terms of model performance and changes projected for a range of global mean
temperature targets, from +1 to +3°C relative to 1971-2000. Projected changes were
divided into two regions for temperature (hot coastal and more temperate inland) and
three regions for precipitation (dry northern coast, dry southern coast, and wet inland
locations).

With just one degree increase in global temperature, 60% of the wet seasons are projected
to be warmer than the historical maximum and, on average, there would be 100 more days
over 85°F, 150 more days over 90°F and 35 more days over 95°F each year. With a two-
degree increase in global temperature, every day would be warmer than the historical
median, 350 days per year will be warmer than the historical 1-in-4 warmest days and 300



days per year will be warmer than the historical 1-in-10 warmest days. For a global mean
temperature increase of three degrees, Puerto Rico’s average daytime maximum
temperature is projected to increase by up to +7°C in the dry season and +6°C in wet
season. Increases are projected to be greater for inland locations as compared to coastal,
and for nighttime temperatures (over +8°C) compared to daytime. Per degree global mean
temperature change, temperature on the warmest day of the year is projected to increase
by +3°C while cooling degree-days (a measure of air conditioning demand) are projected to
increase by +600. The range of daily temperature is expected to increase, particularly in the
wet season.

Rainfall is projected to decrease, particularly in the wet season. More dry days and longer
stretches of days without rain are also projected in the wet season. Dry years are expected
to become more frequent. Days with “moderate extreme” precipitation (e.g. more than 1
inch of rain) are projected to decrease, but days with more extreme precipitation (e.g. more
than 3 inches of rain in a day, or rainfall amounts exceeding the historical 1-in-100 and 1-
in-1000 wettest day) are expected to increase.

Projections from the CMIP3 models based on the SRES scenarios and the CMIP5 models
based on the RCP scenarios show similar increases in temperature and decreases in
precipitation, increasing confidence in the direction and approximate magnitude of future
changes for Puerto Rico. For CMIP3, models in Group 1 (good) simulated notably greater
decreases in wet season precipitation and increases in dry days and drought periods, as
well as smaller changes in daytime maximum temperatures and greater changes in
nighttime minimum temperatures, as compared to models in groups 2 or 3. For CMIP5,
however, models in Group 1 simulated smaller decreases in wet season precipitation as
compared to models in Groups 2 or 3.

Drawing on the work of colleagues at GFDL (Vecchi et al., 2012), it appears that this
difference between precipitation decreases simulated by “good” CMIP3 vs. CMIP5 models
may be due to the fact that CMIP3-based precipitation changes are primarily driven by
carbon dioxide increases, while CMIP5-based precipitation changes are responding to both
increases in carbon dioxide and changes in aerosol emissions and transport, particularly
over the Caribbean. Over this region specifically, the net effect of (a) improved aerosol
representation in CMIP5 models, combined with (b) large reductions in aerosol loading
amounts in the RCP scenarios appears to somewhat mitigate the drying effects of carbon
dioxide on precipitation. If true, the implication is that as aerosol emissions are eliminated,
the effects of carbon dioxide may become more evident, leading to further decreases in
Caribbean rainfall over longer time horizons than those considered here.

With significant increases in temperature and moderate decreases in precipitation
projected for the Caribbean as a whole and Puerto Rico specifically, these climate change
projections have important implications: for local agriculture and food supply,
temperature-sensitive species and ecosystems, supply and demand of energy (for air
conditioning), human health (related to extreme heat and air pollution), availability and
demand for water, including increased risk of water stress and drought, and potential
infrastructure impacts from increases in the frequency of the most heavy rainfall events.
The projections generated by this work are intended to be used to assess the magnitude of
future impacts and inform robust adaptation planning.



PURPOSE AND OBIJECTIVES

The first purpose of this work was to create a reliable set of state-of-the-art climate
projections that can be used to assess the impacts of climate change on Puerto Rico and the
Caribbean. This dataset was created by compiling all available observations for the region
(including station observations, satellite assimilation, and reanalysis products), identifying
key large-scale drivers of variability in temperature and precipitation across the region,
quantifying the ability of global climate models (GCMs) to reproduce these large-scale
drivers and their impacts on precipitation and temperature, statistically downscaling
simulations from 16 CMIP3 and 16 CMIP5 models to all long-term station records in the
Caribbean, calculating projected changes in 85 temperature and precipitation indicators for
stations in Puerto Rico, and analyzing results in terms of projected global change and
model performance. This dataset enables consistent assessments of climate impacts on
both human and natural systems, based on the same common data set. Such analyses
produce consistent results that can be compared across the Caribbean and (in conjunction
with previous work) across the continental U.S.

The second purpose of this work was to evaluate the hypothesis that global model
performance may affect the magnitude and/or direction of projected change. This
hypothesis was tested by identifying key features of regional climate that affect air
temperature and rainfall, including the Caribbean Low-Level Jet, the North Atlantic
Subtropical High, the sea surface temperature warm pool, ocean mixed layer depth, and
patterns of moisture convergence and divergence across the region. Global models were
then compared with observed patterns of variability and change to determine whether
future projections could be differentiated between those models able to simulate observed
large-scale circulation features and those that were not. For both CMIP3 and CMIP5
simulations, there was a noticeable difference between the ensemble mean projections
from better vs. poorer-performing models for wet season precipitation and, to a lesser
degree, wet-season temperature. This suggests that model performance can affect the
magnitude of future projections and should be taken into account when assessing the
impacts of climate change in the May-November Caribbean wet season.

All the objectives of the original work were met. The extent of the original analysis was also
expanded in three important ways: first, by incorporating the latest projections from
CMIP5 models (first made available in 2012-2013) and comparing the results of these
models with those obtained from earlier CMIP3 analyses (first made available circa 2005);
second, by extending the original proposed evaluation of global climate models, which
initially focused on teleconnection patterns, to instead identify and evaluate regional
dynamics, a much more technical and detailed analysis; and third, by calculating 85
secondary climate indicators for Puerto Rico and analyzing projected changes in these
indicators under global mean temperature increases of +1, 2, and 3°C relative to 1971-2000
for both hot, dry coastal regions and more temperate, wetter inland areas.



ORGANIZATION AND APPROACH

The research process of this project consists of five steps:

1. Obtaining, processing, and quality-controlling the observational inputs and global model
simulations

2. Analyzing the observations to determine the primary large-scale influences on
temperature and precipitation in the Caribbean

3. Evaluating global climate model simulations to quantify their ability to simulate these
large-scale drivers and their influence on regional temperature and precipitation

4. Generating high-resolution projections of daily maximum and minimum temperature and
24h cumulative precipitation for long-term weather stations in the region

5. Calculating secondary climate indicators and analyzing projected climate change for
Puerto Rico.

STEP ONE. Compilation of observations and model simulations. Climate analysis in the
Caribbean is complicated by the relative sparseness of long-term data records (in no small
part due to the limited land area in the region) as compared to the continental U.S. For that
reason, the first and most essential step in this project was to beat the bushes for any and
all available data sources for this region. Database and internet searches, literature
reviews, and personal recommendations were used to assemble a set of long-term station
observations and available gridded fields for the region derived from satellites, ocean
buoys, and reanalysis models. For station observations, an additional quality-control
process (developed as part of a simultaneous U.S. downscaling effort) was applied to
identify outlier and erroneous values that would compromise the quality of the statistical
downscaling model. The observations and model simulations used here are described in
detail later in this section.

STEP TWO. Analysis of large-scale climate drivers. A key hypothesis of this project was
whether global climate model performance affected the magnitude and/or direction of
projected future change. Before this hypothesis could be evaluated, it was necessary to
identify the primary natural drivers of temperature and precipitation variability over the
region. This was an iterative and exhaustive process that included detailed literature
reviews of previous research and analysis of multiple surface, ocean, and upper-air fields
both over the Caribbean as well as remote influences such as ENSO. Many rabbit-trails
were followed in order to eliminate less important features and identify a final set of the
most relevant large-scale features to temperature and precipitation variability in the
Caribbean. This work is described in more detail in the ANALYSIS AND RESULTS section.

STEP THREE. Evaluation of global climate models. Evaluation of global climate models
was complicated by the limited nature of output fields available. Particularly in the CMIP3
archive, not every model had archived the monthly mean upper air or ocean fields required
to assess model ability to simulate the features identified in Step 2; hence, this step
included much cobbling together of available resources and envisioning multiple ways to
ask the same questions in order to maximize available output from each model. To ensure
consistency, the global models were evaluated in the same manner as observations, with
simulations often normalized to highlight biases in anomalies, or variability over time.



STEP FOUR. Generating high-resolution climate projections. Creating a set of high-
resolution climate projections requires global climate model simulations and observations
at the desired spatial and temporal scale. Here, we used GCM simulations from CMIP3 and
CMIP4 and station-based observations from a range of sources (see observations section,
below). This step also required a statistical downscaling model to translate the GCM
simulations into regionally-relevant information. To this end, we used a model capable of
resolving daily extremes, the Asynchronous Regional Regression Model. The historical and
future emission scenarios, GCM inputs, observations, and downscaling model are all
described in more detail in this section, below.

STEP FIVE. Analyzing climate change for Puerto Rico. The final step in the project was
to analyze projected changes in daily maximum and minimum temperature and 24h
cumulative precipitation for Puerto Rico, and determine whether model performance
affected the magnitude of future change. To this end, an indicator code was first written to
derive 85 temperature and precipitation-related indicators from the raw daily data, and an
analysis code was then written and applied to average projected changes across: (1) 20-
year time periods corresponding to global mean temperature increases of +1, 2, and 3°C
relative to the 1971-2000 average, (2) across two regions for temperature (hot coastal vs.
temperate inland) and three for precipitation (dry northern coast, dry southern coast, and
wet central region), and (3) across good, fair and poor-performing GCMs. The resulting
multi-model ensemble and temporal averages were then plotted in Excel and saved as
images (see ANALYSIS AND RESULTS section) to visualize projected changes.

This project used SRES emission scenarios Alfi (higher), A2 (mid-high), A1B (mid-low) and B1 (lower)
and the RCP concentration pathways 8.5 (higher) and 4.5 (lower). These scenarios were chosen
because they cover a broad range of plausible futures in terms of human emissions of carbon dioxide
and other radiatively-active species and resulting impacts on climate.

Climate model simulations begin with a long, multi-century “control” run where external
forcing conditions including greenhouse gas concentrations, solar radiation, and volcanoes
are fixed at constant levels corresponding to a specific year, generally in the 19t century.
The choice of control year varies from one modeling group to the next, but is typically
between 1850 and 1890. This long run is required for the ocean and atmospheric
components of the model to equilibrate with each other and reach a stable climate. Output
from control runs was not used in this project.

Once climate conditions are stabilized, the output from the control run can be used as input
to a transient historical simulation. During a transient simulation, the external forcings
(including greenhouse gas concentrations, solar radiation, and volcanic eruptions) change
from year to year consistent with observed values for that year. The transient historical
forcings used by the GCM simulations in this project are the Coupled Model
Intercomparison Project’s “20th Century Climate in Coupled Models” or 20C3M total
forcing scenarios (Meehl et al. 2007; Taylor et al., 2012). These scenarios include forcing
from anthropogenic or human emissions of greenhouse gases, aerosols, and reactive
species; changes in solar output; particulate emissions from volcanic eruptions; changes in
tropospheric and stratospheric ozone; and other influences required to provide a complete
picture of the climate over the last century. As such, these simulations provide the closest
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approximation to actual climate forcing from the beginning of the transient experiment to
the year 2000. Where multiple 20C3M simulations were available, the first was used here
(“run 1”) unless complete daily outputs were not available for that simulation, in which
case the next available was used.

In the same way as the control run can provide the starting conditions for multiple
historical transient simulations, the historical transient simulation provides the starting
conditions for multiple future simulations. To ensure the accuracy of the historical total
forcing scenarios, it is customary in the climate modeling community for historical
simulations to end at least 5 years before the actual year in which the simulation is being
conducted. So although the CMIP3 GCM simulations were typically conducted after 2005,
CMIP3 historical total-forcing scenario ends and “future” scenarios begin in 2000. CMIP5
historical scenarios end in 2005 and “future” scenarios begin in 2006. In the future
scenarios, most external natural climate drivers are fixed, and human emissions
correspond to a range of plausible pathways rather than observed values.

The CMIP3 scenarios used here are those described in the Intergovernmental Panel on
Climate Change (IPCC) Special Report on Emissions Scenarios (SRES; Nakicenovi¢ et al,,
2000). These scenarios describe internally consistent pathways of future societal
development and corresponding emissions. The carbon emissions and global temperature
change that result from the SRES scenarios are shown in Figure 1 (left side).

At the higher end of the range, the SRES higher-emissions or fossil fuel intensive scenario
(A1FI, for fossil-intensive) represents a world with fossil fuel-intensive economic growth
and a global population that peaks mid-century and then declines. New and more efficient
technologies are introduced toward the end of the century. In this scenario, atmospheric
COz concentrations reach 940 parts per million by 2100, more than triple pre-industrial
levels of 280 ppm. At the lower end, the SRES lower-emissions scenario (B1) also
represents a world with high economic growth and a global population that peaks mid-
century and then declines. However, this scenario includes a shift to less fossil fuel-
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Figure 1. There are two families of future scenarios: the 2000 Special Report on Emission Scenarios (SRES, left) and
the 2010 Representative Concentration Pathways (RCP, center). This figure compares 2000 Special Report on
Emission Scenarios (SRES, left), 2010 Representative Concentration Pathways (RCP, center), and observed
historical annual carbon emissions (left) in gigatons of carbon (GtC). At the top end of the range, SRES and RCP
scenarios are very similar. At the bottom end of the range, the RCP 2.6 scenario is much lower as it includes the
option of using policies to reduce carbon dioxide emissions, while SRES scenarios do not.
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intensive industries and the introduction of clean and resource-efficient technologies.
Emissions of greenhouse gases peak around mid-century and then decline. Atmospheric
carbon dioxide levels reach 550 parts per million by 2100, about double pre-industrial
levels. Associated temperature changes by end-of-century range from 4 to 9°F based on the
best estimate of climate sensitivity.

For this project, climate projections were based on the A1FI higher (dark red), A2 mid-high
(orange), A1B mid-low (red) and B1 (blue) lower scenarios. Due to the decision of IPCC
Working Group 1 to focus on the A2, A1B and B1 scenarios, only four GCMs had A1FI
scenarios available. For other models, daily outputs were not available for all scenarios.
Table 1, in the next section on Global Climate Model Simulations, summarizes the
combinations of GCM simulations and emission scenarios used in this work.

In 2009, the IPCC released a new set of scenarios, called Representative Concentration
Pathways or RCPs (Moss et al.,, 2010). In contrast to the SRES scenarios, the RCPs are
expressed in terms of carbon dioxide concentrations in the atmosphere, rather than direct
emissions. The RCP scenarios are also named in terms of their change in radiative forcing
(in watts per meter squared) by end of century: +8.5 W/m? and +4.5 W/m?.

RCP scenarios can be converted “backwards”, into the range of emissions consistent with a
given concentration trajectory, using a carbon cycle model (Figure 1, center). Four RCP
scenarios were developed to span a plausible range of future carbon dioxide
concentrations, from lower to higher. At the higher end of the range, atmospheric carbon
dioxide levels under the RCP 8.5 scenario reaches more than 900 parts per million by 2100.
At the lowest, under RCP 2.6 policy actions to reduce carbon dioxide emissions below zero
before the end of the century (i.e. to the point where humans are responsible for a net
uptake of carbon dioxide from the atmosphere) keeps atmospheric carbon dioxide levels
below 450 parts per million by 2100. Associated temperature changes by end-of-century
range from 2 to 8°F based on the best estimate of climate sensitivity.

For this project, climate projections were based on the RCP 8.5 higher (dark red) and 4.5
lower (blue) scenarios, as these closely match the SRES A1fi and B1 scenarios. Although the
CMIP5 archive contains simulations from over 40 models, a much smaller subset (only 16
individual models, from 13 modeling groups) archived daily temperature and precipitation
for both the RCP 8.5 and 4.5 scenarios. These models are summarized in Table 1, in the
next section on Global Climate Model Simulations.

As the SRES scenarios begin in 2000 and the RCP scenarios in 2006, projected carbon
emissions can be compared with actual emissions, shown in Figure 1 (right). Currently,
actual emissions are near the top of the range of both SRES and RCP scenarios, and are
projected to exceed this range by 2030 if current growth rates (averaging more than 3%
per year since 2000) continue.

To generate high-resolution daily projections for Puerto Rico and the Caribbean, this project used
CMIP3 global climate model simulations from 16 different models, and CMIP5 simulations from 16
different models. To analyze GCM ability to simulate observed drivers of monthly temperature and
precipitation over the Caribbean, this project used 18 CMIP3 GCMs and 26 CMIP5 GCMs.
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Global climate model simulations, while in a state of constant flux within a given research
group or laboratory, are archived at regular intervals by the World Climate Research
Programme's Working Group on Coupled Modelling (WGCM). In preparation for the IPCC’s
Fourth Assessment Report (AR4), the WGCM requested that the US DOE-funded Program
for Climate Model Intercomparison and Diagnosis (PCMDI) collect model output from
climate modeling centers around the world. This first collection, assembled between 2005
and 2006 and archived by PCMDI, represents models that contributed to phase 3 of the
Coupled Model Intercomparison Project (CMIP3; Meehl et al., 2007). These are the results
presented in the 2007 IPCC Fourth Assessment Report (AR4).

