8/15/22, 10:04 AM Writing JSON with the JSONTemplater

Technical Forums (/s/forums) Knowledge Base (/s/knowledge-base) Ideas (/s/bridea/acideasULD__bi Qo

< EME Desktop
(/S/Topic/0TO4Q000000QL9UWAG/Fme-...

Writing JSON with the JSONTemplater

®© Aug 4, 2022 « Knowledge
Product Type
FME Desktop

FME Version
2022.0

Tutorial: Tutorial: Getting Started with JSON (/s/article/tutorial-getting-started-with-json) | Previous: Writing JSON (/s/article/json-writing-overview) |
Next: Transforming JSON using the JSONExtractor, JSONFlattener, and JSONFragmenter (/s/article/json-transformations)

Introduction

In the previous article, Writing JSON (/s/article/json-writing-overview), we looked at the different ways to write JSON using FME. In this article, we’ll look in

detail about how to write nested JSON using the JSONTemplater and the Text File writer. This workflow will allow us to write the nested data mentioned in the

final step of the previous article.

This use-case is a bit more advanced but is necessary if you want to write nested JSON data. The basic pattern is to read in data (in this case, JSON with no
geometry, but it could be any data in FME), use a JSONTemplater to create FME attributes containing JSON with nested structures, and then write the JSON
attributes out to a text file. We are using a Text File writer instead of a JSON writer because in FME, any time you want to write out the contents of an attribute

directly, you use the Text File writer.

The JSONTemplater uses a template approach to writing nested JSON (very similar to the XMLTemplater
(https://docs.safe.com/fme/htm|/FME Desktop Documentation/FME Transformers/Transformers/xmltemplater.htm)). A template represents the structure of

the data, with functions such as fme:get-attribute functions, fme:get-json-attributes or fme:process-features being used within the template to build the JSON

structure from FME features. Using sub-templates lets one create a document that has a root with multiple child elements.

Step-by-step Instructions

1. Start FME Workbench and Generate Workspace

Start FME Workbench and click Generate Workspace. Fill in the Generate Workspace dialog as follows:
e Reader

https://community.safe.com/s/article/json-writing-with-jsontemplater 112

8/15/22, 10:04 AM

o Format: JSON (JavaScript Object Notation)

o Dataset: PublicArt.json (download and use local path)

e Writer

o Format: Text File

o Dataset: ...\Output\PublicArtNested.json (where ever you wish)

Writing JSON with the JSONTemplater

You may have to switch the file type to All Files (*) for the .json extension to work.

% Generate Workspace x
Reader
Format: | JSOM (JavaScript Object Notation) v |
Dataset: |JSON\JSON Writing with the JSONTemplater\PublicArt.json” | e W
Parameters... Coord, System: | Unknown V|
Writer
Format: |Text File V|
Dataset: |\Output\Pub\icArtNested.jsonl ‘ - *‘%3 T
| Parameters... Coord, System: | Same as source V|
Import feature type definitions
Workflow Options
) EH-+H)
(® Static Schema g O Dynamic Schema E~+H
Help Cancel
2. Inspect the Source Data in Visual Preview
Run the workspace and inspect the source dataset
Visual Preview a8 X
Table
ﬂj | JSONFeature v Coiumns. i
FH Neighborhood Name Title Longitude Latitude (l
[#] |43 MountPleasant Vancouver City ... Captain George... -123.113918 49.2611849959959
[G |44 MountPleasant Clydernont Cen... Untitled (Clyde.. -123.111389 49.2632629999959
o 45 WestEnd English Bay Inukshuk -123.143704 49.2843229999959
46 West End Alexandra Park Joe Fortes Drink.., -123.,142386 49.2855629999959
47 West End The Lions Milky Way -123.127743 49.2883279999959 .,
|Q | in |any column w | 1selected / 185 row(s)

You can see each of the 185 features is an art installation in Vancouver. Although the data includes longitude and latitude values, we will not be creating

geometry in this example. The goal is to transform this JSON from a large array with Neighborhood as an attribute to a nested structure of key-value pairs

where each art installation is nested underneath its respective neighborhood, like so:

https://community.safe.com/s/article/json-writing-with-jsontemplater

2012

8/15/22, 10:04 AM
{

"Downtown": [{

1

1

1,

"Name": "Harbour Centre Parkade",
"Title": "The Belonging Action”,
"Longitude": -123.110097741722,
"Latitude": 49.2837806793832

