Altivar ${ }^{\circledR} 58$ TRX
 Adjustable Speed Drive Controllers Keypad Display VW3A58101

Instruction Bulletin
Retain for future use.

See page 17 for the Minimum Start-Up Procedure.

4 DANGER

HAZARDOUS VOLTAGE

- Read and understand this bulletin in its entirety before installing or operating Altivar 58 TRX drive controllers. Installation, adjustment, repair, and maintenance of the drive controllers must be performed by qualified personnel.
- The user is responsible for conforming to all applicable code requirements with respect to grounding all equipment.
- Many parts in this drive controller, including printed wiring boards, operate at line voltage. DO NOT TOUCH. Use only electrically insulated tools.
- DO NOT short across DC bus capacitors or touch unshielded components or terminal strip screw connections with voltage present.
- Before servicing the drive controller:
- Disconnect all power including external control power that may be present before servicing the drive controller.
- Place a "DO NOT TURN ON" label on the drive controller disconnect.
- Lock the disconnect in open position.
- WAIT TEN MINUTES for the DC bus capacitors to discharge. Then follow the DC bus voltage measurement procedure on page 98 to verify that the DC voltage is less than 45 V . The drive controller LEDs are not accurate indicators of the absence of DC bus voltage.
- Install and close all covers before applying power or starting and stopping the drive controller.

Electrical shock will result in death or serious injury.

TABLE OF CONTENTS

CHAPTER 1—OVERVIEW 7
Introduction 7
Product Range 7
Scope of Bulletin and Related Documentation 7
Application Information 8
Firmware Revision Information 9
Keypad Display 11
Mounting 12
Remote Mounting 12
Setting the $50 / 60 \mathrm{~Hz}$ Switch 13
Function of Keys and Meaning of Displays 15
Quick Configuration 16
Minimum Start-Up 17
Procedure: 17
Access Levels 18
Menu Hierarchy 19
Principles of Programming 21
CHAPTER 2—MENUS 23
Language Menu 23
Macro-Configuration Menu 23
Customizing the Macro-Configuration 26
Drive Controller Identification Screen 26
Increasing the Power Rating for Variable Torque Applications 27
1-Display Menu 28
2—Adjust Menu 29
Additional Adjustment Parameters for Material Handling 35
Additional Adjustment Parameters for General Use 37
Additional Adjustment Parameters for Variable Torque 38
Additional Adjustment Parameters After I/O Reassignment 39
3-Drive Menu 41
Parallel, Undersized, and Special Motor Applications 42
4-Control Menu 52
5-I/O Menu 58
Using the Logic Inputs 65
Run Forward and Run Reverse 65
2-wire Control 65
3-wire Control 65
Ramp Switching 66
Jog 66
+Speed/-Speed 66
Preset Speeds 69
Reference Switching (Auto/Manual) 70
Freewheel Stop (Coast to Stop) / Run Permissive 70
DC Injection Braking 70
Fast Stop 71
Motor Switching 71
Second Torque Limit 72
Fault Reset 72
External Fault 73
Force to Local 73
Auto-tuning 73
Encoder Inputs 73
Speed Regulation 73
Summing Speed Reference 73
Using the Analog Inputs 74
Speed Reference Summing 74
PI Regulator 74
Assignment of AI2 and Al3 76
Using the Controller Relay and Logic Outputs 77
Drive Running (RUN) 77
Output Contactor Command (OCC) 77
Frequency Threshold Attained (FtA) 77
High Speed Attained (FLA) 78
Current Threshold Attained (CtA) 78
Frequency Reference Attained (SrA) 78
Motor Thermal State Attained (TSA) 78
Brake Logic Command (bLC) (This parameter is only assignable to R2) 78
Loss of 4-20 mA Signal (APL) 81
Frequency Threshold 2 Attained (F2A) 81
Drive Thermal Threshold Attained (tAd) 81
Using the Analog Outputs 81
Motor Current 82
Output Frequency 82
Ramp Output 82
Motor Torque 82
Signed Motor Torque 83
Signed Ramp 83
PI Setpoint 83
PI Feedback 83
PI Error 84
PI Integral Error 84
Motor Power 84
Motor Thermal State 84
Drive Thermal State 84
6-Fault Menu 85
7-Files Menu 89
Reinitializing the Drive Controller 91
File Operation 91
Access Code 92
8-Communication Menu 94
8-Application Menu 94
CHAPTER 3—DIAGNOSTICS AND TROUBLESHOOTING 95
Keypad Display and Indicating LEDs 95
Fault Storage 95
Using Fault Codes and Messages to Solve Problems 96
Maintenance 96
Precautions 97
Procedure 1: Bus Voltage Measurement 98
Procedure 2: Checking Supply Voltage 101
Procedure 3: Checking the Peripheral Equipment 102
Fault Codes and Messages 103
APPENDIX A—DRIVE CONTROLLER CONFIGURATION 109
APPENDIX B—OPTIONS AND ACCESSORIES 117
Spare Part List for ATV58 TRX Controllers 119

CHAPTER 1—OVERVIEW

Introduction

The Altivar 58 TRX (ATV58 TRX) series of adjustable frequency AC drive controllers is a Transparent Ready ${ }^{\text {TM }}$ product line providing extended functionality and extended horsepower range for the Altivar 58 AC drive family. The ATV58 TRX series includes an analog output, expanded firmware capabilities, and a horsepower range up to 500 hp . As a Transparent Ready ${ }^{\text {TM }}$ product equipped with an Ethernet communication card, the ATV58 TRX product line can be configured, controlled, monitored, and diagnosed over an Ethernet network using a standard Web browser. No special software or drivers are needed.

The ATV58 TRX controllers accept all of the current I/O options, communication card options, and hardware options, such as ventilation fan kits and conduit box kits. See Appendix B for a complete list of options.

Product Range

The ATV58 TRX family drive controllers range from:

- 1-75 hp (0.75-55 kW) constant torque, $400 / 460 \mathrm{~V}$, three-phase input
- 1-500 hp (0.75-315 kW) variable torque 400/460 V, three-phase input
- 0.5-7.5 hp (0.37-5.5 kW) constant torque, 208/230 V, singlephase input
- 0.5-30 hp (0.37-22 kW) variable torque, 208/230 V, single-phase input
- 2-40 hp (1.5-30 kW) constant torque (50 hp variable torque), 208/230 V, three-phase input

Scope of Bulletin and Related Documentation

This bulletin covers the programming, monitoring, diagnostics, and operation of the ATV58 TRX drive controllers with the keypad display, part number VW3A58101U. Additional functionality can be obtained by installing the analog I/O option card (part no. VW3A58201U) or the digital I/O card (part no. VW3A58202U). The additional functionality provided by these option cards is documented in this bulletin. Many
communication protocols are supported by communication option cards. Additional documentation is supplied with the option card.

For other specific option cards, additional information is available in the manual provided with the card.

For additional information on parameter applications, refer to the Altivar ${ }^{\circledR} 58$ TRX AC Drives catalog, 8806CT9901, available on-line at www.SquareD.com.
This keypad display is for use with the drive controllers listed in Table 1. For installation, wiring, start-up, and maintenance, consult the latest revision of the applicable drive controller instruction bulletin.

Table 1: Drive Controller Instruction Bulletins

Drive Controller	Instruction Bulletins
ATV58 TRX Type E	VVDED397052US
EconoflexTM	$30072-450-10$
ATV58 TRX Type F	VVDED300011US
Flex58 TRX Chassis	$30072-450-47$
ATV58 TRX Type H	VVDED397048US
ATV58 TRX Type N	$30072-450-01$
Class 8998 Motor Control Center	$80444-035-01$

Application Information

The 125-500 hp drive controllers are listed in instruction bulletin VVDED397048US, Altivar 58 TRX Adjustable Speed Drive Controllers Installation Guide, Type H Controllers, with ratings typically used for variable torque applications. With proper selection, this range of controllers can also be used in constant torque applications, such as compressors, conveyors, and extruders, where high performance is not required at low speeds. The 125-500 hp product ratings are for applications that require 100% rated torque down to 6 Hz . If the application requires more than 110% transient torque for one minute, select the appropriate horsepower product. For assistance with selecting the proper AC drive controller for constant torque applications, consult your local Square D drives specialist.

Application information is also available in product data bulletin SC100, Adjustable Frequency Controllers Application Guide available at www.SquareD.com, or the NEMA Standards Publication: Application Guide For AC Adjustable Speed Drive Systems.

Firmware Revision Information

Over time, the functionality of the ATV58 product line has been upgraded to broaden its applications. This document can be used with earlier drive controllers, but not all of the parameters detailed in it will be accessible if a drive controller is not equipped with the most recent firmware. Keypad displays are backward compatible. Older keypad displays used on newer drive controllers will not display the new parameters.

The drive controller firmware revision label is located adjacent to the integrated MODBUS port on the front of the drive controller. The keypad display firmware revision label is located on the back cover of the keypad display. The firmware on the drive controller may be upgraded by installing a new control board, part number VX4A581U, and a new keypad display, part number VW3A58101U.

Table 2 lists the major product upgrades with approximate date of release, drive controller firmware, associated keypad display firmware, and a description of the major function upgrade.

Table 2: Product Upgrade and Revision Level History

Date	Drive Controller Firmware Revision	Associated Keypad Display Firmware Revision	Description of Major Function Upgrade

Table 2: Product Upgrade and Revision Level History (continued)

Date	Drive Controller Firmware Revision	Associated Keypad Display Firmware Revision	Description of Major Function Upgrade
3Q 2000	V3.1 IE 16	V3.0 IE 08	Began production of 5-25 hp, 460 Vac variable torque rated drive controllers without the integrated EMC filter for 460 Vac installations where the filter is not required. Removing this filter allowed the product to be rated for additional horsepower at 460 Vac. These drive controllers have the ability to be configured for VT plus as described on page 27.
3Q 2001	V4.1 IE 25	V4.1 IE 13	Relay R2 is no longer factory set for an output contactor. The factory setting is "not assigned." The following functions were added: - Run time meter function, rth, and watt-hour meter function, $A P H$. Both meters can be reset with rpr. - Two additional jump frequencies are JF2 and JF3. - A second programmable frequency threshold with logic output configuration, F2d, F2A. - The ability to provide torque limit via analog input Al 3 , activated by a logic input, TLA and ATL. - Minimum adjustment of nominal motor frequency, FrS, changed from 40 Hz to 10 Hz . - Ability to configure a freewheel stop below a programmable frequency with Stt and FFT. - PI regulator has been enhanced to accept programmable setpoints through the keypad display with the use of logic inputs PR2 and PR4. - PI regulator has been enhanced with time-constant filter on feedback, PSP. - Parameter, tbr, for a baud rate selection on an integrated MODBUS port. - Operation of an extremely undersized motor and the ability to configure an output voltage test mode by configuring PSM. - Ability to configure loss of follower fault to run at pre-set speed, $L F F$, and signal loss of follower with logic output, $A P L$. Additional assignments possible to an analog output on an option card: Compatible with Ethernet, MODBUS ${ }^{\circledR}$, TCP/IP communication card, and Forced local function.
4Q 2001	V4.2 IE 28	V4.1 IE 13	PI regulator has been enhanced to work with Auto/Manual (reference switching) PAU, PIF, PIM.

Table 2: Product Upgrade and Revision Level History (continued)

| Drive
 Controller
 Firmware
 Revision | Associated
 Keypad
 Display
 Firmware
 Revision | Description of Major Function Upgrade |
| :--- | :--- | :--- | :--- |

${ }^{[1]}$ V5.2 IE 09 is the 125-500 hp revision and can use keypad display firmware revision V5.1 or greater.

Keypad Display

The keypad display allows:

- Display of the drive controller part number, electrical values, parameters, and faults
- Adjustment and configuration of the drive controller
- Local command
- Storage of four controller configurations which can be read or downloaded to multiple drive controllers of the same horsepower and firmware revision

Mounting

To mount the keypad display, first remove the protective cover. Insert the keypad display into the SUB-D connector and turn the retaining screw clockwise until finger-tight.

Figure 1: Removal of Protective Cover

Figure 2: Drive Controller with Keypad Display Mounted

The keypad display can be mounted and removed while there is power to the drive controller. If the keypad display is removed while command of the drive controller from the keypad display is active, the drive controller will trip on the serial link fault. See $5 L F$ in Table 27 beginning on page 103.

Remote Mounting

To remotely mount the keypad display, use the keypad display remote mounting kit, part number VW3A58103. This kit has an IP65 rating. It contains a three meter (9.8 ft .) cable with connectors, parts
for mounting the keypad display on the cover of an enclosure, and an instruction sheet.

Setting the $50 / 60 \mathrm{~Hz}$ Switch

DANGER

HAZARDOUS VOLTAGE

- Read and understand this bulletin in its entirety before installing or operating ATV58 TRX drive controllers. Installation, adjustment, repair, and maintenance of these drive controllers must be performed by qualified personnel.
- The user is responsible for conforming to all applicable code requirements with respect to grounding all equipment.
- Many parts in this drive controller, including printed wiring boards, operate at line voltage. DO NOT TOUCH. Use only electrically insulated tools.
- DO NOT short across DC bus capacitors or touch unshielded components or terminal strip screw connections with voltage present.
- Disconnect all power before servicing the drive controller. WAIT TEN MINUTES until the DC bus capacitors discharge. Then follow the DC bus voltage measurement procedure on page 98 to verify that the DC voltage is less than 45 V . The drive controller LEDs are not accurate indicators of the absence of DC bus voltage.

Electrical shock will result in death or serious injury.

Figure 3 shows the location of the $50 / 60 \mathrm{~Hz}$ switch on the drive controller. Before powering up the drive controller and using the keypad display, you must set the $50 / 60 \mathrm{~Hz}$ switch to correspond with the frequency of the incoming AC power.

Unlock and open the cover to access the $50 / 60 \mathrm{~Hz}$ switch on the control board. If an option card is present, the switch may not be accessible through the card. Set the switch to the position corresponding to the frequency of the incoming AC power.

Figure 3: Location of $50 / 60 \mathrm{~Hz}$ Switch

The nominal motor voltage (UnS) in the 3-Drive menu is initially configured by the switch position:

For the 50 Hz Position:
$-230 \mathrm{~V}, 50 \mathrm{~Hz}$ for ATV58••0•M2 $-400 \mathrm{~V}, 50 \mathrm{~Hz}$ for ATV58••0•N4

For the 60 Hz Position (Factory Setting):
$-230 \mathrm{~V}, 60 \mathrm{~Hz}$ for ATV58••0•M2 $-460 \mathrm{~V}, 60 \mathrm{~Hz}$ for ATV58••0•N4

$$
\begin{array}{r}
\text { green LED } \\
\text { red LED }
\end{array}
$$

$50 / 60 \mathrm{~Hz}$ switch

Function of Keys and Meaning of Displays

Figure 4 shows the front of the keypad display. The keys and displays are explained below.

Figure 4: Front View of Keypad Display

Flashing display: indicates the selected direction of motor rotation. Fixed display: indicates the actual direction of motor rotation.

LOC
Indicates the keypad display command mode.
Appears in setup and programming mode. Flashing display indicates that a parameter has been modified but not saved.

Four 7-segment backlit LCD: displays numerical values and codes

16-character backlit LCD display: display of messages in plain language

Press to return to the previous menu, or to abandon an adjustment in progress and return to the original value.

ENT Press to select a menu, or to validate and save a choice.

If command by the keypad display has been selected (parameter LCC in the 4-Control menu, set to YES) the following buttons become active and only function in this mode:

Press to change the direction of motor rotation.

Press to start the motor.
Press to stop the motor or reset a fault. The STOP function can also stop the drive controller in terminal command mode if so configured (see page 57).

Quick Configuration

A WARNING

UNINTENDED EQUIPMENT ACTION

- Parameter changes affect drive controller operation.
- Most parameter changes require pressing ENT. Some parameter changes, such as reference frequency, take effect as soon as you press the up or down arrow keys.
- Read and understand this manual before using the keypad display.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

First prepare your program settings using the forms beginning on page 109.

Programming the Altivar 58 TRX controller is facilitated by internal checks. It is recommended that you access the menus and program in the following order. All of the steps are not obligatory in all cases.

1. Set the $50 / 60 \mathrm{~Hz}$ switch, (see page 14).
2. Select the language.
3. Select the macro-configuration.

NOTE: 125-500 hp drive controllers have only the variable torque macro.
4. Select 2 or 3 -wire control in the 4-Control menu.
5. Configure parameters in the 3-Drive Configuration menu.
6. Assign the I/O in the 5-I/O menu.

NOTE: If the selected Macro-Configuration is Hdg: Material Handling, logic input LI4 must be reassigned or unassigned before you can assign logic input LI3 to a new function.

If the Freewheel Stop / Run Permissive function is assigned to a logic input, the drive controller will not start the motor unless that logic input is connected to +24 V .
7. Configure parameters in the 4-Control menu.
8. Configure the switching frequency type in the 3—Drive Configuration menu.
9. Configure the fault management parameters in the 6-Fault menu.
10. Make Communication or Application configurations (if one of these options is used).
11. Configure the settings in the 2—Adjust menu.

NOTE: You must ensure that the functions which are programmed are compatible with the control scheme used.

Minimum Start-Up

This procedure can be used as a minimum start-up:

- In simple applications where the drive controller factory settings are sufficient
- In installations when it is necessary to turn the motor before fully completing the start-up sequence

Procedure:

1. Make sure that the $50 / 60 \mathrm{~Hz}$ switch is in the correct position, corresponding to the frequency of the incoming AC power, as shown on page 14.
2. Ensure that the macro-configuration factory setting is suitable for the application. Refer to Table 3 on page 24. If not, change the configuration in the Macro-Configuration menu as shown on page 25.
NOTE: 125-500 hp drive controllers have only the variable torque macro.
3. Verify that the control scheme is compatible with the macroconfiguration, ensuring that the necessary safety precautions have been taken. Refer to the drive controller instruction bulletin, VVDED397048US, for a typical wiring diagram.
4. Verify in the 3-Drive menu that the factory settings are compatible with the motor nameplate values. Refer to Table 11 on page 43. Modify them to match the nameplate values.
5. If necessary, adjust the parameters in the 2—Adjust menu (ramps, motor thermal protection, etc.). See Table 6 on page 30.

If the Freewheel Stop/Run Permissive function is assigned to a logic input, the drive controller will not start the motor unless that logic input is connected to +24 V .

Access Levels

Figure 5: Rear View of Keypad Display

The position of the access locking switch on the back of the programming keypad display allows three levels of access to the menus. Access to the menus can also be prevented by using an access code (see the 7-File menu on page 90).

Locked Position - Display Mode: use to prevent

 modifications to the drive controller programming.- You can select the dialog language in the Language menu.
- You can display the macro-configuration or the pre-programmed values for the selected application in the Macro-Configuration menu.
- You can display the voltage and power rating of your drive controller in the Identification menu.
- You can display the electrical values, the operational status, or fault in the 1-Display menu.

Partial Lock Position - Display and Adjustment Modes:

 this level is used during startup for access to basic setup parameters.- You can do everything listed above.
- You can use the 2-Adjust menu to adjust parameters which are accessible when the motor is running.

Total Unlock Position \quad - All modes: this level is used during startup for access to advanced setup parameters.

NOTE: Many parameters cannot be adjusted while the motor is running.

- You can do everything listed in both access levels above.
- You can also select a different macro-configuration in the MacroConfiguration menu.
- You can adjust the performance of the motor-drive controller system, in the 3-Drive menu.
- You can configure the drive controller command to be either from the terminal strip, the keypad display, or the integrated serial link using the 4-Control menu.
- You can change the assignments of the inputs and outputs in the 5-I/O menu.
- You can configure motor protection, drive controller protection, and response after a fault has occurred in the 6-Fault menu.
- You can save the drive controller configurations, recall them from memory, return to factory settings, or protect your configuration in the 7-Files menu.
- You can adjust the parameters pertaining to communication in the 8-Communication menu, if a communication card is installed.
- You can access the 8-Application menu, if a customer application card is installed.

Menu Hierarchy

Figure 6 shows the menus as they appear on the display when the access locking switch is in the total unlock position

NOTE: If an access code (password) has already been programmed, certain menus may not be modifiable, or may not be visible. In this case refer to "Access Code" on page 92 for how to enter the access code.

Figure 6: Menus

Principles of Programming

The principle of programming is always the same, regardless of the access locking switch. Figures 7 and 8 show examples of programming steps.

Figure 7: Language Selection Programming Example

Figure 8: Acceleration Time Programming Example

CHAPTER 2—MENUS

This chapter explains menus and parameter functions.

Language Menu

The Language menu (see Figure 7 on page 21) is accessible in each access level. The available languages are English (factory setting), French, German, Spanish, or Italian. The language can be modified with the motor stopped or running.

Macro-Configuration Menu

Selecting a macro-configuration automatically configures the drive controller for an application. The Macro-Configuration menu can always be displayed, but can only be modified when the access level switch is in the total unlock, \quad, position and when the motor is stopped. Three application types are available for drive controllers up to 100 hp :

- Material handling (Hdg)
- Variable torque for pump and fan applications (VT)
- General use (GEn)

The $125-500 \mathrm{hp}$ drive controllers have only the variable torque macro.

