

ENERGY AUDIT - FINAL REPORT

MARGATE CITY – PUBLIC WORKS BENSON & WINCHESTER AVE. MARGATE, NJ 08402 ATTN: MR. THOMAS D. HILTNER City Clerk

CEG PROJECT No. 9C09047

CONCORD ENGINEERING GROUP

520 SOUTH BURNT MILL ROAD VOORHEES, NJ 08043

TELEPHONE: (856) 427-0200 FACSIMILE: (856) 427-6529

WWW.CEG-INC.NET

CONTACTS:
RAYMOND JOHNSON
Cell: (609) 760-4057
rjohnson@ceg-inc.net

Table of Contents

I.	EXECUTIVE SUMMARY	3
II.	INTRODUCTION	5
III.	METHOD OF ANALYSIS	6
IV.	HISTORIC ENERGY CONSUMPTION/COST	8
	A. Energy Usage / Tariffs	8
-	B. Energy Use Intensity (EUI)	13
(C. EPA Energy Benchmarking System	14
V.	FACILITY DESCRIPTION	16
VI.	MAJOR EQUIPMENT LIST	18
VII.	ENERGY CONSERVATION MEASURES (ECM)	19
VIII.	RENEWABLE/DISTRIBUTED ENERGY MEASURES (ECM #4)	26
X.	ENERGY PURCHASING AND PROCUREMENT STRATEGY	28
X.	INSTALLATION FUNDING OPTIONS	31
XI.	ADDITIONAL RECOMMENDATIONS	32
Appe	endix A – Detailed Energy Usage and Costing Data	
Appe	endix B – Detailed Cost Breakdown per ECM	
Appe	endix C – New Jersey Smart Start® Program Incentives	
Appe	endix D – Major Equipment List	
Appe	endix E – Investment Grade Lighting Audit	
Appe	endix F – Renewable / Distributed Energy Measures	
Appe	endix G – Energy Star Benchmarking System	

10/9/2009

REPORT DISCLAIMER

The information contained within this report, including any attachment(s), is intended solely for use by the named addressee(s). If you are not the intended recipient, or a person designated as responsible for delivering such messages to the intended recipient, you are not authorized to disclose, copy, distribute or retain this report, in whole or in part, without written authorization from Concord Engineering Group, Inc., 520 S. Burnt Mill Road, Voorhees, NJ 08043.

This report may contain proprietary, confidential or privileged information. If you have received this report in error, please notify the sender immediately. Thank you for your anticipated cooperation.

10/9/2009 Page 2 of 33

I. EXECUTIVE SUMMARY

This report presents the findings of an energy audit conducted for:

Margate Public Works Department Benson & Winchester Avenue Margate City, NJ 08402

Municipal Contact Person: Mr. Thomas D. Hiltner, City Clerk Facility Contact Person: Mr. Fred Verna, Director of Facilities

This audit was performed in connection with the New Jersey Clean Energy Local Government Energy Audit Program. These energy audits are conducted to promote the office of Clean Energy's mission, which is to use innovation and technology to solve energy and environmental problems in a way that improves the State's economy. This can be achieved through the wiser and more efficient use of energy.

The annual energy costs at this facility are as follows:

Electricity	\$ 7,129
Natural Gas	\$ 7,430
Total	\$ 14,559

The potential annual energy cost savings are shown below in Table 1. Be aware that the measures are not additive because of the interrelation of several of the measures. The cost of each measure for this level of auditing is \pm 20% until detailed engineering, specifications, and hard proposals are obtained.

Table 1
Energy Conservation Measures (ECM's)

ECM NO.	DESCRIPTION	COST	ANNUAL SAVINGS	SIMPLE PAYBACK (YEARS)	SIMPLE RETURN ON INVESTMENT
1	Upgrade the Lighting	\$2,899	\$542	2.73	36.6 %
2	Install Lighting Controls	\$880	\$55	16.0	6.2 %
3	Replace Heating Hot Water Boiler	\$5,475	\$1,042	5.3	18.8 %
4	28.52 KW PV Solar Panel System	\$256,680	\$22,698	11.3	8.8 %

The estimated demand and energy savings are shown below in Table 2. The information in this table corresponds to the ECM's in Table 1.

10/9/2009 Page 3 of 33

Table 2
Estimated Energy Savings

ECM		ANNUAL UTILITY REDUCTION						
NO.	DESCRIPTION	ELECT DEMAND (KW)	ELECT CONSUMPTION (KWH)	NAT GAS (THERMS)				
1	Upgrade the Lighting	5.81	3,390	-				
2	Install Lighting Controls	-	3,227	-				
3	Replace Heating Hot Water Boiler	-	-	665				
4	28.52 KW PV Solar Panel System	28.52	44,507	-				

Recommendations:

Concord Engineering Group recommends the implementation of all ECM's that provide a calculated simple payback at or under ten (10) years. The potential energy and cost savings from these ECM's are economically justifiable. The following Energy Conservation Measures are recommended for the Public Works Department facility:

• **ECM #1:** Upgrade the Lighting

• ECM #3: Replace Heating Hot Water Boiler

10/9/2009 Page 4 of 33

II. INTRODUCTION

This comprehensive energy audit covers the Public Works Department building located at Benson & Winchester Avenues. The building is 7,019 sq. ft., single story, slab on grade and includes public works offices, truck and equipment garages, well controls room, water meter shop, break room, shower room and restrooms.

The first task was to collect and review one year's worth of utility energy data for electricity and natural gas. This information was used to analyze operational characteristics, calculate energy benchmarks for comparison to industry averages, estimate savings potential, and establish a baseline to monitor the effectiveness of implemented measures. A computer spreadsheet was used to enter, sum, and calculate benchmarks and to graph utility information (see Appendix A).

The Energy Use Intensity (EUI) is expressed in British Thermal Units/square foot/year (BTU/ft²/yr) and can be used to compare energy consumption to similar building types or to track consumption from year to year in the same building. The EUI is calculated by converting annual consumption of all fuels to BTU's then dividing by the area (gross square footage) of the building. EUI is a good indicator of the relative potential for energy savings. A comparatively low EUI indicates less potential for large energy savings. Blueprints (where available) were obtained from the municipality and were utilized to calculate/verify the gross area of the facility.

After gathering the utility data and calculating the EUI, the next step in the audit process is obtaining Architectural and Engineering drawings (where available). By reviewing the Architectural and Engineering drawings, questions regarding the building envelope, lighting systems/controls, HVAC equipment and controls are noted. These questions are then compared to the energy usage profiles developed during the utility data gathering step. Furthermore, through the review of the architectural and engineering drawings a building profile can be defined that documents building age, type, usage, major energy consuming equipment or systems, etc. After this information is gathered the next step in the process is the site visit.

The site visit was spent inspecting the actual systems and answering specific questions from the preliminary review. The building manager provided occupancy schedules, O & M practices, the building energy management program, and other information that has an impact on energy consumption.

The post-site work includes evaluation of the information gathered during the site visit, researching possible conservation opportunities, organizing the audit into a comprehensive report, and making recommendations on mechanical, lighting and building envelope improvements.

10/9/2009 Page 5 of 33

III. METHOD OF ANALYSIS

CEG completed the preliminary audit tasks noted in Section II preparing for the site survey. The site survey is a critical input in deciphering where energy opportunities exist within a facility. The auditor walks the entire site to inventory the building envelope (roof, windows, etc.), the heating, ventilation, and air conditioning equipment (HVAC), the lighting equipment, other facility-specific equipment, and to gain an understanding of how each facility is used.

The collected data is then processed using energy engineering calculations to calculate the anticipated energy usage for the proposed energy conservation measures (ECM's). The actual energy usage is entered directly from the utility bills provided by the Owner. The anticipated energy usage is compared to the actual usage to determine energy savings for the proposed ECM's.

It is pertinent to note, that the savings noted in this report are not duplicative. The savings for each recommendation may actually be higher if the individual recommendations were installed instead of the entire project. For example, the lighting module calculates the change in wattage and multiplies it by the <u>new</u> operating hours <u>instead of the existing</u> operating hours (if there was a change in the hours at all). The lighting controls module calculates the change in hours and multiplies it by the <u>new</u> system wattage <u>instead of the existing</u> wattage. Therefore, if you chose to install the recommended lighting system but not the lighting controls, the savings achieved with the new lighting system would actually be higher because there would have been no reduction in the hours of use.

The same principal follows for heating, cooling, and temperature recommendations – even with fuel switching. If there are recommendations to change the temperature settings to reduce fuel use, then the savings for the heating/cooling equipment recommendations are reduced, as well.

Our thermal module calculates the savings for temperature reductions utilizing automated engineering calculations within Microsoft ExcelTM spreadsheets. The savings are calculated in "output" values – meaning <u>energy</u>, not <u>fuel</u> savings. To show fuel savings we multiply the energy values times the fuel conversion factor (these factors are different for electricity, natural gas, fuel oil, etc.) and also take into account the heating/cooling equipment efficiency. The temperature recommendation savings are lower when the heating/cooling equipment is more efficient or is using a cheaper fuel.

Thermal recommendations (insulation, windows, etc.) are evaluated by taking the difference in the thermal load due to reduced heat transfer. Again, the "thermal load" is the thermal load <u>after</u> the other recommendations have been accounted for.

Lastly, installation costs, refer to Appendix B, are then applied to each recommendation and simple paybacks are calculated. Costs are derived from Means Cost Data, other industry publications, and local contractors and suppliers. The NJ SmartStart Building® program incentives (refer to Appendix C) are calculated for the appropriate ECM's and subtracted from the installed cost prior to calculation of the simple payback. In addition, where applicable,

10/9/2009 Page 6 of 33

maintenance cost savings are estimated and applied to the net savings. Simple return on investment is calculated using the standard formula of the difference of gains minus investments, divided by the investments. Included within the gains are the annual energy savings, utility incentives and maintenance savings as a total sum. The calculation is completed assuming the project is 100% direct purchased by the Owner with an energy cost escalation of 2.4% for natural gas and 2.2% for electricity.

10/9/2009 Page 7 of 33

IV. HISTORIC ENERGY CONSUMPTION/COST

A. Energy Usage / Tariffs

Electric

The following tables and figures represent the electrical usage for the surveyed facility from April-08 to March-09. Atlantic City Electric Utility provides electricity to this facility. The electric rate has a component for consumption that is measured in kilowatt-hours (kWh). It is calculated by multiplying the wattage of the equipment times the hours that it operates. For example, a 1,000 Watt lamp operating for 5 hours would measure 5,000 Watt-hours. Since one kilowatt is equal to 1,000 Watts, the measured consumption would be 5 kWh. The basic usage charges are shown as generation service and delivery charges along with several non-utility generation charges. Rates used in this report reflect the most current rate structure available.