"Name": "Chinese Cultural Centre",
"Title": "China Gate",
"Longitude": -123.103282272368,
"Latitude": 49.2797561341325

"Strathcona": [{

1

1

1,

3. Add a Sampler

To build our nested JSON, we will use a JSONTemplater with two sub-templates: one to create a separate array for each neighborhood, and another to contain
all the art installations in that neighborhood. To get a separate array for each neighborhood we need to provide the JSONTemplater with six features, one from

each neighborhood. To do this, we’ll use a Sampler transformer. Add a Sampler and connect it to the reader feature type, then set the following parameters:

"Name": "National Works Yard",
"Title": "Roller",
"Longitude": -123.092675,
"Latitude": 49.2736209999959

"Name": "Jim Green Residence",
"Title": "Entranceway",
"Longitude": -123.095131,
"Latitude": 49.2842699999959

» Group Processing: Enable

o Group By: Neighborhood

o Sampling Rate (N):1

o Sampling Type: First N Features

https://community.safe.com/s/article/json-writing-with-jsontemplater

Writing JSON with the JSONTemplater

3/12

8/15/22, 10:04 AM

Sampler Parameters X

Transformer Name: |Samp|er

~ ¥l Group Processing

Group By: |Na|ghbwhood

Complete Groups: | When All Features Received e Wi
General
Sampling Rate (M): |1 i
Sampling Type: |First N Features ~| [*
Randomize Sampling: | No)| [
Help ﬁprasets = oK Cancel

With Feature Caching enabled, click Run To This on your Sampler. You should have six features coming out of the Sampler:Sampled port, one for each

Writing JSON with the JSONTemplater

neighborhood. These will be provided to one of the JSONTemplater sub-templates.

4. Add a JSONTemplater

Now that we have the neighborhood features, add a JSONTemplater after the Sampler, but do not connect it; we need to create input ports first.

Open the JSONTemplater. First, let’s add our sub-templates. Sub-templates are used to turn FME features into children of the ROOT template, or even other

sub-templates.

To add a sub-template, check the Sub Template box and then click the + button in the Sub Template table. In the Port field, rename this sub-template

NEIGHBORHOOD. Add another sub-template and call it ART.

You’ll notice each Template field is red, meaning we must supply a value before we can click OK. Because we want to connect our new sub-template ports to

features, start by just typing empty curly braces {} into each Template field. Your dialog should look like this:

X

Port Source Template

#* JSONTemplater Parameters
Transformer
Transformer Name: |JSONTempIaher |
Group Sub-Features By: (Mo items sel | Fn
Grouped Sub-Features are Consecutive; -
Root Template
Port Source Template
ROQT Expression +|[1} =
~ Sub Template
~

NEGHBORHOOD |Bxpression ~|[n ||+
ART Expression ~ | |{} Jal (%] [

- « = = =

» [] Geometry Template

Parameters

Validate Attribute/Template Mames: |Yes

Result Attribute: |_result

Dependent Parameters

Cancel

5. Connect Features to the JSONTemplater Input Ports

https://community.safe.com/s/article/json-writing-with-jsontemplater

4/12

8/15/22, 10:04 AM Writing JSON with the JSONTemplater

You’ll see that each template (ROOT, NEIGHBORHOOD, and ART) creates an input port on the JSONTemplater. We are supplying six features to ROOT, but
currently none to the other ports. Connect the Sampled port on the Sampler to the NEIGHBORHOOD input port. Then since we want ART to contain all of the art

installations, connect the reader feature type to the ART input port. This will provide all 185 features for use in our sub-template.

15ONTemplater {0

v Reader Feature Types e

% NEIGHBORHOOD
i+ JSONFeature

Now we need to connect features to the Root template. Because we want a single JSON document to be output from the JSONTemplater, the easiest thing to
do is to use a Creator, which will provide a single feature to the Root template. Add a Creator to the canvas and connect it to the Root input port of the
JSONTemplater.

@ Creator ot

I» Created 2

- JSONTemplat i
= ISONTemplater o}
- % Root

I» NotSampled 2
= NEIGHBORHOOD

@ Reader Feature Types

» JSONFeature

6. Build the ROOT Template
Now that we have features connected to both our templates, open the parameters for the JSONTemplater again.