The macro-configuration automatically assigns the inputs and outputs to functions suitable for the application. The parameters related to the I/O functions are then available for adjustment. The factory-set macro-configuration is Material Handling. If you customize the I/O to your application, the macro-configuration screen displays CUS:Customize as shown in Figure 10 on page 26. Table 3 shows the drive controller I/O assignments as a function of the macroconfiguration selected when the drive controller is set for 2-wire control. For the logic input assignments when the drive controller is set for 3 -wire control, refer to Table 12 on page 52.

NOTE: LI1, Al1, and R1 assignments are not visible in the 5-I/O menu. L/1 and R1 cannot be reassigned.

NOTE: You must ensure that the functions which are programmed are compatible with the control scheme used.

Table 3: Drive Controller I/O Assignments

	Hdg: Material Handling ${ }^{[1]}$	GEn: General Use	VT: Variable Torque
Logic Input LI1	Forward	Forward	Forward
Logic Input LI2	Reverse	Reverse	Reverse
Logic Input LI3	2 Preset speeds	Jog	Auto/manual ${ }^{[3]}$
Logic Input LI4	4 Preset speeds	Freewheel stop ${ }^{[2]}$	DC injection braking ${ }^{[3]}$
Analog Input Al1	Reference summing	Reference summing	Speed reference 1 ${ }^{[3]}$
Analog Input Al2	Reference summing	Reference summing	Speed reference 2 ${ }^{[3]}$
Analog Output AO1	Motor frequency	Motor frequency	Motor frequency
Relay R1	Drive fault relay	Drive fault relay	Drive fault relay
Relay R2	Output contactor control	Motor thermal level attained	Frequency reference attained

${ }^{\text {[1] }}$ Factory default setting for 100 hp products and below.
${ }^{[2]}$ If the Freewheel Stop/Run Permissive function is configured, the drive controller will not start the motor unless the logic input is connected to +24 V .
${ }^{\text {[3] }}$ For 125-500 hp drive controllers the factory setting are:
LI3 = Fault Reset; LI4 = Not assigned; Al1 = Reference summing; AI2 = Reference summing; R2 = Drive running

Table 4: I/O Extension Card Factory Presets

	Hdg: Material Handling ${ }^{[1]}$	GEn: General Use	VT: Variable Torque
Logic Input LI5	8 preset speeds	Fault reset	Freewheel stop ${ }^{\text {[1] }}$
Logic Input LI6	Fault reset	Torque limit $2{ }^{[3]}$	Ramp switching
Analog Input $\mathrm{Al}^{[2]}$ or Logic Inputs A, A-, B, B- ${ }^{[3]}$	Reference summing [2]	Reference summing ${ }^{[2]}$	Not assigned ${ }^{[2]}$
	Speed feedback	Speed feedback	Speed feedback
Logic Output LO	Current level attained	Output contactor command	High speed attained
Analog Output AO	Motor current	Motor current	Motor current
[1] If the Freewheel Stop / Run Permissive function is not start the motor unless the logic input is conne ${ }^{[2]}$ With analog I/O extension card (VW3A58201U). ${ }^{[3]}$ With digital I/O extension card (VW3A58202U).			

Transferring a file created for a drive controller without an I/O extension card to a drive controller with an I/O extension card may result in unexpected I/O assignment. Verify all I/O assignments. Do not assign I/O functions that are not used in the application.

A WARNING

UNINTENDED EQUIPMENT OPERATION

LI1 has priority:

- If LI1 is closed while LI2 is active, the controller will respond to LII.
- If the LI1 input is lost while LI2 is active, the controller will respond to LI2 and reverse directions.

The logic inputs must be programmed appropriately for the application to prevent the motor from spinning in an unintended direction.

Failure to follow this instruction can result in death or serious injury.

Modification of the macro-configuration requires two confirmations since it automatically changes the function assignments. When a change to the macro-configuration is requested the following screen is displayed:

Figure 9: Macro-Configuration Validation

Press ENT to proceed with change Press ESC to return to the previous configuration

A WARNING
MACRO-CONFIGURATION OR PROGRAMMING RESET CAN
CAUSE AN UNINTENDED EQUIPMENT ACTION
- The factory default settings will be substituted for present settings
when the macro-configuration is changed and confirmed.
- The factory default settings may not be compatible with the
application. After changing the macro-configuration, verify that
the factory settings are compatible with application requirements.
Failure to follow these instructions can result in death, serious
injury, or equipment damage.

Customizing the Macro-Configuration

The drive controller macro-configuration can be customized by changing the assignment of the inputs and outputs in the 5-l/O menu. The access locking switch must be in the total unlock, \square, position to customize the configuration. When an I/O assignment is modified, the macro-configuration screen displays the following:

Figure 10: Customized Macro-Configuration

Drive Controller Identification Screen

This screen can be displayed in each access level. Refer to Figure 11 for the access path. This screen shows the power rating and the voltage indicated on the drive controller nameplate.

Increasing the Power Rating for Variable Torque Applications

The power rating can be increased for variable torque applications on the drive controller identification screen for the following products:

- 208/230 Vac drive controllers 15 hp and larger (ATV58HD16M2-D46M2)
- 400/460 Vac drive controllers 25 hp and larger (ATV58HD28N4-D79N4)
- 460 Vac drive controllers 5 hp to 25 hp that do not have an integrated EMC filter (ATV58HU54N4X-D23N4X)

To increase the horsepower rating, begin at the r $E F$ screen and follow this procedure:

1. Press ENT. r $E F$ begins flashing.
2. Press A A higher horsepower rating is displayed with a " + " sign indicating that the rating has been increased.
3. Press ENT then ESC. The drive controller is now configured for the higher horsepower rating.

Figure 11: Drive Controller Identification Screen

Display parameters can be viewed in any access level．You can scroll through these parameters with the motor running．

NOTE：If USP is greater than 9999， the display value is USP／1000．

Table 5：1—Display Menu Parameters

Parameter	Code	Function	Units
Irive，state Use this parameter to monitor drive controller status．	rdy r Un AL［ －E C ［L I －다 n5t ロロー	Drive controller status：indicates a fault or the state of the drive controller： rdY＝drive controller is ready rUn＝motor in steady state ACC＝accelerating $\mathrm{dEC}=$ decelerating CLI＝in current limit $\mathrm{dCb}=\mathrm{DC}$ injection braking $\mathrm{nSt}=$ commanded to freewheel stop $\mathrm{Obr}=$ braking with deceleration ramp adaptation	－
Freq．Ref．－ Hz	Fr H	Reference frequency	Hz
Output Freq．－ Hz	$\mathrm{r}_{1} \mathrm{~F}^{\prime}$	Output frequency applied to the motor	Hz
Motor Speed－ RFM	$5 P d$	Motor speed estimated by the drive controller． Based on nominal motor speed（nSP）entry． See Table 11 on page 43.	RPM
Motor Current－ A	L［r	Motor current	A
Machine Spd．	$45 P$	Machine speed estimated by the drive controller．USP is proportional to rFr scaled by the coefficient，USC，which is adjustable in the 2－Adjust menu．If USP becomes greater than 9999，the display is divided by 1000.	－
Dutput Power－\％	ロアr	Output power estimated by the drive controller． 100% corresponds to nominal power．	\％
Mains Voltage V	LIL	Mains voltage	V
Motor Thermal－ \％	EHr	Thermal state： 100% corresponds to the nominal motor thermal state．Above 118\％，the controller trips on OLF（motor overload fault）．	\％
Irive Thermal－－ $\%$	EHa	Thermal state of the drive controller：100\％ corresponds to the nominal drive controller thermal state．Above 118\％，the controller trips on OHF（drive overheating fault）．It resets when the thermal state goes below 70% ．	\％
Last Fault	LFE	Displays the last fault．	－
Consumption	APH	Energy consumed	kWh or MWh

Table 5: 1—Display Menu Parameters (continued)

Menu
 \uparrow

Parameter	Code	Function	Units
Run time	r E H	Operating time (motor powered up) in hours	hrs
Freq. Ref	LFr	This adjustment parameter appears in place of the FrH parameter when command of the drive controller by the keypad display has been activated with the LCC parameter in the 4-Control menu (see page 56).	Hz
LCU	L [U	Local speed control in customer-defined units.	User depen- dappears when the drive controller command from the keypad display has been activated using the LCC parameter in the 4-Control menu (see page 56). This parameter allows adjustment of the motor speed in customer-defined units. Use parameter USC: Machine Coef. to scale the customer unit value (see page 34). During adjustment, LCUA appears in the lower left-hand corner of the keypad display.

2—Adjust Menu

The Adjust menu is accessible when the access locking switch is set to either partial lock, \square, or total unlock, \square. Adjustment parameters can be modified with the motor running; however, you must make all adjustments with the motor stopped to avoid unintended equipment action.

A WARNING

PARAMETER CHANGES WHILE THE MOTOR IS RUNNING

Changes made to adjustment parameters while the motor is running may cause unintended equipment action. When changing adjustment parameters, ensure that the motor is stopped.

Failure to follow this instruction can result in death, serious injury, or equipment damage.

There are two types of adjustment parameters: parameters which are always accessible (fixed adjustment parameters), and parameters which may be accessible depending on:

- The macro-configuration selected
- The presence of an I/O extension card
- The input and output reassignments

The fixed set of adjustment parameters, shown in Table 6 beginning on page 30, are accessible in every macro-configuration.

Table 6: 2—Fixed Set of Adjustment Parameters

Menu

| Parameter | Code | Description | Adjustment
 Range | Factory
 Setting |
| :---: | :---: | :--- | :--- | :--- | :--- |
| Freg. Ref. - Hz | LFr | Local speed control in Hz.
 Appears when the drive controller command from the
 keypad display has been activated using the LCC
 parameter in the 4-Control menu (see page 56). | | |
| LCU | LLU | Local speed control in customer-
 defined units. | User
 dependant | 0.00 |
| Appears when the drive controller command from the | | | | |
| keypad display has been activated using the LCC | | | | |
| parameter in the 4-Control menu (see page 56). This | | | | |
| parameter allows adjustment of the motor speed in | | | | |
| customer-defined units. Use parameter USC: Machine | | | | |
| Coef. to scale the customer unit value (see page 34). | | | | |
| During adjustment, LCUA appears in the lower left-hand | | | | |
| corner of the keypad display. | | | | |

${ }^{[1]} \mathrm{I}_{\mathrm{n}}=$ drive controller constant torque output current rating shown on the drive controller nameplate.

Table 6: 2—Fixed Set of Adjustment Parameters (continued)

Menu

Parameter	Code	Description	Adjustment Range	Factory Setting
		Electronic output phase inversion	No-Yes	No

Inv. Phases
ALb
Allows for changing the phase rotation of the voltage at the output of the drive controller, from A-B-C to A-C-B, to change the direction of motor rotation. If this parameter is changed while the motor is running, the motor decelerates on the programmed ramp and then accelerates to the speed reference set point in the opposite rotation direction following the programmed ramp.

A CAUTION

UNEXPECTED DIRECTION OF MOTOR ROTATION

- If parameter ACb is set to YES, upon returning to Factory Settings the parameter ACb returns to No (motor rotation will not be in the desired direction).
- Before changing parameter ACb , ensure that reversing the motor rotation direction is acceptable for the application.

Failure to follow these instructions can result in injury or equipment damage.

Acoleration - Ileceleration -s	$\begin{aligned} & A E L \\ & G E L \end{aligned}$	Acceleration and deceleration ramp times. Defined as the time between 0 Hz and FRS.	$\begin{aligned} & 0.05 \text { to } 999.9 \\ & 0.05 \text { to } 999.9 \end{aligned}$	$3 \mathrm{~s}$
Low Speed - Hz	L5P	Low speed	0 to HSP	0 Hz
High Speed - Hz	H5P	High speed. Ensure that this adjustment is suitable for the motor and the application.	LSP to tFr	$50 / 60 \mathrm{~Hz}$ depending on switch setting
Gain -\%	FL L	Frequency loop gain. This parameter allows adjustmen the drive controller to sudden cha Decreasing the gain parameter sl the drive controller. Increasing the the drive controller respond more should be increased in application changes in motor speed occur du load. Applications that have fast c requirements may require an incr	0 to 100 of the respon nges in the mo ows the respon gain paramet quickly. This p ns where the u e to changes i cycle times or h ease in gain.	20 se time of tor load. nse time of er makes parameter ndesirable in motor high torque

[^0]Table 6: 2—Fixed Set of Adjustment Parameters (continued)

Menu

Parameter	Code	Description	Adjustment Range	Factory Setting
Stability - \%	5ヒ月	Frequency loop stability. This parameter allows adjustmen the drive controller to sudden ch Increasing the stability setting da parameter should be adjusted with the drive controller response to m performance on applications tha high torque requirements.	0 to 100 t of speed ove anges in the mo mpens the over h the gain settin meet the desired have fast cycle	20 shoot of tor load. shoot. This ng to tune times or
Therricurrent $-\mathrm{A}$	IEH	Current setting used for the motor thermal protection. Adjust ItH to the nominal current which appears on the motor nameplate. This provides Class 20 motor overload protection.	$\begin{aligned} & 0.25 \text { to } 1.36 \\ & \text { of } I_{n}^{[1]} \end{aligned}$	Varies according to drive controller size.

A CAUTION

MOTOR OVERHEATING

- This drive controller does not provide direct thermal protection for the motor.
- Use of a thermal sensor in the motor may be required for protection at all speeds or loading conditions.
- Consult the motor manufacturer for the thermal capability of the motor when operated over the desired speed range.

Failure to follow these instructions can result in injury or equipment damage.

IC: Inj. TimE- Ξ	$E d[$	DC injection braking time. If $t d[=$ Cont, DC injection is continuous.	0 to 30 s Cont	0.5 s

${ }^{[1]} I_{n}=$ drive controller constant torque output current rating shown on the drive controller nameplate.

Table 6: 2—Fixed Set of Adjustment Parameters (continued)

Menu

2

NOTE: DC Inj.
Time is only available if automatic DC injection (AdC) is set to Yes.

NOTE: DC Inj. Current Level is only available if $t d C$ is set to continuous.

NOTE: Additional parameters appear in this menu if certain Macro-
Configurations are selected. See Tables 7-9.

Parameter	Code	Description	Adjustment Range	Factory Setting
$d e$ I at rest. -A	$5 d[$	DC injection braking current level if tdC is set to continuous.	0.1 to 1.36 of $I_{n}[1]$	Varies according to drive controller size.

A WARNING

NO HOLDING TORQUE

- DC injection braking does not provide holding torque at zero speed.
- DC injection braking does not function during loss of power or drive controller fault.
- When required, use a separate brake for holding torque.

EXCESSIVE DC INJECTION BRAKING

Application of DC injection braking for long periods of time can cause motor overheating and damage. Protect the motor from extended periods of DC injection braking.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

| | | leewheel stop trip threshold:
 when a stop on ramp or fast stop
 is requested, the type of stop
 selected is activated until the
 speed falls below this threshold. | 0 to HSP | 0 Hz |
| :--- | :--- | :--- | :--- | :--- | :--- |
| NST Thresh-Hz | FFE | | | |
| Below this threshold, freewheel stop is activated. This | | | | |
| parameter can only be accessed if the R2 relay is not | | | | |
| assigned to the BLC: Brake Logic function, and if an on | | | | |
| ramp or fast type stop has been selected in the 3—Drive | | | | |
| menu under type of stop (Stt). | | | | |

[^1]Table 6: 2—Fixed Set of Adjustment Parameters (continued)

Menu 2

Parameter	Code	Description \quadAdjustment RangeFactory Setting
Juplo Freal $3-\mathrm{Hz}$	JFF	Third skip frequency: same function as JPF, for a third frequency value. 0 to HSP 0 Hz
Machine Coef.	U5 [Machine speed coefficient. 0.01 to 100.0 1.00 Coefficient applied to rFr permitting the display of machine speed by the parameter USP. USP $=\mathrm{rFr} \times$ USC
LSP Time - 5	tLS	Low speed run time. 0.0 to 999.9 s 0 After operation at LSP for the amount of time defined by tLS, the motor is automatically commanded to stop. The motor restarts if the frequency reference is greater than LSP, if a run command continues to be present. " 0 " means that no time period is set.

[^2]
Additional Adjustment Parameters for Material Handling

Table 7 lists the additional parameters that are accessible when the macro-configuration is set to Material Handling.

Table 7: 2—Additional Adjustment Parameters with Material Handling Macro-Configuration

Menu
2

NOTE: UFr and
SLP are unitless values. The percent value is only to provide a range for adjustment. For example, 50 on a 0 to 150 scale is one third of the maximum.

Parameter	Code	Description	Adjustment Range	Factory Setting
		IR compensation	0 to 150% or 0 to 800%	100%

Allows adjustment of the default value of IR Compensation or the value measured during auto-tuning. The adjustment range is extended to 800% if the SPC parameter (special motor) is set to Yes in the 3-Drive menu (see page 50). Special motors include synchronous permanent magnet motors, synchronous wound field motors, and synchronous reluctance motors.
This parameter is used to adjust low speed torque for optimal performance. Adjust this parameter to compensate for the resistive voltage drop of the motor stator windings and the conductors connecting the motor and drive controller. This parameter is typically used to boost torque performance at low speed operation. If an autotune is performed, adjustment of this parameter is usually not required.

	l performed, adjustment of this parameter is usually not required.			
	Slip compensation	0 to 150%	100%	

Allows adjustment of the slip compensation around a fixed value set by the nSP parameter (motor nominal speed) in the 3-Drive menu (see page 43).
This parameter is used to adjust the slip compensation to improve speed regulation. Induction motors develop torque based on the slip, which is the difference between the

| Slio Comp. - \% | $5 L P$ | speed of the rotating magnetic field in the stator and the
 speed of the rotor. As the load increases, the slip increases
 to produce the necessary torque. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| In applications where the change in speed due to slip is | | |
| undesirable, the slip compensation should be increased. | | |
| When this parameter is increased, the drive controller will | | |
| automatically increase the output frequency. The amount | | |
| of increase is proportional to the increase of the load, | | |
| allowing one setting for the entire speed range. | | |

[1] I_{n} = drive controller constant torque output current rating shown on the drive controller nameplate.
\star Parameters appear if an I/O extension card is installed.

Table 7: 2—Additional Adjustment Parameters with Material Handling Macro-Configuration

Menu

Parameter	Code	Description	Adjustment Range	Factory Setting
Preset Sp.4- Hz	$5 P 4$	Fourth preset speed	LSP to HSP	20 Hz
Preset Sp. 5- Hz	$5 P 5$	Fifth preset speed	LSP to HSP	25 Hz
Preset 5p, 6- Hz	$5 P \mathrm{~F}$	Sixth preset speed	LSP to HSP	30 Hz
Preset Sp. $7-\mathrm{Hz}$	$5 P 7$	Seventh preset speed	LSP to HSP	35 Hz
Curr.Lev. Att: A	[ヒ』	Current threshold above which the logic output or the relay changes to 1	$\begin{aligned} & 0.25 \text { to } 1.36 \\ & \text { of } I_{n}[1] \end{aligned}$	$\begin{aligned} & 1.36 \text { of } \\ & \mathrm{I}_{\mathrm{n}}[1] \end{aligned}$

${ }^{[1]} I_{n}=$ drive controller constant torque output current rating shown on the drive controller nameplate.
\star Parameters appear if an I/O extension card is installed.

Additional Adjustment Parameters for General Use

Table 8 lists the additional parameters that are accessible when the macro-configuration is set to General Use.

Table 8: 2—Additional Adjustment Parameters with General Use Macro-Configuration

Menu 2

NOTE: UFr and SLP are unitless values. The percent value is only to provide a range for adjustment. For example, 50 on a 0 to 150 scale is one third of the maximum.

Parameter	Code	Description	Adjustment Range	Factory Setting
		IR compensation	0 to 150% or 0 to 800%	100%

Allows adjustment of the default value of IR Compensation or the value measured during auto-tuning.
The adjustment range is extended to 800% if the parameter SPC (special motor) is set to Yes in the 3-Drive menu (see page 50). Special motors include synchronous permanent magnet motors, synchronous wound field motors, and synchronous reluctance motors.
This parameter is used to adjust low speed torque for optimal performance. Adjust this parameter to compensate for the resistive voltage drop of the motor stator windings and the conductors connecting the motor and drive controller. This parameter is typically used to boost torque performance at low speed operation. If an autotune is performed, adjustment of this parameter is usually not required.

					required.
	Slip compensation	0 to 150%	100%		

Allows adjustment of the slip compensation around a fixed value set by the motor nominal speed.
This parameter is used to adjust the slip compensation to improve speed regulation. Induction motors develop torque based on the slip, which is the difference between the speed of the rotating magnetic field in the stator and the speed of the rotor. As the load increases the slip increases to produce the necessary torque.
In applications where the change in speed due to slip is undesirable, the slip compensation should be increased. When this parameter is increased, the drive controller will automatically increase the output frequency. The amount of increase is proportional to the increase of the load, allowing one setting for the entire speed range.

		of increase is proportional to the increase of the load, allowing one setting for the entire speed range.			
Jog Freq. - Hz	$J \square E$	Frequency when operating in Jog	0 to 10 Hz	10 Hz	
Jog Ielay $-\boldsymbol{s}$	$J G t$	Delay between two consecutive jog operations	0 to 2 s	0.5 s	

Additional Adjustment Parameters for Variable Torque

Table 9 lists the additional parameters that are accessible when the macro-configuration is set to Variable Torque.