The CMIP3 GCM simulations used in this project consist of all model outputs archived by
PCMDI with daily maximum and minimum temperature and precipitation outputs.
Additional simulations were obtained from the archives of the Canadian Centre for Climate
Modeling and Analysis, the Geophysical Fluid Dynamics Laboratory, the National Center for
Atmospheric Research, and the U.K. Meteorological Office. A total of 17 GCMs met this data-
based criteria. The full list of GCMs used, their origin, the scenarios available for each, and
the time periods covered by their output are given in Table 1. Output from 12 GCMs was
available for the full time period (1960 or 1961 to 2099) while output from 5 more GCMs
was available for three time slices (1961-2000, 2046-2065, 2081-2100).

From 2011 through the end of 2012, PCMDI began to collect and archive new GCM
simulations that contributed to the fifth phase of CMIP and which will be used in the
upcoming IPCC Fifth Assessment Report (AR5; Taylor et al. 2012). The CMIP3 and CMIP5
archives are similar in that most of the same international modeling groups contributed to
both. Both provide daily, monthly, and yearly output from climate model simulations
driven by a wide range of future scenarios. However, the archives are also different from
each other in three key ways. First, many of the CMIP5 models are new versions or updates
of previous CMIP3 models and some of the CMIP5 models are entirely new. Some of the
CMIP5 models are “Earth System Models” that include both traditional components of the
CMIP3 Atmosphere-Ocean General Circulation Models as well as new components such as
atmospheric chemistry or dynamic vegetation. Second, the CMIP5 simulations use the RCP
scenarios as input for future simulations while the CMIP3 simulations use the SRES
scenarios as input (Figure 1). Third, the CMIP5 archive contains many more output fields
than the CMIP3 archive did.

After the original GCM files were obtained from their host archive, they were subjected to a
basic quality control to ensure the files contained the days and the data they stated that
they did, that the data was within reasonable bounds for the variable listed, and that any
missing data were identified. This analysis showed that many original GCM files had errors
or peculiarities that were catalogued by this project before conducting the downscaling.

No attempt was made to select a sub-set of GCMs that performed better than others, as
previous literature has showed that it is difficult, if not impossible, to identify such a sub-
set for the continental U.S. (e.g. Knutti, 2010; Randall et al. 2007) However, the bias and
error analysis conducted in a previous project identified one CMIP3 model (BCCR-BCM2)
with consistently poor performance. One CMIP5 model (FGOALS-s2) was also withdrawn
from the archive in 2013. As a result, simulations from these two GCMs were removed from
the dataset generated by this project.
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Table 1. CMIP3 and CMIP5 global climate modeling groups and their models used in this analysis. Those marked
with (*) archived only time slices: 1961-2000, 2046-2065 and 2081-2100. Those marked with () begin in 1961 (for
CMIP3) and begin in 1960 and end in 2099 (for CMIP5). Those marked with a (*) have only 360 days per year. All
other models archived full daily time series from 1960 to 2099 (CMIP3) and 1950 to 2100 (CMIP5).

Origin CMIP3 CMmIP3 CMIP5 CMIP5
model(s) scenarios model(s) scenario(s)

Beijing Climate Center Climate N/A N/A bcc-csm1-1-m 45,85

System Model

National Center for CCSM3 AlFIl, A2, A1B, B1 CCsm4 45, 8.5

Atmospheric Research, USA PCM ALFI, A2, A1B, B1

Canadian Centre for Climate CGCM3.1-T477 A2, A1B, B1 N/A N/A

Modelling and Analysis, Canada cGCM3.1 - T637 A2, A1B, B1

Centro Euro-Mediterraneo per N/A N/A CMCC-CM 45,85

I Cambiamenti Climatici CMCC-CMS 8.5

Centre National de Recherches CNRM-CM3 A2, A1B, Bl CNRM-CM5 45,85

Meteorologiques, France

Commonwealth Scientific and CSIRO-Mk3.0*~ A2, Al1B, Bl CSIRO-MK3.6.0 45,85

Industrial Research ACCESS 1-0 45,85

Organisation, Australia ACCESS 1.3 45 85

Max Planck Institute for ECHAMS5/MPI A2, Al1B, B1 MPI-ESM-LR 45, 8.5

Meteorology, Germany MPI-ESM-MR 45,85

National Institute of ECHO-G (with A2, A1B, Bl N/A

Meteorological Research/Korea MPI)*

Meteorological Administration

NOAA Geophysical Fluid GFDL CM2.0 AlFIl, A2, A1B, B1 GFDL-CM3 8.5

Dynamics Laboratory, USA GFDL CM2.1 A2, Bl

NASA Goddard Institute for GISS-AOM*A A1B, B1 N/A

Space Studies, USA

UK Meteorological Office HadCMm3* Al1FI, A2, A1B,B1 HadGEM2-CCA* 45,85

Hadley Centre HadGEM1" A2, A1B

Institute for Numerical N/A N/A INMCM4 45,85

Mathematics, Russian

Institut Pierre Simon Laplace, N/A N/A IPSL-CM5A-LR 45,85

France

Agency for Marine-Earth MIROC3.2 A1B, B1 MIROC5 45,85

Science and Technology, (hires)* A2, A1B, B1

Atmosphere and Ocean MIROC3.2

Research Institute, and (medres)*A

National Institute for

Environmental Studies, Japan

Meteorological Research MRI- A2, A1B, Bl MRI-CGCM3 45,85

Institute, Japan CGCM2.3.2*A
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The CMIP5 GCM simulations used in this project consist of 16 model outputs archived by
the Earth System Grid with continuous daily maximum and minimum temperature and
precipitation outputs available for historical and the RCP 8.5 future scenario and 14
available for historical and the RCP 4.5 future scenario. No additional simulations were
obtained from individual modeling group archives. The full list of CMIP5 GCMs used, their
origin, the scenarios available for each, and the time periods covered by their output are
given in Table 1.

This project used the statistical Asynchronous Regional Regression Model (ARRM). It was selected because it is
able to resolve the tails of the distribution of daily temperature and precipitation to a greater extent than the
more commonly used Delta and BCSD methods, but is less time-intensive and therefore able to generate more
outputs as compared to a high-resolution regional climate model.

Dynamical and statistical downscaling represent two complimentary ways to incorporate
higher-resolution information into GCM simulations in order to obtain local to regional-
scale climate projections. Dynamical downscaling, often referred to as regional climate
modeling, uses a limited-area, high-resolution model to simulate physical climate processes
at the regional scale, with grid cells typically ranging from 10 to 50km per side. Statistical
downscaling models capture historical relationships between large-scale weather features
and local climate, and use these to translate future projections down to the scale of any
observations—here, both individual weather stations as well as a regular grid.

Statistical models are generally flexible and less computationally demanding than regional
climate models, able to use a broad range of GCM inputs to simulate future changes in
temperature and precipitation for a continuous period covering more than a century.
Hence, statistical downscaling models are best suited for analyses that require a range of
future projections that reflect the uncertainty in future scenarios and climate sensitivity, at
the scale of observations that may already be used for planning purposes. If the study is
more of a sensitivity analysis, where using one or two future simulations is not a limitation,
or if it requires multiple surface and upper-air climate variables as input (and has a
generous budget!), then regional climate modeling may be more appropriate.

Each commonly used downscaling method has its own benefits, and each can be sufficient
for certain applications. For example, the simple delta or “change factor” approach does a
good job with downscaling annual or seasonal mean temperature (as demonstrated in
Figures 3 and 4). Regional climate models require large amounts of computing power, but
provide consistent high-resolution projections for a broad range of surface and upper-air
variables. None of these existing methods, however, allow for using multiple climate
models and scenarios as input while downscaling to any spatial scale (including both
station-based and gridded), and adequately resolving projected changes in daily climate
extremes, at the same time.

For that reason, in this project we used a relatively new statistical downscaling model, the
Asynchronous Regional Regression Model, or ARRM (Stoner et al, 2012). ARRM uses
asynchronous quantile regression, originally developed by Koenker and Bassett (1978) to
estimate conditional quantiles of the response variable in econometrics. Dettinger et al.
(2004) was the first to apply this statistical technique to climate projections to examine
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simulated hydrologic responses to climate variations and change, as well as to heat-related
impacts on health (Hayhoe et al,, 2004).

ARRM expands on these original applications with modifications specifically aimed at
improving the ability of the model to simulate the shape of the distribution including the
tails, including use of a piecewise rather than linear regression to accurately capture the
often non-linear relationship between modeled and observed quantiles, and bias correction
at the tails of the distribution. It is a flexible and computationally efficient statistical model
that can downscale station-based or gridded daily values of any variable that can be
transformed into an approximately symmetric distribution and for which a large-scale
predictor exists. A quantile regression model is derived for each individual grid cell or
weather station that transforms historical model simulations into a probability distribution
that closely resembles historical observations (Figure 2a). This model can then be used to
transform future model simulations into distributions similar to those observed (Figure
2b). More information on the ARRM method is provided in APPENDIX D, “An
asynchronous regional regression model for statistical downscaling of daily climate
variables” by Stoner et al. (2012).

-—08S —1961-1990
GFDL CM2.1
— Hadcm3

5 — PCM

== B12070-2099

= A1FI 2070-2099

number of days per year (May-Sept)
number of days per year (May-Sept)

0 10 20 30 40 50 0 10 20 30 40 50 60
daily maximum temperature (°C) daily maximum temperature (°C)
Figure 2. (a) Observed (black) and historical simulated (b) Historical simulated (black) and future projected daily
distribution of daily maximum summer temperatures by maximum summer temperature under the SRES A1FI higher (red)
three GCMs for a weather station in Chicago for and B1 lower (orange) emission scenarios.

evaluation period 1980-1999.

Both statistical and dynamical downscaling models are based on a number of assumptions,
some shared, some unique to each method. Two important shared assumptions are the
following: first, that the inputs received from GCMs are reasonable, i.e. that they adequately
capture the large-scale circulation of the atmosphere and ocean at the skillful scale of the
global model; and second, that the information from the GCM fully incorporates the climate
change signal over that region. This first assumption was evaluated in this project (see
ANALYSIS and RESULTS).

All statistical models are based on a crucial assumption often referred to as stationarity.
Stationarity assumes that the relationship between large-scale weather systems and local
climate will remain constant over time. This assumption may be valid for lesser amounts of
change, but could lead to biases under larger amounts of climate change (Vrac et al., 2007).
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In a separate USGS-funded TTU-GFDL project, we are currently evaluating the stationarity
of three downscaling methods, including the ARRM method (used here), the delta approach,
which adds a “delta” derived from GCM output to observed mean annual, seasonal, or
monthly values in order to get future values (e.g., Hay et al., 2000; as used in USGCRP,
2000); and the Bias Correction-Statistical Downscaling (BCSD) model, which uses a
quantile mapping approach to downscale monthly AOGCM-based temperature and
precipitation to a regular grid (Wood et al. 2004; as used in Hayhoe et al. 2004, 2008 and
USGCRP, 2009; available from ClimateWizard.org and the DOE Green Data Portal). In this
ongoing project, high-resolution 25km GFDL global model simulations for end-of-century
under the higher RCP 8.5 scenario have been coarsened and used as input to these three
statistical downscaling methods. The resulting projections are then compared directly to
the high-resolution output to determine the extent to which the assumption of stationarity
holds true. Where biases are small, stationarity is a reasonable assumption. Where biases
are large, the assumption of stationarity fails.

ARRM
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Figure 3. Bias in the 0.1% (top), 50" (middle) and 99.9" (bottom) quantiles of daily maximum temperature as
simulated by the ARRM, Delta, and BCSD/Quantile Mapping methods compared to high-resolution 25km global
GFDL dynamical model simulations for end of century under the higher RCP 8.5 emissions scenario. Blue colors
indicate a cold bias, while warm colors indicate a warm bias. Hayhoe et al. (2012)

To examine the stationarity in daily maximum temperatures, Figure 3 compares biases
from the 0.1th to the 99.9th quantile (i.e. from the coldest day in 1000 to the hottest day in
1000). These biases represent the difference between daily maximum temperature values
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simulated by the 25km global climate model vs. those simulated by each statistical model,
using coarsened global climate model fields as input.

Preliminary analyses show that the assumption of stationarity holds true over much of the
world for the lower and middle of the distribution. The delta and BCSD methods exhibit a
strong cold bias of up to 10°C at higher latitudes for cold temperatures. The BCSD method
also begins to exhibit a systematic warm bias across the central U.S. at high temperatures.
The only location where ARRM performance is systematically non-stationary is at high
temperatures (at and above the 99.9th quantile) along coastal areas, with warm biases up to
6°C. This may be due to the statistical model’s inability to capture dynamical changes in the
strength of the land-sea breeze as the temperature differences between land and ocean are
exacerbated under climate change; the origins of this feature are currently under
investigation.

This bias has important implications for the climate projections generated for Puerto Rico
and the Caribbean, since most station locations in this region are coastal. It suggests that
estimated changes in days hotter than the 1-in-100 hottest historical day (e.g. the historical
~3 to 4 hottest days of the year) may be subject to temperature biases that increase in
magnitude such that biases for the 1-in-1000 hottest days (e.g. the hottest day in 3 years)
may be as large as the projected changes in the temperature of those days by end-of-
century under a higher emissions scenario.

For precipitation, Figure 4 compares biases from the 10th to the 99.9% quantile for wet
days only. Green colors are used to indicate where the statistical models over-estimate
precipitation relative to the global model, while brown colors show where they under-
estimate future precipitation. Here, the BCSD approach, originally designed for forecasting
streamflow that typically depends on accumulated precipitation over timescales of weeks
(i.e. not high quantile events), shows a remarkable near-zero bias up to the 90* quantile.
After that point, however, it rapidly develops a systematic positive bias in precipitation
covering almost the entire world. The Delta method exhibits a systematic positive (wet)
bias for low precipitation over land that shifts to a systematic negative (dry) bias for high
precipitation over land. The ARRM method is characterized by a spatially variable bias at
all quantiles that is generally not systematic, and varies from approximately -30 to +30%
depending on location.

Although the downscaling model is purposely designed to be applicable to any variable
with a relatively symmetric distribution, predictors must be pre-selected for each variable
and there are some differences in the initial processing of each predictor that can improve
the performance of the model in downscaling. The ARRM method has been specifically
designed to allow for user-selected predictors. For the sake of consistency, however, in this
project predictors were chosen to be the same variables as the predictands: 2Zm maximum
and minimum temperature and 24h cumulative precipitation. These are the most
frequently-archived daily output from both CMIP3 and CMIP5 GCMs.
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Figure 4. Bias in the 10th (first row), 50" (second row) and 99" (third row) quantiles of daily precipitation
(including wet and dry days) as simulated by the ARRM, Delta, and BCSD/Quantile Mapping methods compared to
high-resolution 25km global GFDL dynamical model simulations for end of century under the higher RCP 8.5
emissions scenario. Green colors indicate a wet bias, while brown colors indicate a dry bias. Hayhoe et al. (2012)

This project used gridded observations of monthly precipitation (GPCP), sea surface temperature (NOAA), mixed
layer depth (Levitus) and atmospheric surface and upper-air fields (ERA-40). Gridded fields were used to identify
large-scale drivers of temperature and precipitation variability over the Caribbean and evaluate global climate
model performance relative to observed.

Gridded precipitation data was obtained from the global merged precipitation data of the
Global Precipitation Climatology Project, GPCP version 2 (Adler et al. 2003). As stated on
the project website (http://www.gewex.org/gpcp.html), the GPCP combines data from
6,000 rain gauge stations, satellite geostationary passive microwave instruments, and
sounding observations. This dataset is described as the most complete analysis of rainfall
available over the global oceans, as well as adding additional detail over land areas with
sparse station records, such as the Caribbean. GPCP data is gridded to 2.5 degrees at
monthly  resolution from 1979 to 2008 (data available online at:
ftp://precip.gsgc.nasa.gov/pub/gpcp-v2.1/psg).

Upper-air and surface atmospheric fields, including monthly mean geopotential height,
zonal and meridional wind, vertical velocity, specific humidity, and 2 meter temperature
was obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF)
40 year reanalysis, ERA-40 (Uppala et al. 2005; data available online at:
http://dss.ucar.edu/datasets/ds119.0). ERA-40 output is available at a resolution of
approximately 1.4 degrees for the period from September 1957 to August 2002.
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Reanalysis does not consist of actual observations, but rather of output from a numerical
weather simulation model constrained to match available observations at regular intervals.
In broad terms, reanalysis can be viewed as informed dynamical interpolation between
observations that, for regions such as the Caribbean, are often relatively sparse.

Sea surface temperature (SST) data used here comes from the National Oceanic &
Atmospheric Administration (NOAA) Optimum Interpolation (OI) SST V2 (Reynolds et al.
2002; data available at:

http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html). The SST data has a
spatial resolution of 1 degree with monthly mean data available for 27 years, from 1982 to
2008.

Monthly mean ocean mixed layer depth was obtained from the Levitus World Ocean Atlas
(Monterey & Levitus, 1997; data available at:

http://www.esrl.noaa.gov/psd/data/gridded/data.nodc.woa94.html). The mixed layer
depth data was available at a spatial resolution of 0.25 degrees, from 1900 to 1992.

This project used long-term station data from the Global Historical Climatology Network, supplemented with
additional station data from MIDAS and NOAA/NCDC. All station data was quality-controlled to remove
questionable data points before being used to train the statistical downscaling model.

Long-term weather station records were obtained from the Global Historical Climatology
Network (GHCN; http://www.ncdc.noaa.gov/oa/climate/ghcn-daily/) and supplemented
with additional records from the U.K. Met Office Integrated Data Archive System Land and
Marine Surface Stations Data (MIDAS, http://badc.nerc.ac.uk/data/ukmo-midas/) and the
National Climatic Data Center cooperative observer program (NCDC-COOP,
http://www.ncdc.noaa.gov/land-based-station-data/cooperative-observer-network-coop).