First, let’s set up the ROOT template. This template sets the top level of the JSON hierarchy, and in this case, will only execute once because it is receiving one
feature. Click on the ellipse [...] button to the ROOT Template field to open the ROOT Template Expression dialog. This dialog is similar to the Text Editor and
lets us build our Template Expression. Copy and paste the following template, or build it yourself by typing and double-clicking the Sub Templates > SUB on the

left to add functions (note the pipes inside the curly braces, {| [}):

{l
fme:process-features("NEIGHBORHOOD")

[}

The fme:process-features(“NEIGHBORHOOD”) function will insert the results of our sub-template NEIGHBORHOOD as items in the array.

For this example, we are using one of the slightly more advanced JSON templating expressions, the pipe |. As specified in the JSONig documentation
(http://www.jsoniq.org/docs/JSONiqExtensionToXQuery/html-single/index.html#idm48114976), the pipe is a dynamic object construction expression. What it

means, in this case is, create each result of the sub-template as a separate object. If we didn’t add these pipes, the resulting JSON document would not have

the required commas between each neighborhood entry.

https://community.safe.com/s/article/json-writing-with-jsontemplater 512

8/15/22, 10:04 AM

Transformer

Transformer Name: |JSONTemplaher

Group Sub-Features By: |:5c- 1tems selected.

Grouped Sub-Feat

Root Template
Port Source Template
ROOT Expression b Al |
~ [] Sub Template |
|
Port Source Template
|
MEIGHBORHOOD | Expression w |{}
ART Expression w |{}
ROOT Template Expression *
» FME Feature Attributes ~l1
* Sub Templates fme:process-features("NEIGHBEORHOOD")
 ¥Query Functions | i
o o 7 ¥Query Geometry Functions
* Published Parameters
» [] Geomie » Private Parameters
Baramebers > FME P?ramehers
* FME Feature Functions
Validaty | String Functions
* Math Functions
> Date/Time Functions vile >
Dependent A
Help = Options * Ln 1, Col 1 E Cancel

Help g Presets ™

7. Build the NEIGHBORHOOD template

This sub-template will create the JSON document for each feature, with the name of the neighborhood being substituted for fme:get-
attribute("Neighborhood"). The fme:process-features(“ART”) function will insert the results of our sub-template ART as items in the array. Click on the ellipses

[...] button next to the Template field for NEIGHBORHOOD. Copy and paste the following template:

fme:get-attribute("Neighborhood") : [

fme:process-features("ART", "Neighborhood", fme:get-attribute("Neighborhood"))

1

Cancel

Writing JSON with the JSONTemplater

MEIGHEORHOOD Template Expression

B2 1K

Sub Templates
#Query Functions

v

v

Published Parameters
Private Parameters
FME Parameters

w [v ||| v || v

String Functions
Math Functions

W

FME Feature Attributes | A

XQuery Geometry Functions |

-FME Féatxe-Fun.cﬁ.ons

i
fme:get-gttribute("Neighborhood™) @ [

fme:process-features("aRT", "Neighborhood®, fme:get-attribute("Meighborhoed™})

1

Help = Options ¥

Int,cat

Cancel

8. Build the ART tem

Next, let’s build the ART sub-template. Open the Template Expression for ART. Copy and paste the following template:

plate

https://community.safe.com/s/article/json-writing-with-jsontemplater

6/12

8/15/22, 10:04 AM

{
"Name" : fme:get-attribute("Name"),
"Title" : fme:get-attribute("Title"),
"Latitude" : fme:get-attribute("Latitude"),
"Longitude" : fme:get-attribute("Longitude")
}

Writing JSON with the JSONTemplater

ART Ternplate Expression

v

FME Feature Attributes al
Sub Templates
XQuery Functions

" : fme:get-attribute("Na
fme:get-attribute(

3

v

"y
itle™),

» *Query Geometry Functions
Published Parameters
Private Parameters

FME Parameters

FME Feature Functions
String Functions

Maﬁﬁ Functions

w [][[||

W

: fme:get-attribute("Latitude™),
“Longitude® : fme:get-attribute("Longitude™)

Help = Options ¥ Ln 1, Col 1 Cancel

This template will build the array of art installation data, with each FME feature being turned into a piece of JSON matching this pattern. Click OK.