Menu

NOTE: V/f Profile is available only if the energy savings function (nld) is set to No.

Table 9: 2—Additional Adjustment Parameters with Variable Torque Macro-Configuration ${ }^{[1]}$

Parameter	Code	Description	Adjustment Range	Factory Setting
IC: Ins. Cumre- A	$1 d[$	DC injection braking current level. This parameter is accessible if a logic input is assigned to DC injection braking. After 30 seconds, IdC is automatically set to 0.5 ItH if previously set to a higher value.	$\begin{aligned} & 0.10 \text { to } 1.36 \\ & \text { of } I_{n}[2] \end{aligned}$	Varies according to drive controller size.
U/f Profile - \%	PFL	Volts/Hertz adjustment This function is available in variab Energy Economizer (Energy Savi disabled. This parameter is useful in applic wishes to define the volts/hertz prof having the drive controller perform Energy Economizer function. The linear V / Hz output from $0-\mathrm{FrS}$ (nom	0 to 100\% le torque mod ngs) function ations where rofile manually m this function 100% setting minal motor fr	20\% and if the (nld) is he user instead of with the provides a equency).

[^3]
Additional Adjustment Parameters After I／O Reassignment

Table 10 lists the additional parameters that may be accessible after the inputs or outputs have been reassigned．

Table 10：2—Additional Adjustment Parameters After I／O Reassignment

Parameter	Code	Description	Adjustment Range	Factory Setting
Preset．Sr． 2 Hz	5 Рこ	Second preset speed	LSP to HSP	10 Hz
Preset．Sr．3－Hz	$5 尸 \exists$	Third preset speed	LSP to HSP	15 Hz
Preset So．4－Hz	$5 P 4$	Fourth preset speed	LSP to HSP	20 Hz
Preset．Sp，5－Hz	$5 P 5$	Fifth preset speed	LSP to HSP	25 Hz
Preset Sp． $6-\mathrm{Hz}$	$5 P E$	Sixth preset speed	LSP to HSP	30 Hz
Preset．S0． 7 Hz	$5 P 7$	Seventh preset speed	LSP to HSP	35 Hz
Jog Freq．－Hz	」ロロ	Frequency when operating in jog	0 to 10 Hz	10 Hz
Jog Ielay－ 5	」GL	Delay between two consecutive jog operations．	0 to 2 s	0.5 s
BrReleaseLeu－Hz［4］	br L	Brake release frequency	0 to 10 Hz	0 Hz
BrReleaseI－${ }^{\text {［4］}}$	1ロr	Brake release current	$\begin{aligned} & 0 \text { to } 1.36 \text { of } \\ & \ln _{n}[3] \end{aligned}$	0 A

${ }^{[1]}$ Depending on the position of the $50 / 60 \mathrm{~Hz}$ switch．
${ }^{[2]} 100 \%$ corresponds to the nominal torque of a motor with horsepower size equal to that of the drive controller at its constant torque rating．
${ }^{[3]} I_{n}=$ drive controller constant torque output current rating shown on the drive controller nameplate．
${ }^{\text {［4］}}$ This parameter is not available on $125-500 \mathrm{hp}$ drive controllers．
＊These parameters are available only with the I／O extension card installed．

Table 10: 2—Additional Adjustment Parameters After I/O Reassignment (continued)

Parameter	Code	Description	Adjustment Range	Factory Setting
BrReleasTime -s ${ }^{[4]}$	brt	Brake release time	0 to 5 s	0 s
BrEngageLev- $\mathrm{Hz}^{[4]}$	bEn	Brake engage frequency	0 to LSP	0 Hz
BrEnsageTime -s ${ }^{[4]}$	bEE	Brake engage time	0 to 5 s	0 s
PI Prop. Gain	- P [Proportional gain for PI regulator	0.01 to 100	1
PI Int. Gain-/E	- $1[1$	Integral gain for PI regulator	$\begin{aligned} & 0.01 \text { to } 100 \\ & \text { /s } \end{aligned}$	$1 / \mathrm{s}$
PI Coeff.	FbS	Feedback scaling factor for PI regulator	1.0 to 100.0	1.0
PI Inversion	P IL	Inverts the PI feedback signal No: Normal Yes: Inverted	Yes - No	No
PI Filter -s	$P 5 P$	Used to adjust the low-pass filter time constant on the PI feedback signal.	0 to 10 s	0 s
PI Preset $2-7 / 4$	P12	Second preset PI reference. Available after a logic input has been assigned to PR4: PI4 Preset	0-100\%	30\%
PI Preset 3-7/4	Р 1 ヨ	Third preset PI reference. Available after a logic input has been assigned to PR4: PI4 Preset	0-100\%	60\%
ATV th. fault	-t	Drive thermal fault threshold above which the logic output goes to state 1, after a logic input has been assigned to tAd:ATV th. alarm.	0-118\%	105\%
Freq. Detect-Hz	FEG	Motor frequency threshold above which the logic output goes to state 1.	LSP to HSP	$\begin{aligned} & 50 / 60 \\ & \mathrm{~Hz}{ }^{[1]} \end{aligned}$
Freq. Lev.2- Hz	F2d	Same function as Ftd for a second frequency value	LSP to HSP	$\begin{array}{\|l\|} \hline 50 / 60 \\ \mathrm{~Hz} \end{array}$

${ }^{[1]}$ Depending on the position of the $50 / 60 \mathrm{~Hz}$ switch.
${ }^{\text {[2] }} 100 \%$ corresponds to the nominal torque of a motor with horsepower size equal to that of the drive controller at its constant torque rating.
${ }^{[3]} I_{n}=$ drive controller constant torque output current rating shown on the drive controller nameplate.
${ }^{\text {[4] }}$ This parameter is not available on $125-500 \mathrm{hp}$ drive controllers.
\star These parameters are available only with the I/O extension card installed.

Table 10：2—Additional Adjustment Parameters After I／O Reassignment（continued）

Menu

Parameter	Code	Description	Adjustment Range	Factory Setting
Curr．Lev．Att－A	［ヒd	Current threshold above which the logic output or relay goes to state 1.	$\begin{aligned} & 0.25 \text { to } 1.36 \\ & \text { of } I_{n}[3] \end{aligned}$	$\begin{aligned} & 1.36 \text { of } \\ & \mathrm{In}_{\mathrm{n}}[3] \end{aligned}$
ThermLeupt．－\％	Etd	Motor thermal state threshold above which the logic output or relay goes to state 1 （high）．	0 to 118\％	100\％
Torque lim $\mathrm{Z}^{-\mathrm{A}^{[4]}}$	ヒLコ	Second torque limit，activated by a logic input．	$\begin{aligned} & \hline 0 \% \text { to } \\ & 200 \%{ }^{[2]} \end{aligned}$	200\％
IC：Inj．Curr．－ H	$1 d 5$	DC injection braking current level．Accessible if a logic input is assigned to DC injection braking．After 30 s ，IdC is automatically set to 0.5 ItH if previously set to a higher value．	$\begin{aligned} & 0.10 \text { to } 1.36 \\ & \text { of } I_{n}[3] \end{aligned}$	0.7 ItH
Acelerate 2－s Decelerate 2－s	$\begin{aligned} & A E 己 \\ & G E 己 \end{aligned}$	Second acceleration and deceleration ramp times．These parameters are accessible if a logic input is assigned to ramp switching or if Frt is not 0 ．	0.05 to 999.9	5 s
TachFBCoeff \star	dt5	Tachometer scaling factor associated with the tachometer feedback function： $\mathrm{dtS}=\frac{9}{\text { tachometer voltage at HSP }}$	1 to 2	1

${ }^{[1]}$ Depending on the position of the $50 / 60 \mathrm{~Hz}$ switch．
${ }^{[2]} 100 \%$ corresponds to the nominal torque of a motor with horsepower size equal to that of the drive controller at its constant torque rating．
${ }^{[3]} I_{n}=$ drive controller constant torque output current rating shown on the drive controller nameplate．
${ }^{\text {［4］}}$ This parameter is not available on $125-500 \mathrm{hp}$ drive controllers．
\star These parameters are available only with the I／O extension card installed．

3－Drive Menu

This menu is accessible when the access locking switch is in the total unlock，\quad ，position．The parameters can only be modified when the motor is stopped．

Optimal performance is obtained:

- By ensuring that the input frequency selection switch is properly set (see page 14)
- By entering the motor nameplate values into the Drive menu parameters
- By initiating an autotune (on a standard asynchronous motor). See page 45 for more information concerning the autotune function (tUn).

Parallel, Undersized, and Special Motor Applications

The ATV58 TRX drive controller can be used in applications with multiple motors wired in parallel, undersized motors, or with special motors. To configure the drive controller for these applications, follow these steps:

1. Select either the "Hdg: Material Handling" or "GEn: General Use" macro-configuration (see page 23).
2. Configure the Special Motor parameter (SPC) in the Drive menu to Yes or PSM (see page 50).
3. Adjust the IR Compensation parameter (UFr) in the 2—Adjust menu to obtain satisfactory performance (see pages 35 and 37).

Parallel motor applications consist of multiple motors wired in parallel to the output of one drive controller. Refer to the Square D Application Guide, Product Data Bulletin SC100R5/95, available at www. SquareD.com for information on properly sizing the drive controller for parallel motor applications.

An undersized motor is defined as a motor with a full current rating is less than 25% of the ATV58 TRX drive controller rating. Select PSM in the Special Motor menu.

Synchronous permanent magnet, synchronous would field, and synchronous reluctance motors are examples of special motors.

Table 11 on page 43 shows the parameters accessed in the Drive menu.

Table 11: 3—Drive Menu Parameters
Menu
3

Parameter	Code	Description	Adjustment Range	Factory Setting
Nom. Mot. Volt- V	$4 \square 5$	Motor nameplate nominal voltage. - ATV58•000M2 - ATV58•0**N4	$\begin{aligned} & 200 \text { to } 240 \mathrm{~V} \\ & 200 \text { to } 500 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 230 \mathrm{~V} \text { or } \\ & 400 / 460 \mathrm{~V} \\ & {[1]} \end{aligned}$
Nom. Mot. Frea $-\mathrm{Hz}$	Fr 5	Motor nameplate nominal frequency. The FrS setting defines the frequ motor voltage (UnS) is applied to set above the maximum output f	10 to tFr ency at which the motor. Fr quency setti ile 0 Hz —FrS	$50 / 60 \mathrm{~Hz}$ [1] nominal cannot be tFr.
NomMotCurr.- A	$n \mathrm{Cr}$	Motor nameplate nominal current.	$\begin{aligned} & 0.25 \text { to } 1.36 \\ & \text { of } I_{n}[2] \end{aligned}$	$\begin{aligned} & 0.9 \text { of } I_{n} \\ & {[2]} \end{aligned}$
Nom. MotSpeed $-\mathrm{rrm}$	- 5 P	Motor nameplate nominal speed. This should be the value that incorporates slip (i.e. this value should be the rpm of the motor when it is fully loaded).	0 to 9999 rpm	depends on drive controller rating

[^4]Table 11: 3—Drive Menu Parameters (continued)

Menu

Parameter	Code	Description \quadAdjustment Range\quadFactory Setting
Mot. CosFhi	[-5	Motor CosPhi, motor power factor. 0.5 to 1 depends on drive controller Set the CoS parameter to the motor nameplate power factor. If the power factor is not provided on the nameplate or to optimize the motor torque performance, use the following procedure to optimize the motor power factor setting. Operate the motor with no load at a frequency equal to nominal frequency / 2. Then adjust the CoS parameter such that the measured motor voltage equals nominal motor voltage / 2. For example: For a 460 Vac motor operating at 60 Hz , adjust the CoS parameter to have 230 V at 30 Hz . If motor voltage is less than 230 V , decrease CoS parameter. If motor voltage is more than 230 V , increase the CoS parameter.

${ }^{[1]}$ Depending on the position of the $50 / 60 \mathrm{~Hz}$ switch. Ensure that the switch setting matches the input frequency (see page 14).
${ }^{[2]} I_{n}=$ drive controller constant torque output current rating shown on the drive controller nameplate.
${ }^{\text {[3] }}$ The factory setting depends on the macro-configuration used: No for Material Handling, Yes for General Use and Variable torque.
${ }^{[4]}$ This parameter is not available on $125-500 \mathrm{hp}$ drive controllers.
${ }^{[5]}$ Refer to the drive controller instruction bulletin, VVDED397048US, for duty cycle ratings of the drive controllers.

* These parameters are available only with the I/O extension card installed.

Table 11: 3-Drive Menu Parameters (continued)

Parameter	Code	Description	Adjustment Range	Factory Setting
Auto Tuning	EUn	Initiates an autotune when the tUn parameter is set to Yes. After the autotune is complete, the "done". No is displayed if the au or completed. No is also displayed if the motor drive controller I_{n} rating or if multip The CoS parameter may need to optimum performance. This feature will not work if any logis freewheel stop or fast stop are a they must be in the high state to When initiated, the drive controll motor, measures, and stores sp resistance and resistance of the the drive controller to provide be better motor torque performance the keypad display or by a logic function.	No - Yes display will s tune was not rating is less th le motors are be manually a gic inputs are signed to a log autotune. pulses the con cific motor stat onductors. Th er current regu This can be in put assigned	No how uccessful an 25% of connected. djusted for ctivated. If ic input, nnected r s allows ulation for tiated from o this
Max.Freg, - Hz	EFr	Maximum output frequency. The maximum value is a function of the switching frequency (SFr, see page 50).	10 to 500 Hz	${ }_{[1]}^{60 / 72 ~ H z}$

A CAUTION

MACHINERY OVERSPEED

Some motors and/or loads may not be suited for operation above nameplate motor speed and frequency. Consult the motor manufacturer before operating motor above rated speed.

Failure to follow this instruction can result in injury or equipment damage.

[^5]Table 11: 3—Drive Menu Parameters (continued)

Menu

Parameter	Code	Description	Adjustment Range	Factory Setting
Energus Eoo	nLd	Optimizes the motor efficiency by automatically adjusting the Volts/Hz ratio. NOTE: Energy Eco. is available only in variable torque mode.	No-Yes	Yes
I Limit adalot,	F Fb	Current limit adaptation. When configured for Yes, the current limit setting will increase as a function of output frequency. NOTE: I Limit is available only in variable torque mode.	No-Yes	No
IecRamindar	bra	Activation allows the deceleration ramp time to be automatically increased, avoiding an overbraking fault (ObF) if the ramp time was too short. This function may be incompatibl and with dynamic braking. If relay R2 is assigned to Brake L to No.	No - Yes e with ramp p ogic, brA can	No ${ }^{[3]}$ sitioning nly be set
SuitchRamp2- Hz	Frt	Frequency for ramp switching. When the output frequency is greater than Frt, the ramp times will be AC2 and dE2.	0 to HSP	0 Hz

[^6]Table 11: 3-Drive Menu Parameters (continued)

Menu 3

Parameter	Code	Description \quadAdjustment Range\quadFactory Setting
Type of stolo	5ヒヒ	Type of stop: STN-FST STN NST-DCI When a stop is requested, the type of stop defined by this parameter is activated until the FFt threshold (2—Adjust menu) is reached. Below this threshold, freewheel stop is activated. - Stn: On decel ramp - Fst: Fast stop - Nst: Freewheel stop - Dci: DC injection stop NOTE: Switch Ramp 2 is not available if LI is assigned to ramp switching. NOTE: This parameter, Stt, cannot be accessed if the R2 relay or a logic output is assigned to the "BLC: Brake Logic" function.

[1] Depending on the position of the $50 / 60 \mathrm{~Hz}$ switch. Ensure that the switch setting matches the input frequency (see page 14).
${ }^{[2]} I_{n}=$ drive controller constant torque output current rating shown on the drive controller nameplate.
[3] The factory setting depends on the macro-configuration used: No for Material Handling, Yes for General Use and Variable torque.
${ }^{[4]}$ This parameter is not available on 125-500 hp drive controllers.
${ }^{[5]}$ Refer to the drive controller instruction bulletin, VVDED397048US, for duty cycle ratings of the drive controllers.
\star These parameters are available only with the I/O extension card installed.

Table 11: 3—Drive Menu Parameters (continued)

Menu 3

NOTE: DecRamp Coeff is only available if fast stop is enabled.

Parameter	Code	Description	Adjustment Range	Factory Setting
Rambe Tyser	-Pt	Defines the type of acceleration and deceleration ramps. LIN: linear S: S ramp U: U ramp	LIN - S - U mp	LIN
DecRamp Coeff	$d[F$	Coefficient for reducing the deceleration ramp time when a logic input has been assigned to the Fast Stop function. For example: If dec=20 s, setting dCF to 2 resu setting.	1 to 10 Its in a 10 s d	4 c ramp

[^7]
Menu 3

NOTE: Mot P
Coef. is only available if motor switching is enabled.

NOTE: Modifying
SFt causes the following parameters to revert to factory settings: 3-Drive Menu: $n C r, C L I, S F r$, nrd 2-Adjust Menu: itH, IdC, Ibr, Ctd

Table 11: 3-Drive Menu Parameters (continued)

Parameter	Code	Description	Adjustment Range	Factory Setting
Tra.Limiti - $\%$ [4]	EL I	Torque limit allows limitation of the maximum motor torque.	0 to 200\% torque	200\%
Int. I Lim -A	[L I	Current limit used to limit the maximum motor heating.	$\begin{aligned} & 0 \text { to } 1.36 \text { of } \mathrm{I}_{\mathrm{n}} \\ & {[2]} \end{aligned}$	$1.36 \text { of } \mathrm{I}_{\mathrm{n}}$
Auto IC: Inj.	A $]_{\text {[}}$	Allows deactivation of automatic DC injection at stop.	No - Yes	Yes
Mot P Coef.	$P[L$	Defines the ratio between the nominal drive controller power and the motor with the lowest power rating when a logic input is assigned to the motor switching function (see page 71).	0.2 to 1	1
Su. Freq. Tuje	5Ft	Allows selection of the type of switching frequency. - LF allows adjustment betwee SFr parameter. - HF1 and HF2 allow adjustme HF1 is for applications with a derating the drive controller. thermal state goes above 95\% automatically goes to 2 or 4 k When the thermal state return frequency returns to the set v HF2 is for machines with a hig of the drive controller by one parameters (current limit, the automatically scaled.	LF - HF1 - HF2 ${ }^{[5]}$ 0.5 and 4 kH t between 4 ow duty cycle the drive con , the switching Hz (depending s to 70%, the alue. duty cycle with power rating. mal current, e	LF using the and 16 kHz : without roller frequency on rating). switching th derating he drive c.) are
[1] Depending on the position of the $50 / 60 \mathrm{~Hz}$ switch. Ensure that the switch setting matches the input frequency (see page 14).				
[3] The factory setting depends on the macro-configuration used: No for Material Handling, Yes for General Use and Variable torque.				
[5] Refer to the drive controller instruction bulletin, VVDED397048US, for duty cycle ratings of the drive controllers.				
\star These parameters are available only with the I/O extension card installed.				

Menu 3

NOTE: Special
Mot. is not available in variable torque mode except in the 125-500 hp drive controllers. After enabling this parameter, the IR compensation parameter appears in Menu 2. For 1/2-100 hp drive controllers, setting SPC to PSM while in the material handling macro and then selecting the variable torque macro will leave the PSM setting enabled.

Table 11: 3-Drive Menu Parameters (continued)

Parameter	Code	Description \quadAdjustment Range\quadFactory Setting
Su Freal $\quad-\mathrm{kHz}$	$5 F_{r}$	
Noise Reduct.	nra	This function randomly Yes if SFt modulates the switching frequency in order to reduce audible motor noise. = LF
Special Mot.	$5 P[$	$\begin{array}{\|l\|l\|l\|} \hline \text { Special motor adaptation } & \begin{array}{l} \text { No - Yes - } \\ \text { PSM } \end{array} & \text { No } \end{array}$ This parameter should be set to Yes when using special motors such as synchronous permanent magnet motors, synchronous wound field motors, or synchronous reluctance motors. This parameter should also be enabled if using one drive controller to control multiple motors in parallel. Installation of individual motor thermal protection is required when using the drive controller to control multiple motors in parallel. The PSM setting is intended to be used when the motor connected to the drive controller is less than 25% of the drive controller's nominal current rating. It may be necessary to disable output phase loss protection, OPL. Installation of motor thermal protection is required in this type of application. Also, the PSM setting can be enabled to allow for open circuit output voltage testing. Enabling the SPC parameter increases the IR compensation adjustment range from 0 to 800%.

[1] Depending on the position of the $50 / 60 \mathrm{~Hz}$ switch. Ensure that the switch setting matches the input frequency (see page 14).
${ }^{[2]} I_{n}=$ drive controller constant torque output current rating shown on the drive controller nameplate.
[3] The factory setting depends on the macro-configuration used: No for Material Handling, Yes for General Use and Variable torque.
[4] This parameter is not available on 125-500 hp drive controllers.
${ }^{\text {[5] Refer to the drive controller instruction bulletin, VVDED397048US, for duty cycle }}$ ratings of the drive controllers.
\star These parameters are available only with the I/O extension card installed.