MIDAS was not available in daily format; thus, three-hour instantaneous temperature data
was extracted and fit to a diurnal function and cumulative precipitation was extracted and
summed before being evaluated relative to WMO standards (e.g. maximum daily
temperature must occur between 6am and 6pm; minimum nighttime temperature between
6pm and 6am; precipitation is summed from Oh to 21h local time).

To train the downscaling model, the observed record must be of adequate length and
quality. To appropriately sample from the range of natural climate variability at most of the
station locations, and to produce robust results without over-fitting, stations were required
to have a minimum of 20 consecutive years of daily observations overlapping GCM outputs
with less than 50% missing data after quality control. When these limits were applied, the
number of usable stations for the Caribbean totaled 284 for maximum temperature, 282 for
minimum temperature, and 231 for precipitation. The latitude, longitude, and station
names of the weather stations for which downscaled projections were generated are
provided in APPENDIX A.

All datasets were incorporated into the quality control framework described in ANALYSIS
AND FINDINGS. Long-term records from these datasets were then downscaled and
compiled into a database of high-resolution projections for the Caribbean described in
PROJECT RESULTS.
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Data file formats and computational approaches used represent the standard for climate
model data and analysis. Datasets are archived as ascii text files (observed station data)
and self-describing netCDF files (gridded observations and station-based climate
projections). All codes were written using the statistical programming language R
(http://cran.us.r-project.org/). Bar charts were prepared using Microsoft Excel and maps
using the NCAR Command Language (http://www.ncl.ucar.edu/) and ArcGIS
(http://www.esri.com/software/arcgis) and stored in postscript or Adobe PDF format.

PROJECT RESULTS

This project produced three specific products: a quantitative dataset of raw climate
projections for long-term weather stations in the Caribbean; a qualitative analysis of global
climate model performance over the Caribbean; and a quantitative analysis of projected
climate changes for Puerto Rico stations, as follows:

A database of daily projections for 284 (maximum temperature), 282
(minimum temperature) and 231 (precipitation) individual long-term weather
stations in the Caribbean.

This dataset consists of daily maximum and minimum temperature and 24h cumulative
precipitation for each day from 1960 to 2099 (CMIP3) and 1950 to 2100 (CMIP5) for which
global climate model output was available. When GCM output was not available for a given
day, or was clearly erroneous, the value for that day was replaced with an “NA” value. NA
values in the downscaled projections for each weather station are not errors; they are
merely indicative of a lack of input information for that day.

The majority of global climate model fields used in this analysis were obtained from the
WCRP CMIP3 and CMIP5 archives, which maintains standards of data provision and quality
control. (SRES A1FI scenarios were not archived by CMIP3: these simulations were
obtained directly from individual modeling groups.) Before the global model fields could be
used, they were quality-controlled for specific problems including:

1. Missing data (which could range from a few random days to entire decades in the
middle of a simulation)

2. Incorrect values (unrealistic data points far above or below historical observed
maxima or minima)

3. Mis-labeled files (files that did not contain the variable or data listed in the file name
and header)

In addition to these errors, each model also had its own peculiarities that had to be
standardized before the predictors could be incorporated into the downscaling model: days
per year ranging from 360 to 366 (for models with 360 days, “NA” values were added for
the 31st of each month from August to December), different data units, and limited
information (e.g., five CMIP3 models only had limited future time slices available, others
began in 1961 instead of 1960).

These and other known quality issues and model peculiarities are listed in Table 3.
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Table 3. Known quality control problems with original global climate model outputs and model peculiarities that
were documented and, if possible, standardized before the model was used in Step One.

\ Global climate model
CMIP5

Known issues

CMCC-CMS

RCP 4.5 not available

GFDL-CM3

RCP 4.5 not available

HadGEM2-CC

Model has 360 days per year. These were divided up such that the last
days of May, July, Aug, Oct and Dec are always missing.
Years 1950-1959 and 2100 are also missing.

CCSM3

Temperature data for historic and future periods not initialized from the
same run, creating disconnect between the two files if one were to plot a
continuous time series joining the 2 files. This situation is unavoidable for
CCSM, as most of its historical simulations have erroneous tmax/tmin
values (they were accidentally overwritten with the variable TREFHT by
the original modeling group).

A1fi Tx/Tn: b30.030h to b30.099a (no match)
A1fi Pr: b30.030a to b30.099a (matched)

A1B Tx/Tn: b30.030h to b30.042g (no match)
A1B Pr: b30.040a to b30.030a (matched)

A2 Tx/Tn: b30.030h to b30.042e (no match)
A2 Pr: b30.030e to b30.042e (matched)

CGCM3-T47

Alfi scenario not available.
Simulation begins in 1961. 1960 is missing.

CGCM3-T63

Alfi scenario not available.
Simulation begins in 1961. 1960 is missing.

CNRM

Alfi scenario not available.
Leap years removed before downscaling.

CSIRO

Alfi scenario not available.
Future data not available for 2000-2045 and 2066-2080.

ECHAMS5

Alfi scenario not available.
Leap years removed before downscaling.

ECHO

Alfi scenario not available.
Model has 360 days per year. These were divided up such that the last
days of May, July, Aug, Oct and Dec are always missing.

GISS-AOM

Alfi and A2 scenarios not available.
Future data not available for 2000-2045 and 2066-2080.

GFDL CM2.0

Alfi and A1B scenarios not available.

GFDLCM2.1

No known issues.

HadCM3

Model has 360 days per year. These were divided up such that the last
days of May, July, Aug, Oct and Dec are always missing.

For the A1B simulation, the last 30 days are missing (Dec 2099) and 10
years between 2080-2089 are missing for precipitation.

For A2 and B1, the last 60 days of the historical period (Nov-Dec 1999) are
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missing and the first 10 days of Nov 2000 are missing.
For B1, the year 2000 is missing.

HadGEM Model has 360 days per year. These were divided up such that the last
days of May, July, Aug, Oct and Dec are always missing.
Alfiand B1 scenarios not available.

Miroc-med A1lfi scenarios not available.
Future data not available for 2000-2045 and 2066-2080.
Leap years removed before downscaling.

Miroc-hi Alfi and A2 scenarios not available.
Future data not available for 2000-2045 and 2066-2080.
Leap years removed before downscaling.

MRI_CGCM2 Alfi scenario not available.
Future data not available for 2000-2045 and 2066-2080.
PCM PCM A2, A1B and B1 scenarios are based on B06.08 to 1980 and B07.08

from 1980 to 2099 but daily data for B06.08 is not available before 1980
so B06.57 was used instead.

There will be a level shift at 1980 because of this.

The last 61 days of 2099 (Nov-Dec) are also missing in the A1B scenario.

Although most of the station data used in this project was retrieved from datasets (GHCN,
MIDAS) that have been nominally quality-controlled, previous encounters with instances of
clearly erroneous values (e.g. very cold days in warm locations, days where maximum
temperature was lower than minimum temperature, days with negative precipitation) in
the observations that strongly degrade the quality of the statistical downscaling model has
led us to construct our own quality control process for filtering of station data.

Assembling all station data, we first created a master file documenting the name, latitude,
and longitude of every station in the various datasets available. Using latitude and
longitude values, stations within 1km of each other were assumed to be co-located and
only the longest unique station record for each variable was retained. As the station data
originated from several different datasets, this was a helpful step to remove potential
duplicate entries.

The quality control process consists of two steps: first, individual quality control for each
station; and second, a nearest neighbor approach to validate outliers identified relative to
the climatology of each month. Individual quality control identified and replaced with N/A
any values that failed the following tests:

* Tmin>Tmax - Daily minimum temperature exceeds the daily maximum temperature.

* Repeated Values - Daily maximum temperature, daily minimum temperature, daily
average temperature, or non-zero daily precipitation values repeat for 5 or more
consecutive days to within one tenth of a mm per day or one hundredth of a degree
Celsius.

In the second step of the quality control process, the merged database of station locations is
first used to identify up to 10 “nearest neighbors” for each individual weather station
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Figure 5. Long-term weather stations with sufficient data to use in generating station-specific projections for
Puerto Rico: maximum temperature (top), minimum temperature (middle), and precipitation (bottom)
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within 100km of its location. For each weather station, the monthly (for temperature) and
seasonal (for precipitation) distributions are ranked and the highest and lowest N values
are identified. The nearest neighbor stations are then queried to see if the days on which
values 1 through N occur are also days in which the highest M values for the neighbor
station occur, plus or minus one day on either side to account for weather systems which
may be moving through the area close to midnight. Here, N is taken to be 100 and M to be
500. If any value of N does not occur within +/- one day of a value M for any neighboring
station, the value of N is replaced with an NA.

The resulting files are then scanned to identify any stations with less than 3650 real values
and less than 200 values for any given month. After the quality control and filtering process
was complete, a total of 284 (maximum temperature), 282 (minimum temperature) and
231 (precipitation) Caribbean stations were available to be downscaled using the ARRM
model described previously and the GCM inputs listed in Table 1. The locations of the
stations identified for Puerto Rico are mapped in Figure 5.

The resulting station-level projections were archived in ASCII files for individual locations,
with each file identified by latitude, longitude, and station ID. There is one file for each
station location/variable/CMIP combination. Each file contains N+3 columns, where N is
the number of model/scenario combinations for the given set of CMIP data. The first 3
columns of each file contain the year, month, and day corresponding to each row. There are
a total of 51,100 days per CMIP3 file and 55,115 days per CMIP5 file.

As there are a large number of these files, they are provided in electronic format only.

An assessment of CMIP3 and CMIP5 global model ability to reproduce the
large-scale atmosphere and ocean drivers of observed variability in temperature
and precipitation over the Caribbean.

Models were evaluated according to the criteria described in ANALYSIS AND FINDINGS.
There was not a significant difference between models in terms of their ability to simulate
changes in temperature; however, there was a distinct difference in model ability to
simulate the drivers of precipitation. Through dynamical analyses, the models were divided
up into 3 categories based on their ability to simulate large-scale atmospheric and oceanic
features controlling precipitation in the Caribbean.

The results of the analysis of GCM ability to simulate drivers of precipitation are described
in APPENDIX B, “Understanding the sources of Caribbean precipitation biases in CMIP3
and CMIP5 simulations” by Jung-Hee Ryu and Katharine Hayhoe which has been accepted
for publication in Climate Dynamics. A manuscript summarizing the results of the analysis
of GCM ability to simulate drivers of temperature is currently in preparation; the main
results of this analysis are summarized in the ANALYSIS AND FINDINGS section.

The final product of this analysis is a list of models in each of these groups, with the
implication that models in group 1 (those able to reproduce the observed wet season and
mid-summer drought) are better-able to simulate variability in precipitation than models
in group 2 (those able to simulate a mid-summer drought and truncated wet season) or
group 3 (those simulating a single wet season with no mid-summer drought).

This list is given in ANALYSIS AND FINDINGS.

25



Analysis of projected changes in 85 secondary climate indicators for Puerto
Rico long-term weather stations.

In addition to providing raw values of projected daily maximum and minimum
temperature and precipitation, we also calculated annual values (140 values, one per year
from 1960 to 2099, for CMIP3 simulations and 151 values, one per year for 1950 to 2100,
for CMIP5 simulations) for 85 individual indicators of mean and extreme temperature and
precipitation. The full list of these indicators is provided in Table 2 below.

Annual values were then averaged across stations by region (hot coastal vs. temperate
inland, for temperature; dry northern coast, dry southern coast, and wet central region for
precipitation), and across GCMs by group (good, fair, and poor), and across three future
climatological 20-year time periods corresponding to global mean temperature increases
of +1, 2, and 3°C relative to the 1971-2000 average.

This approach, averaging across GMT periods, was introduced by the 2011 National
Research Council Report, “Climate Stabilization Targets: Emissions, Concentrations, and
Impacts over Decades to Millennia” (NAS, 2011). A summary of this report, entitled
“Warming  World:  Impacts by  Degree” is  available at: http://nas-
sites.org/americasclimatechoices/more-resources-on-climate-change/booklet-warming-
world-impacts-by-degree/. We use this approach as it has the advantage of comparing
projected changes across a range of scenarios and climate sensitivities to resolve any
differences in the magnitude and pattern of expected change independent of the uncertainty
in either human scenarios or climate sensitivity. This approach also presents impacts
within a policy-relevant framework, as national and international agreements (such as the
EU target of +2°C) are more often couched in terms of global mean temperature or
atmospheric concentration targets than in terms of a given emissions scenario.

Averages are calculated by first calculating annual average global average temperature for
each model for each year from 1960 to 2099 (CMIP3) and 1950 to 2100 (CMIP5). Then, the
20-year running mean values were calculated for each year beginning with 1990-2009 and
ending with 2080-2099 (CMIP3) and 2081-2100 (CMIP5). The first 20-year period in
which global mean temperature was equal to or higher than +1/2/3°C compared to the
1971-2000 global mean temperature of that simulation was identified. This time period is
different for each GCM: further into the future for models that simulate a climate system
that is less sensitive to emissions from human activities, and nearer in time for models that
simulate a more sensitive climate system. Finally, this date was used to select the 20-year
period from the corresponding simulation to average for each indicator.

Yearly values of each indicator are provided in ASCII text files, one file for each station and
indicator. Each file contains N+1 columns, where N is the number of model/scenario
combinations for the given set of CMIP data. The first column of each file contains the year.
There are a total of 140 years per CMIP3 file and 151 years per CMIP5 file.

Geographically-, model-based, and temporally-averaged indicators have been plotted and
are available as images in APPENDIX C and in Excel files, one for each variable (maximum
temperature, minimum temperature, and precipitation).

The raw files of annual indicators are provided in electronic format only.
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Table 2. Primary and secondary climate indicators calculated for 3 global mean temperature targets (+1,2,3°C
relative to 1971-2000). Wet season is defined as May to November. Dry season is defined as December to April. All
changes are anomalies relative to historical 1971-2000 mean.

Indicator Units

ANNUAL AND SEASONAL AVERAGES

Average maximum temperature (wet season, dry season, and annual) degrees C

Average maximum temperature (wet season, dry season, and annual) “

Average cumulative precipitation (wet season, dry season, and annual) mm per season or year
ANNUAL AND SEASONAL EXTREMES

Number of warmer-than-historical maximum wet seasons Number of years historical

threshold exceeded (up to 20)

“«

Number of colder-than-historical minimum years

“«

Number of wetter-than-historical and drier-than-historical maximum years

ANNUAL AND SEASONAL VARIANCE

Standard deviation of daily maximum temperature (wet season, dry, season, degrees C
and annual)

Same, for daily minimum temperature “

Same, for cumulative precipitation, wet days only log(mm)
Range in daily maximum temperature (wet season, dry, season, and annual) degrees C

“

Same, for daily minimum temperature

Precipitation intensity, defined as cumulative precipitation divided by number mm/day
of wet days (wet season, dry, season, and annual)

ANNUAL EXTREMES

Maximum temperature of 1, 3, 5, and 10-day hottest period degrees C
Same, for coldest period (based on daily minimum temperature) “

Same, for cumulative precipitation mm

Total number of dry days defined as pr<0.01” (wet, dry, annual) Days per year
Longest stretch or period of dry days, defined as pr<0.01” per day (wet, dry, Days

annual)

Average length of dry periods, defined as pr<0.01” per day (wet, dry, annual) “
THRESHOLDS

Daily maximum temperature above 80, 85, 90, 95 and 100°F Days per year

Nighttime minimum temperature below 65 and 75°F

Nighttime minimum temperature above 80, 85 and 90°F

Number of wet days per year (pr>0.01")

Heavy precipitation days (pr>1, 2, 3 inches)

QUANTILES
Number of hot days per year with daily maximum temperature above the Average number of days per
historical (1971-2000) 50, 75, 90, 99 and 99.9" quantile year

“

Number of cold nights per year with daily minimum temperature below the
historical (1971-2000) 0.1, 1, 10, 25, and 50th quantile

Number of wet days with precipitation exceeding the historical (1971-2000) 50,
75, 90, 99 and 99.9" quantiles

HYBRIDS
Number of hot, dry days per year (defined as precipitation < 0.01” and daily Average number of days per
maximum temperature > 90" quantile year

“

Number of cool, wet days per year (defined as precipitation > 0.01” and daily
maximum temperature < 10™ quantile
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ANALYSIS AND FINDINGS

The previous section described the specific products generated by this project. This section
focuses on the results of the analyses for product 2 (analysis of GCM ability to simulate
large-scale drivers of Caribbean climate) and 3 (climate projections for Puerto Rico).

For temperature, almost every GCM showed a systematic lag in the seasonal cycle. Some
improvement is seen in higher as compared to coarser resolution GCMs, for atmosphere-only (AMIP)
models as compared to coupled atmosphere-ocean (CMIP) models, and for newer (CMIP5) as
compared to older (CMIP3) models. Overall, however, this bias appears to be symptomatic of nearly
every one of the 44 GCMs analyzed here.

To characterize temperature variability over the Caribbean, we first divided the Caribbean
into three regions: Central America (east), the Greater Antilles (north-central), and Lesser
Antilles (west). Figure 6 shows the regions on a map, superimposed on the resolution of the
GPCP data and with dots indicating locations of long-term weather stations used in the
analysis. For each region, we conducted a comprehensive literature review and analyzed
composite maps of gridded observed and reanalysis-based ocean, surface, and upper-air
fields to identify the large-scale atmospheric and oceanic features most relevant to
temperature variability.

