

TABLE OF CONTENTS

I.	HISTORIC ENERGY CONSUMPTION/COST	. 2
II.	FACILITY DESCRIPTION	. 7
III.	MAJOR EQUIPMENT LIST	. 9
IV.	ENERGY CONSERVATION MEASURES	10
V.	ADDITIONAL RECOMMENDATIONS	32
Appe	ndix A – ECM Cost & Savings Breakdown	
Appe	ndix B – New Jersey Smart Start® Program Incentives	
Appe	ndix C – Portfolio Manager "Statement of Energy Performance"	
Appe	ndix D – Major Equipment List	
Appe	ndix E – Investment Grade Lighting Audit	

I. HISTORIC ENERGY CONSUMPTION/COST

The energy usage for the facility has been tabulated and plotted in graph form as depicted within this section. Each energy source has been identified and monthly consumption and cost noted per the information provided by the Owner.

Electric Utility Provider: Public Service Electric & Gas

Electric Utility Rate Structure: Not available

Third Party Supplier: None

Natural Gas Utility Provider:
Utility Rate Structure:
Public Service Electric & Gas
General Service Gas (GSG)
Third Party Supplier:
Great Eastern Energy

The electric usage profile represents the actual electrical usage for the facility. The electric utility measures consumption in kilowatt-hours (KWH) and maximum demand in kilowatts (KW). One KWH usage is equivalent to 1000 watts running for one hour. One KW of electric demand is equivalent to 1000 watts running at any given time. The basic usage charges are shown as generation service and delivery charges along with several non-utility generation charges. Rates used in this report reflect the historical data received for the facility.

The gas usage profile within each facility report shows the actual natural gas energy usage for the facility. The gas utility measures consumption in cubic feet x 100 (CCF), and converts the quantity into Therms of energy. One Therm is equivalent to 100,000 BTUs of energy.

Table 1 Electricity Billing Data

Electricity billing data was not available for this facility.

Figure 1 Electricity Usage Profile

Electricity usage profile was not available for this facility.

Table 2 Natural Gas Billing Data

NATURAL GAS USAGE SUMMARY

Utility Provider: PSE&G

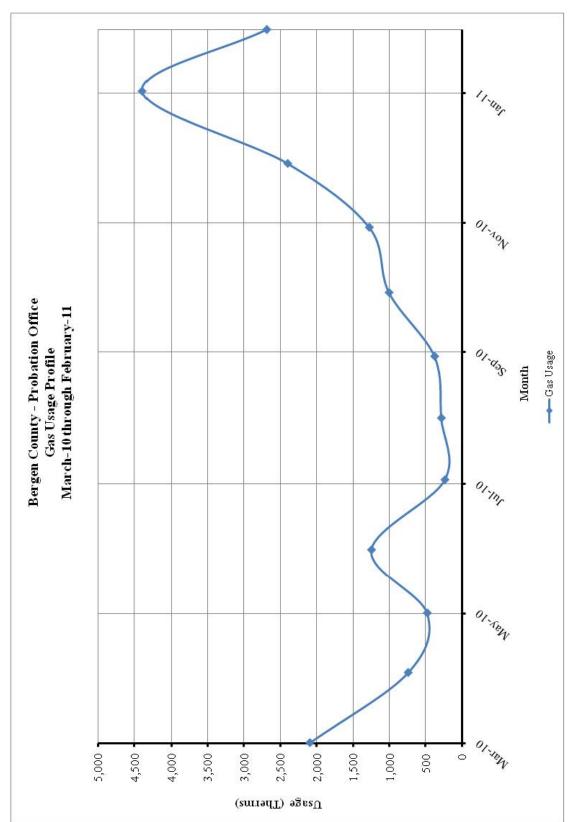
Rate: GSG

Meter No: 2807924, 1806081

Account # 66 939 892 09, 65 819 128 08

Third Party Utility Provider: Great Eastern Energy

TPS Meter No: N/A


MONTH OF USE	CONSUMPTION (THERMS)	TOTAL BILL
Mar-10	2,093.16	\$2,162.15
Apr-10	741.22	\$730.24
May-10	478.34	\$494.66
Jun-10	1,245.35	\$1,258.45
Jul-10	235.47	\$98.95
Aug-10	284.23	\$116.06
Sep-10	376.91	\$147.03
Oct-10	1,003.41	\$397.67
Nov-10	1,274.96	\$514.22
Dec-10	2,396.86	\$996.31
Jan-11	4,390.24	\$1,858.85
Feb-11	2,684.43	\$1,033.24
TOTALS	17,205	\$9,807.83

AVERAGE RATE:

\$0.57

\$/THERM

Figure 2 Natural Gas Usage Profile

II. FACILITY DESCRIPTION

The 22,205 SF Bergen County Probation Office Building is a single story facility with a mezzanine comprised of offices, restrooms, conference rooms, storage room and mechanical rooms.