Table 11: 3-Drive Menu Parameters (continued)

Menu 3

Parameter	Code	Description	Adjustment Range	Factory Setting
FGi Type \star	PLE	Defines the type of sensor used when an encoder feedback I/O card is installed. INC: incremental encoder (A, A+, B, B+ are wired). DET Detector (only A is wired).	INC-DET	DET
Num. PulEes \star	PL5	Defines the number of pulses for each revolution of the sensor.	1 to 1024	1024

${ }^{\text {[1] }}$ Depending on the position of the $50 / 60 \mathrm{~Hz}$ switch. Ensure that the switch setting matches the input frequency (see page 14).
${ }^{[2]} I_{n}=$ drive controller constant torque output current rating shown on the drive controller nameplate.
[3] The factory setting depends on the macro-configuration used: No for Material Handling, Yes for General Use and Variable torque.
${ }^{[4]}$ This parameter is not available on 125-500 hp drive controllers.
${ }^{\text {[5] }}$ Refer to the drive controller instruction bulletin, VVDED397048US, for duty cycle ratings of the drive controllers.
These parameters are available only with the I/O extension card installed.

4-Control Menu

The Control Menu is accessible when the access locking switch is in the total unlock, \square, position. The parameters can only be modified when the motor is stopped.

Table 12: 4—Control Menu: Keypad Display or 2- and 3-Wire Control

Menu 4

\star These I/O can be accessed if an I/O extension card has been installed.
[1] For 125-500 hp drive controllers the factory setting are:
LI4 $=$ Fault Reset; LI5 = ramp switching; LI6 = Not assigned

Menu 4

NOTE: Type 2 Wire appears only if 2-wire control is selected.

Table 13: 4-Control Menu: 2-Wire Control Type

Parameter	Code	Description	Adjustment Range	Factory Setting
		Defines the type of 2-wire control: - LEL. If the forward or revere	LEL-TrN- PFW	LEL

- LEL: If the forward or reverse input is high when the drive controller is powered up, the drive controller will start the motor. If both inputs are high on power up, the controller will run forward.
- TrN: The drive controller must see a transition from low to high of the forward or reverse input before it will start the motor. Therefore, if the forward or reverse input is high when the drive controller is powered up, the input must be cycled before the drive controller will start the motor.
- PFW: Forward input has priority over reverse input with this control. If forward is activated while the controller is running in reverse, the controller will run forward.
2-wire control wiring example:

| | | LI1: Forward
 LIx: Reverse | |
| :--- | :--- | :--- | :--- | :--- |
| RU imhibit. | $-\ln$ | When configured for Yes, this
 function inhibits reverse
 operation even if reverse
 operation is requested by a
 summing or PI regulator
 function.
 This parameter is not available if a logic input is configured
 for reverse. A logic input cannot be configured for reverse if
 this parameter is configured for Yes. | Yes - No |

\star These I/O can be accessed if an I/O extension card has been installed.
[1] For 125-500 hp drive controllers the factory setting are:
LI4 = Fault Reset; LI5 = ramp switching; LI6 = Not assigned

Table 13: 4—Control Menu: 2-Wire Control Type

Menu
 4

Parameter	Code	Description \quadAdjustment Range	Factory Setting
deadb. /pedst	$\square 5 P$		No

\star These I/O can be accessed if an I/O extension card has been installed.
[1] For 125-500 hp drive controllers the factory setting are:
LI4 = Fault Reset; LI5 = ramp switching; LI6 = Not assigned

Menu 4

NOTE: If CRL is set higher than CRH, reverse sense operation will result (i.e., 20 mA will equal low speed and $4 m A$ will equal high speed).

Table 14: 4—Control Menu: Other Parameters

Parameter	Code	Description	Adjustment Range	Factory Setting
AI2 min Ref.-min HI2 Max. Ref-min	$\begin{aligned} & {[r L} \\ & E r H \end{aligned}$	- CrL: Minimum value of the signal on analog input AI2 - CrH : Maximum value of the signal on analog input AI2	CrL: $0-20 \mathrm{~mA}$ CrH: $4-20 \mathrm{~mA}$	$\text { CrL: } 4 \mathrm{~mA}$ CrH : $20 \mathrm{~mA}$

These two parameters allow definition of the signal at Al 2 .
The input can be configured for $0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}$, $20-4 \mathrm{~mA}$, among other possibilities.

These parameters are available only with the I/O extension card installed.

Table 14: 4-Control Menu: Other Parameters

Menu 4

Parameter	Code	Description \quadAdjustment Range\quadFactory Setting
Save Ref	5ヒr	This function allows saving the reference, either when the run command is removed (RAM) or when mains power is removed (EEP). When the motor is next started, the reference speed will be the last saved reference. In order for speed reference to be saved in EEP mode, the run command cannot be present when reapplying power. NOTE: Save Reference is only available if LIs are assigned to +Speed/-Speed.
KeypadCom.		Allows command of the drive controller via the keypad display. No - Yes The STOP/RESET, RUN, and FWD/REV keys are active. The reference speed is given by the LFr or LCU parameter (see page 30). Only the freewheel stop, fast stop, and stop by DC injection commands remain active at the terminal strip. If the link between the drive controller and keypad display is lost, the drive controller will trip on the SLF fault (serial link fault). If this parameter is set to YES prior to the request to return to Factory Settings, it will remain set to YES after returning to Factory Settings.

These parameters are available only with the I/O extension card installed.

Table 14: 4-Control Menu: Other Parameters

Parameter	Code	Description	Adjustment Range	Factory Setting
Stol Priorit.	P5t	This function gives priority to the STOP key on the keypad display no matter what the command source (terminal strip, keypad display, or serial link).	No - Yes	Yes
To change the PSt parameter to No:				
1. Display no.				
2. Press ENT.				
3. The drive controller displays "See manual".				
4. Press the up arrow key, then the down arrow key, then				
ENT, then ESC.				
When this parameter is set to No, the stop key on the				
keypad display will be inactive. To return to Yes, display				
Yes then press enter.				

A WARNING

DISABLED STOP COMMAND

Disabling the stop key on the keypad display will prevent the drive controller from stopping when the stop key is pressed. An external stop command must be installed to stop the motor.

Failure to follow this instruction can result in death, serious injury, or equipment damage.

		Drive controller address controlled through the RS-485 port by a MODBUS device (i.e., without the programming or		
IrriveFddmess	Fadt	operating keypad display). If this parameter is set to any numeral other than 0 prior to the request to return to Factory Settings, it will remain set to that numeral after returning to Factory Settings.	0 to 31	0

These parameters are available only with the I/O extension card installed.

Table 14: 4-Control Menu: Other Parameters

Menu 4

Parameter	Code	Description \quadAdjustment Range$~$Factory Setting
		Transmission speed on the RS-485 MODBUS port on the front of the drive controller. 9600,19200 19200
BdRete RS485	Ebr	- 9600 Bits / second - 19200 Bits / second NOTE: The keypad display will not operate properly if parameter tbr is set to 9600. On power up, ERR7 may show on the display indicating this error. To reset: 1. Turn off power to the drive controller. 2. Slide the $50 / 60 \mathrm{~Hz}$ switch to the direction opposite its current position. 3. Power up the drive controller for 3 s . 4. Repeat Step 1. 5. Slide the $50 / 60 \mathrm{~Hz}$ switch to its original position. 6. Power up the drive controller and reenter the correct user configuration, because the parameters will have returned to their factory settings.
Reset counters	$r_{1} P_{r}$	This parameter sets KWh or operating time to 0 . No: Ready to accept a reset command. APH: KWh reset to 0 RTH: Operating time reset to 0 Press "ENT" to confirm the reset to 0 command. APH and RTH are active immediately. The parameter then automatically returns to No.

\star These parameters are available only with the I/O extension card installed.

This menu allows you to assign functions to the inputs and outputs. It is accessible when the access locking switch is in the total unlock, \square, position. The I/O assignments can only be modified if the motor is not running.

The inputs and outputs displayed in the I/O menu vary depending on selections made in the 4-Control menu and whether or not an I/O extension card is installed. On the 125-500 hp drive controllers, the Brake Logic function and I/O associated with torque are not configurable. The default settings depend on the macro-configuration selected (see Table 3 on page 24 for factory settings).

Table 15 shows which functions can be assigned to the analog input and which can be assigned to a logic input. Additional inputs are available and can be assigned when an I/O extension card is installed. LI1 and R1 cannot be reassigned. Al1, Ll1, and R1 are not displayed in the I/O menu.

Table 15: Possible Assignments for Configurable Inputs

Menu

5

NOTE: When reassigning inputs from + Speed and -Speed, reassign -Speed first.

When reassigning inputs from preset speeds, reassign PS8 first, then PS4, then PS2.

I/O Extension Card				Analog Input Al3	Logic Input A, A-, B, B-
Drive Controller without an I/O Extension Card		Analog Input Al2	3Logic Inputs LI2-LI4		
Code and Parameter	Description				
No: Not aseished	Not assigned	X	X	X	X
RU: Reverse	Run reverse		X		
RF2: Suitch rampe	Ramp switching		X		
J0f	Jog		X		
+SP: + Speed	+Speed		X		
-Sp: - Speed	-Speed		X		
FS2: 2 preset Sp	2 preset speeds		X		
FS4: 4 Preset Sp	4 preset speeds		X		
FS8: 8 preeet Sp	8 preset speeds		X		
NST: Freewhl Stop	Freewheel stop/run permissive		X		
ICI: IC inject	DC injection braking		X		
FST: Fast stop	Fast stop		X		
CHP: Multi. Motor	Switching between two motors		X		
TL2: Torque Lim2 ${ }^{[2]}$	Second torque limit		X		
FL0: Forced Local	Force to local		X		
RST: Fsult Reset.	Fault reset		X		
RFC: Automarus	Reference switching		X		

${ }^{[1]}$ The menu for assigning encoder input A, A-, B, B- is called "Assign A13".
${ }^{[2]}$ This parameter is not available on $125-500 \mathrm{hp}$ drive controllers.
${ }^{[3]}$ An AI for PIF (PI regulator) cannot be configured if RFC (Auto/manual) is already assigned to a logic input. For more details refer to page 74 .

Table 15: Possible Assignments for Configurable Inputs

Menu

 5| I/O Extension Card | | | 2
 Logic Inputs LI5-LI6 | Analog Input Al3 | Logic Input [1]
 A, AB, B- |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Drive Controller without an I/O Extension Card | | Analog Input Al2 | 3 Logic Inputs LI2-LI4 | | |
| Code and Parameter | Description | | | | |
| ATN: Autotune | Auto-tuning | | X | | |
| PIF: PI regulator | PI regulator feedback | $\mathrm{X}^{[3]}$ | | $\mathrm{X}^{[3]}$ | |
| PRUS:PI Autorman | PI Auto/manual if one Al is assigned to PIF | | X | | |
| PIM:PI Man.ref. | Manual PI speed reference if one Al is assigned to PIF | | | X | |
| PR2:PI 2 Preset. | 2 preset PI setpoints if one AI is assigned to PIF | | X | | |
| PR4:PI 4 Preset. | 4 preset PI setpoints if one Al is assigned to PIF | | X | | |
| EDID: Ext. flt | External fault input | | X | | |
| TLA: Torque limit. [2] | Torque limitation by AI if one AI is assigned to ATL | | X | | |
| FR2: Speed Ref2 | Speed reference 2 | X | | | |
| SAI: Sumimed Ref. | Reference summing | X | | X | |
| SFB: Tacho feedth | Tachogenerator | | | X | |
| PTC: Therm. Sensor | PTC probes | | | X | |
| ATL: Torque Lim, ${ }^{\text {[2] }}$ | Analog Torque limit | | | X | |
| RGI: Pli feedak | Encoder or sensor feedback | | | | X |

${ }^{[1]}$ The menu for assigning encoder input $\mathrm{A}, \mathrm{A}-, \mathrm{B}, \mathrm{B}$ - is called "Assign Al 3 ".
[2] This parameter is not available on $125-500 \mathrm{hp}$ drive controllers.
${ }^{\text {[3] }}$ An AI for PIF (PI regulator) cannot be configured if RFC (Auto/manual) is already assigned to a logic input. For more details refer to page 74.

Table 16 shows which functions can be assigned to relay output R2, logic output LO, and analog output AO.

Table 16: Possible Assignments for Configurable Outputs
Menu

I/O Extension Card			$\begin{aligned} & \text { Analog } \\ & \text { Output } \\ & \text { AO } \end{aligned}$	$\begin{aligned} & \text { Logic } \\ & \text { Output } \\ & \text { LO } \end{aligned}$
Drive Controller without an I/O Extension Card		Relay R2	Analog Output A01	
No: Not assigned	No assigned	X	X	X
Rull : IriveRunning	Drive controller running	X		X
oce: Dutput Cont.	Output contactor command	X		X
FTA: Frea Attain.	Frequency threshold attained	X		X
FLA: HSP Attained	High speed attained	X		X
CTA: I Attsined	Current level attained	X		X
SRA: FRH Attained	Reference speed attained	X		X
TSA: Mutre Therm Lul	Motor thermal level attained	X		X
thed: ATU th. alarm	Drive thermal level attained	X		X
AFL: 4-20 MP lose	Loss of 4-20 mA signal	X		X
F2A:F2 Attsined	Second frequency threshold reached	X		X
ELC: Brk Logic ${ }^{[1]}$	Brake logic	X		
OCR: Motor current.	Motor current		X	
OFR: Motor Frequency	Motor speed		X	
DRF: Dut.eut Ramle	Ramp output		X	
Tra: Motor torque ${ }^{[1]}$	Motor torque		X	
STQ: Sished Torg. ${ }^{[1]}$	Signed motor torque		X	
ORS: Sighed ramb	Ramp output with +/- sign		X	
DFS:PI ref.	Pl setpoint output, if one Al is assigned to PIF		X	
OPF:PI Feedtack	PI feedback output, if one Al is assigned to PIF		X	
OFE: PI Error	Pl error output, if one Al is assigned to PIF		X	

${ }^{[1]}$ These parameters are not available on 125-500 hp drive controllers.

Table 16：Possible Assignments for Configurable Outputs

Menu	I／O Extension Card			Analog Output AO	Logic Output LO
	Drive Controller without an I／O Extension Card		Relay R2	Analog Output A01	
	OPI：PI Integan	PI integral output，if one Al is assigned to PIF		X	
	OPR：Motor Power	Motor power		X	
	THR：Motor Thermal	Motor thermal state		X	
	THI：Drive Therras	Drive thermal state		X	
	${ }^{[1]}$ These parameters are not available on 125－500 hp drive controllers．				

After the I／O have been assigned，additional parameters related to the functions automatically appear in the menus，and the macro－ configuration is CUS：Customized．The additional parameters are listed in Tables 17 and 18.

Table 17：New Parameters in 2—Adjust Menu After I／O Reassignment

Menu 2

I／O		Assignment	New Parameters to Adjust
LI	RP2	Ramp switching	ALこ dE己
LI	JOG	Jog	」ロム 」－
LI	PS4	4 preset speeds	5アコ 5Рヨ
LI	PS8	8 preset speeds	5P4 5P5 5PG 5P7
LI	DCI	DC injection braking	$1 \rightarrow[$
LI	TL2	Second torque limit［1］	ヒLコ
LI	PR4	4 preset PI setpoints	アノコーアノヨ
AI	PIF	PI regulator	－PG r IGFbS PIL
AI	SFB	Tachogenerator	－tt5
R2	BLC	Brake logic［1］	$\begin{aligned} & \text { brL lbr brt ben } \\ & \text { bEt } \end{aligned}$
R2，LO	FTA	Frequency threshold attained	FEd
R2，LO	CTA	Current threshold attained	［ヒ」
R2，LO	TSA	Motor thermal threshold attained	ヒヒ』

[^8]Table 17: New Parameters in 2—Adjust Menu After I/O Reassignment

Menu 2

| I/O | Assignment | New Parameters to Adjust |
| :---: | :--- | :--- | :--- |
| R2, LO | TAD \quad Drive thermal threshold attained | $d t d$ |
| R2, LO | F2A \quad 2nd frequency threshold reached | $F 己 d$ |
| [1] These parameters are not available on 125-500 hp drive controllers. | | |

Table 18: $\begin{aligned} & \text { New Parameters in Menus 3, 4, and } 6 \text { After I/O } \\ & \text { Reassignment }\end{aligned}$ Reassignment

I/O		Assignment	Parameters to Adjust
LI	-SP	- Speed	5tr (4-Control menu)
LI	FST	Fast stop	$d[F$ (3-Drive menu)
LI	CHP	Motor switching	P [[(3-Drive menu)
LI	RST	Fault reset	- 5t (6-Fault menu)
AI	SFB	Tachogenerator	$5 d d$ (6-Fault menu)
$\begin{aligned} & \mathrm{A}+, \mathrm{A}-, \\ & \mathrm{B}+, \mathrm{B}- \end{aligned}$	SAI	Summing reference	$\begin{aligned} & \text { PGL, PLS (3-Drive } \\ & \text { menu) } \end{aligned}$
$\begin{aligned} & \mathrm{A}+, \mathrm{A}- \\ & \mathrm{B}+, \mathrm{B}- \end{aligned}$	RGI	Encoder feedback	$\begin{aligned} & \text { PGE, PLS (3-Drive } \\ & \text { menu) } \end{aligned}$

Figure 12: Function Compatibility Chart

The compatibility of certain functions can limit the application functions which can be assigned. Figure 12 shows the incompatibilities between functions. The functions not listed in Figure 12 are compatible with all other functions.

								$\stackrel{\text { 악 }}{ }$						
						\uparrow								
				\bigcirc	\bigcirc									
				\bigcirc				-	-			\bigcirc		
				-	-			\uparrow	\bigcirc					
	-	-	-		\bigcirc				\bigcirc					
	\bigcirc		-	\bigcirc										
\leftarrow							\leftarrow							
						\uparrow								
		\bigcirc	\leftarrow						\leftarrow					
		-	-	-				\uparrow						
											\bigcirc			
										\bigcirc				
		-											\bigcirc	
												-		

Incompatible functions
Compatible functions
No significance
Function priority (functions which cannot be active at the same time):

The stop functions have priority over run commands.
The speed references from a logic command have priority over analog references.
Note: An incompatible function must be deselected before the desired function can be programmed.
For example, if preset speeds is programmed, it must be cleared before the $+/$-speed parameter can be selected.

Using the Logic Inputs

Run Forward and Run Reverse

The logic input used for run reverse can be reassigned if the application has only one rotation direction.

2-wire Control

In 2-wire control, run (forward or reverse) and stop are commanded by the same logic input. When the logic input is closed (set to state 1), run is commanded. When it is opened (set to state 0), stop is commanded. See tCt on page 53 for more information.

A WARNING

UNINTENDED EQUIPMENT OPERATION

Ll1 has priority:

- If LI1 is closed while LI2 is active, the controller will respond to Ll1.
- If the LI1 input is lost while LI2 is active, the controller will respond to LI2 and reverse directions.

The logic inputs must be programmed appropriately for the application to prevent the motor from spinning in an unintended direction.

Failure to follow this instruction can result in death, serious injury, or equipment damage.

3-wire Control

In 3-wire control, run (forward or reverse) and stop are commanded by two different logic inputs. LI1 is always assigned to stop which is obtained by opening LI1 (setting it to state 0). A pulse on the run input is saved until the stop input is opened.

Whenever the drive controller is powered up or reset, the motor will only run after resetting the Forward, Reverse, and DC injection inputs.

Ramp Switching

This function allows switching between the first and second ramps. The first ramps are ACC and dEC, the second ramps are AC2 and dE2. There are two ways to activate the function:

- Assign a logic input to RP2 and close the assigned input (set it to state 1).
- By detection of a frequency threshold. This must be configured with the Frt parameter.

If a logic input is assigned to the function, ramp switching can only be initiated by the assigned input.

Jog
A logic input can be assigned to the Jog function to define a motor speed from 0 to 10 Hz . A run command (FWD or REV) is also required.

If the Jog contact is closed (set to state 1) and then a run command is given:

- The acceleration ramp is 0.1 s .
- The deceleration ramp will be 0.1 s when the run command is removed.

If a run command is given and then the Jog contact is closed (set to state 1):

- The acceleration ramp (ACC) is 0.1 s if the motor speed is less than the programmed Jog speed.
- The deceleration ramp (dEC) is followed if the motor speed is higher than the programmed Jog speed.

When the Jog contact is opened (set to state 0), the ACC and dEC settings are used to adjust the motor speed.

The following Jog parameters can be modified in the 2—Adjust menu:

- Jog speed (JOG)
- Delay between jog pulses (JGt)
+Speed/-Speed
There are two types of operation for +Speed/-Speed:

1. Use of pushbuttons. Two logic inputs are required in addition to the run direction inputs. The + Speed input increases the speed
and the -Speed input decreases the speed. If logic inputs are assigned to +Speed/-Speed, the Str parameter appears in the $4-$ Control menu allowing the reference speed to be saved (see page 56).
NOTE: When 3-wire control is selected, -Speed is automatically assigned to the next input after the one assigned to + Speed.
2. Use of selector switches. Only one logic input, assigned to + Speed, is required. When using selector switches, there is one position for each rotation direction.
NOTE: This type of operation is not compatible with 3 -wire control.