Natural Gas

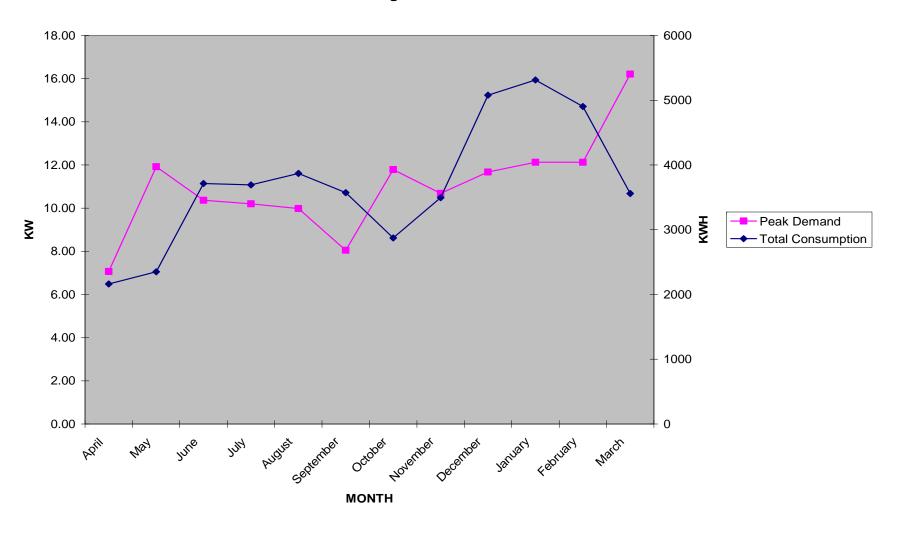
Table 4 and Figure 2 show the natural gas energy usage for the surveyed facility from May-08 to April-09. South Jersey Gas supplies the natural gas and delivers the fuel to the burner at the facility. Below is the average unit cost for the utilities at this facility.

<u>Description</u>	<u>Average</u>
Electricity	\$0.160 / kWh (4.7¢ / kBtu)
Natural Gas	\$1.50 / therm (1.5¢ / kBtu)

^{*}Note: The Natural Gas cost per Therm includes customer service charges.

10/9/2009 Page 8 of 33

Table 3
Electricity Billing Data


Public Works

Provider	Month	Start	End	Account	Utility	Billing	Peak		Load	Total		Deli	ivery	Supply	Total \$
Provider	WOITH	Date	Date	Account	Type	Days	Demand	Units	Factor (%)	Consumption	Units	Cha	arge	Charge	
Atlantic City Electric	April	4/8/2008	5/7/2008	0096 8859 9993	Electric	29	7.07	kw	43.97	2164	kwh	\$	121.15	\$ 202.26	\$ 323.41
Atlantic City Electric	May	5/7/2008	6/6/2008	0096 8859 9993	Electric	30	11.92	kw	27.40	2352	kwh	\$	143.64	\$ 254.89	\$ 398.53
Atlantic City Electric	June	6/6/2008	7/8/2008	0096 8859 9993	Electric	32	10.37	kw	46.64	3715	kwh	\$	160.32	\$ 511.87	\$ 672.19
Atlantic City Electric	July	7/8/2008	8/6/2008	0096 8859 9993	Electric	29	10.20	kw	52.03	3694	kwh	\$	154.07	\$ 505.86	\$ 659.93
Atlantic City Electric	August	8/6/2008	9/5/2008	0096 8859 9993	Electric	30	9.98	kw	53.87	3871	kwh	\$	159.93	\$ 529.06	\$ 688.99
Atlantic City Electric	September	9/5/2008	10/7/2008	0096 8859 9993	Electric	32	8.05	kw	57.79	3573	kwh	\$	141.43	\$ 463.31	\$ 604.74
Atlantic City Electric	October	10/7/2008	11/5/2008	0096 8859 9993	Electric	29	11.79	kw	35.02	2874	kwh	\$	121.96	\$ 324.04	\$ 446.00
Atlantic City Electric	November	11/5/2008	12/6/2008	0096 8859 9993	Electric	31	10.69	kw	43.95	3496	kwh	\$	139.10	\$ 386.67	\$ 525.77
Atlantic City Electric	December	12/6/2008	1/8/2009	0096 8859 9993	Electric	33	11.68	kw	54.90	5079	kwh	\$	189.96	\$ 556.08	\$ 746.04
Atlantic City Electric	January	1/8/2009	2/5/2009	0096 8859 9993	Electric	28	12.13	kw	65.17	5313	kwh	\$	190.50	\$ 578.55	\$ 769.05
Atlantic City Electric	February	2/5/2009	3/9/2009	0096 8859 9993	Electric	32	12.13	kw	52.65	4905	kwh	\$	185.24	\$ 540.19	\$ 725.43
Atlantic City Electric	March	3/9/2009	4/7/2009	0096 8859 9993	Electric	29	16.21	kw	31.55	3560	kwh	\$	158.37	\$ 410.64	\$ 569.01
						Max Peak:	16.21	kw	Total:	44,596	kwh			Total:	\$ 7,129.09
* Electric Tariff (MGS) M	onthly General	Service											Avg.	Cost per kwh:	\$ 0.160
													Avg.	Cost per kBtu:	\$ 0.047

10/9/2009 Page 9 of 33

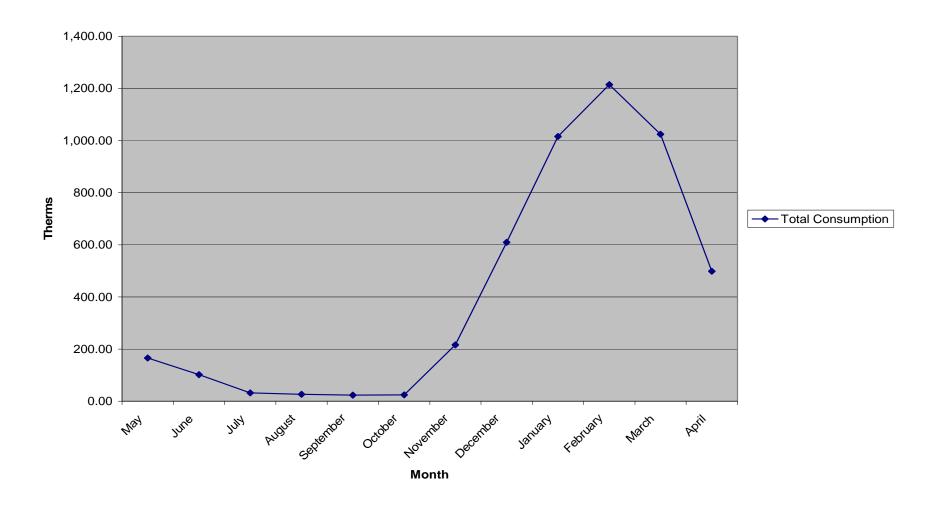
Figure 1 Electrical Usage Profile

Margate Public Works

10/9/2009 Page 10 of 33

Table 4 Natural Gas Billing Data

Public Works


Provider	Month	Start Date	End Date	Account	Utility Type	Billing Days	Consumption	Units	Total \$
South Jersey Gas	May	5/7/2008	6/6/2008	1 19 32 0087 0 6	Gas	30	165.87	therms	\$ 248.80
South Jersey Gas	June	6/6/2008	7/8/2008	1 19 32 0087 0 6	Gas	32	102.10	therms	\$ 153.15
South Jersey Gas	July	7/8/2008	8/6/2008	1 19 32 0087 0 6	Gas	29	32.15	therms	\$ 48.22
South Jersey Gas	August	8/6/2008	9/5/2008	1 19 32 0087 0 6	Gas	30	26.35	therms	\$ 39.52
South Jersey Gas	September	9/5/2008	10/7/2008	1 19 32 0087 0 6	Gas	32	23.57	therms	\$ 35.35
South Jersey Gas	October	10/7/2008	11/5/2008	1 19 32 0087 0 6	Gas	29	24.27	therms	\$ 36.41
South Jersey Gas	November	11/5/2008	12/5/2008	1 19 32 0087 0 6	Gas	30	216.46	therms	\$ 324.69
South Jersey Gas	December	12/5/2008	1/7/2009	1 19 32 0087 0 6	Gas	33	609.53	therms	\$ 914.29
South Jersey Gas	January	1/7/2009	2/5/2009	1 19 32 0087 0 6	Gas	29	1,015.48	therms	\$ 1,523.22
South Jersey Gas	February	2/5/2009	3/9/2009	1 19 32 0087 0 6	Gas	32	1,214.43	therms	\$ 1,821.65
South Jersey Gas	March	3/9/2009	4/7/2009	1 19 32 0087 0 6	Gas	29	1,024.57	therms	\$ 1,536.85
South Jersey Gas	April	4/7/2009	5/7/2009	1 19 32 0087 0 6	Gas	30	498.51	therms	\$ 747.77
·					12 M	onth Total:	4953.28	therms	\$ 7,429.92
* Rate (GSG) General S	Service Gas	* Assumed \$1.50)/therm	Ave	rage Cost	per therm:	\$ 1.500		

Average Cost per KBtu: \$0.015

10/9/2009 Page 11 of 33

Figure 2 Natural Gas Usage Profile

Margate Public Works

10/9/2009 Page 12 of 33

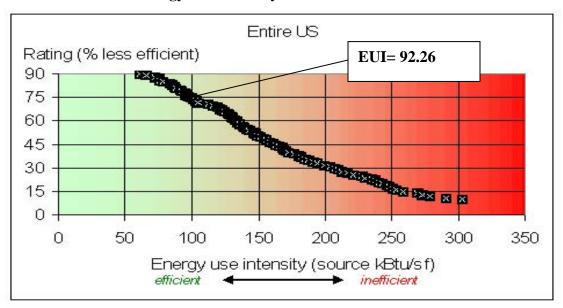
B. Energy Use Intensity (EUI)

The Oak Ridge National Laboratory (ORNL) Buildings Technology Center under a contract with the U.S. Department of Energy maintains a Benchmarking Building Energy Performance Program. Their website allows the user to determine how well the client's building Energy Use Intensity compares with similar facilities throughout the U.S. and in your specific region or state.

Energy Use Intensity (EUI) is a measure of a building's energy utilization per square foot of building. This calculation is completed by converting all utility usage (electricity, gas, oil) consumed by a building over a specified time period, typically one year, to British Thermal Units (BTU) and dividing this number by the building square footage. The EUI for this facility is calculated as follows:

Building EUI = (Electric Usage in kBtu + Gas Usage in kBtu)

Building Square Footage


Electric = ((44,596 kWh) * (1000 W/kW) * (3.414 Btu/h / 1 W))/ (1000 Btu / 1 kBtu) = 152,250.74 kBtu

Gas = ((4,953.28 therms) * (100,000 Btu/h / 1 Therm)) / (1000 Btu / 1 kBtu) = 495,328 kBtu

Building EUI = (152,250.74 kBtu + 495,328 kBtu) = 647,578.74 kBtu = 92.26 kBtu/SF7.019 SF 7.019 SF

Public Works Department EUI = 92.26 kBtu/SF

Figure 3
Energy Use Intensity Distributions – Offices

10/9/2009 Page 13 of 33

C. EPA Energy Benchmarking System

The United States Environmental Protection Agency (EPA) in an effort to promote energy management has created a system for benchmarking energy use amongst various end users. The benchmarking tool utilized for this analysis is entitled Portfolio Manager. The Portfolio Manager tool allows you to track and assess energy consumption via the template forms located on the ENERGY STAR website (www.energystar.gov). The importance of benchmarking for local government municipalities is becoming more important as utility costs continue to increase and more emphasis is being placed throughout multiple arenas on carbon reduction, greenhouse gas emissions and other environmental impacts.