] N TR

25N o

] Qﬁ \\ e Regipn 2
1l e oY
| ‘\J//_/ Suy ‘-%‘ 7= ~
4 — g N _
20N / ’ % 2 1> 1> LJ..
V/ . . iJ—\:S Region|3
_\/;; . o In | S ﬁ
INCCA I

15N
TR

»
:
- N A |
10N \\ f//\% %1""&4% rz
hol . o $ ®
Region 1 \“\\\\A/{—A\(\X e ﬁ,

4
I

M O

1 I I | I 1

95W 90w 8oW 80W oW 7T0W 65W 60W

I 1 I I

Figure 6. The three regions used to quantify surface climate variability, Region 1 (Central America), Region 2
(Central Caribbean, Greater Antilles), and Region 3 (Eastern Caribbean, Lesser Antilles), are indicated by the red
boxes. Black lines indicate the horizontal resolution of gridded GPCP precipitation dataset, dark blue dots indicate
long-term stations used in the model comparison analysis, and light blue dots indicate short-term stations not used
in this analysis. These stations do not correspond exactly to the stations shown in Figure 5 (bottom) as the
historical time period considered in the downscaling analysis was greater than that considered here, allowing for
inclusion of more stations in downscaling.
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Figure 7. Raw (left) and normalized (right) annual cycles of temperature over the three Caribbean regions shown in
Figure 6. Results have been averaged across all CMIP3 models (green), all CMIP5 models (red), and all AMIP
atmosphere-only models (blue).

The first step in the analysis was to develop a climatology of annual temperature from
available data. For each of the three regions, we constructed composite annual cycles of
temperature using ERA-40 reanalysis output and compared compared the ERA-40
climatology with that derived from station data (station data not shown; ERA-40 based
temperature is shown in Figure 7). Region 1 (Central America) is characterised by a nearly
bimodal distribution, meaning that although the warmest month occurs in May, there is a
second peak in temperature in August. Region 2 (Central Caribbean) has one warm season,
with a peak in August. Region 3 (Eastern Caribbean) has the lowest amplitude of any
annual cycle among the three regions, with a relatively longer and more persistent warm
season beginning in spring and stretching well into fall.

The next step was to compare these observed climatologies with the annual cycles
simulated by historical simulations from CMIP3 and CMIP5 GCMs as well as for AMIP
(atmosphere-only) models, to eliminate potential biases in the temperature cycles arising
from limitations in the ocean model or coupling between the ocean and atmosphere
components of a coupled model. For consistency, we compared ERA-40 with GCMs as its
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output fields for 2 meter temperature include similar proportions of land and ocean area to
the GCM simulations (most are not precisely identical due to the different resolution of the
various models, but all are more similar than comparing GCM outputs with land-based
station records only). Climatological mean and standard deviations of the annual
temperature cycle vary from one model to the next. These biases are relatively
straightforward to correct when combining future projections with any type of
downscaling technique. For that reason, we also normalized annual temperature cycle for
each region for each of the GCM simulations and ERA-40 outputs. The resulting annual
cycles are summarized by region in Figure 7.
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Figure 8. Biases in annual mean air temperature (y-axis) and sea surface temperature (x-axis) for Region 1 (top
left), Region 2 (top right), and Region 3 (bottom) compared to observations (black dot and lines).

For Region 1 (Central America), most GCMs simulate a bimodal distribution of
temperature, but with an early peak that is too low and a later peak that is too high. For
Regions 2 and 3, GCMs also are able to reproduce the shape of the distribution. For all three
regions, however, there is a significant lag in GCM simulations: a lag that is smaller but not
entirely eliminated in AMIP atmosphere-only versions of the CMIP models. The only CMIP3
GCM to correctly simulate the timing of onset in Region 2 is MRI, which includes flux
adjustment. However, this model is also the only one to anticipate the end of the Region 2
warm season by about a month relative to ERA-40.
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Figure 9. Left: Lag, in days, of the annual cycle of 2-meter air temperature for CMIP5 models with daily
temperature fields available. Right: Lag vs. bias in ocean mixed layer depth for each region for the seven CMIP5
models for which mixed layer depth was available.
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Comparing green (CMIP3) and red (CMIP5) simulations reveals a noticeable improvement
in the bias in temperature values for Regions 2 and 3 (Figure 7, left) but not in the lag in the
seasonal cycle (Figure 7, right). Nearly every model, however, is still too cool compared to
observed air temperature. Comparing model biases in 2-meter air temperature with SST
(Figure 8) reveals that biases in air temperatures closely track biases in SSTs.

For CMIP5 GCMs, we calculated the exact lag by day, to determine whether there was any
correspondence between GCM spatial resolution and lag. Comparing one GCM with higher
resolution with a similar GCM from the same family and lower resolution showed a very
small improvement in lag (not shown) that was not evident when GCMs were compared by
resolution across families. Rather, we found a stronger relationship between model origin
and lag. Specifically, it was possible to group the GCMs into “families” characteristic lags for
each season (Figure 9): the GFDL and IPSL families, with lags on the order of 8 days for
Region 1, 10 days for Region 2 and up to 40 days for Region 3; the MIROC and MPI families,
with no lag in Region 1, a relatively small lag of 15 days in Region 3, and a large lag of 20
days in Region 3; and the CCSM, CMCC and CNRM families with typically smaller lags in all
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regions (with the exception of CCSM in Region 1). This suggests that the lag in temperature
is not a function of resolution only, but also the result of dynamics inherent to most GCMs.

For the seven CMIP5 GCMs for which ocean mixed layer depth was available, we also
compared the magnitude of the lag to the bias in mixed layer depth (Figure 9, right). Our
hypothesis was that a deeper mixed layer could moderate seasonal temperature changes,
driving the lag in GCM simulations. However, as shown in Figure 9 (right), no such
relationship is evident from the 7 GCM simulations available for this analysis. This is not to
say that mixed layer depth plays no role at all, but does show that it is not the driving factor
for the temperature lag in these models, implying that more attention should be paid to
atmospheric drivers of temperature change.

In summary, we found that most CMIP3 and CMIP5 GCMs were able to reasonably simulate
the annual cycle of the temperature, but with a systematic delay of approximately one
month in the timing of the annual cycle, particularly for the ocean-dominated Regions 2
and 3. In contrast to precipitation, no single model or even a group of models could be
identified as more or less able to reproduce the climatology of temperature over the
Caribbean than others. The only exceptions are the MRI-CGCM models (the brown bars in
Figure 9 left), which incorporate a flux adjustment to bring atmosphere-ocean heat fluxes
into balance that the other models do not use.

Comparing the climatological annual cycles of observed vs. modeled SST (not shown)
reveals that GCM-simulated SSTs also lag observations during late spring and early
summer, then remain artificially elevated from the end of summer through the end of the
year. In other words, the systematic difference between GCMs simulations of surface air
temperature and observations closely mirror the systematic errors of the GCMs in
simulating SST as compared to observations, suggesting that model deficiencies in
simulating the timing and magnitude of the eastward extension of the warm SST pool over
the Caribbean Sea and Gulf of Mexico in summer is likely the result of the same dynamical
limitations in GCM simulations as biases in the annual cycle of 2m air temperature over the
region.

A manuscript summarizing the results of this analysis is currently in preparation.

For precipitation, GCMs could be divided into 3 distinct groups based on their ability to simulate the
SST and atmospheric circulation features controlling precipitation variability over the region. A greater
proportion of CMIP5 GCMs were able to reproduce these patterns as compared to CMIP3, suggesting
that the ability of the CMIP ensembles as a whole has improved over time.

To analyze characteristics of precipitation over the Caribbean, we again divided the
Caribbean into the same three regions as above (Figure 6) and conducted a comprehensive
literature review and analyzed composite maps of gridded observed and reanalysis-based
ocean, surface, and upper-air fields to identify the large-scale atmospheric and oceanic
features most relevant to precipitation over the region. We also compared gridded GPCP
precipitation to station-based records to quantify differences between broad-scale
averages and individual locations before the GPCP dataset was used to evaluate GCM
simulations.
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Figure 10. Observed (top) and GCM-simulated (bottom) annual cycle of precipitation over the three
Caribbean regions shown in Figure 6. GCM simulations are divided into the three categories described in
the text: models with two precipitation peaks and a mid-summer drought; models with a mid-summer

drought and single precipitation peak; and models with one precipitation peak.
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The annual cycle of precipitation in the central and eastern Caribbean is characterized by a
bimodal structure of two peaks in spring/early summer and fall framing a midsummer
drought, while the western Caribbean experiences only the second of these two peaks
(Magafia et al. 1999; Jury et al. 2007; Gamble et al. 2008). Previous research has shown
temporal variability to be closely related to aspects of the large-scale environment
including the Caribbean Low-Level Jet (CLLJ]), the North Atlantic Subtropical High (NASH),
and SST over various time scales from intra-seasonal to inter-annual (Giannini et al. 1998;
Wang 2007; Munoz et al. 2008; Cook and Vizy 2010; Martin and Schumacher 2010).

Comparing GCM simulations of seasonal precipitation to those observed for each region, we
found that not all models are able to simulate the bi-modal precipitation structure seen in
Regions 1 and 2 (Figure 10). Based on model performance in Region 2, where the bi-modal
structure of annual precipitation is most marked, we divided both CMIP3 and CMIP5
models into three categories:

1. Models that correctly simulate a bimodal distribution with two rainfall peaks
in May-June and September-October, punctuated by a mid-summer drought
(MSD) in July-August (“good”)

2. Models that reproduce the MSD and the second precipitation maxima only
(“fair”)

3. Models that simulate only one precipitation maxima, beginning in early
summer (“poor”)

Table 3 lists each of the models in CMIP3 and CMIP5 we evaluate that correspond to the
three groups described above. One model (CMIP3 CNRM-CM3) could not be categorized by
any of these groups.

For each group, we then examined composite (model average) fields of geopotential height,
sea surface temperature, and winds to see if the precipitation-based categories had a
common dynamical basis. The answer was yes: there was a noticeable difference between
the timing and magnitude of the large-scale dynamics simulated by models in these three
different categories, and those dynamical differences were entirely consistent with the
observed biases in precipitation. In other words, the biases in dynamics would be expected
to lead to exactly the biases in precipitation that were observed in each group of models,
and this result was consistent across both CMIP3 and CMIP5 models.

The differences between the model groups are related to the timing and magnitude of the
westward extension of the North Atlantic Subtropical High (NASH) and the eastward
extension of a warm pool of sea surface temperature (SST) across the Caribbean Sea and
the Gulf of Mexico in summer. Specifically, models in category 2 tend to anticipate the
westward expansion of the NASH into the Caribbean in early summer. Early onset of NASH
results in strong (dry) moisture divergence and drought-like conditions at the time of the
May-June observed precipitation peak. Models in category 3 tend to have cooler SST across
the region, particularly over the central Caribbean and the Gulf of Mexico, as well as a
weaker Caribbean low-level jet accompanying a weaker NASH. In these models, observed
June-like patterns of (wet) moisture convergence in the central Caribbean and the Central
America and (dry) divergence in the east Caribbean and the Gulf of Mexico persist through
September.
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Table 3. CMIP3 and CMIP5 models corresponding to the three categories of models, identified based on ability to
simulate the seasonal cycle of precipitation over the Caribbean Greater Antilles. GCM names correspond to those
listed in Table 1. The CNRM-CM3 model was unable to be categorized.

“Good” models able to simulate two  “Fair” models able to simulate a “Poor” models able to simulate just
precipitation peaks and a mid- mid-summer drought and one one precipitation peak
summer drought precipitation peak

CMIP3

CGCM3 T47 (medium resolution) MIROC 3.2 (medium resolution) CGCM3 T63 (higher resolution)
MIROC 3.2 (higher resolution) GFDLCM2.0 CSIRO-Mk3.0

HadCM3 GFDLCM2.1 GISS-AOM

HadGEM1 INMCM 3.0 CCSM3

MRI-CGCM 2.3.2 ECHAMS PCM

GISS-ER GISS-EH

CMIP5

CanCM4 MIROC-ESM, CHEM GFDLCM3

MIROCS, 4h GFDL-ESM2G, M GISS-E2-H, H-CC, R, R-CC
CNRM-CM5 CCSM4 INMCM4

CSIRO-Mk3.6.0 CESM1 (BGC, WACCM)

HadCM3

HadGEM2-AO, CC, ES
MPI-ESM-LR, MR
MRI-CGCM3

CESM1 (CAM5)

In CMIP3, models were divided evenly between the three groups. In CMIP5, the majority of
models showed improvements, moving into a “better” group or (for new models such as
CESM1-CAMS5) even debuting in Group 1. This suggests that GCM ability to simulate these
important large-scale drivers of precipitation over the Caribbean is increasing over time.

A more detailed description of this analysis, discussion of results, and figures showing the
differences in NASH, SST and moisture convergence/divergence between the three model
groups is provided by Ryu and Hayhoe (2013), attached here as APPENDIX B.

Projected changes in 85 temperature- and precipitation-related indicators for Puerto Rico show
increases in mean and extreme temperatures, decreases in annual precipitation and moderately-
extreme rainfall days, and increases in both dry days and the frequency of extreme precipitation days.
Projections from CMIP5 vs. CMIP3 models differ in the magnitude of projected change for some
indicators, but agree on the direction of change. Most changes are projected to be greater under
higher levels of global mean temperature change.

Using the station-based high-resolution daily temperature and precipitation projections
developed in Step One of this analysis, a broad suite of climate indicators were calculated
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for Puerto Rico stations to characterize projected temperature and precipitation changes

over the region. To synthesize these results, they were averaged three ways:

1. Over regions, with the island of Puerto Rico being divided into two regions, hot coastal
and temperate inland, for temperature and three regions, dry northern coast, dry
southern coast, and wet central region, for precipitation (Figure 11)

2. Over GCMs, with the model categories listed in Table 3 being used to determine which
model simulations could be combined

3. Over global mean temperature change, for increases of +1, 2 and 3°C relative to the
1971-2000 global mean temperature simulated by each GCM/scenario combination.
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Figure 11. Weather stations in the two temperature regions (hot coastal and temperate inland) and three
precipitation regions (dry northern coast, dry southern coast, and wet central) were identified by overlaying PRISM
temperature and precipitation climatologies on a Google Earth map of the station locations. Hot coastal regions
were defined as having a mean minimum temperature > 17.5°C and dry coastal regions as having annual
precipitation < 1,500 mm per year.
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As global mean temperature increases, temperatures in Puerto Rico are also projected to
increase. Projected changes are slightly higher for the dry season as compared to the wet
season, and for minimum nighttime temperature as compared to maximum daytime
temperature (Figure 12). Consistent with the results reported above, that the GCMs cannot
be differentiated based on their ability to simulate temperature, there does not appear to
be a significant difference between good vs. fair or poor GCMs for most indicators. There is
a small difference between projected temperatures in the wet season, with “good” GCMs
producing a slightly smaller temperature increase than “fair” or “poor” models.

Projected temperature increases are greater than the global average, with a simulated ~2-
3°C increase in local temperature per 1°C increase in global mean temperature. In terms of
temperature variability, the standard deviation and the seasonal range in both daytime and
nighttime temperature is projected to increase, particularly for coastal stations as
compared to inland and in the wet season as compared to the dry season. Temperature
extremes are projected to increase at a similar rate to mean temperatures, with the daily
maximum temperature on the hottest days of the year estimated to rise by 2-2.5°C per
degree global mean temperature change for inland stations and slightly more for coastal
locations. In contrast, increases in the coldest nighttime minimum temperatures of the year
are projected to be greater for inland stations as compared to coastal. These changes are
illustrated in the full set of figures available in APPENDIX C.
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Figure 12. Projected (top) wet season (May-Nov) and (bottom) dry season (Dec-Apr) maximum (left) and minimum
(right) temperature (in degrees C) per degree global mean temperature increase, averaged across all weather
stations for the hot coastal and temperate inland regions defined in Figure 11.
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Figure 13. Projected changes in most mean and extreme indicators occur incrementally per degree global mean

temperature change, indicating a shift in the mean of the distribution rather than the shape. For a few indicators

of “moderate extremes”, however, there is a large increase in projected values under only a +1°C global

temperature change. These include the percentage of warm wet seasons (top left), the days per year with

maximum temperature exceeding 80 and 90°F (right) and days per year with maximum temperature above the
th . . S

75" quantile or 1-in-4 historical hottest days.

In terms of hot temperatures, perhaps most striking is the fact that, with only a +1°C
increase in global mean temperature, more than 50% of wet seasons are expected to be
warmer than the warmest historical wet season (Figure 13, top left). Days per year over
80°F at inland stations is expected to see a similar abrupt increase, from approximately 330
to 360 days per year (Figure 13, top right) and days over 90°F increase by approximately
100 days per year for both inland and coastal stations (Figure 13, middle right). A similar
abrupt change is seen for the number of days per year greater than the historical 50t
quantile, or median, and 75t quantile, or 1-in-4 hottest days (Figure 13, middle left).

Significant but much more incremental increases are projected for days over 95 and 100°F
and for nights below 65 and 75°F and above 80, 85 and 90°F. Similarly, for days per year
over the 90t, 99th and 99.9th quantile (i.e., exceeding the historical 1-in-10, 1-in-100 and 1-
in-1000 hottest days) as well as for most projected changes in cold days, increases
(decreases) are projected to occur evenly per degree global mean temperature increase
(see APPENDIX C).

Cooling degree-days are often taken as a measure of energy demand for air conditioning. A
threshold is established at which the air conditioning is turned on (here, two thresholds are
used: 75°F and 85°F) and the cooling load calculated by estimating the number of hours
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and degrees above those temperatures that occur during the course of a year. Historically,
annual cooling degree-days average around 400 for temperate inland locations and 800 for
warmer coastal locations, using a 75°F threshold. With a +1°C increase in global mean
temperature, inland locations are projected to experience an average of more than 1000
degree-days per year; coastal locations, more than 1500. The difference between the two
regions decreases as temperature increases; under a +3°C global mean temperature
change, inland locations are expected to experience an average of 3,000 degree-days per
year while coastal locations would expect an average of 3,200 degree-days per year (see
APPENDIX C).