The Save Reference (Str) parameter can be used to save the last speed reference when the run command is removed or when the power is removed.

In both types of operations, the maximum speed is set by the reference speeds at the analog inputs. For example, if 60 Hz is the desired maximum speed, a jumper can be installed from +10 Vdc to Al1.

Figures 13 and 14 illustrate wiring and timing for + Speed/-Speed.
Figure 13: +Speed / -Speed Wiring Diagram

Figure 14: +Speed/-Speed Timing Diagram

Figures 15 and 16 show a wiring example and a timing diagram for +Speed using selector switches. This function requires a maximum speed reference input. For example, if 60 Hz is the desired maximum speed, a jumper can be installed from +10 Vdc to Al1.

Figure 15: Wiring Example for +Speed (Selector Switches)

LI1: Forward
LIx: Reverse
Lly: +Speed

Figure 16: +Speed Timing Diagram (Selector Switches)

Preset Speeds

2,4 , or 8 speeds can be preset, requiring 1 , 2 , or 3 logic inputs, respectively.

Table 19 shows how the logic inputs are configured for Preset Speeds and the input states that activate them.

Table 19: Preset Speed Logic

2 Preset Speeds Assign LIx to PS2. LIx Speed reference		4 Preset Speeds Assign LIx to PS2, then Lly to PS4.			8 Preset Speeds Assign LIx to PS2, then Lly to PS4, then LIz to PS8.			
		Lly	Llx	Speed reference	Llz	Lly	Llx	Speed reference
0	LSP + AI reference	0	0	LSP + AI reference	0	0	0	LSP + AI reference
1	HSP	0	1	SP2	0	0	1	SP2
		1	0	SP3	0	1	0	SP3
		1	1	HSP	0	1	1	SP4
					1	0	0	SP5
					1	0	1	SP6
					1	1	0	SP7
					1	1	1	HSP

[^9] PS4 (Lly), then PS2 (LIx).

Reference Switching (Auto/Manual)
Switching between two references (at Al1 and AI2) by a logic input command. When the logic input is closed (set to state 1), Al1 is enabled. This function automatically assigns Al2 to Speed
Reference 2.
Figure 17: Reference Switching Wiring Diagram

Freewheel Stop (Coast to Stop) / Run Permissive
A logic input can be assigned to the Freewheel Stop / Run Permissive (NST) function. The drive controller will not run until the logic input is closed. Opening the logic input assigned to the function (setting it to state 0) causes the drive controller to stop applying power to the motor and the motor to coast to a stop. When the logic input is open, NST is displayed in the Drive state screen on the keypad display to indicate that a freewheel stop has been requested. The drive controller will not run until the logic input is closed. This can be used with the Forced Local function for drive controllers on communication networks.

A freewheel stop can be used with a stop command and by setting the FFt parameter. When a stop command is given and the frequency drops below the frequency set with the FFt parameter, the drive controller will freewheel stop.

DC Injection Braking
DC injection braking can be activated at the end of each stop cycle (Adc $=$ Yes) or DC injection braking can be obtained by closing the logic input assigned to the DC Injection Braking function (setting it to state 1).

Fast Stop

A WARNING

EXTENDED STOPPING TIME

- Deceleration time during fast stop may be automatically extended depending on the braking ability of the drive controller.
- A dynamic brake or mechanical stopping/holding brake may be required for consistent stopping times independent of motor load conditions.
- Fast stop does not function during loss of power or drive controller fault.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Fast stop is a braked stop with the deceleration ramp time reduced by a programmable coefficient (see dCF on page 48). Fast stop is obtained by opening the logic input assigned to the function (setting it to state 0), or by configuring fast stop (Fst: Fast Stop) under type of stop (Stt on page 47).

Motor Switching
This function allows a single drive controller to control two motors with different power ratings, one at a time. The ratio between the motor power ratings is set with the PCC parameter in the 3-Drive menu (see page 49).

If the two motors have different power ratings, enclosure types, or speed ratings, then separate motor contactors, thermal protection, and short circuit protection will be required for each motor. This function automatically inhibits motor thermal protection of the second motor.

The motor switching command will not be taken into account unless the motor is stopped. If the output contactor opens while the motor is running, the drive controller may trip on overcurrent or overvoltage which may result in damage to the drive controller. The following
parameters are automatically scaled by the command from the logic input:

- DC injection current
- Brake release current
- Nominal motor current

Second Torque Limit
Second Torque Limit reduces the maximum motor torque when the logic input is closed (state set to 1). Use the 2-Adjust menu to configure the percentage of torque.

Fault Reset
Fault reset erases a saved fault and resets the drive controller if the cause of the fault has disappeared. Two types of reset are possible: partial or total. This is set by the rSt parameter in the 6-Fault menu. For a partial reset ($\mathrm{rSt}=\mathrm{RSP}$), the following faults are reset and cleared from the display:

-	input line overvoltage	-	motor overload
-	overbraking	-	network
communication fault	-	loserheating	
communication			
-		motor phase loss	-
loss of $4-20 \mathrm{~mA}$	-	drive overheating	
- ramp not followed	- external fault	- overspeed	

For a Total reset (rSt = RSG), all faults except SCF (Motor Short Circuit) are overridden as long as the logic input assigned to Fault Reset is closed.

CAUTION

MOTOR OVERHEATING

- Repeated reset of the thermal state after a thermal overload can result in thermal stress to the motor.
- When faults occur, promptly inspect the motor and driven equipment for problems (locked shaft, mechanical overload, etc.) before restarting. Also check the power supplied to the motor for abnormal conditions (phase loss, phase imbalance, etc.).

Failure to follow these instructions can result in equipment damage.

External Fault

Assigning a logic input to External Fault allows an external contact closure to stop the drive controller and motor. The stop type is determined by the configuration of the Stt parameter (Type of Stop) in the 3-Drive menu.

Force to Local
Permits going from serial link command to local command using the keypad display or terminal strip, depending on the setting of the LCC parameter in the 4-Control menu. Assigning this parameter selects a local command when the logic input is closed (state 1).

Auto-tuning
When the assigned logic input changes to 1 an auto-tuning operation is triggered, as parameter TUN is described on page 45 in the 3Drive menu.

Auto tuning is only performed if no command has been activated. If a Freewheel Stop or Fast Stop function is assigned to a logic input, this input must be set to 1 (active at 0).

Encoder Inputs

(Only with an I/O extension card with encoder input, VW3A58202U)

Speed Regulation

The inputs can be used to connect an encoder for improving speed regulation in applications where the load is changing. To program the encoder speed feedback, configure AI3 in the 5-l/O menu for RGI, Encoder Feedback. Then configure the encoder type and number of pulses in the 3-Drive menu.

The A, A-, B, and B- inputs on the I/O option card are for use in forward and reverse directions.

The A input can also be used with an inductive sensor or a photoelectric detector for simplified, but less accurate regulation.

Summing Speed Reference

The setpoint from the encoder input is summed with Al1.

Using the Analog Inputs

The Al1 input is set for speed reference unless the PI Regulator function is enabled. In this case, Al1 is used for the set point reference. The possible assignments of AI2 and AI3 are Speed Reference Summing and PI Regulator.

Speed Reference Summing
The frequency references at AI2 and AI3 can be summed with that at Al1.

PI Regulator

This function is used to regulate a process with a setpoint input and a feedback signal from the process. The function is enabled by assigning an analog input (Al) to Pl feedback in the 5-1/O menu after first ensuring that the Auto/Manual (RFC) parameter is not assigned to a logic input. This function is only available in the Variable Torque Macro. The acceleration (ACC) and deceleration (dEC) ramps default to linear ramp type even if the ramps had been configured for S ramp or U ramp with the rPt parameter.

When the PI regulator is configured and a logic input is configured for PAU: PI Auto/manual, the PI regulator function is active in Auto mode and Al 3 is used for speed input in manual mode. To use the PI Auto/Manual function, you must install an analog option card, VW3A58201U.

Logic inputs can be used with the PI regulator to command the drive controller to run from the analog reference, run at process maximum, or operate with two other definable pre-set setpoints. The configurable setpoints can be used to provide two different setpoints for two different processes, or they can be used instead of using Al1 for setpoint input. For example, providing a setpoint via the logic inputs can eliminate the need for a potentiometer.
Four analog outputs are available to monitor various aspects of the PI regulator function. See pages $83-84$ for more information.

PI setpoint	OPS	PI feedback	OPF
PI error	OPE	Pl integral error	OPI

Figure 18 shows a diagram of the PI Regulator inputs, calculation points, and outputs.

Table 20 provides a description of the inputs to the PI Regulator.
Figure 18: Diagram of PI Regulator

Table 20: Definition of PI Regulator Inputs and Adjustments

Input	Code	Range	Description
PI setpoint	-		The setpoint to the PI regulator can be provided from one of three sources: - via analog input, AI1 (AI2 and AI3 can be set to sum with Al1) via preset setpoints defined by logic inputs (see Preset setpoints in this table) over a communication network
PI feedback	-		The feedback to the PI regulator can be provided from Al2 (0-20 mA signal) or Al3 (0-10 Vdc voltage signal).
Auto / Manual with manual speed Input	PAU, PIM	When the PI regulator is contigured and a logic input is configured for PAU: PI Auto / Manual, Al3 is the speed input in manual mode. The PI regulator function is active in Auto mode. When the logic input open, (set to state 0), Manual mode is active and the PI regulator is inactive. In manual mode Al3 is enabled and the drive controller responds proportionally to the speed reference at Al3. PI Regulator mode is active when the logic input is closed, (set to state 1).	

Table 20: Definition of PI Regulator Inputs and Adjustments (continued)

Assignment of Al2 and Al3

Summing Speed Reference: The frequency setpoints given by Al2 and Al3 can be summed with Al1.

Speed Regulation with Tachogenerator: (Assignment on AI3 only with an I/O extension card, VW3A58201U)

An external divider bridge is required to adapt the voltage of the tachogenerator. The maximum voltage must be between 5 and 9 V . A precise setting is then obtained by setting the dtS parameter available in the 2—Adjust menu.

PTC Probe Processing: (only with an I/O extension card using the analog input). Used for direct thermal protection of the motor by connecting the PTC probes in the motor windings to analog input AI3.

Total resistance of the probe circuit at $20^{\circ} \mathrm{C}=750 \Omega$.
Analog Torque Limit: (Assignment on AI3 only with an I/O extension card VW3A58201U). This function can only be accessed if an analog input has been assigned to the torque limit. If the logic input is at 0 , the torque is limited by the setting of TLI or tL2. If the logic input is at 1 , the torque is limited by the analog input assigned to this function.

The signal applied at AI3 operates in a linear fashion on the internal torque limit (parameter TLI in the 3-Drive menu):

- If $\mathrm{Al} 3=0 \mathrm{~V}$: limit $=\mathrm{TLI} \times 0=0$
- If $\mathrm{Al} 3=10 \mathrm{~V}$: limit = TLI

Using the Controller Relay and Logic Outputs

The relay R2 on the drive controller or the logic output (LO) on an option card can be configured as follows:

Drive Running (RUN)
The logic output is at state 1 if the drive controller is supplying current to the motor or if a run command is generated with a zero speed reference.

Output Contactor Command (OCC)

The Output Contactor Command function allows the drive controller to command a contactor between the controller and the motor. The controller closes the contactor when a run command is given. When there is no longer any current in the motor, the controller opens the contactor. When using an output contactor, set outphase loss (OPL) to No.

NOTE: If the braking by DC injection function is configured, do not exceed contactor rating, because the contactor will not open until the end of braking.

Frequency Threshold Attained (FtA)
The logic output is at state 1 if the motor frequency is greater than or equal to the frequency threshold set by the Ftd parameter in the 2—Adjust menu.

High Speed Attained (FLA)
The logic output is at state 1 if the motor frequency is equal to the high speed value (HSP).

Current Threshold Attained (CtA)
The logic output is at state 1 if the motor current meets or exceeds the current threshold set by the Ctd parameter in the 2—Adjust menu.

Frequency Reference Attained (SrA)
The logic output is at state 1 if the motor frequency is equal to the speed reference value.

Motor Thermal State Attained (tSA)
The logic output is at state 1 if the motor thermal state meets or exceeds the thermal threshold set by the ttd parameter in the 2-Adjust menu.

Brake Logic Command (bLC) (This parameter is only assignable to R2)
Brake Logic Command allows management of a mechanical brake by the drive controller. Figure 19 shows a timing diagram for Brake Logic.

Figure 19: Brake Logic Timing Diagram

Parameters accessible in the 2—Adjust menu when bLC is assigned to R2:

- brake release frequency (brL)
- brake release current (lbr)
- brake release time (brt)
- brake engage frequency (bEn)
- brake engage time (bEt)

Recommendations for configuring the Brake Logic control parameters:

- Brake release frequency (brL):

Set the brake release frequency to the value of the nominal motor slip (g) multiplied by the nominal frequency (FS) in Hz .

brL = $\mathbf{g} \times \mathbf{F S}$

$\mathrm{g}=$ nominal motor slip
FS = nominal motor frequency (indicated on the motor nameplate)
Example Calculation:
nominal slip (g) = ($\mathrm{Ns}-\mathrm{Nr}$)/ Ns
Ns = synchronous speed in rpm
$\mathrm{Nr}=$ nominal motor speed at nominal torque in rpm. Use the speed indicated on the motor nameplate.

For a 50 Hz supply: $\mathrm{Ns}=3000 \mathrm{rpm}$ for a motor with two poles, 1500 rpm for a motor with four poles, 1000 rpm for a motor with six poles, and 750 rpm for a motor with eight poles.

For a 60 Hz supply: Ns = 3600 rpm for a motor with two poles, 1800 rpm for a motor with four poles, 1200 rpm for a motor with six poles, and 900 rpm for a motor with eight poles.

Example calculation: for a motor with four poles, a nameplate nominal speed of 1430 rpm , and a 50 Hz supply
$\mathrm{g}=(\mathbf{1 5 0 0} \mathbf{- 1 4 3 0)} / 1500=0.0466$
Brake release frequency (brL) $=0.0466 \times 50=2.4 \mathrm{~Hz}$

- Brake release current (lbr):

Adjust the brake release current to the motor nameplate nominal current.

NOTE: The values indicated (release current and release frequency) correspond to theoretical values. If during testing, the torque is insufficient using these theoretical values, retain the brake release current at the nominal motor current and lower the brake release frequency (up to $2 / 3$ of the nominal slip). If the result is still not satisfactory, return to the theoretical values and then increase the brake release current (the maximum value is imposed by the drive controller) and increase the brake release frequency gradually.

- Acceleration/deceleration time:

It is advisable to set the acceleration and deceleration ramps to more than 0.5 seconds. Ensure that the drive controller does not exceed the current limit. A braking resistor should be used on overhauling loads.

- Brake release time (brt):

Adjust according to the time required for the mechanical brake to open.

- Brake engage frequency (bEN):

Set to twice the nominal slip (in the example above $2 \times 0.0466=$ 0.0932 Hz). Then adjust according to observed results.

- Brake engage time (bEt):

Adjust according to the time required for the mechanical brake to close.

Loss of 4-20 mA Signal (APL)
The logic output is at state 1 if the signal on the $4-20 \mathrm{~mA}$ speed reference input is less than 2 mA .

Frequency Threshold 2 Attained (F2A)

The logic output is at state 1 if the motor frequency is greater than or equal to the frequency threshold set by the F2d parameter in the 2-Adjust menu.

Drive Thermal Threshold Attained (tAd)
The logic output is at state 1 if the drive thermal state meets or exceeds the thermal threshold set by the dtd parameter in the 2-Adjust menu.

Using the Analog Outputs

The analog outputs on the drive controller and on the Analog I/O and Digital I/O extension cards are current outputs. The minimum and
maximum values (AOL and AOH parameters) are configurable, each with a range of 0-20 mA.

Figure 20: Analog Output Minimums and Maximums

Motor Current

When configured for motor current (OCr), the analog output provides a signal proportional to motor current. The minimum configured value corresponds to zero while the maximum configured value of the analog output corresponds to 200% of the drive controller's constant torque rating.

Output Frequency

When configured for output frequency (OFr), the analog output provides a signal proportional to the motor frequency estimated by the drive controller. The minimum configured value corresponds to zero while the maximum configured value of the analog output corresponds to the maximum frequency setting, not the high speed setting.

Ramp Output

When configured for ramp output (OrP), the analog output provides a signal proportional to the frequency the drive controller is commanding the motor to run. The minimum configured value (AOL) corresponds to zero while the maximum configured value of the analog output (AOH) corresponds to the maximum frequency setting (tFr), not the high speed setting.

Motor Torque
When configured for motor torque (trq), the analog output provides a signal proportional to motor torque as an absolute value. The minimum configured value (AOL) corresponds to zero while the
maximum configured value of the analog output (AOH) corresponds to 200% of the nominal motor torque.

Signed Motor Torque

When configured for signed motor torque (Stq), the analog output provides a signal proportional to motor or braking torque. Zero torque corresponds to:

$$
(\mathrm{AOL}+\mathrm{AOH}) / 2
$$

The minimum configured value (AOL) corresponds to 200% braking torque while the maximum configured value of the analog output (AOH) corresponds to 200% of the nominal torque.

Signed Ramp

When configured for signed ramp output, ORS, the analog output provides a signal proportional to the frequency the drive controller is commanding the motor to run in the reverse or forward direction. Zero frequency corresponds to:

$$
\text { (AOL+AOH) / } 2
$$

The minimum configured value, AOL, corresponds to the maximum frequency ($\mathrm{t} F \mathrm{r}$) in the reverse direction, while the maximum configured value, AOH , corresponds to the maximum frequency (tFr) in the forward direction.

PI Setpoint

When configured for PI setpoint, OPS, the analog output provides a signal proportional to the PI setpoint being provided to the drive controller. The minimum configured value, AOL, corresponds to the minimum setpoint, while the maximum configured value, AOH , corresponds to the maximum setpoint.

PI Feedback

When configured for PI feedback, OPF, the analog output provides a signal proportional to the PI feedback being provided to the drive controller. The minimum configured value, AOL, corresponds to the minimum feedback, while the maximum configured value, AOH , corresponds to the maximum feedback.

PI Error

When configured for PI error, OPE, the analog output provides a signal proportional to the PI regulator error as a percentage of the sensor range being used for the PI feedback, (maximum feedback minus minimum feedback). The minimum configured value, AOL, corresponds to -5%, while the maximum configured value, AOH , corresponds to $+5 \%$. Zero corresponds to (minimum value + maximum value) / 2 , (AOL+AOH) / 2.

PI Integral Error
When configured for PI integral error, OPI, the analog output provides a signal proportional to the Pl integral error. The minimum configured value, AOL, corresponds to the low speed setting, LSP, while the maximum configured value, AOH , corresponds to the high-speed setting, HSP.

Motor Power

When configured for motor power, OPR, the analog output provides a signal proportional to power drawn by the motor. The minimum configured value, AOL, corresponds to 0% of the nominal motor power, while the maximum configured value, AOH , corresponds to 200% of the nominal motor power.

Motor Thermal State
When configured for motor thermal state, THR, the analog output provides a signal proportional to the thermal state of the motor calculated by the drive controller. The minimum configured value, AOL, corresponds to 0% of the motor thermal state, while the maximum configured value, AOH , corresponds to 200% of the motor thermal state.

Drive Thermal State
When configured for drive thermal state, THD, the analog output provides a signal proportional to the thermal state of the drive controller. The minimum configured value, AOL, corresponds to 0% of the drive controller thermal state, while the maximum configured value, AOH , corresponds to 200% of the drive controller thermal state.

6-Fault Menu

This menu is only accessible when the access locking switch is in the \square position. Modifications can only be made when the motor is stopped.

Table 21: 6—Fault Menu

Parameter	Code	Description \quadAdjustment Range\quadFactory Setting
Auto Restant.	Atr	This function allows an automatic restart of the drive controller if the cause of the fault has disappeared and a run command is maintained. Yes - No No An automatic restart is possible after the following faults: - OSF Input line overvoltage - ObF overbraking - OtF motor overheating (when the thermal sensor resistance is less than 1500 ohms) - LFF loss of 4-20 mA - OLF motor overload (after the thermal state has decreased below 100\%) - OPF motor phase loss - OHF drive overheating (when the thermal state has decreased below 70\%) - SLF loss of RS-485 port communication - EPF external fault - CnF network communication fault When the Auto restart is active, the fault relay remains energized. If the fault has disappeared, the drive controller will attempt to restart the motor after a delay time set by parameter tAr. If the drive controller remains faulted after attempting the number of restarts set in the parameter nAr, the fault relay de-energizes and the drive controller must be reset by cycling power.

A WARNING

AUTOMATIC RESTART

- Automatic restart can only be used for machines or installations that present no danger in the event of automatic restarting, either for personnel or equipment.
- Equipment operation must conform with national and local safety regulations.

Failure to follow this instruction can result in death, serious injury, or equipment damage.

This parameter is only available on 125-500 hp drive controllers.

Table 21: 6—Fault Menu

Menu 6

NOTE: Reset
Type is accessible if the Reset Fault function is assigned to a logic input.