Based on information gathered from the ENERGY STAR website, Government agencies spend more than \$10 billion a year on energy to provide public services and meet constituent needs. Furthermore, energy use in commercial buildings and industrial facilities is responsible for more than 50 percent of U.S. carbon dioxide emissions. Therefore, it is vital that local government municipalities assess their energy usage, benchmark this usage utilizing Portfolio Manager, set priorities and goals to lessen their energy usage and move forward with these priorites and goals. Saving energy will in-turn save the environment.

In accordance with the Local Government Energy Audit Program, CEG has created an Energy Star account for the municipality in order to allow access to monitor their yearly energy usage as it compares to facilities of similar type. The login page for the account can be accessed at the following web address; the username and password are also listed below:

https://www.energystar.gov/istar/pmpam/index.cfm?fuseaction=login.login

User Name:	margatecity
Password:	lgeaceg09008

Utilizing the utility bills and other information gathered during the energy audit process, CEG entered the respective data into Portfolio Manager and the following is a summary of the results:

Table 5
ENERGY STAR Performance Rating

FACILITY DESCRIPTION	ENERGY PERFORMANCE RATING	NATIONAL AVERAGE
Public Works Department	37	50

10/9/2009 Page 14 of 33

Specific building types are detailed on the ENERGY STAR website. Non-typical buildings are covered by an "Other" category. The "Other" category is used if your building type or a section of the building is not represented by one of the specific categories. <u>An Energy Star Performance Rating cannot be calculated if more then 10% of a building is classified as "Other"</u>, or if the building is an office with less than 5,000 square feet of floor space.

The Portfolio Manager also calculates the building Energy Use Intensity (EUI).

The EUI is also an important tool that can be used to track the energy efficiency of the building. Baselines for improvement can be set that the municipality can strive to meet. CEG recommends that the City of Margate keep their Portfolio Manager account up to date to monitor the performance of the building.

The EUI calculated in the previous section and in the Energy Star Portfolio Manager is a good indicator of the energy performance of the Public Works Department in addition to the Energy Star Performance Rating.

The EUI distribution, Figure 3, is specific for Office Buildings. The Public Works Department facility has an EUI of 92.26 rating for this type of facility. The lower the EUI the less energy the facility uses per square foot. A low EUI indicates a more efficient building. There maybe some opportunity for improvement making the facility more energy efficient and saving more on the utility costs.

10/9/2009 Page 15 of 33

V. FACILITY DESCRIPTION

The 7,019 sq. ft. building is 1-story, slab on grade with masonry constructed walls, and a flat roof. Windows are clear, double-pane, insulating replacement type. Walls are assumed to be insulated with 3 ½" fiber glass batt insulation. The building house's public works offices, truck and equipment garages, well controls room, water meter shop, break room, shower room and restrooms.

Heating System

The primary heating system is hydronic and includes a gas-fired hot water boiler piped to finned tube hydronic baseboard heat. The boiler is a category 1 vented Wiel McLain CGA modal, rated at 204,000 Btuh input and 78% efficiency. Three (3) Taco brand circulator pumps are piped to the boiler to create three zones of temperature control.

The garage area is heated with two (2) Modine, gas-fired, infra red unit heaters with electric ignition, mounted on the ceiling.

Cooling System

Cooling is provided for the offices, break room, and well controls room by ductless mini-split air conditioning systems. The front office and neighboring office each have a Sanyo indoor unit, both of which are tied to a single condensing unit located in the garage. The other three (3) systems each have a single indoor and outdoor unit, manufactured by NCP, and serve the drawing room, break room and well controls room.

Domestic Hot Water

Domestic hot water is provided by a gas-fired, 30 gallon, Bradford White model M130T6EN10, 32,000 Btuh input, located in the boiler room..

Lighting System

Most offices and public areas are lit using 8-foot fixtures containing T12 lamps and magnetic ballasts. Standard switching is utilized and there are no other types of lighting controls present.

The bathroom, locker room, recycling office, workshop & electrical closet are lit with 4-foot fixtures containing T12 lamps and magnetic ballasts and incandescent fixtures. Standard switching is utilized and there are no other types of lighting controls present.

The superintendent office is lit with 2-foot fixtures containing T8 lamps and electronic ballasts. Standard switching is utilized and there are no other types of lighting controls present.

The front entrance area is lit with down light fixtures containing par incandescent lamps. Standard switching is utilized and there are no other types of lighting controls present.

10/9/2009 Page 16 of 33

The vehicle bays are lit with Lowboy surface fixtures containing metal halide lamps.

The file room, break room, map room and storage rooms are lit with 8-foot fixtures containing T12 lamps and magnetic ballasts. Standard switching is utilized and there are no other types of lighting controls present.

The exterior lighting is mounted on the building and includes wall packs fixtures with metal halide lamps.

Refer to Appendix E for a detailed Investment Grade Lighting Audit.

10/9/2009 Page 17 of 33

V. MAJOR EQUIPMENT LIST

Following the completion of the field survey a detailed equipment list was created. The equipment within this list is considered major energy consuming equipment whose replacement could yield substantial savings. In addition, the list shows the major equipment in the facility and all pertinent information utilized in energy savings calculations. An approximate age was assigned to the equipment if a manufacturers date was not shown on the equipment's nameplate. The ASHRAE service life for the equipment along with the remaining useful life is also shown in the Appendix.

Equipment denoted by an asterisk indicates an estimate of the equipment ratings due to equipment inaccessibility, worn nameplates, lack of nameplates, etc.

Refer to Appendix D for the Major Equipment List for this facility.

10/9/2009 Page 18 of 33

VI. ENERGY CONSERVATION MEASURES (ECM)

ECM #1: Upgrade the Lighting

Description:

Upgrade the Fluorescent Lighting

Improved fluorescent lamps and ballasts are available as direct replacements for the existing lamps and ballasts. A simple retrofit of the existing fixture can provide substantial savings. A conventional drop-ceiling lay in fixture with four, 4-foot lamps has a total wattage of 154 Watts per fixture. By using the improved lamps and ballasts, the total wattage would be reduced to 96 Watts. The light levels would increase by about 15% and the light quality would increase by 35%.

CEG recommends replacement of the existing T8 and T12 lamps and ballasts with the latest technology T8 lamps and high efficiency electronic ballasts. The new energy efficient, T8 lamps will provide adequate lighting and will save the Owner on electrical costs due to the better performance of the electronic ballasts. In addition to functional cost savings, the fixture replacement will also provide operational cost savings. The operational cost savings will be realized through the lesser number of lamps that will be required to be replaced per year. The expected lamp life of the latest high efficiency T8 lamps is approximately 30,000 burn-hours, requiring fewer lamps to replace per year. Based on the operating hours of this portion of the facility, approximately 1500-2200 hours per year, the Owner will be changing approximately 33% less lamps per year.

In addition, a single electronic ballast can operate one, two, three, or four lamps in a fixture. The existing magnetic ballasts can only operate up to two lamps. The electronic ballasts could reduce the amount of ballasts in the facility by half. This can be taken advantage of with "tandem wiring" of ballasts. Instead of using one electronic ballast for every one fixture it is sometimes feasible to use one electronic ballast for every two or more fixtures. The electrician wires a single ballast to operate the lamps in adjacent light fixtures which further reduces the amount of ballasts needed.

Energy Savings Calculations:

A detailed Investment Grade Lighting Audit can be found in Appendix E that outlines the proposed retrofits, costs, savings, and payback periods.

Maintenance Savings are calculated as follows:

Maintenance Savings = (# of lamps x % reduction x \$ per lamp) + Installation Labor

Maintenance Savings = $(62 \times 33\% \ reduction \times \$2.00) + (\$20 \times 20) = \441

10/9/2009 Page 19 of 33

Install Compact Fluorescent Lighting

Compact fluorescent lamps (CFL's) were created to be direct replacements for the standard incandescent lamps which are common to table lamps, spot lights, hi-hats, bathroom vanity lighting, etc. The light output of the CFL has been designed to resemble the incandescent lamp. The color rendering index (CRI) of the CFL is much higher than standard fluorescent lighting, and therefore provides a much "truer" light.

The CFL is available in a myriad of shapes and sizes depending on the specific application. Typical replacements are: a 13-Watt CFL for a 60-Watt incandescent lamp, an 18-Watt CFL for a 75-Watt incandescent lamp, and a 25-Watt CFL for a 100-Watt incandescent lamp.

The CFL is also available for a number of "brightness colors" that is indicated by the Kelvin rating. A 2700K CFL is the "warmest" color available and is closest in color to the incandescent lamp. CFL's are also available in 3000K, 3500K, and 4100K. The 4100K would be the "brightest" or "coolest" output.

A CFL can be chosen to screw right into existing fixtures, or hardwired into existing fixtures.

Energy Savings Calculations:

A detailed Investment Grade Lighting Audit can be found in Appendix E that outlines the proposed retrofits, costs, savings, and payback periods.

Maintenance Savings are calculated as follows:

Maintenance Savings = $(\# of lamps \times \% reduction \times \$ per lamp) + Installation Labor$

Maintenance Savings = $(8 \times 75\% \ reduction \times \$5) + (\$15 \times 6) = \120

Simple Payback (yrs.) = (Cost – Incentive) / (Annual Energy Savings + Annual Maintenance Savings)

Simple Return on Investment (%) = (((Annual Energy Savings + Annual Maintenance Savings) x (ECM Lifetime)) - (Cost - Incentive)) / (Cost - Incentive)

10/9/2009 Page 20 of 33

Energy Savings Summary:

ECM #1 - ENERGY SAVINGS SUMMARY	
Installation Cost (\$):	\$3,199
NJ Smart Start Equipment Incentive (\$):	(\$180)
Net Installation Cost (\$):	\$3,019
Maintenance Savings (\$ / yr):	\$561
Energy Savings (\$ / yr):	\$542
Net Savings (\$ / yr):	\$1,103
Simple Payback (yrs):	2.73
Simple Return On Investment (%):	36.6 %
Simple Lifetime ROI (%):	8.13 %
Estimated ECM Lifetime (yr):	25
Simple Lifetime Savings (\$):	\$24,556

- ECM#1 Calculations <u>DO NOT</u> include lighting control changes implemented in ECM#2.
- If ECM#1 and #2 are implemented together the savings will be relatively lower than shown above.

10/9/2009 Page 21 of 33

ECM #2: Install Lighting Controls

Description:

Install Lighting Controls to Reduce the Lighting Use

In some areas the lighting is left on unnecessarily. There has been a belief that it is better to keep the lights on rather than to continuously switch them on and off. The on/off dilemma was studied and it was determined that the best option is to turn the lights off whenever possible. Although this practice reduces the lamp life, the energy savings far outweigh the lamp replacement costs.