9. View the Results

Run the workspace and inspect the Output port of the JSONTemplater. You should see all the neighborhoods combined into one JSON document matching our

goal template in the attribute _result. Click the ellipse [...] button next to the cell in the Table View of Visual Preview to view the full value. However, this JSON is

quite hard to read as it is not pretty-printed:

% Value at row = 1 and column = text_line_data >

I "Downtown™ : [{ ™ame" : "Harbour Centre Parkade”, "Title™ : "~
"The Belonging Action”, "Latitude” : 43,283780679383199,

“Longitude™ ; -123.110097741722 }, { ™ame" : "Harbour Centre
Farkade”, "Title™ : "The Belonging Action”, "Latitude™ :

49,28373217091, "Lonaitude™ : -123, 110029006403 }, { Mame":
"Chinese Cultural Centre”, "Title™ : "China Gate”, Latitude" :
49,279756134132498, "Longitude” : -123, 10328227236801 }, {
"Mame” : "Vancouver International Film Festival Centre®, "Title™
“Moving Pictures”, "Latitude™ : 49, 277055170660297, "Longitude™ :
-123.125040050903 }, { Name” : "Shanghai Alley”, "Title" : "Suan
Phan: Abacus”, "Latitude™ ; 49.2797761317943, "Longitude” :
-123.105579887416 }, { Name” : "Shaw Tower", "Title™ : "Untitled
(light work)", "Latitude™ : 49.288556271607703, Longitude™ :
-123.11805927787699 }, { Name" : "Shaw Tower”, Title" : W

e = {1 [N |

5
Jal

Let’s fix that issue.

10. Add a JSONFormatter

Add a JSONFormatter after your JSSONTemplater. This transformer will format our JSON document so it is pretty-printed. Open its parameters and set the JSON

Document to _result. Then, set the Output Attribute to text_line_data. This attribute name is reserved for use when writing using the Text File writer. Your dialog

should look like this:

https://community.safe.com/s/article/json-writing-with-jsontemplater

7/12

8/15/22, 10:04 AM Writing JSON with the JSONTemplater

% J50MNFormatter Parameters b4
Transformer
Transformer Name: |150ONFormatter
Source
Input Source: | 1SON Document “| =
J50N Document: | % _result 1
FilejURL: ¥
Format Settings
Formatting Type: Pre_tty Prim_: NA| E
Indent Style: | 3 spaces | W
Remove Empty String Values: | Mo ~| |*
Remove Null Values: Mo AH =
Remove Empty Objects and Arrays: Mo ~| ™
Output Settings
Result Atiributd [text line_data) | =
Result Encoding: UTF8 Lo W
List Attribute for Formatting Errors: |_ison_error | [d
Help ﬁ Presets v E Cancel

11. Run Workspace and Inspect Final Results

Connect the JSONFormatter to the Text File writer feature type. Run your workspace and inspect the final results, either in Visual Preview or your text editor of

choice. You should see JSON following the goal structure identified at the beginning of the article, something like this (abbreviated):

https://community.safe.com/s/article/json-writing-with-jsontemplater 8/12

8/15/22, 10:04 AM Writing JSON with the JSONTemplater

{
"Downtown": [{
"Name": "Harbour Centre Parkade",
"Title": "The Belonging Action”,
"Longitude": -123.110097741722,
"Latitude": 49.2837806793832
1
{
"Name": "Chinese Cultural Centre",
"Title": "China Gate",
"Longitude": -123.103282272368,
"Latitude": 49.2797561341325
}s
1,
"Strathcona": [{
"Name": "National Works Yard",
"Title": "Roller",
"Longitude": -123.092675,
"Latitude": 49.2736209999959
}s
{
"Name": "Jim Green Residence",
"Title": "Entranceway",
"Longitude": -123.095131,
"Latitude": 49.2842699999959
1
1,
}

Congratulations! You learned how to create custom nested JSON from FME features using the JSONTemplater. Combining sub-templates with the functions

available in the Template Expression dialog allow for complex custom JSON results.

Continue to the next article: Transforming JSON using the JSONExtractor,]SONFlattener, and

Data Attribution

The data used here originates from open data made available by the City of Vancouver (https://opendata.vancouver.ca/pages/home/), British Columbia. It

contains information licensed under the Open Government License - Vancouver.

First Published Date
7/29/2020, 12:18 AM

Last Published Date
8/4/2022, 1:59 AM

https://community.safe.com/s/article/json-writing-with-jsontemplater 912

8/15/22, 10:04 AM Writing JSON with the JSONTemplater

Transformation FME Desktop
(/s/topic/0TO4Q000000... (/s/topic/0TO4Q000000...