For a water-limited region such as the Caribbean, climate change is not just about warmer
temperatures; as the planet warms, precipitation patterns are also expected to shift in both
space and time. Changes in precipitation could have an equal or even greater impact on the
local ecosystems, economy, and water resources as increases in temperature. Changes in
the intensity and frequency of heavy rainfalls, as well as the duration of dry periods, would
also affect agriculture and water supply as well as risk of flood and drought.

Precipitation in Puerto Rico historically averages around 900 to 1000 mm in the wet
season (May-Nov) and 450 mm in the dry season (Dec-Apr), with a sharp distinction
between total rainfall in drier coastal areas vs. wetter inland regions (see Figure 11).

For the dry season under future climate change, both CMIP3 and CMIP5 simulations
consistently project little change for a +1°C increase in global mean temperature but
decreases in dry season precipitation on the order of -5% for a +2°C increase in global
mean temperature and -10 to -15% for a +3°C increase (Figure 14, top). Projected changes
from “good” GCMs are generally similar to or smaller than projected changes from GCMs in
the “fair” and smaller than projected changes from GCMs in the “poor” categories,
suggesting that model performance does play a role in moderating the magnitude, but not
the sign, of future change in dry season precipitation.

Projected changes in wet season precipitation are more challenging to interpret (Figure 14,
bottom). For a +1°C change, CMIP5 “good” models project a small increase in wet season
precipitation on the order of 5-10%, consistent with recent observed changes in the
historical record (NCA, 2012). In contrast, CMIP3 models project a decrease on the order of
10-15% under the same amount of global change. For global mean temperature changes of
+2 and +3°C, both CMIP3 and CMIP5 “good” models project decreases in precipitation, but
for CMIP3 decreases from “good” models are greater than from other GCMs (-30% for +2°C
and -50% for +3°C from “good” GCMs; projected changes from CMIP3 “fair” and “poor”
models are inconsistent), while for CMIP5 projected decreases from “good” models are
smaller than those projected by the combined projections of “fair” and “poor” models: on
the order of -5% for +2°C and -10% for +3°C.

These results raise a crucial question: why is the magnitude of projected changes from
“good” CMIP3 vs. “good” CMIP5 models so different, when projected changes in dry season
precipitation are similar and model ability to simulate the large-scale drivers of
precipitation variability is also similar (see APPENDIX B)? Fortunately, research by Gabe
Vecchi and colleagues from the Geophysical Fluid Dynamics Laboratory suggests a
plausible reason. When future simulations by CMIP3 and CMIP5 models are driven by
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changes in carbon dioxide alone, the spatial pattern and magnitude of resulting changes in
precipitation are quite similar, including projected decreases in precipitation over Puerto
Rico (Figure 15, left). However, when CMIP5 models are driven by the new RCP scenarios
(as compared to CMIP3 simulations driven by the SRES scenarios), projected rainfall
changes are substantially lower over Puerto Rico (-0.1 to -0.15 mm/day) even under an
RCP scenario with a 4x increase in carbon dioxide levels as compared to a projected
increases under a doubling of carbon dioxide alone (-0.25 to -0.3 mm/day).

This implies that it is not the CMIP3 vs. CMIP5 model response to carbon dioxide that is so
different, but rather the aerosol inputs and model response to those inputs. Vecchi et al.
(2012) specifically hypothesize that the differences in precipitation changes between the
SRES and carbon dioxide-only scenarios, which are similar, and the RCP scenarios, which
are very different, could be the result of very different projected changes in aerosols in the
RCP vs. SRES scenarios, compounded by the fact that many CMIP5 models now contain
more sophisticated treatments of aerosol chemistry and their impact on clouds than did
previous CMIP3 GCMs; so a change in aerosol emissions in the input scenarios will have a
proportionally greater effect now than they would with the previous generation of models.
While this “aerosol effect” has global implications, Vecchi et al. highlight the Caribbean as
being one of the regions most affected in terms of altering projected precipitation patterns
(Figure 15, right).
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Figure 14. Projected changes dry season (top) and wet season (bottom) precipitation as simulated by CMIP3
models (left) and CMIP5 models (right). For CMIP5 plots, projected changes the “fair” and “poor” categories were
combined as each had only 2 models. Instead, projected changes in “good” models are plotted for the full CMIP5
ensemble (A) and for a sub-set of the CMIP5 “good” GCMs with matching models in the CMIP3 ensemble (B).
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Figure 15. Left: projected changes in global precipitation per degree global mean temperature change, as
simulated by CMIP5 models (top) and CMIP3 models (bottom) driven by increases in carbon dioxide alone. Right:
projected changes in precipitation over the Caribbean as simulated by CMIP5 models driven by carbon dioxide
alone (top), by low carbon dioxide and low aerosol emissions (middle), and by high carbon dioxide and medium
aerosol emissions (bottom). Figures from Vecchi, 2012 available online at: http://www.gfdl.noaa.gov/cms-
filesystem-action?file=user_files/gav/presentations/2012/vecchi_cmip5_princeton.pdf

Differences between CMIP3/SRES and CMIP5/RCP-based projections of wet season
precipitation also lead to differences in certain precipitation-related indicators, while for
other indicators the results are similar across both sets of model simulations. One key
difference is the projected frequency of wet years. Initially, little change in the frequency of
wet years is expected for CMIP3 simulations, then a decrease by +3°C global mean
temperature change (Figure 16, top left). In contrast, for CMIP5 simulations there is a near-
doubling of wet years followed by a slow decline (Figure 16, top right). Another difference
is in projected changes in extremely heavy precipitation days, such as more than 2 or 3
inches per day, or the number of days exceeding the historical 1-in-100 or 1-in-1000
wettest days. CMIP3 “good” models project a small increase followed by a sharp decrease,
while CMIP5 “good” models project a large increase followed by a slow decrease (Figure
16, middle and bottom rows).

In terms of similarities, both CMIP3 and CMIP5 show a slow decline in the standard
deviation of dry-season rainfall and little change in wet-season rainfall (see APPENDIX C).
Neither suggest much change in the average intensity of precipitation during either the wet
or the dry season (CMIP3 “good” models do project a slight decrease in the wet season,
likely driven by the large decrease in projected overall rainfall during that season). Both
sets of models show a small increase in the amount of precipitation falling on the wettest
days of the year, followed by a small decrease that is more gradual for CMIP5 than for
CMIP3. The models also agree on a slight increase in the number of dry days during the dry
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Figure 16. Projected changes in rainfall-related indicators that differ between CMIP3 vs. CMIP5: the frequency of
extremely wet years (top), days per year with more than 3 inches of rainfall in 24 hours (middle) and days per year
with precipitation exceeding the historical 99" quantile or 1-in-1000 wettest days (bottom) as simulated by the
CMIP3 models (left) and CMIP5 (right).

season and a larger increase in dry days during the wet season, as well as moderate
increases, on the order of a few days per year, in the length of the longest and the average
dry periods in each season and in the total number of wet days per year. There is also good
agreement on projected decreases in “moderately extreme” precipitation such as the
number of days per year with more than 1 inch of precipitation, or days per year with
precipitation greater than the historical 1-in-4 wettest days (see APPENDIX C).

What can we conclude? Clearly, model performance, in terms of ability to simulate large-
scale drivers of precipitation variability, does matter. For both CMIP3 and CMIP5, projected
changes from “good” models are noticeably different than changes projected by models in
other groups (see Figures 14 and 16; also APPENDIX C). However, for wet season rainfall
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over the Caribbean, the benefit of selecting better-performing models appears to be
currently outweighed by the benefit of selecting models and input scenarios that do (CMIP5
and RCP) vs. those that do not (CMIP3 and SRES) take into account projected changes in
aerosol emissions and their impact on cloud formation and precipitation.

For some variables--including precipitation for some regions, such as South America or
Australia (Figure 15), and even for some seasons, such as the dry season over Puerto Rico
or projected changes in dry days or “moderately extreme” precipitation events such as days
with >1 inch of rain or rainfall exceeding the historical 1-in-4 wettest day--CMIP3 and
CMIP5 models may be used as a sort of “super-ensemble” that yield approximately
equivalent results. However, for wet season rainfall for Puerto Rico and the Caribbean
and for extreme precipitation greater than 1 inch in 24 hours, these results strongly
suggest that CMIP5 projections from “good” models able to simulate the dynamics
driving the Caribbean wet season and the mid-summer drought should be used in
place of CMIP3 projections, even though “good” CMIP3 models are able to reproduce
observed precipitation-related dynamics over the Caribbean. It is likely that CMIP3
results over-estimate projected decreases in wet season rainfall and in extreme
precipitation events because they are driven primarily by carbon dioxide rather than a
combination of carbon dioxide and aerosols.
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CONCLUSIONS AND RECOMMENDATIONS

This project evaluated global climate model simulations of temperature and precipitation
over the Caribbean, generated a dataset of high-resolution climate change projections for
individual weather stations throughout the region, and analyzed projected changes for the
island of Puerto Rico.

For annual changes in temperature, nearly every CMIP3 and CMIP5 GCM shows a lag of
days to weeks compared to observations, manifested by a consistent under-estimation of
Northern Hemisphere late spring/summer temperatures and over-estimation of
fall/winter temperatures. Comparison of observed with model-simulated SST suggests that
the systematic temperature differences are closely related to model ability to simulate the
timing of the northeastward expansion of a warm SST pool from the Pacific coast of Central
America up to Cuba in June, throughout the Gulf of Mexico in summer, and over to the edge
of the West Indies by fall. This causes most GCMs to consistently under-estimate late
spring/summer SST and over-estimate fall/winter SST in the Central Caribbean, the same
bias seen in 2 meter temperature.

The recommended course of action for future temperature projections is to use as
many global climate models as is feasible for any given impact analysis, and not to
attempt to select a sub-set of “better performing” models.

For precipitation, there was a noticeable difference in the ability of GCMs to simulate the
bi-modal structure of precipitation in the central and eastern Caribbean, which is
characterized by two peaks in early summer and fall, punctuated by a mid-summer
drought. When the large-scale atmospheric and oceanic conditions were compared
between different model groups, the reason why some GCMs failed to produce observed
shifts in precipitation was evident: one group of models shows the NASH moving over the
region too early, suppressing the first precipitation peak, while another group shows it
moving over too late and too weakly, unable to produce a mid-summer drought. CMIP3 and
CMIP5 models can both be grouped into the same categories, although for CMIP3
approximately 1/3 of the models fall into each of the three categories (good, fair, and poor)
while the majority of CMIP5 models are characterized as “good”. Future rainfall projections
show significant differences in terms of the magnitude (although not the direction) of
change predicted for seasonal and extreme precipitation, depending on which category the
model falls under.

The recommended course of action is to use global climate models that have been
proven capable of simulating the processes that drive changes in precipitation over the
Caribbean. A list of these models is provided in Table 3.

For precipitation, an additional complication was identified when comparing CMIP3 vs.
CMIP5-simulated projections of wet season precipitation. Specifically, we found a larger
difference between seasonal and extreme precipitation projections simulated by “good”
CMIP3 models as compared to “good” CMIP5 models than between the projections
simulated by “good” models vs. “poor” models within a given modeling group. It is likely
(although not yet proven) that these differences are due to CMIP3-based projections
primarily being driven by increases in carbon dioxide, while CMIP5-based projections are



driven by changes in both carbon dioxide and aerosols, which can affect cloud properties
and hence rainfall.

Because of the substantial differences in the projected changes in wet season and
extreme rainfall that result from CMIP3 vs. CMIP5 simulations, the recommended
course of action is to preferentially use CMIP5 simulations alone for any projections of
changes in wet season rainfall or extreme rainfall.

Because of this conclusion, the scope of the original project was substantially
expanded to include generation and provision of projections of daily rainfall for the
period 1950-2100 as simulated by CMIP5 models.

Future projections for long-term weather stations for Puerto Rico show decreases in both
wet- and dry-season precipitation, slight decreases in days with moderately extreme
precipitation (e.g. rainfall > 1 inch in 24 hours, or rainfall > the 1-in-4 historical wettest
day), and increases in days with more extreme rainfall (e.g. rainfall > 3 inches in 24 hours,
or rainfall > the 1-in-100 historical wettest day) as well as in the number of dry days per
year and the duration of multi-day dry periods. Temperatures are projected to increase, at
a similar rate for both mean or average temperatures and extremes.

Climate model simulations agree that Puerto Rico can expect temperature increases
coupled with moderate decreases in average rainfall and increases in the frequency of
extreme rainfall events.
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OUTREACH

The methods used in this project and the results of the climate model inter-comparison and
evaluation have been incorporated into presentations made to a broad range of
professional audiences, from non-profit organizations such as the National Wildlife
Federation to federal agencies such as the Fish and Wildlife Service and academic
collaborators in the Climate Science Center network.

The projections generated by this project are expected to be broadly used throughout the
Caribbean region.

This research has resulted in one article in press (see APPENDIX B: Ryu and Hayhoe, 2013)
and three articles in preparation, describing: (1) the evaluation of GCM ability to simulate
variability in temperature over the Caribbean; (2) climate projections for Puerto Rico and
the Caribbean; and (3) comparing the importance of model performance vs. model
generation in quantifying uncertainty in future rainfall changes over the Caribbean.
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APPENDIX A. Weather Stations

This Appendix lists the ID, latitude, and longitude of the weather stations for which
sufficient data was available to downscale daily maximum and minimum temperature and
precipitation. There are a total of 1,542 (maximum temperature), 1,508 (minimum
temperature) and 2,129 (precipitation) individual long-term weather stations in the
Caribbean.

Due to its length, this Appendix is provided as a separate Excel file.

50



APPENDIX B. Analysis of GCM ability to simulate Caribbean precipitation
drivers

Ryu, J.H. and K. Hayhoe (2013) Understanding the sources of Caribbean
precipitation biases in CMIP3 and CMIP5 simulations. Climate Dynamics (in press)
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Abstract

We assess the ability of Global Climate Models participating in phases 3 and 5 of the
Coupled Model Intercomparison Project (CMIP3 and CMIP5) to simulate observed annual
precipitation cycles over the Caribbean. Compared to weather station records and gridded
observations, we find that both CMIP3 and CMIP5 models can be grouped into three
categories: (1) models that correctly simulate a bimodal distribution with two rainfall
maxima in May-June and September-October, punctuated by a mid-summer drought (MSD)
in July-August; (2) models that reproduce the MSD and the second precipitation maxima
only; and (3) models that simulate only one precipitation maxima, beginning in early
summer. These categories appear related to model simulation of the North Atlantic
Subtropical High (NASH) and sea surface temperature (SST) in the Caribbean Sea and Gulf
of Mexico. Specifically, models in category 2 tend to anticipate the westward expansion of
the NASH into the Caribbean in early summer. Early onset of NASH results in strong
moisture divergence and MSD-like conditions at the time of the May-June observed
precipitation maxima. Models in category 3 tend to have cooler SST across the region,
particularly over the central Caribbean and the Gulf of Mexico, as well as a weaker
Caribbean low-level jet accompanying a weaker NASH. In these models, observed June-like
patterns of moisture convergence in the central Caribbean and the Central America and
divergence in the east Caribbean and the Gulf of Mexico persist through September. This
analysis suggests systematic biases in model structure may be responsible for biases in
observed precipitation variability over the Caribbean and more confidence may be placed in
the precipitation simulated by the GCMs that are able to correctly simulate seasonal cycles

of SST and NASH.

Keywords: Caribbean precipitation, Mid-summer drought, North Atlantic Subtropical

High, Caribbean low-level jet, sea-surface temperature, clime models
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1 Introduction

Surface climate conditions in the Caribbean have been shown to be sensitive to
large-scale ocean and atmosphere dynamics including sea surface temperature, the El Nifio-
Southern Oscillation (ENSO), and the Caribbean Low-Level Jet (CLLJ) (e.g., Malmgren et
al., 1998; Enfield et al., 1999; Wang, 2007; Small et al. 2007; Whyte et al., 2008; Jury,
2009a). The spatial distribution of Caribbean precipitation strongly reflects the more
localized effects of island orography. However, temporal variability is closely related to
aspects of the large-scale dynamical features including the CLLJ, NASH, and SST over
various time scales from intraseasonal to interannual (Giannini et al. 2000; Wang 2007;
Munoz et al. 2008; Cook and Vizy 2010). The NASH is the semi permanent subtropical
high pressure system dominating the Atlantic basin in the lower troposphere (Davis et al.
1997). The CLLIJ is an easterly jet in the lower troposphere located over the Caribbean Sea
between the northern coast of South America and the Greater Antilles that has a semi-annual
cycle, with maxima in February and July (Stensrud 1996; Amador 1998; Munoz et al. 2008;
Whyte et al. 2008). It is thought that the peak in July is related to the seasonal cycle of the
NASH, while the maximum in February is likely caused by heating over northern South
America (Cook and Vizy 2010).