Lighting controls are available in many forms. Lighting controls can be as simplistic as an additional switch. Time-clocks are often used which allows the user to set an on/off schedule. Time-clocks range from a dial clock with on/off indicators to a small box the size of a thermostat with user programs for on/off schedule in a digital format. Occupancy sensors detect motion and will switch the lights on when the room is occupied. They can either be mounted in place of the current wall switch, or they can be mounted on the ceiling to cover large areas. Lastly, photocells are a lighting control that sense light levels and will turn the lights off when there is adequate daylight. These are mostly used outside, but they are becoming much more popular in energy-efficient office designs as well.

To determine an estimated savings for lighting controls, we used ASHRAE 90.1-2004 (NJ Energy Code). Appendix G states that occupancy sensors have a 10% power adjustment factor for daytime occupancies for buildings over 5,000 SF. CEG recommends the installation of dual technology occupancy sensors in the Office and Storage Building office spaces, conference room, document storage room, time-clock area and entrance area. Occupancy sensors are recommended in the Water Treatment Building treatment room and garage area, and in the Water Meter Repair Shop in the garage, storage area and shop area.

CEG would recommend wall switches for individual rooms, ceiling mount sensors for large office areas, and fixture mount box sensors for some applications as manufactured by Sensorswitch, Watt Stopper, etc.

Energy Savings Calculations:

From Appendix E of this report, we calculated the annual kilowatt hours (kWh) savings for the areas where the proposed occupancy sensors will be located:

Savings = *Total kilowatts* x *Annual Average Burn Hours* = 3227 kWh/yr. x 10% x \$0.17/kWh Annual Savings = \$55 / yr.

10/9/2009 Page 22 of 33

Installation cost per dual-technology sensor is \$75/unit.

The SmartStart Buildings® incentive is \$20 per control which equates to an installed cost of \$55/unit. Total number of rooms to be retrofitted is 16.

Total cost to install sensors is $$55 \times 16 \text{ units} = $880.$

Total ECM Lifetime Energy Savings = 15 Years (Est.) x \$55 / yr. = \$825

Simple Payback (yrs.) = (Cost - Incentive) / (Annual Energy Savings + Annual Maintenance Savings)

Simple Return on Investment (%) = (((Annual Energy Savings + Annual Maintenance Savings) x (ECM Lifetime)) - (Cost - Incentive)) / (Cost - Incentive)

Energy Savings Summary:

ECM #2 - ENERGY SAVINGS SUMMARY	
Installation Cost (\$):	\$1,200
NJ Smart Start Equipment Incentive (\$):	(\$320)
Net Installation Cost (\$):	\$880
Maintenance Savings (\$ / yr):	\$0
Energy Savings (\$ / yr):	\$55
Net Savings (\$ / yr):	\$55
Simple Payback (yrs):	16
Simple Return On Investment (%):	6.2 %
Simple Lifetime ROI (%):	(-0.06 %)
Estimated ECM Lifetime (yr):	15
Simple Lifetime Savings (\$):	(-\$55)

10/9/2009 Page 23 of 33

ECM #3: Replace Heating Hot Water Boiler

Description:

The facility heating boiler is a 200 Mbh input hot water boiler which presently is about 78% efficient. As an alternative energy conservation measure, the Concord team recommends that this boiler be replaced with a Wiel McLain "Ultra" Series 3 gas boiler high-efficiency boiler rated at 155 MBH and 93% efficient.

Energy Use Calculations:

The Boiler is the primary natural gas user:
Annual Natural Gas Cost = \$7430 (Based on gas billing data)
Annual Natural Gas Cost for Heat = \$6950 (based on \$40/mo for HWH, etc. per summer use)
Average Cost of Natural Gas = \$1.568 / Therm

Energy Savings Calculations:

Energy Savings = Old Boiler Energy Cost x ((New Boiler Efficiency – Old Boiler) / New Boiler Efficiency))

Energy Savings = $$6950 \times (0.93 - 0.78) = $1042 / yr$.

Simple Payback (yrs.) = (Cost – Incentive) / (Annual Energy Savings + Annual Maintenance Savings)

Simple Return on Investment (%) = (((Annual Energy Savings + Annual Maintenance Savings) x (ECM Lifetime)) – (Cost – Incentive) / (Cost – Incentive)

10/9/2009 Page 24 of 33

Energy Savings Summary:

ECM #3 - ENERGY SAVINGS SUMMARY	
Installation Cost (\$):	\$5,775
NJ Smart Start Equipment Incentive (\$):	(\$300)
Net Installation Cost (\$):	\$5,475
Maintenance Savings (\$ / yr):	\$0
Energy Savings (\$ / yr):	\$1,042
Net Savings (\$ / yr):	\$1,042
Simple Payback (yrs):	5.3
Simple Return On Investment (%):	18.8 %
Simple Lifetime ROI (%):	3.76 %
Estimated ECM Lifetime (yr):	25
Simple Lifetime Savings (\$):	\$20,575

10/9/2009 Page 25 of 33

VII. RENEWABLE/DISTRIBUTED ENERGY MEASURES (ECM # 4)

Globally, renewable energy has become a priority affecting international and domestic energy policy. The State of New Jersey has taken a proactive approach, and has recently adopted in its Energy Master Plan a goal of 30% renewable energy by 2020. To help reach this goal New Jersey created the Office of Clean Energy under the direction of the Board of Public Utilities and instituted a Renewable Energy Incentive Program to provide additional funding to private and public entities for installing qualified renewable technologies. A renewable energy source can greatly reduce a building's operating expenses while producing clean environmentally friendly energy. CEG has assessed the feasibility of installing renewable energy technologies for the Margate Public Works facility, to evaluate if there is any potential for solar or wind energy generation.

Solar energy produces clean energy and reduces a building's carbon footprint. This is accomplished via photovoltaic panels which will be mounted on all south and southwestern facades of the building. Flat roof, as well as sloped areas can be utilized; flat areas will have the panels turned to an optimum solar absorbing angle. (A structural survey of the roof would be necessary before the installation of PV panels is considered). Parking lots can also be utilized for the installation of a solar array. A truss system can be installed that is high enough to park a vehicle under the array, this way no parking lot area is lost. The state of NJ has instituted a program in which one Solar Renewable Energy Certificate (SREC) is given to the Owner for every 1000 kWh of generation. SREC's can be sold anytime on the market at their current market value. The value of the credit varies upon the current need of the power companies. The average value per credit is around \$350, this value was used in our financial calculations. This equates to \$0.35 per kWh generated.

CEG has reviewed the existing roof area of the building being audited for the purposes of determining a potential for a roof mounted photovoltaic system. A roof area of approximately 4,500 S.F. is available and can be utilized for a PV system on the Public Works building roof. A depiction of the area utilized is shown in Appendix F following the financial calculations. Using this square footage it was determined that a system size of 28.52 kilowatts could be installed. The required square footage for a system of this size is approximately 1,823 S.F. and has an estimated kilowatt hour production of 44,507 kWh annually, reducing the overall electric consumption by approximately 100 %. Presently the BPU and net-zero metering laws of New Jersey limit the KWh production to the maximum KWh used at each facility through the individual building meter. A detailed financial analysis can be found in Appendix F. This analysis illustrates the payback of the system over a 25 year period. The eventual degradation of the solar panels and the price of accumulated SREC's are factored into the payback.

CEG has reviewed financing options for the owner. Two options were studied and they are as follows: Self-financed and direct purchase without finance. Self-finance was calculated with 95% of the total project cost financed at a 7% interest rate over 25 years. Direct purchase involves the local government paying for 100% of the total project cost upfront. Both of these calculations include a utility inflation rate as well as the degradation of the solar panels over

10/9/2009 Page 26 of 33

time. Based on our calculations the following are the payback periods for the respective method of payment:

PAYMENT TYPE	SIMPLE PAYBACK	INTERNAL RATE OF RETURN				
Self-Finance	11.3 Years	11.9 %				
Direct Purchase	11.3 Years	7.9 %				

The above information is concluded as ECM #4 showing installation costs, energy savings and other pertinent summarized information in Section I of this report.

Wind energy production is another option available through the Renewable Energy Incentive Program. Small wind turbines can be utilized to produce clean energy on a per building basis. Cash incentives are available per kWh of electric usage. CEG has reviewed the applicability of wind energy for Margate City and has determined it is not a viable option.

10/9/2009 Page 27 of 33

X. ENERGY PURCHASING AND PROCUREMENT STRATEGY

Load Profile:

Load Profile analysis was performed to determine the seasonal energy usage of the facility. Irregularities in the load profile will indicate potential problems within the facility. Consequently based on the profile a recommendation will be made to remedy the irregularity in energy usage. For this report, the facility's energy consumption data was gathered in table format and plotted in graph form to create the load profile. Refer to the Electric and Natural Gas Usage Profiles included within this report to reference the respective electricity and natural gas usage load profiles.

Electricity:

The Electric Usage Profile demonstrates an atypical load consumption profile throughout the year. There is an increase in electric consumption in the winter (November – February). A peak is observed in January. There is an increase in the summer (May – September) which is consistent with cooling or air conditioning load. A flat (base-load) shaping is important because it will yield more competitive pricing when shopping for alternative energy supply.

Natural Gas:

The Natural Gas Usage Profile demonstrates a typical heating load profile, with increasing consumption in the winter months (November – March) with a dramatic drop in consumption in the summer months (May – October). Natural gas prices will be higher in the winter period as they are related to heating demand and the increase in use during this time. The flatter (baseload,) the consumption profile the more competitive the pricing when shopping for alternative suppliers for energy.

Tariff Analysis:

Electricity:

This facility receives electrical Delivery Service from Atlantic City Electric on an MGS Secondary (Monthly General Service) utility rate. This rate is available at any point of Company's system where facilities of adequate character and capacity exist for the entire electric service requirements of any customer delivered at one point and metered at or compensated to the voltage of delivery. This delivery service includes the following charges: Delivery Service Charges, Distribution Demand Charges, Reactive Demand Charges, Distribution Rates, Non-Utility Generation Charges, Societal Benefits Charges, Regulatory Assets Recovery Charges, Transition Bond Charges, Market Transition Charge Tax, Transmission Demand Charge, Regional Greenhouse Gas Initiative Recovery Charge, and Infrastructure Investment Surcharge. This facility receives electrical supply service through Atlantic City Electric on a BGS (Basic Generation Service) rate. Since the passing and implementation of the Electricity Discount and Energy Competition Act (EDECA) in 1999, there have been many changes brought about by the

10/9/2009 Page 28 of 33

deregulation of the electric industry in New Jersey. Since that time, customers in New Jersey have been able to choose their electrical supplier. Customers who do not choose to switch to a Third Party Supplier (TPS), or who leave a TPS to return to their Electric Delivery Company are supplied with Basic Generation Service. Beside the commodity itself, BGS also has the following charges: System Control Charge, CIEP Standby Fee, Transmission Enhancement Charge and Basic Generation Service Charge.

Natural Gas:

This facility is serviced by South Jersey Gas Company (SJG) on its Firm Delivery rate (GSG) General Service Gas from the utility and BGSS (Basic Generation Supply Service) when not being served by a Third Party Supplier (TPS). This Delivery Rate has the following charges: Customer Charge, Delivery Charge, BSC Volume Charge and Commodity Charge under this rate structure. The BGSS Supply rates are designed to recover SJG's cost of gas applicable to customers who purchase gas from SJG. The company earns no profit from BGSS. BGSS consists of (2) two pricing mechanisms: Residential and Commercial customers that use less than 5,000 therms annually and Commercial and Industrial customers that consume at least 5,000 therms annually.