Parameter	Code	Description	Adjustment Range	Factory Setting
Nb max reset	п月r	This parameter is used to set the number of restart attempts.	0-255	5
Reset Pause	E月r	This parameter sets the delay time between Auto restart attempts.	0.1 to 999.9 s	30.0 s
Reset Tyse	-5t	Faults reset by a partial reset (rSt = RSP) are: - OSF Input line overvoltage - ObF overbraking - OtF motor overheating - LFF loss of 4-20 mA - OLF motor overload - RnF ramp not followed - SOF overspeed - OPF motor phase loss - OHF drive overheating - SLF loss of RS-485 port communication - EPF external fault - CnF network communication fault All faults except motor short circu ($\mathrm{rSt}=\mathrm{RSG}$). Total reset overrides all other fau RSG: 1. Display RSG 2. Press the ENT key. 3. The drive controller displays 4. Press the up arrow key, then ENT twice.	RSP (partial reset) RSG (total reset) it are reset by a lts. To configur See manual". the down arrow	RSP total reset e rSt to key, then

CAUTION

MOTOR OVERHEATING

- Repeated reset of the thermal state after a thermal overload can result in thermal stress to the motor.
- When faults occur, promptly inspect the motor and driven equipment for problems such as locked shaft and mechanical overload before restarting. Also check the power supplied to the motor for abnormal conditions such as phase loss and phase imbalance.

Failure to follow these instructions can result in equipment damage.

This parameter is only available on $125-500 \mathrm{hp}$ drive controllers.

Table 21: 6—Fault Menu

Menu 6

Parameter	Code	Description	Adjustment Range	Factory Setting
DutPhaseLoss	$\square P L$	Set this parameter set to No if there is a contactor between the drive controller and the motor, or if multiple motors are used on the output of the drive controller. It may also be necessary to set OPL to No if the motor load is less than 25% of the drive controller current rating $\left(I_{n}\right)$.		
Infut Phase Lose	$1 P L$	This fault is not configurable on the following single phase input drive controllers: - ATV58•U09M2 - ATV58•U18M2 Disable IPL when operating the 208/230 Vac drive controllers with single phase input.		
ThemmalProtype	EHE	Choices: - No: No motor thermal protection. - ACL: Self-cooled motor. The drive controller takes into account a derating as a function of the rotation frequency. - FCL: Force-cooled motor. The drive controller does not take into account a derating as a function of the rotation frequency.		

\star This parameter is only available on 125-500 hp drive controllers.

Table 21: 6—Fault Menu

Menu 6

Parameter	Code	Description	Adjustment Range	Factory Setting
LossFollower	LFL	minimum and maximum reference parameters for Al 2 (CrL and CrH) are greater than 3 mA . If $\mathrm{CrL}>\mathrm{CrH}, \mathrm{LFL}$ is automatically set to Yes. - No: Disabled - Yes: Immediate fault - STT: Stop without fault, restart on return of signal - LSF: Stop followed by fault signal from R1 and LFF display on the keypad - LFF: Run at the preset speed set by the LFF parameter - RLS: Run at last speed on loss of follower without fault. Follow analog input upon return of analog signal. NOTE: With Loss of Follower configured and Auto-Manual configured, the drive controller will fault when in Manual mode if the Auto signal is not present. Also, with Loss of Follower configured and Keypad command configured, the drive controller will fault when in Keypad mode if the Auto signal is not present.		
4-20 Flt. 50	LFF	Pre-set speed in the event of the loss of the $4-20 \mathrm{~mA}$ signal.	0-HSP	0
Catch On Fly	FLr	Allows a smooth restart after: - Brief loss of input power - Fault reset or automatic resta - Freewheel stop or DC injectio input - Momentary interruption of the If relay R2 is assigned to the Brak always be set to No.	Yes - No n braking with drive controll ke Logic function	No a logic r output n, FLr will

A WARNING

AUTOMATIC RESTART

- Automatic catch on the fly must only be used on machines or installations where automatic restarting will not endanger personnel or equipment.
- Equipment operation must conform with national and local safety regulations.

Failure to follow this instruction can result in death, serious injury, or equipment damage.
\star This parameter is only available on $125-500 \mathrm{hp}$ drive controllers.

Table 21: 6—Fault Menu
Menu
6

Parameter	Code	Description	Adjustment Range	Factory Setting
		Controlled stop upon loss of input phase.	No - MMS - FRP	No

This function is only operational if the IPL parameter (Input Phase Loss) is set to No. If IPL is set to Yes, leave StP set to No. Possible choices:

- No: loss of input phase causes drive controller to trip

Cont. Stol \quad S上P | | $\begin{array}{l}\text { MMS: Maintenance of DC bus: the DC bus is kept } \\ \text { energized by regenerating the kinetic energy from the }\end{array}$ |
| :--- | :--- | :--- | machine inertia, until the USF (Undervoltage) fault appears.

- FRP: Following a ramp: deceleration following the programmed ramp, either dEC or dE2 until the motor stops or the USF (Undervoltage) fault appears. This operation is not available on the ATV58•U09M2, U18M2, U29M2 and U41M2.

| | | This function can be accessed if
 feedback via tachogenerator or
 pulse generator is programmed. | Yes - No | No |
| :--- | :--- | :--- | :--- | :--- | :--- |
| RalloNot.Foll | When enabled, it is used to lock the drive controller if a | | | |
| speed error is detected (difference between the stator | | | | |
| frequency and the measured speed). | | | | |

This parameter is only available on $125-500 \mathrm{hp}$ drive controllers.

7-Files Menu

The Files menu is accessible when the access locking switch is set to the total unlocked, \square, position. Changes can only be made when the motor is stopped.

The keypad display can store four drive controller configuration files.
A stored file can be downloaded into other drive controllers that have the same horsepower and voltage rating and the same or earlier version of firmware.

Menu

NOTE: The stored program will be substituted for present settings when a file is transferred to the drive controller.
NOTE: Factory default settings will be substituted for present settings when Ini is selected and confirmed by pressing ENT twice when prompted. Parmeters LCC and Add remain at their previous settings.

Table 22: 7—File Menu

Parameter	Code	Description \quadFactory Setting
File 1 State File 2 Stste File 3 Stste File 4 Stste	F 15 F F_{5} F $\exists 5$ F45	Displays the state of the corresponding file. FRE Possible states: FRE - FRE: File free FRE - EnG: A configuration has already been FRE \quad saved in this file
Operst. Tyse	$F \square L$	Selects a file operation. Possible operations: - NO: no operation requested (default setting each time the keypad display is reconnected to the drive controller). - STR: save the configuration in a keypad display file. - REC: transfer a file to the drive controller. - Ini: return the drive controller to the factory settings.

A WARNING

UNINTENDED EQUIPMENT ACTION

- Verify that the factory default or transferred file settings are compatible with the application requirements.
- If a stored file is downloaded with the stop key disabled, this file will be transferred. To stop the motor, an external stop command must be installed.

Failure to follow these instructions can result in death, serious injury or equipment damage.

Fassword	LQd	See "Access Code" on page 92.	

Reinitializing the Drive Controller

Figure 21 shows the process of storing and recalling files to reinitialize the drive controller. Follow the path indicated by the bold lines.

Figure 21: Reinitializing the Drive Controller

File Operation

To store or recall a file:

- Set Operation Type (FOt) to STR to store a file, or REC to recall a file.
- Select the FILE number to specify the file.
- If storing a file, the display automatically returns to the FOt (Operation Type) parameter after storing the file.
- If the FOt parameter is set to REC, a second confirmation must be made:

The display automatically returns to the FOt parameter, set to No.

Access Code

The drive controller configuration can be protected by an access code (password).

Table 23: Access Code

Parameter	Code	Description	Factory setting
Conf ig. Code	C口d	Configuration code used as an access code.	0000

NOTE: Use this parameter with caution. It can prohibit access to parameters. Carefully note and save any modification to this parameter.

The access code is expressed with four digits. The first three are user-assigned and do not affect access to the menus. The fourth digit can range from 0 to 9 and determines which menus can be accessed. See Table 24 for an explanation of the last digit codes.

Figure 22: Access Code

For example, if the access code is "2337", display of the menus 2,3 , $4,5,6,7$, and 8 is allowed, but modification is not allowed.

Table 24: Significance of Access Code Last Digit

Menus Affected:	Access is locked if last digit of code is:	Display is allowed if last digit of code is:	Modification is allowed if last digit of code is:
2	$0^{[1]}$ or 9	1	2
$2,3,4,5,6,7,8$, and Macro- Configuration	$0^{[1]}$ or 9	3	4
8	$0^{[1]}$ or 9	5	6
$2,3,4,5,6,7,8$	$0{ }^{[1]}$ or 9	7	8
$[1] \quad$ If the factory setting, 0000 , is used, access to the menus is completely			
unlimited.			

NOTE: Menu access allowed by the locking switch setting can be limited by the access code.

The access code is set by using the
keys. Press ENT twice to validate the code you have chosen. The display reverts to 0 indicating the password has been accepted. The menus are now locked and your access code must be entered to unlock them. If an incorrect code is entered, it is refused, and the following message is displayed:

Figure 23: Incorrect Code Display

After pressing ENT or ESC on the keypad display, the user can try to reenter the correct code.

To access the menus protected by the access code, the correct code must first be entered in the File menu. The File menu is always accessible. Once the correct code has been entered, press ENT and then press ESC twice to get to the menu tree. Display and modifications are now allowed per the code entered.

After completing your changes, cycle power or remove the keypad to re-lock access to the menus.

Menu 8 will only appear on the keypad display if a communication option card or application option card has been installed in the drive controller. Communication option cards contains drivers and connection points for integration into various industrial and building automation networks. Application option cards expand the I/O
functionality of the drive controller. See Appendix B for a list of option cards available from Schneider Electric/Square D Company.

8-Communication Menu

Menu
8

The Communication menu is displayed only if a communication card is installed. It is accessible when the access locking switch is set to the total unlock \quad position. Configuration can only be done while the motor is stopped.

For information on the communication option cards, refer to the manuals supplied with the cards.

8-Application Menu

The Application menu is only displayed if a custom application card is installed. It is accessible when the access locking switch is set to the total unlock \quad position. Configuration can only be done while the motor is stopped.

For more information concerning the custom application card, see the document provided with the card.

Several custom application option cards are available for specific OEM accounts. See Appendix B for a list of option cards available from Schneider Electric.

The General Purpose Option Card (catalog no. VW3A58253U) is considered a custom application card. For information on programming the card see instruction bulletin 30072-450-03.

CHAPTER 3—DIAGNOSTICS AND TROUBLESHOOTING

Keypad Display and Indicating LEDs

When a fault condition is detected, a fault code and a plain language message will be displayed as long as power is maintained. See Table 27 on page 103 for fault codes and messages. In addition, the LEDs on the front of the drive controller indicate the states illustrated in Figure 24.

Figure 24: Location and Description of LEDs

Fault Storage

The first fault detected is saved and displayed on the keypad display if power is maintained. The drive controller trips, the red fault LED illuminates, and the fault relay de-energizes. To reset the fault:

1. Remove power from the drive controller.
2. Before restoring power, identify and correct the cause of the fault.
3. Restore power. This will reset the fault if it has been corrected.

In certain cases, if automatic restart has been enabled, the drive controller can be automatically restarted after the cause of the fault has been corrected. See page 85.

Using Fault Codes and Messages to Solve Problems

The fault messages displayed on the keypad display can be used to troubleshoot problems. The fault messages can be divided into three categories:

- Protective faults: These faults are displayed when the drive controller detects conditions that, if left uncorrected, may result in damage to the drive controller and/or motor. The drive controller shuts down to prevent further damage from occurring.
- Drive faults: These faults are displayed when a problem is detected in the drive controller.
- Process faults: These faults are displayed when a process feedback or communication signal used by the drive controller is interrupted.

Table 25: Fault Messages

Protective Faults	Drive Faults	Process Faults
Input phase loss	Precharge fault	Loss of 4-20 mA signal
Undervoltage	EEPROM fault	Loss of RS-485
Overvoltage	Internal fault	External fault
Drive overheating	Internal communication fault	Speed feedback fault
Motor overload	Power rating error	Communication network fault
Overbraking	Option error	
Motor phase loss	Option removed	
Overcurrent	EEPROM checks	
Motor short circuit		
Motor overheating		
Thermal sensor fault		
Overspeed		
Ramp not followed		

Maintenance

Read the safety statements on page 97 before proceeding with any maintenance or troubleshooting procedures.

At regular intervals perform the following steps:

- Check the condition and tightness of the connections.
- Make sure that the ventilation is effective and the temperature around the drive controller remains within specified levels.
- Remove dust and debris from the drive controller, if necessary.

Precautions

Table 27 on page 103 lists faults, associated codes, the probable causes of the faults, and the associated corrective action. When taking corrective action, follow the procedures outlined on pages 98-102.

DANGER

HAZARDOUS VOLTAGE

Read and understand these procedures before servicing ATV58 TRX drive controllers. Installation, adjustment, and maintenance of these drive controllers must be performed by qualified personnel.

Electrical shock will result in death or serious injury.
The following procedures are intended for use by qualified electrical maintenance personnel and should not be viewed as sufficient instruction for those who are not otherwise qualified to operate, service, or maintain the equipment discussed.

Procedure 1: Bus Voltage Measurement

! DANGER

HAZARDOUS VOLTAGE

- Read and understand the bus voltage measurement procedure before performing the procedure. Measurement of bus capacitor voltage must be performed by qualified personnel.
- DO NOT short across DC bus capacitors or touch unshielded components or terminal strip screw connections with voltage present.
- Many parts in this drive controller, including printed wiring boards, operate at line voltage. DO NOT TOUCH. Use only electrically insulated tools.

Electrical shock will result in death or serious injury.
The DC bus voltage level is determined by monitoring the (+) and (-) measurement points. Their location varies by drive controller model number as listed in Table 26 and shown in Figure 25. The drive controller model number is listed on its nameplate.

Table 26: ATV58 TRX Type H (+) and (-) Measurement Points

	$(+)$ Measurement Point		$(-)$ Measurement Point	
Drive Controller ATV58H•••••	Terminal Block or Connector	Terminal Designation	Terminal Block or Connector	Terminal Designation
U09M2• and U18M2•	J2	(+)	J2	$(-)$
U29M2• to D12M2•	J2	PA	J18	7
U18N4• to D23N4•	(+)	J2	$(-)$	
D16M2• to D46M2•	J2	PA (+)		PC (-)
D28N4• to D79N4•				
C10N4• to C33N4•				

To measure the DC bus capacitor voltage:

1. Disconnect all power from the drive controller including external control power that may be present on the control board and the option board terminals.
2. Wait ten minutes for the DC bus capacitors to discharge.
3. Read the model number of the drive controller from the nameplate and identify the corresponding (+) and (-) measurement points from Table 26 and Figure 25.
4. Open the door or cover of the drive controller.
5. Set the voltmeter to the 1000 Vdc scale. Measure the voltage between the (+) and (-) measurement points identified in step 3. Verify that the DC bus voltage has discharged below 45 V before servicing the drive controller.
6. If the DC bus capacitors will not discharge below 45 V , contact your local Square D representative. Do not operate the drive controller.
7. Replace all of the covers after servicing the drive controller.

Figure 25: DC Bus Measurement Terminals
The J18 connector is in the upper left hand corner of the main control board behind the flexible shield. Use a thin probe to access the connector pin.

Figure 26: Power Terminal Layout

$\stackrel{1}{\square}$	L1	L2	L3	PA	PB	U	V	W	$\stackrel{1}{\square}$			ATV58HU18N4 to D23N4
$\stackrel{1}{\square}$	L1	L2	L3	+		PA	PB	U	V	W	$\stackrel{1}{ \pm}$	ATV58HD25N4(X) and D79N4(X)

$\stackrel{\perp}{=}$				+	+	-	\perp
	L 1	L 2	L 3	U	V	W	

ATV58HC10N4(X)

L1	L2	L3	$\stackrel{1}{\square}$	$\stackrel{ }{\square}$				
-			+	+	U	V	W	W

ATV58HC23N4X to C33N4X
\square Do not use

Procedure 2: Checking Supply Voltage

Measure the input line voltage to determine if the voltage is within the drive controller tolerance.

1. Perform the Bus Voltage Measurement procedure on page 98.
2. Attach meter leads to L1 and L2. Set the voltmeter to the 600 Vac scale.
3. Reapply power and check for the correct line voltage, shown on the drive controller nameplate rating.
4. Remove power and repeat the procedure for L2 and L3, and L1 and L3.
5. When all phases have been measured, remove power. Remove leads and replace all covers.

Procedure 3: Checking the Peripheral Equipment

The following equipment may need to be checked. Follow the manufacturers' procedures when checking this equipment.

1. A protective device, such as a circuit breaker, may have tripped or a fuse may have blown.
2. A switching device, such as a contactor, may not be closing at the correct time.
3. Conductors may require repair or replacement.
4. Connection cables to the motor or high resistance connections to ground may need to be checked. Follow NEMA standard procedure WC-53.
5. Motor insulation may need to be checked. Follow NEMA standard procedure MG-1. Do not apply high voltage to U, V, or W. Do not connect the high potential dielectric test equipment or insulation resistance tester to the drive controller since the test voltages used may damage the drive controller. Always disconnect the drive controller from the conductors or motor while performing such tests.

A CAUTION

DIELECTRIC TESTS WHILE CONNECTED

Can Cause Equipment Damage

- Do not perform high potential dielectric tests on circuits while the circuits are connected to the drive controller.
- Any circuit requiring high potential dielectric tests must be disconnected from the drive controller prior to performing the test.

Failure to follow these instructions can result in injury or equipment damage.

Fault Codes and Messages

Table 27: Fault Codes and Messages

Fault/Message	Probable Causes	Corrective Actions
$E F F$	Error probably caused by changing a card.	
FWR RATE ERR-ENT	Change of the power rating on the power board	Check the configuration of the power board and other boards.
OPTION ERR.-ENT	Change of the type of option card or installation of an option card if one had not been installed before and the macro-configuration was CUS	Reset by cycling power.
OPT. REMOUEI-ENT	Option card removed	Save the configuration in a file on the keypad display.
EEP CKS.-ENT	Saved configuration cannot be read. Pressing ENT causes the message "Fact.Setting? ENT/ESC" to appear.	Press ENT to return to factory settings.
[FI CONFIG FAULTT	The configuration sent to the drive controller via the serial link cannot be read.	1. Verify the configuration sent. 2. Send a configuration which can be read.
$[\square F$ COMM. NETWORK FFIULT	Fault on the communication network.	1. Check the connection of the communication network to the drive controller. 2. Check the network time-out setting.
$[r F$ PRECHARGE FFIULT	- Precharge relay closure command fault. - Failed precharge resistor.	Perform Bus Voltage Measurement Procedure (Procedure 1 on page 98). Check connections in drive controller.
$E E F$ EEPROM FAULT	Memory error.	Remove power from the drive controller and reset.
EPF EXTERNAL FPIULT	Fault caused by an external source such as a PLC or general purpose option (GPO) card. An EPF fault is generated whenever a GPO card is installed.	Verify the external source which caused the fault and reset. If the drive controller has a GPO card installed, see instruction bulletin 30072-450-03 for programming and troubleshooting instructions.
ERR 1	Internal error in the keypad display	Cycle power on the drive controller. If the problem persists, replace the keypad display with part number VW3A58101U.
ERR 2	Serial link error due to incorrect address	- Verify address setting. - Cycle power on drive controller

Table 27: Fault Codes and Messages (continued)

Fault/Message	Probable Causes	Corrective Actions
ERR 3	Serial link error due to incorrect value. If the keypad display is remotely mounted, electrical noise may be present.	Cycle power on the drive controller. If the keypad display is remotely mounted, verify that the cable is properly shielded. Ensure that the cable is routed away from motor leads. If the problem persists, replace the keypad display with part number VW3A58101U. Reprogram any parameters that are not at factory default settings.
ERR 4	Internal error in the keypad display software. If the keypad display is remotely mounted, electrical noise may be present.	
ERR 5	Serial link error. If the keypad display is remotely mounted, electrical noise may be present.	
ERR 6	Internal error in the keypad display hardware	Cycle power on the drive controller. If the problem persists, replace the keypad display with part number VW3A58101U.
ERR 7	Serial link time out error. The keypad display is not getting a response from the drive controller. If the keypad display is remotely mounted, electrical noise may be present. The port baud rate (tbr) may be set to 9600 bits/s.	Cycle power on the drive controller. If the keypad display is remotely mounted, verify that the cable is properly shielded. Ensure that the cable is routed away from motor leads. See page 58 for instructions for resetting the tbr parameter back to 19200 bits/s. If the problem persists, replace the control board on the drive controller with part number VX4A581U. An Ini fault may be displayed if the problem persists.
ERR 8 ERR 9	Internal error in the keypad display software. If the keypad display is remotely mounted, electrical noise may be present.	Cycle power on the drive controller. If the keypad display is remotely mounted, verify that the cable is properly shielded. Ensure that the cable is routed away from motor leads. Re-program any parameters that are not at factory default settings. If the problem persists, replace the keypad display with part number VW3A58101U.
ERR10	Serial link error due to incorrect length of frame. If the keypad display is remotely mounted, electrical noise may be present.	Cycle power on the drive controller. If the keypad display is remotely mounted, verify that the cable is properly shielded. Ensure that the cable is routed away from motor leads. If the problem persists, replace the keypad display with part number VW3A58101U. Re-program any parameters that are not at factory default settings.
$I L F$ INTERNGL COMM. FAILLT	Communication fault between the control board and the option card.	Perform the Bus Voltage Measurement procedure (Procedure 1 on page 98). Check the connection between the option card and the control board. If the drive controller has a GPO card installed, see instruction bulletin 30072-450-03 for troubleshooting instructions.
$\ln F$ INTERNFL FFIULT	- Internal fault. - Internal connection fault.	Perform the Bus Voltage Measurement procedure (Procedure 1 on page 98), then check internal connections.