A key characteristic of precipitation in the Caribbean is the annual bimodal
distribution where the summer rainy season is interrupted by a mid-summer drought, or
MSD (Magafia et al. 1999; Jury et al. 2007; Gamble et al. 2008). Current understanding of
the regional-scale atmospheric processes involved in driving the precipitation variability has
been summarized by Gamble and Curtis (2008). A number of studies have examined the
role of atmospheric and oceanic dynamics in driving this feature; it is important to review
these, as we propose to examine the extent to which GCMs are able to simulate large-scale

features related to precipitation and the MSD. One hypothesis is that an enhanced mid-
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summer CLLJ could be responsible for the MSD because the observed divergence over the
eastern Caribbean (Wang and Enfield 2003; Wang 2007), SST cooling due to strong wind
stress (Giannini et al. 2000), and increased vertical shear (Inoue et al. 2002; Wang and Lee
2007) due to a strengthening of the CLLJ all work together to inhibit convective
development and tropical cycologenesis. Another complementary hypothesis is that the
CLLJ strengthens in response to a westward shift in the NASH; the CLLJ itself is basically
geostrophic and its seasonal cycle is associated with the meridional geopotential height
gradient (Cook and Vizy 2010). Previous studies examining the relevance of the NASH to
the midsummer drought over the Caribbean (Curtis and Gamble 2007; Small et al. 2007;
Munoz et al. 2008; Gamble et al. 2008; Kelly and Mapes 2011) and an intercomparison
study of CMIP3 models focusing on the region over Central America and the Intra-America
Seas (Rauscher et al. 2008) concluded that large-scale dynamics such as the NASH do play
an important role in simulating the MSD over the region, similar to observations. More
recent studies based on both observations and model analysis found summer rainfall
variability in the Southeastern United States to be related to the seasonal westward
movement of the NASH, and moreover suggested that recent observed changes in the timing
and position of the NASH that increase the likelihood of both very wet and very dry
summers could be the result of anthropogenic forcing (Li et al. 2011; Li et al. 2012, 2013a).
This result in particular emphasizes the importance of evaluating the GCMs used to generate
future projections of changes in precipitation over regions affected by the NASH, despite
the continuing debate regarding interannual variability and trends in the position of the
NASH and its relationship to global change (Diem et al. 2013; Li et al. 2013b).

The bimodal structure of the annual cycle of Caribbean precipitation tends to be
reproduced by Atmospheric Model Intercomparison Project (AMIP) ensembles, in which
SST is prescribed, but not by CMIP ensembles using the same atmospheric models, where

SST is generated internally by the model (Martin and Schumacher 2011). Here, we focus on
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coupled models to explore the extent to which observed large-scale features such as the
CLLJ, NASH, and SST are reproduced by the models, and how this may impact the ability
of the models to simulate the seasonal cycle of precipitation over the Caribbean.

In section 2, we describe the data sources and model outputs used in this analysis.
These include gridded observations, station data, reanalysis, and output fields from the 18
CMIP3 and 26 CMIP5 GCMs. In section 3, we describe the observed climatology of
precipitation over three Caribbean regions (Central America, Greater Antilles, and Lesser
Antilles) and compare observations with model simulations. In section 4, we explore the
large-scale environmental features that drive the annual cycle of precipitation, and assess the
degree to which the GCMs are able to reproduce observed variability. Our results are

summarized and discussed in section 5.

2 Data and Model Output

2.1 Study Domain

To characterize climatological precipitation over the Caribbean, we divide the area
into three sub-regions based on availability of station data and geographical location: east,
north-central, and west (Fig. 1). Region 1 encompasses the west side of the Caribbean Sea
and Central America, from the Yucatan Peninsula to the northern border of Panama (94°W
~ 83°W, 8°N ~ 23°N). Region 2 includes most of the larger islands in the central Caribbean,
known as the Greater Antilles: Cuba, Jamaica, Dominican Republic/Haiti, and Puerto Rico
(82°W ~ 65°W, 17°N ~25°N). Region 3 includes primarily smaller islands and island
groups located on the east side of the Caribbean, known as the Lesser Antilles: Antigua and
Barbuda, Guadeloupe, Martinique, St. Lucia, etc. (64°W ~ 59°W, 12°N ~ 18°N). The area
of islands in the Lesser Antilles, Region 3, ranges from a few km” to several hundreds of

km?®. Global model resolution ranges from 1 to 5 degree (Table 1), meaning that the finest
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horizontal resolution of any model over the region is about 10,000 km? (1 degree =~ 100 km).
Clearly, global model simulations are unable to resolve relatively small spatial features such
as the land-sea distribution and the topographically enhanced convective precipitation over
the Lesser Antilles (Region 3). These three domains were chosen to be small enough to
resolve the different characteristics of the annual precipitation cycle across the Caribbean,
yet at the same time large enough to demonstrate a consistent and coherent response to

large-scale dynamics across multiple observational sites.

2.2 Observational Data and Reanalysis

Due to data sparsity in this region, we rely on both gridded and station-based
observational data as well as reanalysis. With a relatively small ratio of land-to ocean area in
each study region (see Fig. 1), gridded datasets provide a much-needed broader perspective
on the region as a whole. In contrast, station-based precipitation reflects a more localized
climate that results from island orography but tends to be influenced by small-scale spatial
features which cannot be well-resolved by GCMs (Table 1; see also comparison of gridded
vs. station-based precipitation in section 4).

The gridded precipitation data used here comes from the global merged precipitation
data of the Global Precipitation Climatology Project, GPCP version 2 (Adler et al. 2003).

As stated on the project website (http:/www.gewex.org/gpcp.html), the GPCP combines

data from 6,000 rain gauge stations, satellite geostationary passive microwave instruments,
and sounding observations. This dataset is described as the most complete analysis of
rainfall available over the global oceans, as well as adding additional detail over land areas
with sparse station records, such as the Caribbean. An intercomparison of rainfall products
from observations, reanalysis, satellite and model output for mean rainfall in the Caribbean
(Jury 2009b) showed that although most satellite products and models had a dry bias, the

annual cycle of the reanalysis and satellite products matched observations well. In
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particular, the GPCP was able to capture key features of annual mean rainfall in the
Caribbean including topographically enhanced convection (central Cuba-Jamaica,
Dominican Republic-Puerto Rico), broad dry zones (northern Lesser Antilles and north of
Venezuela), and a moist tongue (southern Lesser Antilles). GPCP data is gridded to 2.5° x
2.5° in latitude and longitude at monthly resolution from 1979 to 2008 (data available
online at: ftp://precip.gsgc.nasa.gov/pub/gpcp-v2.1/psg).

For the large-scale dynamical analysis, we use monthly mean geopotential height,
zonal and meridional wind, vertical velocity, and specific humidity from the European
Centre for Medium-Range Weather Forecasts (ECMWF) 40 year reanalysis, ERA-40

(Uppala et al. 2005; data available online at: http://dss.ucar.edu/datasets/ds119.0). ERA-40

output is available at a resolution of approximately 1.4° x 1.4°in latitude and longitude for
the period from September 1957 to August 2002. Reanalysis does not consist of actual
observations, but rather of output from a numerical weather simulation model constrained to
match available observations at regular intervals. In broad terms, reanalysis can be viewed
as informed dynamical interpolation between observations that, for regions such as the
Caribbean, are often relatively sparse.

Finally, the SST data used here comes from the National Oceanic & Atmospheric
Administration (NOAA) Optimum Interpolation (OI) SST V2 (Reynolds et al. 2002; data

available at: http://www.esrl.noaa.gov/psd/data /gridded/data.noaa.oisst.v2.html). SST data

has a spatial resolution of 1° in latitude and longitude and has monthly mean data available
for 27 years, from 1982 to 2008.

Two sources of station data for the Caribbean are used to construct monthly time
series for individual locations. The first is 24-hour cumulative precipitation from the Global
Historical Climatology Network (GHCN) database which represents merged station
observations from various sources (data available from the National Climatic Data Center

at: http://www.ncdc.noaa.gov/oa/climate/ghcn-daily/). The second is sub-daily raw
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precipitation observations from the U.K. Meteorological Office Integrated Data Archive
System (MIDAS) land surface observational database (data available at:
http://badc.nerc.ac.uk/view/badc.nerc.ac.uk ATOM_dataent ukmo-midas), which are
summed to create monthly totals. Both GHCN and MIDAS station data are filtered by a
quality control algorithm. The algorithm tests for repeat (more than 5 consecutive days with
the same reported non-zero value to one tenth of mm) and limits (below 0 mm or above 915
mm, the maximum recorded 24h cumulative precipitation for the Americas). It removes any
instances of these values from the data record and additionally removes any stations with
more than 60% missing data for the 51 years from 1960 to 2010.

Fig. 1 also shows the location of the weather stations over the Caribbean region
(between 5°N and 27°N and 94°W and 59°W). Blue dots indicate selected stations, while
light blue dots show stations removed due to data limitations. Grid box centers correspond
to the longitude and latitude of the grid points of the gridded data. To facilitate comparisons
between station and gridded data, station precipitation records are gridded to GPCP
resolution of 2.5° by applying an iterative objective analysis which is a process of
interpolating irregularly spaced data to a fixed grid by successive correction to apply a
relative weight to the data depending on a distance to the grid point (Cressman 1959; Barnes

1964).

2.3 Model Information

Eighteen CMIP3 (Meehl et al. 2005) and 26 CMIP5 models (Taylor et al. 2012) that
have archived monthly precipitation data with the Program for Climate Model Diagnosis

and Intercomparison (PCMDI, http://www-pcmdi.llnl.gov/) and participated both in phases

3 and 5 of the Coupled Model Intercomparison Project are used in this analysis. A brief
description of the models used in this study, including their names, provenance, and

horizontal and vertical resolution, is provided in Table 1. The three different indices (“B”,



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

“SM” and “S”) next to the model names stand for “Bimodal”, “Single w/MSD”, and
“Single”, respectively. These are the three categories we divided the models into, based on
their performance in simulating the annual cycle of precipitation over Caribbean region 2.
These categories will be discussed in more detail in the next section. For the large-scale
dynamical analysis, we required monthly geopotential height, zonal and meridional wind,
vertical velocity, specific humidity and SST. Not all fields were available for all models;
hence, in Table 1 we also indicate which fields were available for each model, defining the
subset of models on which each analysis (shown in Figures 6 through 9) could be
performed.

CMIP3 model simulations for 1960-1999 are driven by the Coupled Model
Intercomparison Project for the 20th Century Climate in Coupled Models (20C3M)
scenarios (Covey et al., 2003). From 2000 to present, model simulations are based on the
Special Report on Emission Scenarios (SRES) mid-high A2 experiment, in which CO,
emissions continue to increase, although more slowly than observed over that time
(Nakicenovic and Swart, 2000). CMIPS5 model simulations for 1960 to 2005 are driven by
the CMIP5 historical total-forcing simulation (Taylor et al. 2012). From 2006 to present,
model simulations are based on the Representative Concentration Pathway (RCP) mid-low
emission scenario 4.5 (Moss et al., 2010), as this scenario had the largest number of model
simulations and output files available. Future scenarios were used only because “historical”
simulations end in 1999 and 2005 for CMIP3 and CMIPS5, respectively, while the data
sources we used ended in 2008 (GPCP) and 2001 (ERA-40). We do not anticipate the
choice of scenario for the last decade will have a significant impact on results, as the
uncertainty in projected trends in precipitation that can be ascribed to different scenarios has
been shown to be negligible over this period at both the global and the regional scale

(Hawkins and Sutton, 2011).



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Based in part on initial conditions, each simulation establishes its own pattern of
natural variability, including ENSO and Atlantic Multidecadal Oscillation (AMO), etc. such
that no temporal correspondence between simulated and observed conditions at the regional
scale can be expected on a year-by-year basis (Stoner et al. 2009). However, long-term
global average conditions more directly related to global-scale forcing are expected to track
observed trends if the forcing is accurate (e.g., Rahmstorf et al. 2007). Therefore, our
analysis in this study is based on a long-term monthly-mean data, averaged over 30 years

from 1979 to 2008, which is chosen to match the time period of the GPCP (observed) data.

3 Comparing Observed and Model-Simulated

Caribbean Precipitation

3.1 Comparing GPCP to station-based precipitation

The first step in this analysis is to develop a climatology of annual precipitation from
available data. For each of the three regions, we construct composite annual cycles of
precipitation using gridded GPCP monthly data for 30 years from 1979 to 2008 and quality-
controlled station data for the same time period (Fig. 2). The shaded area represents + 1-
(standard deviation) from the mean. Because of the uneven distribution of the station data
both in time and space, and the fact that most stations are land-based and therefore affected
by small-scale orographic precipitation unresolved at the scale of the gridded GPCP data,
the range of the monthly mean rainfall for the three regions from the stations is much larger
than that from GPCP. Comparing annual cycles of the precipitation based on station data
(Fig. 2, right) with GPCP (Fig. 2, left) reveals both differences and similarities. In terms of
similarities, both datasets demonstrate how the annual cycle of precipitation differs between
the three study regions. Regions 1 (west, Central America) and 2 (central, Greater Antilles)
are characterized by a bimodal distribution, or two wet seasons, with rainfall peaks in June

10



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

and September (Region 1) and in May and September (Region 2). Region 3 (east, Lesser
Antilles, with the smallest islands and the largest proportion of ocean to land area) shows
the smallest amplitude in the annual precipitation cycle of the three regions, with a wet
season that corresponds to Northern Hemisphere fall.

The phase of the annual cycle for Regions 1 (Central America) and 2 (Greater
Antilles) seems to be in a good agreement between GPCP and station data, with the
exception of the second (fall) peak in Region 1, a discrepancy which may be due to the
limited nature of station data. Region 1 stations are concentrated in the northern and
western part of the region (i.e. on the continent of Central America; Fig.1), while GPCP
shows September precipitation increases along the Pacific coast of Central America (not
shown).

In terms of other differences, the magnitude of the precipitation in Region 3 (Eastern
Caribbean) derived from station data tends to be much larger than the GPCP data. Region 3
(bounded by 64°W~59°W, 12°N~18°N) is mostly ocean except for several small islands
(see Fig. 1). It is therefore plausible that the sampling issue discussed previously, where
station data more closely reflects rainfall characteristic of small-scale orographic features of
the islands than does a larger gridded dataset, could be strongest for this region. This is
supported by the direction of the difference, where the station data shows higher
precipitation than the gridded dataset. It is well-established that the role of coastal orography
is more often to generate, rather than suppress, local-scale precipitation. In addition, there is
a relatively small amount of station data available in Region 3 as compared to other regions.

This more limited sample might also contribute to disagreement with the GPCP data.

3.2 Comparing CMIP3 and CMIPS simulations to GPCP precipitation

The next step is to compare GPCP-based precipitation with that simulated by CMIP3

and CMIP5 GCMs. GPCP, rather than station-based, climatologies are used due to the
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sampling biases in station data discussed in the previous section. GPCP includes both
station observations as well as satellite measurements over the land and ocean, and covers a
regular grid similar to that generated by GCMs.

Since the Caribbean region is primarily ocean, it is reasonable to expect that SST
exerts a strong influence on precipitation through its effects on atmospheric moisture
content and low-level convergence. A recent study by Martin and Schumacher (2011) found
that Coupled Atmosphere-Ocean (CMIP) models that underestimate SST also tend to
produce less precipitation as compared to Atmosphere-Only (AMIP) models forced by
prescribed (observed) SST. For that reason, before comparing observed and modeled
annual cycle of Caribbean precipitation, we first compare simulated and observed annual
mean precipitation vs. SST for the 30-year historical period 1979-2008 (Fig. 3). Consistent
with Martin and Schumacher (2011), this comparison reveals that all but a handful of
CMIP3 and CMIP5 models systematically underestimate annual mean SST for each of the
three regions. Similarly, the majority of models also underestimate annual mean of
precipitation in Region 1. However, results for Region 2 and 3 tend to be more evenly
distributed. In these regions, models that underestimate SST do not inevitably
underestimate precipitation. As hypothesized by Martin and Schumacher, the sensitivity of
precipitation to SST may be affected by the convective parameterization scheme employed
by different models. This is a topic that remains to be explored in future work.

We next compare simulated vs. observed normalized annual cycles of precipitation
for each of the three regions. The normalized annual cycle of precipitation is derived by
subtracting the annual mean from the annual cycle of precipitation and then dividing by the
standard deviation from the annual mean. As such, the normalized annual mean
precipitation is zero. Fig. 4 (CMIP3) and Fig. 5 (CMIPS5) show how a clear distinction can
be made between models that do reproduce the bimodal distribution of the wet seasons

identified in the observations for Regions 1 and 2, and those that do not. A similar
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distinction can be drawn between models that simulate a mid-summer drought, and those
that do not. Based on these distinctions in GCM ability to simulate precipitation for Region
2, where these features are most pronounced, we divide both CMIP3 and CMIP5 GCMs into
three categories as follows.

The first category, which we refer to as “Bimodal” (marked as “B” in Table 1),
consists of models that are able to simulate a bimodal distribution similar to that observed in
Region 2, with peaks in early summer and fall punctuated by a drier period in mid-summer.
There are 6 CMIP3 models (CGCM3.1(T47), GISS-ER, MIROC3.2(hires), MRI-
CGCM2.3.2, UKMO-HadCM3, UKMO-HadGEM1) and 9 unique and 13 total CMIP5
models (CanCM4, CESM1(CAMS), CNRM-CMS5, CSIRO-Mk3.6.0, HadCM3,
HADGEM2-A0, HADGEM2-CC, HADGEM2-ES, MIROC4h, MIROCS, MPI-ESM-LR,
MPI-ESM-MR, and MRI-CGCM3) in this group. This list of models reveals two interesting
features. First, most of the modeling groups that have an earlier CMIP3 model in this top-
performing category also have a more recent CMIP5 model in the same category. These
consist of the Canadian Centre for Climate Modeling and Analysis, the Japanese Center for
Climate System Research, the Japanese Meteorological Agency, and the U.K. Met Office
Hadley Centre. Second, there appears to be some improvement between CMIP3 and CMIP5
(see Table 1 and Fig. 4 and 5). One model from the Australian Commonwealth Scientific
and Industrial Research Organization (CSIRO-Mk3.0, CSIRO-Mk3.6.0) moves from
category 3 (single) in CMIP3 to category 1 (bimodal) in CMIP5, while one from the
German Max-Planck-Institut fiir Meteorologie moves from category 2 (single with MSD) in
CMIP3 (ECHAMS/MPI-OM) to category 1 in CMIP5 (MPI-ESM-LR, MPI-ESM-MR).
One model from the U.S. National Center for Atmospheric Research (CESM1(CAMY)) also
debuts in category 1.