Imbalances occur when Third Party Suppliers (TPS) are used to supply natural gas and full-delivery is not made, and when a new supplier is contracted or the customer returns to the utility. Note: It is important when utilizing a Third Party Supplier, that an experienced regional supplier is used otherwise, imbalances can occur, jeopardizing economics and scheduling. If the supplier does not deliver they can be placed on a very costly rate. A customer can automatically be put on an alternative supply rate by the utility.

A "firm account" refers to the type of interstate pipeline service that the utility has subscribed for and delivered on behalf of the customer. Much like the telecom industry, the pipeline space (capacity) has been deregulated. The pipeline capacity is broken down into reliability of service. "Firm service" is the highest level of reliability and is the last, in pecking order, for interruption.

Recommendations:

CEG's observations are seen in both the electric and natural gas costs. The average "price to compare" per kWh (kilowatt hour) for all buildings is \$.1271 / kWh (kWh is the common unit of electric measure). The average "price to compare" per decatherm for natural gas is \$.09975 /dth (dth is the common unit of measure). Energy commodities are among the most volatile of all commodities, however at this point and time, energy is extremely competitive. The city could see significant savings if it were to take advantage of these current market prices quickly, before energy increases. Based on last year's historical consumption (April – March 2009) and current electric rates, Margate City can see an improvement of over 20 % in its electric costs. (Note: Savings were calculated using an Average Annual Consumption of 637,617 kWh and a fixed one-year commodity contract). CEG recommends aggregating the entire electric load to gain the most optimal energy costs. CEG recommends that the city seek an energy advisor to maximize energy savings and to apply a managed approach to procuring energy.

10/9/2009 Page 29 of 33

CEG's secondary recommendation coincides with the city's natural gas costs. Based on the current market, (which is very competitive), the city could see a savings of over 15% in its natural gas expenditures. Again CEG recommends the use of any energy advisor to review alternative energy sourcing strategies.

CEG recommends the city schedule a meeting with their current utility providers to review their utility charges and current tariff structures for electricity and natural gas. This meeting would provide insight regarding alternative procurement options that are currently available. Through its meeting with the Local Distribution Company (LDC), the city will learn more about the competitive supply process. The town can acquire a list of approved Third Party Suppliers from the New Jersey Board of Public Utilities website at www.nj.gov/bpu, and should also consider using a billing-auditing service to further analyze the utility invoices, manage the data and use the data to manage ongoing demand-side management projects. Furthermore, CEG recommends special attention given to credit mechanisms, imbalances, balancing charges and commodity charges when meeting with their utility representative. In addition, they should also ask the utility representative about alternative billing options. Some utilities allow for consolidated billing options when utilizing the service of a Third Party Supplier.

Finally, if the city frequently changes its supplier for energy (natural gas), CEG recommends it closely monitor balancing, particularly when the contract is close to termination.

10/9/2009 Page 30 of 33

X. INSTALLATION FUNDING OPTIONS

CEG has reviewed various funding options for the Owner to utilize in subsidizing the costs for installing the energy conservation measures noted within this report. Below are a few alternative funding methods:

- i. Energy Savings Improvement Program (ESIP) Public Law 2009, Chapter 4 authorizes government entities to make energy related improvements to their facilities and par for the costs using the value of energy savings that result from the improvements. The "Energy Savings Improvement Program (ESIP)" law provides a flexible approach that can allow all government agencies in New Jersey to improve and reduce energy usage with minimal expenditure of new financial resources.
- ii. *Municipal Bonds* Municipal bonds are a bond issued by a city or other local government, or their agencies. Potential issuers of municipal bonds include cities, counties, redevelopment agencies, school districts, publicly owned airports and seaports, and any other governmental entity (or group of governments) below the state level. Municipal bonds may be general obligations of the issuer or secured by specified revenues. Interest income received by holders of municipal bonds is often exempt from the federal income tax and from the income tax of the state in which they are issued, although municipal bonds issued for certain purposes may not be tax exempt.
- iii. Power Purchase Agreement Public Law 2008, Chapter 3 authorizes contractor of up to fifteen (15) years for contracts commonly known as "power purchase agreements." These are programs where the contracting unit (Owner) procures a contract for, in most cases, a third party to install, maintain, and own a renewable energy system. These renewable energy systems are typically solar panels, windmills or other systems that create renewable energy. In exchange for the third party's work of installing, maintaining and owning the renewable energy system, the contracting unit (Owner) agrees to purchase the power generated by the renewable energy system from the third party at agreed upon energy rates.

CEG recommends the Owner review the use of the above-listed funding options in addition to utilizing their standard method of financing for facilities upgrades in order to fund the proposed energy conservation measures.

10/9/2009 Page 31 of 33

XI. ADDITIONAL RECOMMENDATIONS

The following recommendations include no cost/low cost measures, Operation & Maintenance (O&M) items, and water conservation measures with attractive paybacks. These measures are not eligible for the Smart Start Buildings incentives from the office of Clean Energy but save energy none the less.

- A. Chemically clean the condenser and evaporator coils periodically to optimize efficiency. Poorly maintained heat transfer surfaces can reduce efficiency 5-10%.
- B. Maintain all weather stripping on windows and doors.
- C. Use cog-belts instead of v-belts on all belt-driven fans, etc. These can reduce electrical consumption of the motor by 2-5%.
- D. Reduce lighting in specified areas where the foot candle levels are above 70 in private offices and above 30 in corridor, lobbies, etc.
- E. Provide more frequent air filter changes to decrease overall fan horsepower requirements and maintain better IAQ.
- F. Recalibrate existing sensors serving the office spaces
- G. Install a Vending Miser system to turn off the vending machines in the lunch room when not in use.
- H. Clean all light fixtures to maximize light output.
- I. Confirm that outside air economizers on the rooftop units that serve the Office Areas are functioning properly to take advantage of free cooling.

10/9/2009 Page 32 of 33

APPENDIX

10/9/2009 Page 33 of 33

Electric Cost Summary Margate City Public Works ATLANTIC CITY ELECTRIC Acct.No: 0096 8859 9993

Appendix A

120001101 005 0 0005 5550													
Month	Apr-08	May-08	Jun-08	Jul-08	Aug-08	Sep-08	Oct-08	Nov-08	Dec-08	Jan-09	Feb-09	Mar-09	Total
Last Meter Read Date	4/8/2008	5/7/2008	6/6/2008	7/8/2008	8/6/2008	9/5/2008	10/7/2008	11/5/2008	12/6/2008	1/8/2009	2/5/2009	3/9/2009	4/8/2008
Current Meter Read Date	5/7/2008	6/6/2008	7/8/2008	8/6/2008	9/5/2008	10/7/2008	11/5/2008	12/6/2008	1/8/2009	2/5/2009	3/9/2009	4/7/2009	4/7/2009
Billing Days	29	30	32	29	30	32	29	31	33	28	32	29	364
KWH	2,164	2,352	3,715	3,694	3,871	3,573	2,874	3,496	5,079	5,313	4,905	3,560	44,596
KW	7	12	10	10	10	8	12	11	12	12	12	16	16
Monthly Load Factor	44%	27%	47%	52%	54%	58%	35%	44%	55%	65%	53%	32%	47%
Electric Delivery, \$	\$121	\$144	\$160	\$154	\$160	\$141	\$122	\$139	\$190	\$191	\$185	\$158	\$1,866
Delivery \$/kwh	\$0.056	\$0.061	\$0.043	\$0.042	\$0.041	\$0.040	\$0.042	\$0.040	\$0.037	\$0.036	\$0.038	\$0.044	\$0.043
Electric Supply, \$	\$202	\$255	\$512	\$506	\$529	\$463	\$324	\$387	\$556	\$579	\$540	\$411	\$5,263
Supply \$/kwh	\$0.093	\$0.108	\$0.138	\$0.137	\$0.137	\$0.130	\$0.113	\$0.111	\$0.109	\$0.109	\$0.110	\$0.115	\$0.118
Total Cost, \$	\$323	\$399	\$672	\$660	\$689	\$605	\$446	\$526	\$746	\$769	\$725	\$569	\$7,129
\$/KWH	\$0.1495	\$0.1694	\$0.1809	\$0.1786	\$0.1780	\$0.1693	\$0.1552	\$0.1504	\$0.1469	\$0.1447	\$0.1479	\$0.1598	\$0.1599

Natural Gas Cost Summary Margate City Public Works SOUTH JERSEY GAS Acct. No. 119 32 0087 06

110011101117 52 0007 00													
Month	May-08	Jun-08	Jul-08	Aug-08	Sep-08	Oct-08	Nov-08	Dec-08	Jan-09	Feb-09	Mar-09	Apr-09	Total
Billing Days	30	32	29	30	32	29	30	33	29	32	29	30	365
Last Meter Read Date	5/7/2008	6/6/2008	7/8/2008	8/6/2008	9/5/2008	10/7/2008	11/5/2008	12/5/2008	1/7/2009	2/5/2009	3/9/2009	4/7/2009	5/7/2009
Current Meter Read Date	6/6/2008	7/8/2008	8/6/2008	9/5/2008	10/7/2008	11/5/2008	12/5/2008	1/7/2009	2/5/2009	3/9/2009	4/7/2009	5/7/2009	5/12/2009
Gas Used per 100 cu ft	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
BTU Factor	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Therms (Burner Tip)	166	102	32	26	24	24	216	610	1,015	1,214	1,025	499	4,953
Total Distribution Cost	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Cost per Therm	\$0.000	\$0.000	\$0.000	\$0.000	\$0.000	\$0.000	\$0.000	\$0.000	\$0.000	\$0.000	\$0.000	\$0.000	\$0.000
Total Commodity Cost	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Cost per Therm	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Total Cost	\$249	\$153	\$48	\$40	\$35	\$36	\$325	\$914	\$1,523	\$1,822	\$1,537	\$748	\$7,430
Cost per Therm	\$1.50	\$1.50	\$1.50	\$1.50	\$1.50	\$1.50	\$1.50	\$1.50	\$1.50	\$1.50	\$1.50	\$1.50	\$1.50

Margate Public Works Building

CONSTRUCTION COST AND REBATES								
ECM # 1 - UPGRADE THE LIGHTING	<u>Qty</u>	<u>Unit Cost \$</u>	Material \$	<u>Labor \$</u>	<u>Total \$</u>			
New T-8 & CFL Lamps & Ballasts	1	\$1,857	\$1,857	\$1,343	\$3,200			
Total Cost					\$3,200			
Utility Incentive					<u>-\$180</u>			
Total Net Cost					\$3,020			
ECM # 2 - INSTALL LIGHTING CONTROLS	<u>Qty</u>	Unit Cost \$	Material \$	<u>Labor \$</u>	<u>Total \$</u>			
Occupancy Sensors	16	\$75	\$1,200	\$0	\$1,200			
Total Cost					\$1,200			
Utility Incentive					<u>-\$320</u>			
Total Net Cost					\$880			
		_	_	_				

Concord Engineering Group, Inc.