Table 27: Fault Codes and Messages (continued)

Fault/Message	Probable Causes	Corrective Actions
171	Attempting to download an incompatible file from the keypad display to the drive controller. Incompatibility can be caused by transferring to a drive controller with dissimilar part numbers. Also, incompatibility can occur when files are created on a drive controller with new firmware and then attached to a controller with older firmware. The error may appear after ERR7 is displayed.	1. Ensure that the file being downloaded was created for the correct drive controller part. 2. Verify drive controller firmware. Reconfigure the new features used in the newer firmware. Like configurations are transferable independent of firmware revision. Another option is to upgrade the firmware by ordering part number VX4A581U. Cycle power on the drive controller.
$\begin{aligned} & \text { LF F } \\ & \text { LOSS OF } 4-20 \mathrm{MH} \end{aligned}$	Loss of 4-20 mA follower signal on Al2 input. See Table 29 on page 107.	1. Verify signal connections. 2. Check signal.
ロレF OUERERAKING	Overvoltage or overcurrent due to excessive braking or an overhauling load. See Table 28 on page 106.	Increase deceleration time. Add a dynamic braking option if necessary, or verify that the dynamic braking option is working properly.
$\square[F$ DUERCURRENT	- Ramp too short. - Inertia too high, or load too large - Mechanical blockage.	1. Check the parameter settings. 2. Check the sizing of the drive controller, motor, and load. 3. Remove all power. With the drive controller disconnected, check for mechanical blockage.
$\square H F$ IRIUE OUERHEATING	Heatsink temperature too high.	Check the motor load, fan, and the ambient temperature around the drive controller. Wait for the drive controller to cool down before resetting.
$\square L F$ MOTOR OUERLOAD	- If the thermal trip setting meets or exceeds 118% of the normal thermal state, thermal trip is due to prolonged overload or output phase failure. - Motor power rating is too low for the application.	- Check the setting of Thermal Current ($I E H$, see page 32) and compare it with motor I_{n} (nameplate current rating). Check the load and compare it with operating speed. Check the braking conditions (possibility of single-phase operation). Wait approximately seven minutes before resetting. - Verify that the motor and drive controller selections are correct for application.
$\triangle P F$ MOTOR FHASE LOSS	- Loss of a phase on the output of the drive controller. - Drive controller oversized for motor.	1. Check the wiring to the motor (Procedure 3 on page 102). 2. Disable OPL and provide external overload protection.
$\square 5 F$ OUERUOLTAGE	Supply too high. See Table 28.	1. Check the input line voltage (Procedure 2 on page 101). 2. Reset the drive controller.

Table 27: Fault Codes and Messages (continued)

Fault/Message	Probable Causes	Corrective Actions
$\square \in F$ MOTOR OUERHEATING	Motor temperature too high.	1. Check the motor ventilation, ambient temperature, and motor load. 2. Check the type of thermal sensors used.
PHF INFIT PHASE L0SS	- Input phase loss. - Power fuses blown. - Input line failure ($\mathrm{t}>\mathrm{1s}$).	1. Check the input line voltage (Procedure 2 on page 101). 2. Check the fuses and circuit breaker (Procedure 3 on page 102). 3. Reset.
$A n F$ RAMP NOT FOLLOWEDI	- Ramp not followed. - Motor rotation speed opposite from speed reference.	1. Check the adjustment and wiring of the speed feedback. 2. Check the adjustments against the load. 3. Check the sizing of the motor/drive controller combination. Dynamic Braking may be necessary.
$\begin{aligned} & 5[F \\ & \text { MOT SHORT CKT } \end{aligned}$	Short circuit or grounding on drive controller output.	1. Remove all power. With the drive controller disconnected, check the connecting cables and motor insulation. 2. Check the drive controller transistors.
$\begin{aligned} & 5 L F \\ & \text { L059 OF RS485 } \end{aligned}$	Bad connection between the drive controller and the programming keypad display.	Check the connection between the drive controller and the programming keypad display.
$\begin{aligned} & 5 \square F \\ & \text { OUERSPEED } \end{aligned}$	- Instability - Overhauling load	1. Check parameter adjustments. 2. Add dynamic braking. 3. Verify the sizing of the motor, drive controller, and load.
$\begin{aligned} & 5 \text { SF } \\ & \text { SPEEI FEEIBACK FAULT } \end{aligned}$	Loss of speed feedback.	Check the wiring of the sensor.
$E 5 F$ THERMAL SENSOR FAIULT	Bad connection between the motor thermal sensors and the drive controller.	1. Check the connection between the thermal sensors and the drive controller. 2. Check the thermal sensors.
USF INDERUOLTAGE	- Supply is too low. - Temporary voltage drop ($\mathrm{t} \geq 200 \mathrm{~ms}$).	Check the input line voltage (Procedure 2 on page 101).

Table 28: Overvoltage/Overbraking Trip and Reset Points

	Overvoltage Trip Point	Overbraking Trip Point	Reset Point
ATV58 $0 \cdots$ M2	395 Vdc	415 Vdc	385 Vdc
ATV58 $0 \cdot \mathrm{~N}^{2} 4$	800 Vdc	840 Vdc	785 Vdc

Table 29: Trip and Reset Points when Loss of 4-20 mA

	Trip Point	Reset Point
ATV58 $0 \cdots \cdots \mathrm{M} 2$	Al2 $<2 \mathrm{~mA}$	Al2 $>2.5 \mathrm{~mA}$
ATV5800 N4		

APPENDIX A—DRIVE CONTROLLER CONFIGURATION

Use these pages to note the configuration and adjustments of the ATV58 TRX drive controller.

Drive catalog number: ATV58. \qquad
Customer identification number:
Option card: No Yes Catalog number:
Access code: No Yes: \qquad
Configuration is in file number of the programming terminal.
Macro-configuration: \qquad
Date of start-up \qquad
Drive controller serial number \qquad
For customized configuration (CUS), record assignments of inputs/outputs in Tables 30 to 35.

For a menu overview, see page 113.

The following tables list the factory setting for each parameter．The new customer setting can be noted in the Customer Setting column．If no change has been made to the factory setting，the customer can note＂no change＂in the Customer Setting column．

Table 30：Menu 2—Adjustment Parameters

Code	Fact．Setting	Cust．Setting	Code	Fact．Setting	Cust．Setting
ALb	no		5 PE	30 Hz	Hz
A［ L	3 s	s	$5 P 7$	35 Hz	Hz
$\square E c$	3 s	S	」ロロ	10 Hz	Hz
L5P	0 Hz	Hz	」ロヒ	0.5 s	s
H5P	$50 / 60 \mathrm{~Hz}$	Hz	brL	0 Hz	Hz
FLE	20\％	\％	1ヶヶ	0 A	A
5上月	20\％	\％	brt	0 s	s
1ヒH	0.9 of I_{n}	A	bEп	0 Hz	Hz
$1 d[$	0.7 ItH	A	bet	0 s	s
E［ $[$	0.5 s	s	FFE	50／60 Hz	Hz
$5 d[$	Varies	A	－PG	1	
$\lrcorner P F$	0 Hz	Hz	－1发	1／s	／s
$\lrcorner F こ$	0 Hz	Hz	P5P	0.0 s	S
$\lrcorner F \exists$	0 Hz	Hz	Fb5	0.1	
AL ב	5 s	s	P IL	no	
dE己	5 s	S	P1号	30\％	\％
t 55	no	no or s	Р1ヨ	60\％	\％
リ5L	1		dtd	105\％	\％
UFr	100\％	\％	dt5	1	
5LP	100\％	\％	LEd	1.36 of I_{n}	A
PFL	20\％	\％	LEd	100\％	\％
5 F己	10 Hz	Hz	ヒLコ	200\％	\％
$5 P \exists$	15 Hz	Hz	FEd	50／60 Hz	Hz
5 P4	20 Hz	Hz	F בd	50／60 Hz	Hz
$5 P 5$	25 Hz	Hz			

Table 31：Menu 3—Drive Menu Parameters

Code	Fact．Setting	Cust．Setting	Code	Fact．Setting	Cust．Setting
$4 \cap 5$	depends on catalog number	V	5ヒヒ	STN	
Fr 5	$50 / 60 \mathrm{~Hz}$	Hz	$d[F$	4	
nLr	0.9 of I_{n}	A	ELI	200\％	\％
п5P	depends on catalog number	rpm	［LI	1.36 of I_{n}	
［ $\square 5$	depends on catalog number		AdL	yes	
EUn	no		PLL	1	
EFr	60 ／ 72 Hz	Hz	5 FE	LF	
nLd	no		$5 F_{r}$	depends on catalog number	kHz
$F d b$	no		nrd	yes	
Frt	0 Hz	Hz	5PL	no	
rPE	LIN		PGE	DET	
brA	no		$P L 5$	1024	

Table 32：Menu 4－Command Menu Parameters

Code	Fact．Setting	Cust．Setting	Code	Fact．Setting	Cust．Setting
t［［	2 W		Аロ	20 mA	mA
$t[t$	LEL		5 ¢r	no	
$r 1 n$	no		L L L	no	
ロ5P	no		P5t	yes	
LrL	4 mA	mA	Add	0	
［rH	20 mA	mA	ヒbr	19200	
AロL	0 mA	mA	$r P_{r}$	no	

Table 33：Menu 5－I／O Assignment

Code	Fact．Setting	Cust．Setting	Code	Fact．Setting	Cust．Setting
月 11	Factory settings depend on the macro－ configuration． See page 23.		L 15	Factory settings depend on the macro－ configuration． See page 23.	
月12			LIE		
月1ヨ			$r 1$		Fault
L 1 1			r－		
く12			$\angle \square$		
L1ヨ			Aロ1		
L 14			A口		

Table 34: Menu 6—Fault Menu Parameters

Code	Fact. Setting	Cust. Setting	Code	Fact. Setting	Cust. Setting
$A E r$	no		$L F L$	no	
nAr	5		$L F F$	0	
$E A r$	30.0 s		$F L r$	no	
$r 5 t$	RSP		$5 L P$	no	
$\square P L$	yes		$5 d d$	no	
$I P L$	yes		$E P L$	no	
$E H E$	ACL				

Use the table below to note what drive controller configuration is stored in a file.

Table 35: Menu 7—File Menu

Code	Factory Setting	Customer Notes (e.g. File stored for HVAC Drive \#11)
F 15	Free	
$F 35$	Free	
F35	Free	
F45	Free	

Menu Overview

Menu 1 - DISPLAY Menu (page 30)

Parameter	Code
Drive State	rdY
Steady State	rim
Accelerating	ACC
Decelerating	dEe
In Current Limit	CLI
DC Injection Braking	dcb
Freewheel Stop	nSt.
Braking with Ramp Mod	Opor
Frequency Reference	LF\%
Frequency Reference	$\mathrm{Fr} \cdot \mathrm{H}$
Output Frequency	${ }^{\mathrm{FP}} \mathrm{Fr}$
Motor Speed	SPd
Motor Current	LC\%
Machine Speed	USP
Output Power	0 Pr
Mains Voltage	ULir
Motor Thermal	t. Hr
Drive Thermal	t.Hod
Last Fault	LFt.
Consumption (wH)	APH
Run Time (Hours)	reth

Menu 2 - ADJUST Menu (page 32)

Parameter		Code	Factory Setting
Frequency Reference		LFr.	
LCU		LCU	0.00
Inv. Phases		ACD	no
Acceleration	-s	ACC	3 s
Deceleration	-s	dEC	3 s
Accelerate 2	-s	AC2	5 s
Decelerate 2	-s	dE2	5 s
Low Speed	-Hz	LSP	0 Hz
High Speed	-Hz	HSP	$50 / 60 \mathrm{~Hz}$
Gain	-\%	FL[j	20\%
Stability	-\%	St.	20\%
Thermal Current	-A	It.H	0.9 ln
DC Injection Time	-s	t.de	0.5 s
DC Injection Curr	-A	IdC	0.7 ItH
DC Injection Curr	-A	SdC	Varies
Jump Freq.	-Hz	JPF	0 Hz
Jump Freq. 2	-Hz	JF2	0 Hz
Jump Freq. 3	-Hz	JF3	0 Hz
LSP Time	-s	t.LS	no
Machine Speed Coeff.		USC	
IR Compensation	-\%	UFr.	100\%
Slip Comp.	-\%	SLP	100\%
Preset Sp. 2	-Hz	SP2	10 Hz
Preset Sp. 3	-Hz	SP3	15 Hz
Preset Sp. 4	-Hz	SP4	20 Hz
Preset Sp. 5	-Hz	SP5	25 Hz
Preset Sp. 6	-Hz	SP6	30 Hz
Preset Sp. 7	-Hz	SP7	35 Hz
Frequency Lev.Att	-Hz	Ftd	$50 / 60 \mathrm{~Hz}$
Frequency Lev2.Att	-Hz	F2d	
Torque Limit 2	-\%	tL2	200\%
Current Level Att.	-A	ctod	1.36 of I_{n}
Brake Release Lev	-Hz	brL	0 Hz
Brake Release I	-A	Ibr*	0 A
Brake ReleaseTime	-s	brt.	0 s

* Requires addition of I/O option card

VW3A58201U (analog) or VW3A58202U

Menu 2 - ADJUST Menu (page 32) (continued)

Parameter		Code	Factory Setting
Brake Engage Lev	-Hz	bEn	0 Hz
Brake EngageTime	-s	bEt	0 s
Trip Threshold NST	-Hz	FFt	
Tachometer Coeff. *		dts	1
Jog Freq.	-Hz	Joli	10 Hz
Jog Delay	-s	Joit	0.5 s
V/f Profile	-\%	PFL	20\%
Thermal Level Att.	-\%	ttd	100\%
PI Prop. Gain		rP'j	
PI Int. Gain	-/s	rIG	1/s
PI Filter		FSP'	0.0
PI Coeff		FbS	0.1
PI Inversion		PIC	no
PI Preset 2	\%	PI2	30\%
PI Preset 3	\%	PI3	60\%
ATV th. fault		dtd	105\%

Menu 3 - DRIVE Menu (page 43)

Parameter	Code	Factory Setting
Nom. Motor Volt $\quad-\mathrm{V}$	UnS	depends on cat. \#
Nom. Motor Freq. - \quad Hz	$\mathrm{Fr} \mathrm{S}^{\text {S }}$	$50 / 60 \mathrm{~Hz}$
Nom. Motor Curr -A	nCH^{5}	0.9 of $\mathrm{In}^{\text {n }}$
Nom. Motor Speed -rpm	nSP	depends on cat. \#
Motor CosPhi (power fact.)	Cos	depends on cat. \#
Auto Tuning	t.Jn	no
Max. Frequency - -Hz	t.Fr	$60 / 72 \mathrm{~Hz}$
Energy Economy	MLCd	no
I Limit Adapt.	Fodb	no
Dec Ramp Adapt	$\mathrm{br} \cdot \mathrm{B}$	no
Switch Ramp $2-\mathrm{Hz}$	Frot.	0 Hz
Type of Stop	St.t.	Stn
Standard Stop	St.n	
Fast Stop	FSt.	
Freewheel	nist.	
DC Injection	ICI	
Ramp Type	PPt.	LIn
Linear Ramp	LIn	
S Ramp	5	
U Ramp	1	
Dec Ramp Coef.	dcF	4
Torque Limit -\%	tLI	200 \%
Int. I Limit $\quad-\%$	CLI	1.36 of I_{n}
Auto DC Inj.	AdCO	yes
Mot. Power Coef.	FCC	1
Switching Freq. Type	SFT	LF
Range of 0.5 to 4 kHz	LF	depends on cat. \#
Range of 4 to 16 kHz	HF1	depends on cat. \#
High Duty Cycle w/ derat.	HF2	depends on cat. \#
Sw. Freq 0.5 to16 -kHz	SFr.	0.5 to 16 kHz
Noise Reduction	niod	
Special Motor	SPC	no
no		
yes		
PSM (small motor)		
PG (feedback sensor) Type *	Flit.	dEt
Incremental Encoder	InC	
Detector (pulse or edge)	dEt	
Num. Pulses*	FLS	1

These diagrams include all parameters that may appear in the designated menu. The parameters actually visible on your drive controller depends on its configuration and the options installed.

Menu 4 - CONTROL Menu (page 50)

Parameter		Code	Factory Setting
Terminal Strip Con		tCC	2 W
Two Wire 2W		2 W	
Three Wire 3W		$3 W$	
Type 2 Wire		tct	LEL
No Transition		LEL	
Low to High Trans.		TRN	
Forward Input Pri.		PFo	
Inhibit Reverse		rin	
Low Speed Magmt		bSP	
Linear LSP to HSP		no	no
Pedestal Start		ELS	no
Deadband Start		BNS	
AI2 Min. Ref.	-mA	Cr^{L}	4 mA
AI2 Max. Ref.	-mA	CrH	20 mA
Min. Val. A0	-mA	H0L	0 mA
Max. Val. AO	-mA	HOH	20 mA
Reference Memory		St.	no
No memory		100	
Run Com. removed		RHM	
Power removed		EEP	
Keypad Com.		LCC	no
Stop Priority		FSt	yes
Drive Address		Add	0
Bd Rate RS485		thar	
Reset Counters		ra	

Menu 5- I/O Menu (page 56)

Parameter	Code	Factory Setting
LI2 Assign	LI2	
LI3 Assign	LI3	
LI4 Assign	LI4	
LI5 Assign *	LI5	
LI6 Assign *	LI6	
Not assigned	no	
RV: Reverse	RU	
Switch Ramp2	RP2	
JOG	J01	
+SP: +Speed	SP	
-Speed	-SP	
2 preset Sp	FS2	
4 preset SP	P94	
8 preset Sp	FS8	
Freewheel Stop	NST	
DC inject	0 CO	
Fast stop	FSt.	
Multi. Motor	CHP	
TorqueLim2	TL2	
Forced Local	FLO	
Fault Reset	rst	
Auto/manu	RFC	
Auto-tune	At.n	
PI Auto/Man	FPD	
Pl 2 Preset	Pr 2	
Pl 4 Preset	Pr4	
External flt	EIIJ	
Torque Limit by AI	t.LA	

Menu 5- I/O Menu (page 56) (continued)

Parameter	Code Factory Setting
Al2 Assign	AI2
Al3 Assign *	HIS
Not assigned	no.
Speed ref 2	Fr 2
Summed ref.	SHI
PI regulator	PIF
PI Manual Ref.*	PIM
Tacho feedback *	SFb
Therm. Sensor *	PtC
Torque Limit *	PT.L
Encoder feedback *	RGI
R2 Assign / LO assign	r2/L0
Not assigned	no
Drive running	rim
Output contactor	OCC
Freq reference attain.	Ft.A
HSP attained	FLA
Current level attained	Ct. A
Reference Freq. Attain.	Sr- ${ }^{\text {a }}$
Motor thermal Ivl (Attain)	${ }_{6} \mathrm{SH}$
Brake logic	bLC
$4-20 \mathrm{~mA}$ loss	AFL
F2 attained	F2H
ATV th. alarm	TAD
A01 Assign	H01
AO Assign	HO
Not assigned	no
Motor current	0 OH
Motor frequency	0 Fr
Output ramp	0 P
Motor torque	trom
Signed Torque	St. 9
Signed Ramp	$0 \cdot \mathrm{~S}$
PI Reference	DPS
PI Feedback	OPF
PI Error	OPE
PI Integral	OPI
Motor Power	$0^{01} \mathrm{Pr}^{\circ}$
Motor Thermal	t. $\mathrm{Hr}{ }^{\circ}$
Drive Thermal	t. Hd

* Requires addition of I/O option card

VW3A58201U (analog) or VW3A58202U (digital)

Menu 6 - FAULT Menu (page 82)

Parameter	Code	Factory Setting
Auto Restart	At, ${ }^{\text {\% }}$	no
Nb max reset	$\mathrm{raH}^{\text {a }}$	5
Reset pause	-s t.E.Fs	30.0 s
Reset Type	rSt	RSP
Partial Reset	rSP	
Total Reset	1 Sj	
Output Phase Loss	${ }^{\text {OFL }}$	yes
Input Phase Loss	IFL	yes
Thermal Protection	tht	ACL
No motor protection	no	
Self Cooled motor	ACL	
Force Cooled motor	FCL	
Loss Follower	LFL	no
Immediate Fault	yes	
Restart on Signal Return	Stt	
Stop and Fault	LSF	
Run at Preset Speed	LFF	
Run at last speed	RLS	
Catch On Fly	FLr	no
Controlled Stop	St.P'	no
Phase loss drive trip	10	
Maintain DC Bus	Mris	
Follow ramp	FRP	
Ramp not Followed*	Sdd	no
External Fault	EFL	yes

[^10]
Menu 7 - FILES Menu (page 86)

Parameter	Code	Factory Setting
File 1 State	F1S	FRE
File 2 State	F2S	FRE
File 3 State	F3S	FRE
File 4 State	F4S	FRE
Operation Type	FOt.	no
No Operation Req.	no	
Save Configuration	StR	
Transfer File to Drive	REC	
Return to Factory Set	Ini	
Password	Cod	0000

APPENDIX B—OPTIONS AND ACCESSORIES

The following table shows the accessories available for ATV58 TRX drive controllers.