The second category, which we refer to as “single with MSD” (marked as “SM” in

Table 1), consists of models that simulate both a mid-summer drought and a wet season in
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fall, but fail to simulate the early summer precipitation maxima. There are 6 CMIP3 models
(GFDL-CM2.0, GFDL-CM2.1, GISS-EH, INM-CM3.0, MIROC3.2(medres) and MPI-
ECHAMS) and 3 unique and 7 total CMIP5 models (CCSM4, CESM1(BGC),
CESM1(WACCM), GFDL-ESM2G, GFDL-ESM2M, MIROC-ESM, MIROC-ESM-
CHEM) in this group. Some models remain in this category from CMIP3 to CMIPS5,
specifically the CMIPS Earth System Model versions of CMIP3 models from the U.S.
Geophysical Fluid Dynamics Laboratory (GFDL-ESM2G and GFDL-ESM2M, plus GFDL-
CM2.0 and GFDL-CM2.1). Models from the Japanese Center for Climate System Research
remain in the same category, depending on the horizontal resolution of the model. This
appears to be independent of model version for both CMIP3 and CMIPS5. Specifically,
models with a coarse resolution of about 2.8° in latitude and longitude (MIROC-ESM and
MIROC-ESM-CHEM, plus MIROC3.2(medres)) are classified as category 2, while models
with a higher resolution less than about 1.4° (MIROC4h, MIROCS, pus MIROC3.2(hires))
fall into category 1. Some models have moved into category 2 from category 3, which
represents an improvement from CMIP3 to CMIP5. These include the majority of the
CMIPS versions of the U.S. National Center for Atmospheric Research models (CCSM4,
CESMI1(BGC), CESM1(WACCM), compared to CCSM3 and PCM which are in the
“single” category).

Finally, the third category, which we refer to as “single” (marked as “S” in Table 1),
consists of models that simulate only a single wet season from June to October, with no
peak in early summer and no mid-summer drought. There are 5 CMIP3 models
(CGCM3.1(T63), CSIRO-MK3.0, CCSM3, GISS-AOM and PCM) and 3 unique and 6 total
CMIPS5 models (GFDL-CM3, GISS-E2-H, GISS-E2-H-CC, GISS-E2-R, GISS-E2-R-CC,
INM-CM84) in this group. Interestingly, most CMIPS models in this group have regressed
from category 2 (single with MSD) into category 3 (single only) between CMIP3 and

CMIP5. These include the new CMIP5 GFDL-CM3 (compared to GFDL-CM2.0 and 2.1),
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many of GISS models (GISS-E2-H-CC, GISS-E2-H, GISS-E2-R-CC, and GISS-E2-R,
compared to GISS-EH), and the new CMIP5 INM-CM4 (compared to INM-CM3.0). Three
modeling groups (Canadian, Australian, and U.S. NCAR) have moved out of category 3
between CMIP3 and CMIPS.

One CMIP3 model, CNRM-CM3, could not be assigned to any of these three
categories, as its annual precipitation profile did not correspond to any of the general
profiles (not shown). From March to October, encompassing the summer wet season and the
mid-summer drought, the model would fall into the “Bimodal” category. However, the
model also produced a spurious winter wet season, extending the fall precipitation peak
throughout the entire winter, from September through January. In Table 1, CNRM-CM3 is
therefore categorized as “N/A”. In CMIPS, the more recent version of the model, CNRM-
CMS5 eliminated the spurious winter precipitation peak and is now one of the top performers
relative to the multi-model ensemble of month-to-month precipitation.

In summary, CMIPS5 versions of models that were already able to simulate a bimodal
distribution for Regions 2 in CMIP3 tend to retain that ability with the new generations of
models. The majority of modeling groups show improvement in the ability to simulate the
annual cycle of precipitation over the Caribbean, moving from “single” to “single with
MSD” or “bimodal” between CMIP3 and CMIPS5, while a few models appear to have
regressed in their ability to simulate the annual cycle of precipitation from CMIP3 to
CMIPS.

The discussion above is based on model performance over Region 2. In general,
model performance in other regions is consistent with performance in Region 2. However,
there are a handful of exceptions. Specifically, three CMIP3 models (GISS-ER, which has a
bimodal distribution in Region 2 but not Region 1; and CSIRO-Mk3.0 and MPI-ECHAMS,
both of which have a bimodal distribution in Region 1 but not Region 2) and one CMIP5

model (CESM1(CAMS), which does not have a bimodal distribution in Region 1) would fall
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in a different group if they were divided by their performance over Region 1 instead. The
majority of models are able to simulate a wet season in fall in Region 3 regardless of their
performance in Regions 1 and 2. The only exception are models in category 3, “single”,
which tend to simulate a Region 3 wet season in summer instead of fall.

In the next section, we use these categories of models to explore the association
between large-scale environmental features, such as SST, NASH, and CLLJ, and the annual
cycle of precipitation over the Caribbean. For those models with archived upper-air fields,
we also examine the extent to which aspects of these large-scale features are simulated by

the GCMs.

4 Influence of the Large-Scale Environment on

Precipitation

In evaluating the role of the large-scale environment on precipitation in the
Caribbean, the question we ask is not whether all the models are able to reproduce the
observed large-scale environment, but rather whether there is a noticeable difference among
the performance of the models in the “bimodal” category (which correctly simulate the
annual cycle of precipitation with two maxima and a mid-summer drought), models in the
“single with MSD” category (which simulate a mid-summer drought and fall precipitation
maxima) and models in the “single” category (which only simulate a single precipitation
maxima, generally in summer). In this section we continue to divide the models into these
three categories, and examine their ability to reproduce monthly changes in SST, the NASH,
low-level wind fields including the CLLJ, and moisture flux convergence throughout the
region. Not all models have archived the fields required for these analyses; for each figure,

available models are listed in Table 1.
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4.1 Sea Surface Temperature

As previous studies have already demonstrated how sea surface temperature plays an
important role in driving the annual cycle of climate in the Caribbean (Enfield and Alfaro
1999, Giannini et al. 2000, Munoz et al. 2008), we start with examining month-to-month
variation in the SST across the region spanning the wet season from May to September (Fig.
6, shaded area). As shown in the observations (left column), a pool of warm SST first
appears along the Pacific coast of Central America in April. It then intensifies and begins to
shift northeastward into the Caribbean in May. SST near Cuba begins to increase in May
(Region 2) and spreads to cover the entire region by June. During summer, the warm SST
anomaly extends throughout the entire Gulf of Mexico and northern Caribbean, covering a
latitude band between about 18°N and 30°N in August, before rapidly decreasing by
October.

CMIP3 simulations (Fig. 6, right-hand columns) show how most models tend to
under-estimate SST relative to observations. This is consistent with the annual SST analysis
in Fig. 3 discussed previously. Most models also show a slight delay in the advance of the
SST warm pool into the Caribbean in spring. As hypothesized, the multi-model average of
the first or Bimodal category of CMIP3 models (CGCM3.1(T47), GISS-ER,
MIROC3.2(hires), MRI-CGCM3.2, UKMO-HadCM3, and UKMO-HadGEM1) is most
similar to observed (Fig. 6, second column). Compared to the other categories and to
observations, the multi-model average of category 2 CMIP3 model (ECHAMS/MPI-OM,
GISS-EH, GFDL-CM2.0, GFDL-CM2.1, INM-CM3.0, and MIROC3.2(medres)) displays a
stronger meridional gradient of SST across the Caribbean due to a colder pool of SST
located near the northern coast of South America (Fig. 6, third column). The three-model
average of category 3 CMIP3 models (CSIRO-Mk3.0, GISS-AOM, and PCM) shows a
delayed and weaker SST than both the observed and the other categories of model-simulated

SST.
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The same three categories of multi-model averages, this time based on CMIP5
simulations, are plotted in Fig. 7 to determine whether the relationship between model
category and SST is consistent with that seen in CMIP3 simulations (Fig. 6). The most
noticeable difference between Fig. 6 and 7 is that the negative or cool bias in model-
simulated SST across the Caribbean and the Gulf of Mexico seems to be reduced in CMIP5
simulations compared to CMIP3. Consistent with the CMIP3 simulations, the multi-model
average of SST for the first Bimodal category (CanCM4, CESM1-CAMS, CNRM-CMS5,
CSIRO-Mk3-6-0, HadCM3, HadGEM2-AO, HadGEM-CC, HadGEM-ES, MIROC4h,
MIROCS, MPI-ESM-LR, MPI-ESM-MR, MRI-CGCM3) is most similar to observations on
a month-to-month basis. The average of the second “Single with MSD” category (CCSM4,
CESM1-BGC, CESM1-WACCM, GFDL-ESM2G, GFDL-ESM2M, MIROC-ESM-CHEM,
MIROC-ESM) displays a similar month-to-month variation to category 1 with the exception
of a cold SST bias along the northern coast of South America in the early summer (May and
June). This is also consistent with the CMIP3 simulations, strengthening our confidence in
the similarity of model biases between CMIP3 and CMIP5. In the CMIPS5 simulations, it is
very clear that the warm SST pool in the Gulf of Mexico persists into September, when SST
in the observations and in the bimodal simulations has already begun to decrease. This late-
season bias is not as evident in the CMIP3 simulations, but is nonetheless present upon
careful inspection. The third or “Single” category of CMIP5 models (GFDL-CM3, GISS-
E2-H, GISS-E2-H-CC, GISS-E2-R, GISS-E2-R-CC, INM-CM4) also has an early-season
cool bias off the northern coast of South America, but otherwise shows a somewhat different
spatial distribution of SST as compared to CMIP3. Instead of a northward propagation of the
warm SST pool over both the Pacific and Atlantic Oceans during the wet season, the
warmest SST remains to the south of 14°N in the eastern Pacific while the second warmest
region appears to be near the central Caribbean rather than the the Gulf of Mexico. This

may be due to the fact that the models in the CMIP5 category 3 are not updated versions of
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the models in the CMIP3 category 3, but rather entirely different models (with the sole
exception of models from the same group, GISS).

The timing of the month-to-month variation in SST suggests that it could play a role
in moderating the onset and end of the wet season from May to October (June to October) in
Region 2 (Region 1). The timing of the onset of precipitation maxima in these regions in
spring is similar to that of the intrusion of the warm SST pool into those regions, and the
decrease in precipitation in fall also corresponds to the retreat of the warm SST pool from
those areas. Most models (particularly in the single with MSD and single categories) tend to
simulate a wet season that is slightly delayed compared to observations (Fig. 4 and 5),
consistent with a delay in simulating the arrival of the SST warm pool. On the other hand,
precipitation in Regions 1 and 2 decreases during July and August, just when the SST in
both regions is strongest. This suggests that atmospheric features, such as the NASH and
CLLJ, may be more relevant to determining the existence and timing of the mid-summer dry
period than SST (as previously suggested by Curtis and Gamble 2007; Gamble et al. 2008
and Rauscher et al. 2008). In other words, the midsummer dry period seen over the central
and eastern Caribbean (illustrated in Fig. 4 and 5) is thought to be related to an enhanced
CLLJ accompanied by westward expansion of the NASH over the Caribbean, which will be

discussed in the next section.

4.2 The Caribbean Low-Level Jet and Geopotential Height

In Fig. 6 and 7 (left column) we overlay ERA40-based climatological zonal wind
(blue contours) and eddy geopotential height at 925hPa (black contours) over SST in order
to track the extension of the NASH and associated CLLJ from the tropical Atlantic (in
spring) into the Caribbean (in summer), and its retreat back to the east (in fall). We derived
eddy geopotential height by subtracting the zonal mean from the geopotential height at each

pressure level. The eddy refers to deviation from zonal mean and the units of this derived
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variable are in meters relative to the zonal mean. Since the zonal mean field is zonally
symmetric, the eddy geopotential height can be used to track the westward extension of the
NASH. Specifically, geopotential height maxima highlight the extension of the NASH into
the Caribbean in summer, while the easterly zonal wind maxima is the CLLJ. The CLLJ is
located to south of the eddy geopotential height, parallel to the isobars thus maintaining
geostrophic balance with the NASH (Wang 2007; Cook and Vizy 2010).

Towards the end of Northern Hemisphere spring, the CLLJ begins to increase in
strength over the Caribbean Sea and remains strong from June through August before
weakening again in fall. These increased easterly winds, centered around 15°N, seem to be
associated with the increase of the SST over the Gulf of Mexico and the Caribbean Sea
between 18°N and 30°N. This makes sense, since an increase in the meridional gradient of
SST would tend to strengthen easterly winds via geostrophic balance. At the same time, the
NASH begins to extend westward, stalling over the Caribbean and the Gulf of Mexico
during July and August before retreating eastward in September to the point where the
geopotential height anomaly over the Caribbean is nearly non-existent in October.

As shown previously in Section 3, GCM ability to simulate the mid-summer drought
varies noticeably between the three categories of models identified here. The first two
categories (bimodal and single with MSD) are able to simulate a drought, while the last one
(single) is not. For that reason, we next examine how the ability of the models to simulate
the mid-summer dry period and the timing of the wet season peak in the western and central
Caribbean may be related to the timing of the westward extension and eastward retreat of
the NASH and/or the intensification of the CLLJ. Specifically, we hypothesize that a too-
early extension of the NASH into the Caribbean would suppress the early summer
precipitation maxima, whereas a model that simulated the proper timing of NASH extension
would allow for an SST-driven increase in precipitation in early summer. On the other hand,

model inability to simulate the extension of the NASH over the Caribbean would mean that
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the model was not able to simulate the MSD, as there would be no atmospheric mechanism
to suppress SST-driven precipitation.

In accord with our hypotheses, both Fig. 6 (CMIP3) and Fig. 7 (CMIP5) show that
the multi-model average of the bimodal category is able to simulate the timing of the
westward extension of the NASH over the eastern Caribbean and the Gulf of Mexico and
the accompanied intensification of the CLLJ during July and August. Both CMIP3 and
CMIPS5 model simulations in the Single with MSD category, which simulates only a single
wet season in fall, tends to simulate an early westward extension of the NASH that expands
over the central Caribbean in May and over the Gulf of Mexico in June. In addition, the
early summer CLLJ is also much stronger than observed, followed by the weakening of the
CLLJ in mid-summer (July and August). On the other hand, the multi-model average of the
Single category shows a weak CLLJ throughout the wet season and a relatively weak
westward extension of the NASH over the Caribbean, more prominent in the CMIP5
simulations but present in CMIP3 as well. In summary, the combined effects of the
longitudinal migration of the NASH, the accompanying intensification of the CLLJ, and the
annual cycle of SST in the Caribbean appear to drive the annual cycle of the precipitation
over the Caribbean. Decreases in precipitation over the western and central Caribbean
during mid-summer seem to be related to the westward extension of the NASH
accompanying an enhanced CLLJ, which is in turn associated with an increase in the
meridional gradient of SST. As the NASH retreats eastward in the fall, precipitation peaks
again in the western and central Caribbean as nearby SST remains warm, favorable for
convective activity. In the eastern Caribbean, however, the NASH moves in before SST has
warmed in early summer. SST then peaks during September and October (Fig. 2) just as the
NASH retreats to the east. This explains the single precipitation peak in Region 3, the
Lesser Antilles. This result is consistent with Curtis and Gamble (2007) who showed that

the occurrence of maximum of 1000 hPa geopotential height and the MSD progressed from
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east to west, while the MSD is not observed in the eastern Caribbean. Consistency in multi-
model composite SST, geopotential height, and zonal wind fields suggests that model ability
to simulate the timing and magnitude of these features appears to be related to model ability
to simulate the early-season precipitation maxima (suppressed if the NASH moves westward
too early) and the mid-summer drought (does not occur if the NASH is too weak). Since the
CMIP3 and CMIP5 overall agree on the relationship between model ability to simulate the
annual cycle in Caribbean precipitation and model ability to simulate the large-scale features
such as the NASH, CLLJ and SST, and since CMIP3 model output for upper-air fields is
significantly more sparse than CMIPS5 output, in the next section we rely on CMIP5
simulations only to explore the role of vertical wind and moisture convergence/divergence

in determining summer precipitation over the Caribbean.

4.3 Exploring Top-Down vs. Bottom-Up Influences on Caribbean

Precipitation

The influence of oceanic (SST) vs. atmospheric (NASH, CLLJ) influences on
Caribbean precipitation can be difficult to untangle, as the westward extension of the NASH
occurs at a similar time to the eastward extension of the warm SST pool into the Caribbean
Sea and the Gulf of Mexico. In fact, it may be a chicken and egg problem, as SST cooling
south of the NASH, where the CLLJ is most intense, might contribute to maintenance of the
geostrophic balance between the NASH and the CLLJ. For that reason, in Fig. 8 we further
investigate these relationships by plotting latitude-pressure cross-sections of eddy
geopotential height, easterly winds, and local meridional circulation averaged from 80° W to
60°W. During boreal winter, the CLLJ appears to be strongest below 700 hPa where the
southward branch of a local Hadley circulation exists. In contrast, a positive eddy
geopotential height is strongest in the upper troposphere above the Caribbean (not shown).

During summer, observations (Fig. 8, left column) show that the positive eddy geopotential
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height above the Caribbean is strongest near the surface. Considering the NASH is a
dynamical feature dominating in the lower troposphere (Davis et al. 1997; Li et al. 2011; Li
et al 2012), the enhancement of the positive eddy geopotential height in the lower
troposphere during summer seems to be related to the extension of the NASH over the
Caribbean, presumably indicating that the positive eddy geopotential height is more likely
being affected by the surface rather than the upper atmosphere. In other words, the warming
of the SST in the Caribbean and the Gulf of the Mexico and the cooling of the SST south of
the NASH associated with the enhanced CLLJ drives a positive meridional gradient in near-
surface temperature. This gradient could conceivably play a role in the westward extension
of the NASH by maintaining of the geostrophic balance between the NASH and the CLLJ.
This hypothesis is supported by the observation that the CLLJ appears to be deeper during
boreal summer than winter, expanding up to 500 hPa during July and August. Consistent
with the geostrophic relationship between the CLLJ and the NASH, the height of the CLLJ
matches the height of the positive eddy geopotential height.