C

520 BURNT MILL ROAD VOORHEES, NEW JERSEY 08043

PHONE: (856) 427-0200 FAX: (856) 427-6508

SmartStart Building Incentives

The NJ SmartStart Buildings Program offers financial incentives on a wide variety of building system equipment. The incentives were developed to help offset the initial cost of energy-efficient equipment. The following tables show the current available incentives as of January, 2009:

Electric Chillers

Water-Cooled Chillers	\$12 - \$170 per ton
Air-Cooled Chillers	\$8 - \$52 per ton

Gas Cooling

Gas Absorption Chillers	\$185 - \$400 per ton
Gas Engine-Driven	Calculated through custom
Chillers	measure path)

Desiccant Systems

<u> </u>
\$1.00 per cfm – gas or electric

Electric Unitary HVAC

Unitary AC and Split Systems	\$73 - \$93 per ton
Air-to-Air Heat Pumps	\$73 - \$92 per ton
Water-Source Heat Pumps	\$81 per ton
Packaged Terminal AC & HP	\$65 per ton
Central DX AC Systems	\$40- \$72 per ton
Dual Enthalpy Economizer Controls	\$250

Ground Source Heat Pumps

Closed Loop & Open Loop	\$370 per ton
----------------------------	---------------

Gas Heating

Gas Fired Boilers < 300 MBH	\$300 per unit
Gas Fired Boilers ≥ 300 - 1500 MBH	\$1.75 per MBH
Gas Fired Boilers ≥1500 - ≤ 4000 MBH	\$1.00 per MBH
Gas Fired Boilers > 4000 MBH	(Calculated through Custom Measure Path)
Gas Furnaces	\$300 - \$400 per unit

Variable Frequency Drives

Variable Air Volume	\$65 - \$155 per hp
Chilled-Water Pumps	\$60 per hp
Compressors	\$5,250 to \$12,500 per drive

Natural Gas Water Heating

Gas Water Heaters ≤ 50 gallons	\$50 per unit
Gas-Fired Water Heaters >50 gallons	\$1.00 - \$2.00 per MBH
Gas-Fired Booster Water Heaters	\$17 - \$35 per MBH

Premium Motors

Three-Phase Motors	\$45 - \$700 per motor
Three-Phase Motors	\$45 - \$700 per motor

Prescriptive Lighting

T-5 and T-8 Lamps w/Electronic Ballast in Existing Facilities	\$10 - \$30 per fixture, (depending on quantity)
Hard-Wired Compact Fluorescent	\$25 - \$30 per fixture
Metal Halide w/Pulse Start	\$25 per fixture
LED Exit Signs	\$10 - \$20 per fixture
T-5 and T-8 High Bay Fixtures	\$16 - \$284 per fixture

Lighting Controls – Occupancy Sensors

<u> </u>	
Wall Mounted	\$20 per control
Remote Mounted	\$35 per control
Daylight Dimmers	\$25 per fixture
Occupancy Controlled hilow Fluorescent Controls	\$25 per fixture controlled

Lighting Controls – HID or Fluorescent Hi-Bay Controls

Occupancy hi-low	\$75 per fixture controlled
Daylight Dimming	\$75 per fixture controlled

Other Equipment Incentives

other Equipment intentives							
Performance Lighting	\$1.00 per watt per SF below program incentive threshold, currently 5% more energy efficient than ASHRAE 90.1-2004 for New Construction and Complete Renovation						
Custom Electric and Gas Equipment Incentives	not prescriptive						

Margate Public Works Building

					EQUIPME	NT LIST			
TAG	MAKE	MODEL	TYPE	CAPACITY	EFFICIENCY	SERVES	LOCATION	REMAINING USEFUL LIFE	NOTES
PW-100	BRADFORD WHITE	M130T6EN10	GAS-FIRED HWH	30 GALLON, 32 MBH	78.0%	ENTIRE BUILDING	BOILER ROOM	12	3 YRS OLD
PW-101	WEIL McCLAIN	CGA-8-P1DN	GAS-FIRED HYDRONIC HEATING BOILER	204 MBH	78.0%	ENTIRE BUILDING	BOILER ROOM	14	11 YRS OLD
PW-103	MODINE	MHR	IFRA-RED GAS- FIRED UNIT HEATER	100 MBH	-	GARAGE	CEIILING MOUNTED	3	10 PLUS YRS OLD
PW-104	MODINE		IFRA-RED GAS- FIRED UNIT HEATER	100 MBH	-	GARAGE	CEIILING MOUNTED	3	10 PLUS YRS OLD
PW-105	MODINE		IFRA-RED GAS- FIRED UNIT HEATER	90 MBH	-	GARAGE	CEIILING MOUNTED	3	10 PLUS YRS OLD
PW-106	MODINE		IFRA-RED GAS- FIRED UNIT HEATER	90 MBH	-	GARAGE	CEIILING MOUNTED	3	10 PLUS YRS OLD
PW-107	-	ERC-32745	ELECTRIN HORIZONTAL UNIT HEATER	240V	-	WATER METER SHOP	WATER METER SHOP	11	2 YRS OLD, INTERGRAL THERMOSTAT
PW-200	SANYO	KM50912	MINI SPLIT SYSTEM AC - INDOOR UNIT	9000 BTUH	-	OFFICE	WALL MOUNTED	11	4 YRS OLD
PW-205	SANYO	KM50912	MINI SPLIT SYSTEM AC - INDOOR UNIT	9000 BTUH	-	OFFICE	WALL MOUNTED	11	4 YRS OLD
PW-206	SANYO	CM1812	MINI SPLIT SYSTEM AC - OUTDOOR UNIT	18000 BTUH	-	OFFICE	WALL MOUNTED	11	4 YRS OLD
PW-204	NCP	S240A-19K10-1	MINI SPLIT SYSTEM AC - INDOOR UNIT	18500 BTUH	-	BREAKROOM	WALL MOUNTED	11	4 YRS OLD
PW-203	NCP	S240A-13K11-1	MINI SPLIT SYSTEM AC - INDOOR UNIT	12500 BTUH	-	OFFICE	WALL MOUNTED	11	4 YRS OLD
PW-202	NCP	S240A-19K-10-1	MINI SPLIT SYSTEM AC - INDOOR UNIT	18500 BTUH	-	WELL CONTROL ROOM	WALL MOUNTED	11	4 YRS OLD
PW-201	NCP	S240A-19K10-0	MINI SPLIT SYSTEM AC - OUTDOOR UNIT	18500 BTUH	-	BREAKROOM	ROOF	11	4 YRS OLD
PW-207	NCP	S240A-19K10-0	MINI SPLIT SYSTEM AC - OUTDOOR UNIT	18500 BTUH	-	WELL CONTROL ROOM	ROOF	11	4 YRS OLD
PW-208	NCP	S240A-13K11-0	MINI SPLIT SYSTEM AC - OUTDOOR UNIT	12500 BTUH	-	OFFICE	ROOF	11	4 YRS OLD

INVESTMENT GRADE LIGHTING AUDIT

CONCORD ENERGY SERVICES

CEG Project #: BS09-008 Project Name : Public Works Building Address: Benson & Winchester City, State: Margate, NJ. Building SF: 7,019