Catalog No.	Description
VW3A8104	PowerSuite ${ }^{\text {TM }}$ Test \& Commissioning Software on CD for use with Microsoft ${ }^{\circledR}$ Windows 95, 98, and $N T^{\top M}$ and Windows CE v3.0 for Pocket PCs
VW3A8106	PC Connection Kit for connecting the PC to an ATV58 TRX controller. Kit includes: 1 m cable with RJ45 connectors; RS-232 to RS-485 adapter with RJ45 and DB9 female connectors; RJ45 to DB9 adapter for use with an ATV58 controller; and cable adapter for use with an ATV11 controller.
VW3A8111	Pocket PC Connection Kit for connecting a Jornada® PPC to an ATV58 TRX controller. Kit includes: $1 / 2 \mathrm{~m}$ cable with RJ45 connectors; RS-232 to RS-485 adapter with RJ45 and DB9 male connectors; RJ45 to DB9 adapter, cable adapter for use with an ATV11 controller, cable to connect the serial port on the PPC to the DB9 connector on the RS-232 to RS-485 adapter.
VW3A58101U	Keypad Display
VW3A58103	Remote Mounting Kit for Keypad (IP65 rated)
VW3A58201U	Analog I/O Option Card
VW3A58202U	Digital I/O Option Card
VW3A58210U	Pump Switching Card
VW3A58253U	General Purpose Option Card
VW3A58301U	Fipio ${ }^{\circledR}$ Communication Card
VW3A58302U	Modbus ${ }^{\circledR}$ Plus Communication Card
VW3A58303U	Modbus/Unitelway ${ }^{\text {TM }}$ Communication Card
VW3A58304EU	Interbus S Communication Card. Requires external power supply.
VW3A58306U	RS-485 Cable w/ Modbus Mapping Guide
VW3A58307U	Profibus DP Communication Card
VW3A58309U	DeviceNet ${ }^{\text {TM }}$ Communication Card
VW3A58310U	Ethernet Modbus TCP/IP Communication Card
VW3A58312PU	LONWORKS ${ }^{\circledR}$ to Modbus DIN Rail Mount Gateway
VW3A58354U	Johnson Controls ${ }^{\circledR} \mathrm{N} 2$ Communication Card
VW3A58701	DB Transistor for ATV58HU09M2 and U18M2
VW3A58821	Fan Kit for ATV58HU09M2 and U18M2
VW3A58822	Fan Kit for ATV58HU29M2, U41M2, and U18N4 to U41N4
VW3A58823	Fan Kit for ATV58HU54M2, U72M2, and U54N4 to U90N4
VW3A58824	Fan Kit for ATV58HU90M2, D12M2, and D12N4 to D23N4
VW3A58825	Fan Kit for ATV58HD16M2, D23M2, and D28N4 to D46N4

Catalog No.	Description
VW3A58826	Fan Kit for ATV58HD28M2 to D46M2 and D54N4 to D79N4
VW3A58831	EMC Kit for ATV58HU09M2 and U18M2
VW3A58832	EMC Kit for ATV58HU29M2, U41M2, and U18N4 to U41N4
VW3A58833	EMC Kit for ATV58HU54M2, U72M2, and U54N4 to U90N4
VW3A58834	EMC Kit for ATV58HU90M2, D12M2, and D12N4 to D23N4
VW3A58842	Conduit Box Kit for ATV58HU09M2 and U18M2 U41N4
VW3A58843 Kit for ATV58HU29M2, U41M2, and U18N4 to	
VW3A58844	Conduit Box Kit for ATV58HU54M2, U72M2, and U54N4 to U90N4
VW3A58845	Conduit Box Kit for ATV58HU90M2, D12M2, and D12N4 to D23N4
VW3A58846	Conduit Box for ATV58HD16M2, D23M2, and D28N4 to D46N4
VW3A58847	Conduit Box for ATV58HD28M2 to D46M2 and D54N4 to D79N4
VW3A66711	DB Resistor Kit for ATV58HU09M2, U18M2, U18N4 to U72N4
VW3A66712	DB Resistor Kit for ATV58HU29M2, U41M2, U90N4, D12N4
VW3A66713	DB Resistor Kit for ATV58HU54M2, U72M2, D16N4, D23N4
VW3A66714	DB Resistor Kit for ATV58HU90M2, D12M2, and D28N4 to D46N4
VW3A66715	DB Resistor Kit for ATV58HD16M2, D23M2, D54N4
VW3A66716	DB Resistor Kit for ATV58HD28M2, D33M2, D46M2, D64N4, and D79N4

Spare Part List for ATV58 TRX Controllers

	Description	For Use on Drives	Catalog Number
		ATV58 Type H, 125-500 hp only	VX4A381U
	A	ATV58 Type E, F, H and N	VX4A581U
Internal fan kit	Frames 2 and 3 (two fans)	ATV58 ..U29M2, U41M2, U54M2, U72M2, U18N4, U29N4, U41N4, U54N4, U72N4, U90N4	VZ3V58223U
	Frames 4 and 5 (three fans)	ATV58 ..U90M2, D12M2, D12N4, D16N4, D23N4	VZ3V58245U
	Frame 6 (four fans)	$\begin{aligned} & \text { ATV58 ..D16M2, D23M2, D28N4, } \\ & \text { D33N4, D46N4 } \end{aligned}$	VZ3V58260U
	Frame 7 (four fans)	ATV58 ..D28M2, D33M2, D46M2 D54N4, D64N4, D79N4	VZ3V58270U
Terminals	Removable ATV58 TRX Control Board Terminal Strips (includes relay terminal strip and 9- and 10position terminal strips)	ATV58 Type E, F, H, and N	VZ3N581U
	Power Terminal Block for Frame 6	ATV58 ..D16M2, D28N4, D33N4	VZ3N58160U
		ATV58 ..D23M2, D46N4	VZ3N58165U
	Power Terminal Block for Frame 7	ATV58 ..D28M2, D33M2, D46M2 D54N4, D64N4, D79N4	VZ3N58170U
Internal EMC Filter Kit	Internal RFI Filter Kit for Frame 6	ATV58HD28N4	VX4A58861U
		ATV58HD33N4	VX4A58862U
		ATV58HD46N4	VX4A58863U
	Internal RFI Filter Kit for Frame 7	ATV58HD54N4	VX4A58871U
		ATV58HD64N4	VX4A58872U
		ATV58HD79N4	VX4A58873U
Power Boards for Frames 6 and 7		ATV58HD16M2	VX5A58D16M2U
		ATV58HD23M2	VX5A58D23M2U
		ATV58HD28M2	VX5A58D28M2U
		ATV58HD33M2	VX5A58D33M2U
		ATV58HD46M2	VX5A58D46M2U
		ATV58HD28N4	VX5A58D28N4U
		ATV58HD33N4	VX5A58D33N4U
		ATV58HD46N4	VX5A58D46N4U
		ATV58HD54N4	VX5A58D54N4U
		ATV58HD64N4	VX5A58D64N4U
		ATV58HD79N4	VX5A58D79N4U

	Description	For Use on Drives	Catalog Number
Power Components	Output Transistor Module	ATV58...D28N4	VZ3IM6075M1258U
		ATV58...D16M2, D33N4	VZ3IM6100M1258U
		ATV58...D23M2, D28M2, D46N4, D54N4	VZ3IM6150M1258U
		ATV58...D33M2, D46M2, D64N4, D79N4	VZ3IM2200M1258U
	Dynamic Braking Transistor	ATV58..D16M2, D23M2, D28N4, D33N4, D46N4	VZ3IM1050M1258U
		ATV58...D28M2, D54N4	VZ3IM1100M1258U
		ATV58...D33M2, D46M2, D64N4, D79N4	VZ3IM1150M1258U
	Input Diode / Transistor Bridge	ATV58...D16M2, D28N4, D33N4	VZ3TD1055M1658U
		ATV58...D23M2, D28M2, D46N4, D54N4	VZ3TD1090M1658U
		ATV58...D33M2, D46M2, D64N4, D79N4	VZ3TD1130M1658U

Factory repaired ATV58 TRX drive controllers are available within 24 hours from a factory exchange pool, or your ATV58 TRX drive controller can be factory repaired and returned. Contact your local Square D distributor or Square D Customer Service Representative at 919-266-8666 for availability.

INDEX

Symbols

+SP 59
+speed/-speed 66
Numerics
2-wire control 53, 65
3-wire control 52, 65
$50 / 60 \mathrm{~Hz}$ switch 13

A

AC2 41, 46, 62
ACb 31
ACC 28, 31
acceleration ramp 31
access code 19, 92
access locking switch 18-19
ACL 87
AdC 49
Add 57
address 57
analog inputs assignable functions 59 use of 74
analog outputs
assignable functions 61
use of 81
AnF 106
AOH 55
AOL 55
APH 28
APL 61, 81
ATL 60
ATN 60
Atr 85
auto-manual. See reference
switching
automatic restart 85
Auto-tuning 42, 45, 73
B
bEn 40, 62, 79
bEt 40, 62, 79
BLC 61-62
bLC 78
BLS 54
BnS 54
brA 46
brake logic 78
brake engage frequency 40,
79
brake engage time 40, 79
brake release current 39, 79
brake release frequency 39 ,
79
brake release time 40, 79
brL 39, 62, 79
brt 40, 62, 79
bSP 54
bus voltage measurement 98
C
catch on the fly 88
CFF 103
CFI 103
CHP 59, 63
CLI 28, 49
CnF 85-86, 103
coast to stop. See freewheel
stop
COd 90, 92
communication network fault 103
communication option card 19, 94
configuration
saving of 90
transferring 90
configuration fault 103
CoS 44-45
cos phi 44
CrF 103
CrH 55, 88
CrL 55, 88
CTA 61-62
CtA 78
Ctd 36, 41, 62, 78
current
nominal motor 43
threshold 41, 78
current limit 41, 49
custom configuration 26
customer application card 19, 94

D

dc injection braking 49, 70, 77
current level 38
time 32
dCb 28
dCF 48, 63, 71
DCI 59, 62
dE2 41, 46, 62, 89
dEC 28, 31, 89
deceleration ramp 31
deceleration ramp adaptation
46
drive overheating 105
drive run relay 77
drive thermal threshold at-
tained 81
dtd 40, 63
dtS 41, 62
E
EDD 60
EEF 103
EEP 56
EEPROM fault 103
energy savings 46
EnG 90
EPF 85-86, 103
external fault 103
F
F1S 90
F2A 61, 63, 81
F2d 40, 63, 81
F2S 90
F3S 90
F4S 90
factory settings
returning to 90
see macro-configuration
fast stop 71
deceleration ramp coefficient
48
faults
codes and messages 103
external 73
resetting 72, 86, 95
partial 72
total 72
FbS 40, 62

FCL 87
Fdb 46
FFt 33
FLA 61, 78
FLG 31
FLO 59
FLr 88
force to local 73
forward 65
FOt 90, 92
FR2 60
FRE 90
freewheel stop 70
frequency
jump 33
loop gain 31
maximum 45
nominal motor 43
reference attained 78
threshold 40
threshold attained 77
frequency threshold 2 attained
81
FrH 28-29
FRP 89
FrS 43
Frt 41, 46
FST 59, 63
FTA 61-62
FtA 77
Ftd 40, 62, 77

G

GEn 23, 42

H

Hdg 23, 42
HF1 49
HF2 49
high speed 31
high speed attained 78
HSP 31
I
I/O extension card 7, 30
I/O option card 7
lbr 39, 62, 79
IdC 38, 41, 62
ILF 104
InF 104

Ini 90
input phase loss 87, 106
internal communication fault 104
internal fault 104
IPL 87, 89
IR compensation 35, 37, 42
ItH 32
J
JF2 33
JF3 34
JGt 37, 39, 62, 66
JOG 37, 39, 59, 62, 66
jog 66
delay 37,39
frequency 37, 39
JPF 33
jump frequency 33
K
keypad
command 56
connections 18
function of keys 15
keys
arrows 15
ENT 15
ESC 15
FWD/REV 15
RUN 15
STOP 57
STOP/RESET 15
mounting 12
remote mounting 12

L

language 23
LCC 29-30, 56, 73
LCr 28
LCU 29-30
LEDs 95
LEL 53
LF 49
LFF 85-86, 88, 105
LFL 88
LFr 29-30, 56
LFt 28
logic inputs
assignable functions 59
use of 65
logic outputs
use of 77
loss of 4-20 mA follower 88,
105
loss of 4-20 mA signal 81
low speed 31
LSP 31
M
macro-configuration 23, 30 general use 23, 37
material handling 23, 35
modification 25
variable torque 23,38
mechanical brake 78
menus
adjust 29
adjustment 18, 62
application 94
command 19
communication 19, 94
control 52, 63
display 18,28
drive 19, 41, 63
fault 19, 63, 85
file 19
files 89
hierarchy 19
I/O 58
I/O assignment 19
identification 26
language 18, 21
macro-configuration 18-19,
MMS 89
motor overheating 106
motor overload 105
motor phase loss 105
motor switching 49, 71
motor thermal protection
current 32
types 87
multiple motors. See motor
switching

N

nAr 86
nCr 43
nLd 46
NO 59, 61
noise reduction 50
nrd 50
nSP 28, 35, 43
NST 59, 70
nSt 28
0
ObF 46, 85-86, 105
Obr 28
OCC 61, 77
OCF 105
OCR 61
OFR 61
OHF 28, 85-86, 105
OLF 85-86, 105
OPE 61
OPF 61, 85-86, 105
OPI 62
OPL 77, 87
OPR 62
Opr 28
OPS 61
ORP 61
ORS 61
OSF 85-86, 105
OtF 85-86, 106
output contactor command 77
output phase loss 87
overbraking 105
overcurrent 105
overvoltage 105

P

P12 62
P13 62
parallel motor operation. See special motors
password. See access code
PAU 60
PCC 49, 63, 71
PFL 38
PFW 53
PGt 51, 63
PHF 106

PI regulator 74
feedback scaling factor 40
integral gain 40
proportional gain 40
PI2 40
PI3 40
PIC 40, 62
PIF 60, 62
PIM 60
PLS 51, 63
power factor. See cos phi
PR2 60
PR4 60, 62
precharge fault 103
preset speeds 35-36, 39, 69
programming
principles 21
PS2 59
PS4 59, 62
PS8 59, 62
PSP 40
PSt 57
PTC 60
pushbuttons 66

R

RAM 56
ramp not followed 106
ramp switching 66
ramps
second ramp 46
types 48
rdY 28
REC 90-91
reference summing 74
reference switching 70
relay output
assignable functions 61
reverse 65
RFC 59
rFr 28
RGI 60, 63
rIG 40, 62
rln 53
RnF 86
RP2 59, 62, 66
rPG 40, 62
rPr 58
rPt 48

RS485 link 57
RSG 72, 86
RSP 72, 86
RST 59, 63
rSt 63, 72, 86
rtH 29
RUN 61, 77
rUn 28
Run Permissive 70
RV 59
S
SAI 60, 63
SCF 72, 106
Sdc 33
Sdd 63, 89
selector switch 67-68
serial link fault 12, 106
SFB 60, 62-63
SFr 45, 50
SFt 49
skip frequency
see jump frequency 33
SLF 56, 85-86, 106
slip compensation 35, 37
SLP 35, 37
SOF 86, 106
-SP 59, 63
SP2 35-36, 39, 62
SP3 35-36, 39, 62
SP4 39, 62
SP5 39, 62
SP6 39, 62
SP7 39, 62
SPC 35, 37, 42, 50
SPd 28
special motors 42, 50
speed
nominal motor 43
speed feedback fault 106
SPF 106
SRA 61
SrA 78
StA 32
stability 32
start-up
minimum 17
StP 89
STQ 61

STR 90-91
Str 56, 63, 67
Stt 47
switching frequency 49
synchronous motor operation.
See special motors
T
TAD 63
tAd 61, 81
tAr 86
tbr 58
tCC 52
tCt 53
tdC 32
terminal strip configuration 52
tFr 45
THD 62
tHd 28
thermal sensor fault 106
thermal state attained 78
thermal state detection 41
THR 62
tHr 28
tHt 87
TL2 59, 62
tL2 41, 62
TLA 60
tLI 49
tLS 34
torque limit 72
TrN 53
TRQ 61
TSA 61-62
tSA 78
tSF 106
ttd 41, 62
tUn 45
U
UFr 35, 37, 42
ULn 28
undersized motors 42, 50
UnS 43
USC 34
USF 89, 106
USp 28
V
V/f profile 38
voltage
nominal motor 43
VT 23

Schneider Electric

8001 Highway 64 East Knightdale, NC 27545 USA 1-888-SquareD (1-888-778-2733) www.SquareD.com

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.
VVDED397047USR6/03
© 1998-2003 Schneider Electric All Rights Reserved

[^0]: ${ }^{[1]} I_{n}=$ drive controller constant torque output current rating shown on the drive controller nameplate.

[^1]: ${ }^{[1]} I_{n}=$ drive controller constant torque output current rating shown on the drive controller nameplate.

[^2]: ${ }^{[1]} I_{n}=$ drive controller constant torque output current rating shown on the drive controller nameplate.

[^3]: ${ }^{[1]}$ On the 125-500 hp drive controllers, Preset Speeds and Jog are also available. See Tables 7 and 8 for descriptions of these functions. IR Compensation appears on 125500 hp drive controllers if the Special Motor parameter, SPC, is set to Yes in Menu 3.
 ${ }^{[2]} I_{n}=$ drive controller constant torque output current rating shown on the drive controller nameplate.

[^4]: ${ }^{[1]}$ Depending on the position of the $50 / 60 \mathrm{~Hz}$ switch. Ensure that the switch setting matches the input frequency (see page 14).
 ${ }^{[2]} I_{n}=$ drive controller constant torque output current rating shown on the drive controller nameplate.
 ${ }^{\text {[3] }}$ The factory setting depends on the macro-configuration used: No for Material Handling, Yes for General Use and Variable torque.
 ${ }^{[4]}$ This parameter is not available on $125-500 \mathrm{hp}$ drive controllers.
 ${ }^{\text {[5] }}$ Refer to the drive controller instruction bulletin, VVDED397048US, for duty cycle ratings of the drive controllers.
 « These parameters are available only with the I/O extension card installed.

[^5]: ${ }^{[1]}$ Depending on the position of the $50 / 60 \mathrm{~Hz}$ switch. Ensure that the switch setting matches the input frequency (see page 14).
 ${ }^{[2]} I_{n}=$ drive controller constant torque output current rating shown on the drive controller nameplate.
 ${ }^{\text {[3] }}$ The factory setting depends on the macro-configuration used: No for Material Handling, Yes for General Use and Variable torque.
 ${ }^{[4]}$ This parameter is not available on $125-500 \mathrm{hp}$ drive controllers.
 ${ }^{[5]}$ Refer to the drive controller instruction bulletin, VVDED397048US, for duty cycle ratings of the drive controllers.

 * These parameters are available only with the I/O extension card installed.

[^6]: [1] Depending on the position of the $50 / 60 \mathrm{~Hz}$ switch. Ensure that the switch setting matches the input frequency (see page 14).
 ${ }^{[2]} I_{n}=$ drive controller constant torque output current rating shown on the drive controller nameplate.
 [3] The factory setting depends on the macro-configuration used: No for Material Handling, Yes for General Use and Variable torque.
 [4] This parameter is not available on 125-500 hp drive controllers.
 ${ }^{[5]}$ Refer to the drive controller instruction bulletin, VVDED397048US, for duty cycle ratings of the drive controllers.
 \star These parameters are available only with the I/O extension card installed.

[^7]: ${ }^{[1]}$ Depending on the position of the $50 / 60 \mathrm{~Hz}$ switch. Ensure that the switch setting matches the input frequency (see page 14).
 ${ }^{[2]} I_{n}=$ drive controller constant torque output current rating shown on the drive controller nameplate.
 ${ }^{[3]}$ The factory setting depends on the macro-configuration used: No for Material Handling, Yes for General Use and Variable torque.
 ${ }^{[4]}$ This parameter is not available on $125-500 \mathrm{hp}$ drive controllers.
 ${ }^{\text {[5] }}$ Refer to the drive controller instruction bulletin, VVDED397048US, for duty cycle ratings of the drive controllers.
 \star These parameters are available only with the I/O extension card installed.

[^8]: ${ }^{[1]}$ These parameters are not available on $125-500 \mathrm{hp}$ drive controllers．

[^9]: NOTE: To reassign the logic inputs to a function other than Preset Speeds, PS8 (LIz) must be cleared, then

[^10]: * Requires addition of I/O option card VW3A58201U (analog) or VW3A58202U (digital)