Sort by:

Latest Posts w

ugust 4, 2022 at 1:59 AM (/s/feed/0D54Q00009ggWDESAM),

1y Like ® cComment

kailinatsafe (/s/profile/0054Q00000EwiZmQAJ) (Employee) published a new version of this Knowledge.
July 14,2022 at 8:14 PM (/s/feed/0D54Q00009e25fwSAA)

1view

1y Like ® Comment

January 31, 2020 at 9:33 PM (/s/feed/0D54Q000080hmvbSAA),

@samatsafe, @deanatsafe This has been a very insightful article for a project | am working in which I render JSON data to embed in a MapBox GL HTML

template (not leaflet). One key problem | am seeing however is that adding the pipes on the root template triggers an error message, but without the pipes | am

not getting the commas. Not sure how to troubleshoot this.

Additionally, my template generates polygons, but the coordinates output is wrapped in quotes... how do | get rid of the quotes?

lcomment 53views

1y Like ® Comment

®

3years ago

Hi @jnotter (https://knowledge.safe.com/users/9626/jnotter.html), glad to hear you found the article useful. A few thoughts for your issue:

¢ Isthere areason you are writing to JSON instead of GeoJSON? | imagine MapBox could ingest the GeoJSON just as easily and it might simplify the writing step in FME, simply
using the GeoJSON writer. If it's a matter of needing a nested data structure, you can write an attribute that contains a string of JSON and give that attribute a type of JSON on

the GeoJSON writer feature type. Just a thought.

¢ Assuming you do need to write to JSON, I'd recommend you check out the JSONiq documentation. I find working with the object constructors can be a bit tricky, but if you lool

at thaca avamnlac [httn-/ hanana iennin ara ldace [IRONIaFvtancianTaYNnarni/html_cinalalindav html#idmA211407R) it micht haln uni find tha richt cuntav tn aat vanr dacirad

Expand Post
Like

amolparande (/s/profile/0054Q00000EwvSCQAZ)
March 28,2019 at 11:48 AM (/s/feed/0D54Q000080hmp2SAA),

@petrahammoser i have question related " JSONTemplater sub-template configuration "
"type" : "LineString",

"coordinates" :[] how should we parse LineString in to "coordinates" ? can you please help me ?

32views

https://community.safe.com/s/article/json-writing-with-jsontemplater

10/12

8/15/22, 10:04 AM Writing JSON with the JSONTemplater

1y Like ® Comment

@ i (/s/profile/0054Q00000EwwatQAB)

May 18,2018 at 2:24 PM (/s/feed/0D54Q000080hmKmSAl),

Awesome article, | use JSON Formatter (https://jsonformatter.org/) for validating and formatting JSON data.

lcomment 25views

1y Like ® cComment

{ helmoet (/s/profile/0054Q00000EwV6AQAR) (Partner)

2 years ago

Indeed inspiring article. However, what if you don't know the schema and want for the Art object just all the attributes in the JSON array?
Like

Follow

jsontemplater-2022
. Jun 24,2022 « 83KB « fmw

publicartnested
. Jul 28,2020 + 33KB « json

publicart
. Jul 28,2020 « 31KB « json

(/s/relatedlist/kal4Q000001DWyXQAW/AttachedContentDocuments)

Related Articles

Writing JSON (/s/article/json-writing-overview)

Tutorial: Getting Started with JSON (/s/article/tutorial-getting-started-with-json)

Transforming JSON using the JSONExtractor, JSONFlattener, and JSONFragmenter (/s/article/json-transformations)
How to Convert Parquet to JSON (/s/article/How-to-Convert-Parquet-to-JSON)

Extracting Location from JSON (/s/article/converting-from-json-to-a-spatial-format-gis)

https://community.safe.com/s/article/json-writing-with-jsontemplater 11/12

8/15/22, 10:04 AM Writing JSON with the JSONTemplater

;
Getting Started Ideas Feedback
- (.-/s/topic/0TO4Q000000QKioWAG/welcofa¢s/bridea/acideasULT _brildea ¢/00B: AUV iEY| LkoFWpziDYaWQk
Forums (../s/forums/). Groups
SAFE SOFTWARE®
Knowledge Base (../s/knowledge-base/) (../s/group/CollaborationGroup/00Ba000000A0BXJEAV).
https://safe.
(https://safe.com) Support (../s/support/).

Register / Log In (/s/login/)

© Safe Software Inc | Legal (https://www.safe.com/legal/).

Land Acknowledgement —

Safe Software respectfully acknowledges that we live, learn and work on the traditional and unceded territories of the Kwantlen, Katzie, and Semiahmoo First Nations.

https://community.safe.com/s/article/json-writing-with-jsontemplater

L78).

12/12