kWh Cost: 0.16 Burn Hrs: 8760

		Existin	g Fixtures							Proposed Fixtures								Fixtu	res Retrofitted	i			Unit Inst	allation Co	st			
Existing Lighting Fixture Type	Room Name	Lighting Fixture Description	Lamps per Fixture	Voltage	Watts	Qty of Fixtures	Total Watts	New Lighting Fixtur Type	e Existing/Replace	Description	Lamps per Fixture	Watts	Qty of Fixtures	Total Watts	Wattage Reduction	Average Burn Hours	Ave \$/kwh	Energy Savings, kWh	Energy Savings, \$	Qty	Material Each	Labor Each	Total Each	Total Materials	Total Labor	Total All	Rebate Estimate	Simple Payback
	First Floor																											
A	Superintendents Office	2L-T8-31w Utube 2x2 Troffer	2	120	48	6	288	NA	Existing to Remain	21-T8-31w Utube 2x2 Troffer	2	48	6	288	0	2000	\$0.16	0	\$0.00	0	0	0	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	
В	Front Office	1L-75w Par Lamp Down Light	1	120	75	3	225	NB	Relamp	1L-CFL-26w Medium base	1	28	3	84	141	3000	\$0.16	423	\$67.68	3	4.55	37.5	\$42.05	\$13.65	\$112.50	\$126.15	\$0.00	1.9
С	Corridor	4L-T12-40w 1x8 Surface Fixure	4	120	154	1	154	NC	Relamp, Reballast & Retrokit	32w-T8 energy saver w/ (2)electronic T8 High Efficiency ballasts	4	96	1	96	58	3000	\$0.16	174	\$27.84	1	105.76	60	\$165.76	\$105.76	\$60.00	\$165.76	\$10.00	5.6
D	Map Room	2L-T12-60w 1x8 Surface Fixture	2	120	160	3	480	ND	Relamp, Reballast & Retrokit	32w-T8 energy saver w/ (2)electronic T8 High Efficiency ballasts	4	95	3	285	195	2000	\$0.16	390	\$62.40	3	105.76	60	\$165.76	\$317.28	\$180.00	\$497.28	\$30.00	7.5
E	Map Room (storage)	1L-65w Par lamp Surface Fixture	1	120	65	1	65	NE	Relamp	1L-CFL-26w Medium base	1	28	1	28	37	1500	\$0.16	56	\$8.88	1	4.55	37.5	\$42.05	\$4.55	\$37.50	\$42.05	\$0.00	4.7
D	Storage Room	2L-T12-60w 1x8 Surface Fixture	2	120	160	1	160	ND	Relamp, Reballast & Retrokit	32w-T8 energy saver w/ (2)electronic T8 High Efficiency ballasts	4	95	1	95	65	1500	\$0.16	98	\$15.60	1	105.76	60	\$165.76	\$105.76	\$60.00	\$165.76	\$10.00	10.0
F	Storage Room	1L-100w A-lamp Surface Fixture	1	120	100	1	100	NF	Relamp	1L-CFL-32w Medium base	1	35	1	35	65	1500	\$0.16	98	\$15.60	1	4.55	37.5	\$42.05	\$4.55	\$37.50	\$42.05	\$0.00	2.7
G	Women's Room	2L-100w A-lamp Surface Fixture	2	120	200	1	200	NG	Relamp	2L-CFL-26w Medium base	2	56	1	56	144	1200	\$0.16	173	\$27.65	1	9.1	37.5	\$46.60	\$9.10	\$37.50	\$46.60	\$0.00	1.7
D	File Room	2L-T12-60w 1x8 Surface Fixture	2	120	160	1	160	ND	Relamp, Reballast & Retrokit	32w-T8 energy saver w/ (2)electronic T8 High Efficiency ballasts	4	95	1	95	65	2000	\$0.16	130	\$20.80	1	105.76	60	\$165.76	\$105.76	\$60.00	\$165.76	\$10.00	7.5
Н	Electrical Closet	2L-T8-32w 1x4 Surface Fixture	2	120	48	1	48	NH	Existing to Remain	2L-T8-32w 1x4 Surface Fixture	2	48	1	48	0	2500	\$0.16	0	\$0.00	0	0	0	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	
D	Break Room	2L-T12-60w 1x8 Surface Fixture	2	120	160	3	480	ND	Relamp, Reballast & Retrokit	32w-T8 energy saver w/ (2)electronic T8 High Efficiency ballasts	4	95	3	285	195	3000	\$0.16	585	\$93.60	3	105.76	60	\$165.76	\$317.28	\$180.00	\$497.28	\$30.00	5.0
I	Break Room	2L-60w A-lamp Surface Fixture	2	120	120	1	120	NI	Relamp	2L-CFL-26w Medium base	2	56	1	56	64	3000	\$0.16	192	\$30.72	1	9.1	37.5	\$46.60	\$9.10	\$37.50	\$46.60	\$0.00	1.5
Н	Bathroom	2L-T8-32w 1x4 Surface Fixture	2	120	48	1	48	NH	Existing to Remain	2L-T8-32w 1x4 Surface Fixture	2	48	1	48	0	2500	\$0.16	0	\$0.00	0	0	0	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	
1	Locker Room	2L-T8-32w 1x4 Surface Fixture	2	120	48	1	48	NJ	Reballast	32w-T8 energy saver w/electronic T8 High Efficiency ballast	2	48	1	48	0	2000	\$0.16	0	\$0.00	1	17.88	60	\$77.88	\$17.88	\$60.00	\$77.88	\$10.00	
Н	Recycling Coordination Office	2L-T8-32w 1x4 Surface Fixture	2	120	48	2	96	NH	Existing to Remain	2L-T8-32w 1x4 Surface Fixture	2	48	2	96	0	8760	\$0.16	0	\$0.00	0	0	0	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	
D	Recycling Coordination Office	2L-T12-60w 1x8 Surface Fixture	2	120	160	1	160	ND	Relamp, Reballast & Retrokit	32w-T8 energy saver w/ (2)electronic T8 High Efficiency ballasts	4	95	1	95	65	2000	\$0.16	130	\$20.80	1	105.76	60	\$165.76	\$105.76	\$60.00	\$165.76	\$10.00	7.5
D	Parts Room	2L-T12-60w 1x8 Surface Fixture	2	120	160	2	320	ND	Relamp, Reballast & Retrokit	32w-T8 energy saver w/ (2)electronic T8 High Efficiency ballasts	4	95	2	190	130	2000	\$0.16	260	\$41.60	2	105.76	60	\$165.76	\$211.52	\$120.00	\$331.52	\$20.00	7.5
D	Workshop	2L-T12-60w 1x8 Surface Fixture	2	120	160	4	640	ND	Relamp, Reballast & Retrokit	32w-T8 energy saver w/ (2)electronic T8 High Efficiency ballasts	4	95	4	380	260	2000	\$0.16	520	\$83.20	4	105.76	60	\$165.76	\$423.04	\$240.00	\$663.04	\$40.00	7.5
н	Vehicle Bay Workshop	2L-T8-32w 1x4 Surface Fixture	2	120	48	2	96	NH	Existing to Remain	2L-T8-32w 1x4 Surface Fixture	2	48	2	96	0	2000	\$0.16	0	\$0.00	0	0	0	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	
К	Vehicle Bay Workshop	4L-T8-32w 2x4 Surface Fixture	4	120	96	1	96	NK	Existing to Remain	4L-T8-32w 2x4 Surface Fixture	4	96	1	96	0	8760	\$0.16	0	\$0.00	0	0	0	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	
D	Vehicle Bay	2L-T12-60w 1x8 Surface Fixture	2	120	160	1	160	ND	Relamp, Reballast & Retrokit	32w-T8 energy saver w/ (2)electronic T8 High Efficiency ballasts	4	95	1	95	65	2500	\$0.16	163	\$26.00	1	105.76	60	\$165.76	\$105.76	\$60.00	\$165.76	\$10.00	6.0
L	Vehicle Bay	1L-400w MH Lowboy Fixture	1	120	400	7	2800	NL	Existing to Remain	1L-400w MH Lowboy Fixture	1	400	7	2800	0	8760	\$0.16	0	\$0.00	0	0	0	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	
M	Exterior Ltg	1L-70w MH Wall Pack Fixture	1	120	70	6	420	NM	Existing to Remain	1L-70w MH Wall Pack Fixture	1	70	6	420	0	2000	\$0.16	0	\$0.00	0	0	0	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	
	Total First Floor			•		51	7364						51	5815	1549			3,390	\$542.37	25				\$1,857	\$1,343	\$3,199	\$180	5.6

Project Name: Margate City Public Works

Location: Margate City, NJ

Description: Photovoltaic System 95% Financing - 20 year

Simple Payback Analysis

Total Construction Cost Annual kWh Production Annual Energy Cost Reduction Annual SREC Revenue

Photovoltaic System 95% Financing - 20 year \$256,680 44,507 \$7,121 \$15,577

First Cost Premium \$256,680

Simple Payback: 11.31 Years

Life Cycle Cost Analysis

Analysis Period (years): 25 Financing Term (mths): 240 \$0.160 Average Energy Cost (\$/kWh)

Financing Rate:

7.00%

95% Financing %: Maintenance Escalation Rate: 3.0% 3.0% Energy Cost Escalation Rate: SREC Value (\$/kWh) \$0.350

SREC Interest Net Cash Period Additional Energy kWh **Energy Cost** Additional Loan Cumulative Cash Outlay Production Savings Maint Costs Revenue Expense Principal Flow Cash Flow \$12,834 \$0 0 (12,834)0 0 0 0 44,507 \$7,121 \$0 \$15,577 \$5,801 \$0 \$16,885 \$12 (\$12,822)2 \$0 44,284 \$7,335 \$0 \$15,499 \$16,466 \$6,220 \$148 (\$12,674) 3 \$0 44,063 \$7,555 \$0 \$15,422 \$16,016 \$6,670 \$290 (\$12,384)4 \$0 43,843 \$7,781 \$0 \$15,345 \$15,534 \$7,152 \$440 (\$11,944)5 \$0 43,623 \$8,015 \$449 \$15,268 \$15,017 \$7,669 \$147 (\$11,797) 6 \$0 43,405 \$8,255 \$447 \$15,192 \$8,224 \$314 \$14,463 (\$11,483) 7 \$0 43,188 \$8,503 \$445 \$15,116 \$13,868 \$8,818 \$488 (\$10,996) 8 \$0 42,972 \$8,758 \$443 \$15,040 \$13,231 \$9,456 \$669 (\$10,326) 9 \$0 42,757 \$9,021 \$440 \$14,965 \$12,547 \$10,139 \$859 (\$9,467) 42,544 \$438 \$14,890 \$10,872 10 \$0 \$9,291 \$11,814 \$1,057 (\$8,410)\$0 \$9,570 \$436 11 42,331 \$14,816 \$11,028 \$11,658 \$1,264 (\$7,147)12 \$0 42,119 \$9,857 \$434 \$14,742 \$10,186 \$12,501 \$1,479 (\$5,668)13 41,909 \$432 \$9,282 \$1,703 (\$3,965) \$0 \$10,153 \$14,668 \$13,404 14 \$0 41,699 \$10,458 \$430 \$14,595 \$8,313 \$14,373 \$1,936 (\$2,029)15 \$427 \$14,522 \$0 41,491 \$10,771 \$7,274 \$15,412 \$2,179 \$150 \$425 16 \$0 41,283 \$11,094 \$14,449 \$6,160 \$16,527 \$2,432 \$2,582 17 \$0 41,077 \$11,427 \$423 \$14,377 \$4,965 \$17,721 \$2,695 \$5,277 18 \$421 \$0 40,871 \$11,770 \$14,305 \$3,684 \$19,002 \$2,968 \$8,244 19 \$0 40,667 \$12,123 \$419 \$14,233 \$2,310 \$20,376 \$3,251 \$11,496 20 \$0 40,464 \$12,487 \$417 \$14,162 \$837 \$21,849 \$3,546 \$15,042 21 \$0 40,261 \$12,861 \$415 \$14,091 \$710 \$20,086 \$5,742 \$20,784 22 40,060 \$13,247 \$413 \$14,021 \$486 \$16,529 \$9,841 \$30,625 \$0 23 \$0 39,860 \$13,645 \$411 \$13,951 \$0 \$27,185 \$57,810 \$0 24 \$0 39,660 \$14,054 \$409 \$13,881 \$0 \$0 \$27,527 \$85,337 25 \$0 39,462 \$14,476 \$406 \$0 \$0 \$27,881 \$13,812 \$113,217 \$243,846 849,096 \$191,346 \$6,926 \$297,184 \$209,883 \$280,461 \$219,450 **Totals:** Net Present Value (NPV) \$15,458 11.9% Internal Rate of Return (IRR)

				Margate City, NJ	Project Name: M Location: M		
			irect Purchase	Photovoltaic System - D	Description: P		
						oack Analysis	mple Payl
		chase	oltaic System - Direct Pur	Photov	Γ		
			\$256,680		al Construction Cost	Tot	
			44,507		ual kWh Production	Ann	
			\$7,121		ergy Cost Reduction	Annual En	
			\$15,577		nual SREC Revenue	An	
			\$256,680		First Cost Premium		
	Years		11,31		Simple Payback:		
0%	Financing %:				25	Cost Analysis Analysis Period (years):	ife Cycle C
3.0%	nance Escalation Rate:	Mainta			0	Financing Term (mths):	
3.0%	Cost Escalation Rate:				\$0.160	age Energy Cost (\$/kWh)	Avar
\$0.350	SREC Value (\$/kWh)	Elicig			0.00%	Financing Rate:	71101
Cumulative	Net Cash	SREC	Additional	Energy Cost	Energy kWh	Additional	Period
Cash Flow	Flow	Revenue	Maint Costs	Savings	Production	Cash Outlay	1 01100
0	(256,680)	\$0	0	0	0	\$256,680	0
(\$233,982)	\$22,698	\$15,577	\$0	\$7,121	44,507	\$0	1
(\$211,147)	\$22,834	\$15,499	\$0	\$7,335	44,284	\$0	2
(\$188,171)	\$22,977	\$15,422	\$0	\$7,555	44,063	\$0	3
(\$165,044)	\$23,126	\$15,345	\$0	\$7,781	43,843	\$0	4
(\$142,211)	\$22,834	\$15,268	\$449	\$8,015	43,623	\$0	5
(\$119,211)	\$23,000	\$15,192	\$447	\$8,255	43,405	\$0	6
(\$96,037)	\$23,174	\$15,116	\$445	\$8,503	43,188	\$0	7
(\$72,681)	\$23,356	\$15,040	\$443	\$8,758	42,972	\$0	8
(\$49,136)	\$23,545	\$14,965	\$440	\$9,021	42,757	\$0	9
(\$25,392)	\$23,743	\$14,890	\$438	\$9,291	42,544	\$0	10
(\$1,442)	\$23,950	\$14,816	\$436	\$9,570	42,331	\$0	11
\$22,723	\$24,165	\$14,742	\$434	\$9,857	42,119	\$0	12
\$47,112	\$24,389	\$14,668	\$432	\$10,153	41,909	\$0	13
\$71,735	\$24,623	\$14,595	\$430	\$10,458	41,699	\$0	14
\$96,601	\$24,866	\$14,522	\$427	\$10,771	41,491	\$0	15
\$121,719	\$25,118	\$14,449	\$425	\$11,094	41,283	\$0	16
\$147,100	\$25,381	\$14,377	\$423	\$11,427	41,077	\$0	17
\$172,754	\$25,654	\$14,305	\$421	\$11,770	40,871	\$0	18
\$198,692	\$25,938	\$14,233	\$419	\$12,123	40,667	\$0	19
\$224,924	\$26,232	\$14,162	\$417	\$12,487	40,464	\$0	20
\$251,462	\$26,538	\$14,091	\$415	\$12,861	40,261	\$1	21
\$278,318	\$26,856	\$14,021	\$413	\$13,247	40,060	\$2	22
\$305,503	\$27,185	\$13,951	\$411	\$13,645	39,860	\$3	23
\$333,030	\$27,527	\$13,881	\$409	\$14,054	39,660	\$4	24
00 00 011	\$27,881	\$13,812	\$406	\$14,476	39,462	\$5	25
\$360,911 \$481,604	\$617,591	\$297,184	\$6,926	\$191,346	849.096	Totals:	