The typical hours of operation for this facility are between 8:30 am and 6:30 pm on the weekdays. The facility is closed on weekends. The facility has 115 staff and approximately 400-500 visitors per day.

Exterior walls are cinder block construction with brick façade. The amount of insulation within the wall is unknown. There are small amount of windows in this facility. The majority of the windows are in poor condition. Typical windows throughout the facility are single pane, ¹/₄" clear glass with metal frames. A small number of the windows were replaced with new energy efficient windows with double pane glass and aluminum frames.

The roof is constructed of a built-up roof with light color stone covering, where all rooftop HVAC equipment is located. The amount of insulation below the roofing is unknown. The building was built in 1950 as a supermarket and acquired by the Bergen County in 1969 to house the County Welfare Department. Rear quarter of the building was utilized as a senior housing until 2009. The building serves as the Bergen County Probation Office since 2010.

HVAC Systems

The Probation Building air conditioning is achieved via three (3) constant volume central rooftop air conditioning units (RTUs) made by Trane. The cooling capacities of the RTUs are 15, 20 and 25 Tons with a total installed cooling capacity of 60 Tons. Two (2) of the Trane rooftop units (15 & 25 Ton) are approximately 17 years old while the third unit is approximately 5 years old. Each unit is equipped with gas heating coils for primary supply air preheating and direct expansion coils for cooling.

In addition to the central rooftop units, there is a 1-Ton Sanyo ductless split air conditioning unit serving the Chief's office and 1-Ton window air conditioning unit serving a conference room in the mezzanine.

The primary heating for the building is achieved via one (1) antiquated, 1,730 MBH, natural gas fired, fire tube steam boiler located in the boiler room in the mezzanine. The boiler is original to the building and it is approximately 58 years old. The boiler is in very poor condition and requires major maintenance and restoration annually in order to keep delivering heat to the building. The insulation on the boiler surfaces is partially missing. The boiler is sized to provide steam for a steam to hot water heat exchanger, which produces heating hot water for the perimeter baseboard heaters. Entrance areas and stairwells are heated with hot water cabinet heaters.

Heating hot water is delivered to the hot water baseboard heater and the cabinet heaters via a ½ HP pipe mounted hot water circulator. Hot water baseboard heaters, pipes, pumps and the insulation appear to be in good condition.

Exhaust System

Air is exhausted from the toilet rooms and the common areas through the roof exhausters. The exhaust fans are interlocked with the air conditioning units.

HVAC System Controls

The three (3) rooftop air conditioning units within the facility are controlled via three (3) digital programmable thermostats located in the each zone fed by each unit. The thermostats are programmed to set-back space temperature during unoccupied hours.

There are approximately 10 hot water perimeter heating zones in the facility. Each perimeter zone temperature is controlled via a mechanical thermostat made by Barber Coleman. Since there is no programmable thermostat for the boiler, the boiler stays at occupied mode at all times during the heating season.

Domestic Hot Water

Domestic hot water for the restrooms and office lounge is provided by a 50 gallon, 36 MBH, gas fired hot water heater made by Rheem. The hot water heater is approximately 14 years old and it is in fair condition. The domestic hot water is circulated throughout the building by a hot water circulation pump. The circulation pump is controlled by an aqua stat. The domestic hot water piping insulation appeared to be in good condition.

Lighting

Refer to the Investment Grade lighting Audit Appendix for a detailed list of the lighting throughout the facility and estimated operating hours per space.

III. MAJOR EQUIPMENT LIST

The equipment list contains major energy consuming equipment that through implementation of energy conservation measures could yield substantial energy savings. The list shows the major equipment in the facility and all pertinent information utilized in energy savings calculations. An approximate age was assigned to the equipment in some cases if a manufactures date was not shown on the equipment's nameplate. The ASHRAE service life for the equipment along with the remaining useful life is also shown in the Appendix.

Refer to the Major Equipment List Appendix for this facility.