The observed vertical structures of the CLLJ and eddy geopotential height are both
well simulated by models in the first Bimodal category (Fig. 8, column 2). Consistent with
Fig. 7, the CLLJ and the eddy geopotential height, as well as local meridional circulation,
appear to be stronger in the second Single with MSD category (Fig. 8, column 3).
Specifically, a strong sinking motion above the Caribbean (10°N ~ 30°N) seems to be
relevant to the stalling of the strong positive eddy geopotential height (i.e. high pressure
system) during summer and moreover helps to inhibit convection activity, which
consequently prevents the models from simulating a wet season in early summer. As
expected from Fig. 7, the strength of the CLLJ and eddy geopotential height are both
underestimated in the single category (Fig. 8, last column), which indicates that the models
of this category are generally unable to simulate the intensification of the NASH over the

Caribbean during summer.
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According to Martin and Schumacher (2011), the bimodal structure of the annual
cycle of the Caribbean precipitation tends to be realized by ensembles of AMIP simulations,
but not by ensembles of CMIP simulations. Our intercomparison of the CMIP3 and CMIP5
GCMs with observations identifies a number of models (those in the bimodal category) that
are able to correctly time the westward expansion of the NASH and hence are able to
correctly simulate the observed bimodal distribution of Caribbean precipitation. In models
that anticipate the westward extension of the NASH, however, this first peak is suppressed,
leading to the category “Single with MSD”. On the other hand, models that fail to simulate
the westward extension of the NASH and the enhanced CLLJ, a failure associated with a
weak meridional gradient of SST across the Caribbean and the Gulf of Mexico, also tend to
simulate a wet season during boreal summer, often at the same time as the observed MSD
occurs. This leads to the category “Single”. For CMIP3 models, roughly each one-third of
all models fall into each category. Hence, it is possible that averaging across all CMIP3
models may have obscured the ability of some models to reproduce the observed structure

of precipitation.

4.4 Vertically integrated moisture flux convergence

Previous studies have pointed out that the enhanced CLLJ could be responsible for a
decrease in precipitation in the Caribbean through inhibition of convective development and
tropical cycologenesis due to divergence over the eastern Caribbean (Wang and Enfield
2003; Wang 2007) or SST cooling due to strong wind stress (Giannini et al. 2000).
However, Regions | and 2, which have a mid-summer drought in July and August, are
located to the north of the CLLJ (see Fig. 1 for region locations) where the nearby SST is
still warm during time of drought (Fig. 6, left column). In the area where the CLLJ is
strong, SST does tend to be cooler, suggesting that surface wind stress due to the CLLJ may

play a role in cooling SST in the southern Caribbean Sea, where the CLLJ is strongest.
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Positive feedback between the CLLJ and the meridional gradient of SST could in part
contribute to the intensification of the NASH over the Caribbean region to the north of the
CLLJ. Large-scale subsidence that occurs within a high pressure system is an unfavorable
condition for convective development or tropical cyclogenesis, processes responsible for
much of the precipitation in Caribbean regions. In that way, SST cooling associated with
the enhanced CLLJ might indirectly influence Caribbean precipitation. Model composites
for both the first category, Bimodal, and the second category, Single with MSD, are able to
simulate cooler SST in the region of strongest CLLJ (Fig. 6 and 7, centre columns).

To examine the potential dynamical linkage of the westward extension of the NASH
with Caribbean precipitation, we next examine vertically integrated moisture flux
divergence and horizontal wind at 925 hPa (Fig. 9). Originally, we calculated both
climatological monthly mean and transient moisture flux using 6-hourly output from ERA-
40 reanalysis from 1960 to 2001. Since the total vertically integrated moisture flux
convergence for each month is dominated by the mean term, however (not shown), in this
figure we show only the vertically integrated moisture flux convergence calculated from
monthly mean data.

As expected, moisture flux convergence dominates in Region 1 over Central
America and Region 2 over the Greater Antilles and central Caribbean (Region 2) during the
two wet seasons, May/June and September (Fig. 9, left column). In June, moisture flux
divergence is located over Region 3, the eastern Caribbean. Over the summer, this
divergence moves westward. By July and August, it covers most of the Caribbean, the Gulf
of Mexico, and a part of Central America. This corresponds well to the timing of the
westward extension of the NASH over the same period (Fig. 6 and 7) and the mid-summer
drought in Regions 1 and 2. Wind flow during summer is dominated by eastward flow in

the southern Caribbean and an anticyclonic flow pattern in the northern part of the region
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that is strongest in the west, connecting the Caribbean to the northerly Great Plains Low-
Level Jet.

Month-to-month variations in the vertically integrated moisture flux appears to be
well simulated by models in the first Bimodal category, consistent with their ability to
simulate the timing and magnitude of the westward extension and retreat of the NASH. In
the second Single with MSD model category, however, vertically integrated moisture flux
divergence dominates over the Caribbean and the Gulf of Mexico during the entire boreal
summer from May to August. This corresponds to the early expansion of the NASH over the
Caribbean and suppression of the first precipitation maxima in spring. It indicates that the
failure of these models to simulate the first wet season in May/June can be attributed to the
moisture flux divergence associated with the NASH extending too far to the west during
early summer. Finally, vertically integrated moisture flux convergence/divergence
simulated by the models with only a single precipitation maxima shows moisture flux
convergence to be dominant over Central America (Region 1) and most of the Greater
Antilles (Region 2) even in July and August. The pattern over much of the summer
resembles a weaker version of the observed June pattern, which characterizes the first wet
season in the Caribbean. The persistence of this June-like pattern over the entire summer
can be attributed to model inability to simulate a strong NASH extension over the region in
summer, which also results in a weak CLLJ and weak anticyclonic circulation. It results in

the single wet season, beginning in June, that characterizes models in this group.

5 Discussion and Conclusions

In this study, we assessed the ability of CMIP3 and CMIP5 GCMs to simulate
observed precipitation in the Caribbean region and linked their performance to model ability
to simulate larger-scale regional dynamics related to SST, NASH, and the CLLJ. We

divided the Caribbean up into three regions based on the groupings of the land mass and the
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unique characteristics of their annual precipitation: Caribbean Central America, Central
Caribbean (Greater Antilles), and Eastern Caribbean (Lesser Antilles). We then
characterized the annual climatology of precipitation in each of these regions by comparing
the results from the GPCP gridded dataset with those obtained from spatial interpolation of
GHCN and MIDAS station data.

Station-based and gridded datasets were consistent in revealing inter-regional
differences in the timing and magnitude of precipitation variability over the year.
Differences between station-based vs. gridded cycles are consistent with the disparate
land/ocean sampling between the datasets, although it is possible that the greater amount of
missing data in the station records as compared to the gridded datasets may also play a role.

Region 3 (Eastern Caribbean) is characterized by a single fall wet season that occurs
after the NASH retreats eastward. In contrast, the wet season in Regions 1 (Central
America) and 2 (Central Caribbean) spans the period from May to October, and is
characterized by a bimodal distribution punctuated by a mid-summer drought in July and
August. The overall duration of the wet season is closely linked to the expansion of a warm
SST anomaly into those regions. However, the incidence of the mid-summer dry period is
coincident with the warmest SSTs, suggesting that the MSD may be driven by atmospheric
rather than ocean conditions. The most likely candidate is the westward extension of high
pressure conditions associated with the North Atlantic Subtropical High into the Caribbean,
as revealed by an analysis of 925 hPa geopotential height fields. This high pressure field
may be further enhanced by SST increases throughout the Gulf of Mexico and the Atlantic
Ocean in summer months, which cause the meridional gradient of SST across the Central
Caribbean to peak in July and August. This gradient drives a geostrophic enhancement in
the Caribbean Low-Level Jet, which accompanies the intensification of the NASH over the

Caribbean region to the north of the CLLJ.
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A vertical cross-section of ERA-40 reanalysis averaged over the Caribbean region
revealed that the CLLJ gradually extends up to about 500 hPa over the course of the summer
rainy season, with a maxima near the surface during July and August concurrent with and
enhancement of eddy geopotential height from the surface. This result supports our
hypothesis that the northward migration of the warm SST anomaly toward the central
Caribbean and the Gulf of Mexico during summer helps the NASH to expand to the west,
and that the intensification of the CLLJ, accompanied by the westward migration of the
NASH (due to the easterly of the anticyclonic circulation), presumably induces the SST
cooling near the northern coast of the South America as a result of wind-driven upwelling.
As aresult, the meridional gradient of the SST across the region increases, which in turn
results in both the enhancement of the CLLJ and intensification of the NASH in the
geostrophic relationship. When the warm SST anomaly decreases and retreats to the south
in September, both the CLLJ and the NASH are noticeably weakened. Moreover, the
intensified NASH in the lower troposphere (below 500 hPa), where most of the tropospheric
moisture content exists, helps to inhibit convection development by causing large-scale
moisture flux divergence, particularly during July and August. In summary, Caribbean
precipitation appears to be influenced by the competing effects of the eastward extension of
the warm SST pool in summer which increases precipitation, and the westward migration of
the North Atlantic Subtropical High and associated strengthening of the Caribbean Low
Level Jet and the meridional SST gradient, which suppresses precipitation.

The observed cycle in annual precipitation based on GPCP was then compared with
those simulated by 18 CMIP3 GCMs and 26 CMIP5 GCMs. GCM ability to simulate the
annual cycle of precipitation over the Caribbean appears to be linked to model ability to
simulate the large-scale features driving precipitation, which are relatively complex. It is
therefore no surprise that GCM performance varies noticeably, in ways that appear related

to model ability to simulate the timing of changes in multiple dynamical features over the
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Caribbean. In this analysis, we grouped models into three categories based on their ability to
simulate observed precipitation, then examined the large-scale environment in these models
to see whether consistent patterns emerged.

We first found that models able to realistically capture summer changes in the
meridional gradient of SST and the westward extension of the NASH as manifested in 925
hPa geopotential height fields are also able to simulate the bimodal distribution of the
annual cycle of the Caribbean precipitation: a wet season stretching from late spring to early
fall, punctuated by a mid-summer dry period. Moreover, the month-to-month variations of
the vertical structure of the CLLJ and eddy geopotential height (i.e. NASH) are very similar
to observed, indicating that our hypothesis regarding large-scale drivers of precipitation
explained above works well in this model group. Similarly, the ability of these models to
simulate the observed mid-summer dry period can be attributed to mid-summer large-scale
moisture flux divergence due to the westward extension and intensification of the NASH.
These models were designated as “Bimodal” and included approximately one-third of
CMIP3 models but approximately half of all CMIP5 models, suggesting that some modeling
groups' ability to simulate the large-scale drivers of precipitation over the Caribbean has
improved from CMIP3 to CMIPS5.

We next identified a group of models that simulated an earlier extension of the
NASH into the Caribbean region combined with colder SSTs, which tends to suppress the
early wet season in May and June, but still reproduces the mid-summer dry period.
Consistent with the earlier extension of the NASH, a stronger CLLJ is simulated in the early
summer although the NASH still stalls over the Caribbean and the Gulf of Mexico in mid-
summer. Based on this analysis, it is possible that early onset of the NASH over the
Caribbean might be related to a dominant subsidence throughout the troposphere above the
Caribbean, which would suppress precipitation. This can be anticipated from the fact that

large-scale moisture flux divergence dominated across the region during the wet season
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from May to August. These models were designated as “Single with MSD” and included
approximately one-third of CMIP3 models and about a quarter of CMIP5 models.

Lastly, we identified a group of models that did not simulate a mid-season dry period
in Regions 1 and 2, but rather a single, long wet season which began around June and lasted
until fall. These models were characterized by remarkably weak CLLJ and NASH over the
Caribbean, most prominent in CMIP5 simulations. Consistently, these models tend to
reproduce observed June-like patterns of moisture convergence in the Central America
(Region 1) and the central Caribbean (Region 2) over the entire summer from June through
September. This presumably contributes to the absence of the mid-summer dry period.
These models were designated as “Single” wet season and included approximately one-third
of CMIP3 models but only about a quarter of CMIP5 models.

Overall, our result suggests that some models' ability to simulate the large-scale
drivers of precipitation over the Caribbean has improved from CMIP3 to CMIPS5. In other
words, more models are now able to reproduce the bimodal structure of the annual cycle of
Caribbean precipitation in the CMIPS5 simulations as compared to CMIP3 (see Table 1).
However, we also found that many of the “Bimodal” and “Single with MSD” models from
both the CMIP3 and CMIP5 simulations continue to underestimate the magnitude of the
early wet season, while over-estimating the second wet season in fall. This pattern is more
obvious in the Region 2, central Caribbean (Fig. 4 and 5). This may be due to an
approximate one-month delay in the onset of warm SST across the Caribbean that is
generally seen in nearly all models compared to observations (Fig. 6 and 7).

It is possible that the SST bias simulated by the GCMs could be induced by
atmospheric dynamics, perhaps due to biases in wind stress related to wind-driven upwelling
or evaporative cooling. It is also possible that the biases could be induced by ocean
dynamics. In particular, the ocean mixed layer depth is closely related to SST variability

and SST response to atmospheric forcing (Houghton 1991; Yu et al. 2006; Lienert et al.
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2011). If the simulated depth of the ocean mixed layer were greater than observed, greater
ocean heat content would increase the inertia or delay in the response of surface SST to
seasonal heating. These and other hypotheses regarding the origin of the observed biases in
model simulation of the large-scale atmospheric and oceanic environment remain to be
explored in future research, as do the implications of GCM ability to simulate precipitation-

related dynamics on the magnitude and direction of future change in the region.
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Figure captions

Fig. 1 Location of stations over the Caribbean region (94°W ~ 59°W, 5°N ~27°N) from
GHCN and MIDAS (blue and light blue indicating selected and unselected stations,
respectively) for precipitation. Three solid boxes indicate three sub-regions used to quantify
surface climate variability: Region 1 (Central America), Region 2 (Central Caribbean,
Antilles), and Region 3 (Eastern Caribbean, West Indies). The gridded lines indicate the
horizontal resolutions of the GPCP fields, onto which the station data were objectively
interpolated.

Fig. 2 Climatological annual cycles of precipitation (mm day ') averaged over the three
Caribbean regions for the 30-year period from 1979 to 2008 based on (a) GPCP gridded data
and (b) the merged and interpolated GHCN+MIDAS station data. A shaded area represents
+ 1-o (standard deviation) from the mean.

Fig. 3 Scatter plots of the climatological means of sea surface temperature (SST) and
precipitation averaged over each sub-regions for the 30-year period from 1979 to 2008 from
observations (black closed circle), the CMIP3 (orange-red) and the CMIP5 (green-blue)
simulations.

Fig. 4 Normalized annual cycle of precipitation averaged over the regions, based on GPCP
(solid black) and the CMIP3 simulations. The simulations are divided into three groups, one
with a bimodal distribution, the second with a single peak with a Mid-Summer Drought, and
the third one with a single peak without the MSD.

Fig. 5 Same as Fig. 4 except for CMIPS5 simulations.

Fig. 6 Monthly mean sea surface temperature (shaded), eddy geopotential height (black,
contoured) at 925 hPa and zonal wind (blue, contoured) for each month of the Caribbean
wet season from May to September. The contour interval of the zonal wind is 2 m s™ and
possible contours include -14, -12 and -10, while the eddy geopotential height is drawn with
a contour interval of 20 m between 30 m and 110 m. The observation data (left) are based on
NOAA SST from 1982 to 2008 and ERA-40 output from 1979 to 2001. The CMIP3
simulations are used for composite calculation of three groups of models (Bimodal, Single
with MSD, and Single).

Fig. 7 Same as Fig. 6 except for CMIPS5 simulations.

Fig. 8. Latitude-Pressure cross-section of eddy geopotential height (shaded), zonal wind
(blue, contoured) and meridional and vertical wind (vector) averaged over longitude

between 60°W and 80°W. The contour interval of the zonal wind is 2 m s™ and possible
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contours include -14, -12, -10, -8, and -6. CMIP5 simulations are used for composite
calculation of three groups of models (Bimodal, Single with MSD, and Single).

Fig. 9 Monthly mean of the vertically integrated moisture flux convergence/divergence
(shaded) and the horizontal wind at 925 hPa (arrow). CMIPS5 simulations are used for

composite calculation of three groups of models (Bimodal, Single with MSD, and Single).

Table captions

Table 1 Primary descriptions of the CMIP3 and CMIP5 models used in this analysis,
including their names, provenance, and horizontal and vertical resolution. The three
different indices (“B”, “SM”, and “S”), posted next to the model names, represent
“Bimodal”, “Single w/MSD”, and “Single”, respectively. These are the three categories the
models were divided into, based on their ability to simulate the annual cycle of precipitation

over the Caribbean.
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Fig. 1 Location of stations over the Caribbean region (94°W ~ 59°W, 5°N ~27°N) from
GHCN and MIDAS (blue and light blue indicating selected and unselected stations, respectively)
for precipitation. Three solid boxes indicate three sub-regions used to quantify surface climate
variability: Region 1 (Central America), Region 2 (Central Caribbean, Antilles), and Region 3
(Eastern Caribbean, West Indies). The gridded lines indicate the horizontal resolutions of the GPCP

fields, onto which the station data were objectively interpolated.
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Fig. 3 Scatter plots of the climatological means of sea surface temperature (SST) and

precipitation averaged over each sub-regions for the 30-year period from 1979 to 2008 from

observations (black closed circle), the CMIP3 (orange-red) and the CMIP5 (green-blue)

simulations.
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