Internal Rate of Return (IRR)

7.9%

Building	Usable Roof Area (sq ft)	Panel	Qty	Panel Sq Ft	Panel Total Sq Ft	Total KW	Total Annual kWh	Panel Weight (33 lbs)	W/SQFT
Public Works	4500	Sunpower SPR230	124	14.7	1,823	28.52	44,507	4,092	15.64

Notes:

1. Estimated kWH based on 4.68 hours full output per day per 365 day year. Actual kWH will vary day to day.

STATEMENT OF ENERGY PERFORMANCE **Public Works**

Building ID: 1813353

For 12-month Period Ending: April 30, 20091

Date SEP becomes ineligible: N/A

Date SEP Generated: August 06, 2009

Facility Public Works Benson & Winchester MArgate City, NJ 08402 **Facility Owner** N/A

Primary Contact for this Facility

Year Built: 1968

Gross Floor Area (ft2): 7,019

Energy Performance Rating² (1-100) 37

Site Energy Use Summary³

Natural Gas (kBtu)4 485,359 149,732 Electricity (kBtu) Total Energy (kBtu) 635,091

Energy Intensity⁵

Site (kBtu/ft2/yr) 92 Source (kBtu/ft²/yr) 146

Emissions (based on site energy use) Greenhouse Gas Emissions (MtCO2e/year) 49

Electric Distribution Utility

Atlantic City Electric Co

National Average Comparison

National Average Site EUI 80 National Average Source EUI 128 % Difference from National Average Source EUI 14% **Building Type** Office Stamp of Certifying Professional

Based on the conditions observed at the time of my visit to this building, I certify that the information contained within this statement is accurate.

Meets Industry Standards⁶ for Indoor Environmental **Conditions:**

Ventilation for Acceptable Indoor Air Quality N/A Acceptable Thermal Environmental Conditions N/A Adequate Illumination N/A **Certifying Professional**

- 1. Application for the ENERGY STAR must be submitted to EPA within 4 months of the Period Ending date. Award of the ENERGY STAR is not final until approval is received from EPA. 2. The EPA Energy Performance Rating is based on total source energy. A rating of 75 is the minimum to be eligible for the ENERGY STAR
- 3. Values represent energy consumption, annualized to a 12-month period.
- 4. Natural Gas values in units of volume (e.g. cubic feet) are converted to kBtu with adjustments made for elevation based on Facility zip code.
- 5. Values represent energy intensity, annualized to a 12-month period.
- 6. Based on Meeting ASHRAE Standard 62 for ventilation for acceptable indoor air quality, ASHRAE Standard 55 for thermal comfort, and IESNA Lighting Handbook for lighting quality.

The government estimates the average time needed to fill out this form is 6 hours (includes the time for entering energy data, PE facility inspection, and notarizing the SEP) and welcomes suggestions for reducing this level of effort. Send comments (referencing OMB control number) to the Director, Collection Strategies Division, U.S., EPA (2822T), 1200 Pennsylvania Ave., NW, Washington, D.C. 20460.

ENERGY STAR® Data Checklist for Commercial Buildings

In order for a building to qualify for the ENERGY STAR, a Professional Engineer (PE) must validate the accuracy of the data underlying the building's energy performance rating. This checklist is designed to provide an at-a-glance summary of a property's physical and operating characteristics, as well as its total energy consumption, to assist the PE in double-checking the information that the building owner or operator has entered into Portfolio Manager.

Please complete and sign this checklist and include it with the stamped, signed Statement of Energy Performance. NOTE: You must check each box to indicate that each value is correct, OR include a note.

CRITERION	VALUE AS ENTERED IN PORTFOLIO MANAGER	VERIFICATION QUESTIONS	NOTES	$ \sqrt{} $
Building Name	Public Works	Is this the official building name to be displayed in the ENERGY STAR Registry of Labeled Buildings?		
Туре	Office	Is this an accurate description of the space in question?		
Location	Benson & Winchester, MArgate City, NJ 08402	Is this address accurate and complete? Correct weather normalization requires an accurate zip code.		
Single Structure	Single Facility	Does this SEP represent a single structure? SEPs cannot be submitted for multiple-building campuses (with the exception of acute care or children's hospitals) nor can they be submitted as representing only a portion of a building		
Public Works (Office)				
CRITERION	VALUE AS ENTERED IN PORTFOLIO MANAGER	VERIFICATION QUESTIONS	NOTES	$\overline{\mathbf{A}}$
Gross Floor Area	7,019 Sq. Ft.	Does this square footage include all supporting functions such as kitchens and break rooms used by staff, storage areas, administrative areas, elevators, stairwells, atria, vent shafts, etc. Also note that existing atriums should only include the base floor area that it occupies. Interstitial (plenum) space between floors should not be included in the total. Finally gross floor area is not the same as leasable space. Leasable space is a subset of gross floor area.		
Weekly operating hours	50 Hours	Is this the total number of hours per week that the Office space is 75% occupied? This number should exclude hours when the facility is occupied only by maintenance, security, or other support personnel. For facilities with a schedule that varies during the year, "operating hours/week" refers to the total weekly hours for the schedule most often followed.		
Workers on Main Shift	15	Is this the number of employees present during the main shift? Note this is not the total number of employees or visitors who are in a building during an entire 24 hour period. For example, if there are two daily 8 hour shifts of 100 workers each, the Workers on Main Shift value is 100. The normal worker density ranges between 0.3 and 10 workers per 1000 square feet (92.8 square meters)		
Number of PCs	4	Is this the number of personal computers in the Office?		
Percent Cooled	50% or more	Is this the percentage of the total floor space within the facility that is served by mechanical cooling equipment?		
Percent Heated	50% or more	Is this the percentage of the total floor space within the facility that is served by mechanical heating equipment?		

ENERGY STAR® Data Checklist for Commercial Buildings

Energy Consumption

Power Generation Plant or Distribution Utility: Atlantic City Electric Co

Fuel Type: Electricity								
Meter: Electric (kWh (thousand Watt-hours)) Space(s): Entire Facility								
Start Date	End Date	Energy Use (kWh (thousand Watt-hours)						
03/07/2009	04/06/2009	4,905.00						
02/07/2009	03/06/2009	5,313.00						
01/07/2009	02/06/2009	5,079.00						
12/07/2008	01/06/2009	3,496.00						
11/07/2008	12/06/2008	2,874.00						
10/07/2008	11/06/2008	3,573.00						
09/07/2008	10/06/2008	3,871.00						
08/07/2008	09/06/2008	3,694.00						
07/07/2008	08/06/2008	3,715.00						
06/07/2008	07/06/2008	2,352.00						
05/07/2008	06/06/2008	2,164.00						
Electric Consumption (kWh (thousand Watt-hou	ırs))	41,036.00						
Electric Consumption (kBtu)		140,014.83						
Total Electricity Consumption (kBtu)	140,014.83							
s this the total Electricity consumption at this b								

el Type: Natural Gas								
Meter: Gas (therms) Space(s): Entire Facility								
Start Date	End Date	Energy Use (therms)						
03/07/2009	04/06/2009	1,024.57						
02/07/2009	03/06/2009	1,214.43						
01/07/2009	02/06/2009	1,015.48						
12/07/2008	01/06/2009	609.53						
11/07/2008	12/06/2008	216.46						
10/07/2008	11/06/2008	24.27						
09/07/2008	10/06/2008	23.57						
08/07/2008	09/06/2008	26.35						
07/07/2008	08/06/2008	32.15						
06/07/2008	07/06/2008	102.10						

05/07/2008	06/06/2008	165.87					
Gas Consumption (therms)		4,454.78					
Gas Consumption (kBtu)		445,478.00					
Total Natural Gas Consumption (kBtu)		445,478.00					
Is this the total Natural Gas consumption at th	is building including all Natural Gas meters?						
Additional Fuels							
Do the fuel consumption totals shown above repre Please confirm there are no additional fuels (distric							
Certifying Professional (When applying for the ENERGY STAR, this must be the same PE that signed and stamped the SEP.)							
Name:	Date:						
Signature:							
Signature is required when applying for the ENERGY STAR.							

FOR YOUR RECORDS ONLY. DO NOT SUBMIT TO EPA.

Please keep this Facility Summary for your own records; do not submit it to EPA. Only the Statement of Energy Performance (SEP), Data Checklist and Letter of Agreement need to be submitted to EPA when applying for the ENERGY STAR.

Facility Public Works Benson & Winchester MArgate City, NJ 08402 Facility Owner

Primary Contact for this Facility

General Information

Public Works	
Gross Floor Area Excluding Parking: (ft²)	7,019
Year Built	1968
For 12-month Evaluation Period Ending Date:	April 30, 2009

Facility Space Use Summary

Public Works	
Space Type	Office
Gross Floor Area(ft2)	7,019
Weekly operating hours	50
Workers on Main Shift	15
Number of PCs	4
Percent Cooled	50% or more
Percent Heated	50% or more

Energy Performance Comparison

	Evaluatio	n Periods	Comparisons						
	Cumont	Baseline							
Performance Metrics	Current (Ending Date 04/30/2009)	(Ending Date 04/30/2009)	Rating of 75	Target	National Average				
Energy Performance Rating	37	37	75	N/A	50				
Energy Intensity									
Site (kBtu/ft²)	92	92	60	N/A	80				
Source (kBtu/ft²)	146	146	94	N/A	128				
Energy Cost									
\$/year	\$ 14,295.65	\$ 14,295.65	\$ 9,246.56	N/A	\$ 12,502.28				
\$/ft²/year	\$ 2.04	\$ 2.04	\$ 1.32	N/A	\$ 1.78				
Greenhouse Gas Emissions									
MtCO ₂ e/year	49	49	32	N/A	43				
kgCO ₂ e/ft²/year	7	7	5	N/A	6				

More than 50% of your building is defined as Office. Please note that your rating accounts for all of the spaces listed. The National Average column presents energy performance data your building would have if your building had an average rating of 50.

Notes:

- o This attribute is optional.
- d A default value has been supplied by Portfolio Manager.