IV. ENERGY CONSERVATION MEASURES

Energy Conservation Measures are developed specifically for this facility. The energy savings and calculations are highly dependent on the information received from the site survey and interviews with operations personnel. The assumptions and calculations should be reviewed by the owner to ensure accurate representation of this facility. The following ECMs were analyzed:

Table 3
ECM Financial Summary

ENERGY	ENERGY CONSERVATION MEASURES (ECM's)								
ECM NO.	DESCRIPTION	NET INSTALLATION COST ^A	ANNUAL SAVINGS ^B	SIMPLE PAYBACK (Yrs)	SIMPLE LIFETIME ROI				
ECM #1	Lighting equipment upgrade	\$24,756	\$7,496	3.3	354.2%				
ECM #2	CRT Monitors	\$4,600	\$759	6.1	147.5%				
ECM #3	AC Unit upgrades	\$39,840	\$1,280	31.1	-51.8%				
ECM #4	Replace steam boiler with hot water boiler	\$91,375	\$5,946	15.4	-2.4%				
ECM #5	Install Building Automation System	\$88,000	\$6,843	12.9	16.6%				
ECM #6	Window Replacement	\$16,500	\$466	35.4	-57.6%				

Notes: A. Cost takes into consideration applicable NJ Smart StartTM incentives.

B. Savings takes into consideration applicable maintenance savings.

Table 4
ECM Energy Summary

ENERGY	ENERGY CONSERVATION MEASURES (ECM's)								
		ANNUAL UTILITY REDUCTION							
ECM NO.	DESCRIPTION	ELECTRIC DEMAND (KW)	ELECTRIC CONSUMPTION (KWH)	NATURAL GAS (THERMS)					
ECM #1	Lighting equipment upgrade	16.9	43,594	0					
ECM #2	CRT Monitors	0	4,600	0					
ECM #3	AC Unit upgrades	9.7	7,760	0					
ECM #4	Replace steam boiler with hot water boiler	0	0	4,497					
ECM #5	Install Building Automation System	0	30,000	1,720					
ECM #6	Window Replacement	0.2	587	336					

Table 5
Facility Project Summary

ENERGY SAV	ENERGY SAVINGS IMPROVEMENT PROGRAM - POTENTIAL PROJECT									
ENERGY CONSERVATION MEASURES	ANNUAL ENERGY SAVINGS (\$)	PROJECT COST (\$)	SMART START INCENTIVES	CUSTOMER COST	SIMPLE PAYBACK					
Lighting equipment upgrade	\$7,496	\$26,576	\$1,820	\$24,756	3.3					
CRT Monitors	\$759	\$4,600	\$0	\$4,600	6.1					
AC Unit upgrades	\$1,280	\$43,000	\$3,160	\$39,840	31.1					
Replace steam boiler with hot water boiler	\$5,946	\$94,000	\$2,625	\$91,375	15.4					
Install Building Automation System	\$6,843	\$88,000	\$0	\$88,000	12.9					
Window Replacement	\$466	\$16,500	\$0	\$16,500	35.4					
Design / Construction Extras (15%)		\$40,901	\$0	\$40,901						
Total Project	\$22,791	\$313,577	\$4,445	\$305,972	13.4					

Design / Construction Extras is shown as an additional cost for the facility project summary. This cost is included to estimate the costs associated with construction management fees for a larger combined project.

ECM #1: Lighting Equipment Upgrade

Description:

The majority of the lighting throughout the Bergen County Probation Office is provided with outdated fixtures with T12 lamps and magnetic ballasts. It is recommended to replace all of the T12 fixtures in these areas with higher efficiency fluorescent T8 fixtures with electronic ballasts.

This ECM includes re-lamping of the existing fluorescent fixtures with 800 series, 28W T8 lamps. The new, energy efficient fixtures with supersaver T8 lamps will provide adequate lighting and will save on electrical costs due to better performance of the lamp and ballasts. This ECM also includes maintenance savings through the reduced number of lamps replaced per year. The expected lamp life of a T8 lamp is approximately 30,000 burn-hours, in comparison to the existing T12 lamps which is approximately 20,000 burn-hours. The facility will need approximately 33% less lamps replaced per year for each one for one fixture replaced.

The ECM also includes replacement of any incandescent lamps with compact fluorescent lamps. Compact fluorescent lamps (CFL's) were designed to be direct replacements for the standard incandescent lamps which are common to table lamps, spot lights, hi-hats, bathroom vanity lighting, etc. The energy usage of an incandescent lamp compared to a compact fluorescent lamp is approximately 3 to 4 times greater. In addition to the energy savings, compact fluorescent fixtures burn-hours are 8 to 15 times longer than incandescent fixtures ranging from 6,000 to 15,000 burn-hours compared to incandescent fixtures ranging from 750 to 1000 burn-hours. However, the maintenance savings due to reduced lamp replacement is offset by the higher cost of the CFL's compared to the incandescent lamps.

Energy Savings Calculations:

The **Investment Grade Lighting Audit Appendix** outlines the hours of operation, proposed retrofits, costs, savings, and payback periods for each set of fixtures in the each building.

Rebates and Incentives:

NJ Smart Start[®] Program Incentives are calculated using the **Smart Start**[®] **Incentive Appendix** as follows:

Retrofit of T-12 fixtures to T-5 or T-8 with electric ballasts

\$10 per fixture (1-4 lamp retrofits)

Smart Start® Incentive = $(\# \text{ of fixtures} \times \$10) = 182 \times \$10 = \1820

Replacement and Maintenance Savings are calculated as follows:

Savings=(reductionin lampsreplacedper year)×(repacment\$ per lamp+ Labor\$ per lamp)

Savings= $43.37 \times (\$2 \text{perlamp} + \$5 \text{perlamp}) = \$304$

Energy Savings Summary:

ECM #1 - ENERGY SAVINGS SUMMARY					
Installation Cost (\$):	\$26,576				
NJ Smart Start Equipment Incentive (\$):	\$1,820				
Net Installation Cost (\$):	\$24,756				
Maintenance Savings (\$/Yr):	\$304				
Energy Savings (\$/Yr):	\$7,193				
Total Yearly Savings (\$/Yr):	\$7,496				
Estimated ECM Lifetime (Yr):	15				
Simple Payback	3.3				
Simple Lifetime ROI	354.2%				
Simple Lifetime Maintenance Savings	\$4,553				
Simple Lifetime Savings	\$112,447				
Internal Rate of Return (IRR)	30%				
Net Present Value (NPV)	\$64,736.72				

ECM #2: Computer Monitor Replacement

Description:

Some of the computers in the Probation Office utilize CRT computer monitors. These computer monitors are outdated and have several disadvantages such as; significantly increased higher energy consumption, uses large amount of desk space, poor picture quality, distortions and flickering image, secular glare problems, and high weight, and electromagnetic emissions. Many of the drawbacks are difficult to quantify except for the energy use. CRT monitors use considerably more energy than an alternative flat panel LCD monitor. Replacement of the existing CRT monitors with LCD monitors saves considerable energy as well as provides other ergonomic benefits as well.

Based on the site survey it was noted that a number of the computers may be left on and allowed to run 24 / 7. Some of the monitors were left in screen saver mode, which is deceiving since this mode only saves the computer screen from image burn in, however it does not save on energy consumption. The average operating hours for all computers and monitors is estimated based on the site survey observations. Energy consumption of computer monitors are based on manufacture's specifications.

This ECM includes replacement of all existing CRT monitors with LCD flat panel monitors throughout the school. Installation costs were neglected for this ECM with the intention that this ECM would be replaced by the school employees. The calculations are based on the following operating assumptions:

Energy Savings Calculations:

of Computers: 46
Run Time %: 100%
Weeks per Yr: 50
Hrs per Week: 40

$$Electric\ Usage = \frac{\#of\ Computers \times Run\ Time\ \% \times Monitor\ Power\ (W) \times Operation\ (Hrs)}{1000 \left(\frac{W}{KW}\right)}$$

$$Energy\ Cost = Electric\ Usage(kWh) \times Ave\ Elec\ Cost\left(\frac{\$}{kWh}\right)$$

COMPUTER MONITOR CALCULATIONS							
ECM INPUTS	EXISTING	PROPOSED	SAVINGS				
ECM INPUTS	CRT Monitors	LCD Monitor					
# of Computers	46	46					
Monitor Power Cons. (W)	75	25					
Run Time %	100%	100%					
Operating Hrs per Week	40	40					
Operating Weeks per Yr	50	50					
Elec Cost (\$/kWh)	0.165	0.165					
ENER	GY SAVINGS CAL	CULATIONS					
ECM RESULTS	EXISTING	PROPOSED	SAVINGS				
Electric Usage (kWh)	6,900	2,300	4,600				
Energy Cost (\$)	\$1,139	\$380	\$759				
COMMENTS:							

Installation cost of new monitors is estimated based on current pricing for a 17" LCD monitor on the market today. No labor costs were included for replacing the existing monitors with the new monitors. No incentives are available for installation of computer monitors. Net cost per monitor was estimated to be \$100.

Installation Costs: # Monitors X Cost per Monitor

46 Monitors X \$100 per Monitor

\$4,600

Energy Savings Summary:

ECM #2 - ENERGY SAVINGS SUMMARY					
Installation Cost (\$):	\$4,600				
NJ Smart Start Equipment Incentive (\$):	\$0				
Net Installation Cost (\$):	\$4,600				
Maintenance Savings (\$/Yr):	\$0				
Energy Savings (\$/Yr):	\$759				
Total Yearly Savings (\$/Yr):	\$759				
Estimated ECM Lifetime (Yr):	15				
Simple Payback	6.1				
Simple Lifetime ROI	147.5%				
Simple Lifetime Maintenance Savings	\$0				
Simple Lifetime Savings	\$11,385				
Internal Rate of Return (IRR)	14%				
Net Present Value (NPV)	\$4,460.89				

ECM #3: Air Conditioning Unit Upgrades

Description:

Air conditioning for the Bergen County Probation Office is provided with three main rooftop air conditioning units. Two of these units are older and inefficient units while the third unit was installed approximately 5 years ago and appear to be in good condition.

The older units are standard efficiency units and they can be replaced with new high efficiency units for energy savings. New air conditioners provide higher full load and part load efficiencies due to advances in inverter motor technologies, heat exchangers and refrigerants.

This ECM includes one-for-one replacement of the older air conditioning units with new higher efficiency systems. It is recommended to fully evaluate the capacity needed for all new systems prior to moving forward with this ECM. A summary of the unit replacements for this ECM can be found in the table below:

	ENERGY SAVINGS CALCULATIONS									
ECM INPUTS	COOLING CAPACITY, BTU/Hr	ANNUAL COOLING HOURS	EXISTING UNITS (S)EER	SPLIT UNITS (S)EER	# OF UNITS	ENERGY SAVINGS kWh	DEMAND SAVINGS kW			
RTU-1 Trane YCD300	300,000	800	9.7 EER	11.5 EER	1	3,873	4.8			
RTU-3 Trane YCD180	180,000	800	8.6 EER	11.2 EER	1	3,887	4.9			
Total					2	7,760	9.7			

The manufacturer used for the design basis is Aaon. The units are one for one style replacements with matching capacity of the new units to the old units.

Energy Savings Calculations:

Cooling Energy Savings:

Seasonal energy consumption of the air conditioners at the cooling mode is calculated with the equation below:

Energy Savings, kWh = Cooling Capacity,
$$\frac{BTU}{Hr} \times \left(\frac{1}{SEER_{Old}} - \frac{1}{SEER_{New}}\right) \times \frac{Operation Hours}{1000 \frac{W}{Wh}}$$

$$Demand \ Savings, kW \ = \frac{Energy \ Savings \ (kWh)}{Hours \ of \ Cooling}$$

Cooling Cost Savings = Energy Savings, kWh × Cost of Electricity
$$\left(\frac{\$}{\text{kWh}}\right)$$

ENERGY SAVINGS CALCULATIONS									
ECM INPUTS	COOLING CAPACITY, BTU/Hr	ANNUAL COOLING HOURS	EXISTING UNITS (S)EER	SPLIT UNITS (S)EER	# OF UNITS	ENERGY SAVINGS kWh	DEMAND SAVINGS kW		
RTU-1 Trane YCD300	300,000	800	9.7 EER	11.5 EER	1	3,873	4.8		
RTU-3 Trane YCD180	180,000	800	8.6 EER	11.2 EER	1	3,887	4.9		
Total					2	7,760	9.7		

Project Cost, Incentives and Maintenance Savings

From the NJ Smart Start[®] Program appendix, the replacement of split system AC units and unitary systems with high efficiency AC systems falls under the category "Unitary HVAC Split System" and warrants an incentive based on efficiency (EER/SEER). The program incentives are calculated as follows:

SmartStart® Incentive (CoolingTons× \$/TonIncentive)

UNITARY / SPLIT SYSTEM AC UNITS REBATE SUMMARY						
UNIT DESCRIPTION	UNIT EFFICIENCY	REBATE \$/TON	PROPOSED CAPACITY TONS	TOTAL REBATE \$		
≥20 to 30 tons	10.5 EER	79	25	\$1,975		
\geq 11.25 to < 20 tons	11.5 EER	79	15	\$1,185		
\geq 5.4 to < 11.25 tons	11.5 EER	73	0	\$0		
5.4 tons or less Unitary AC and Split System	≥14 SEER	\$92	0	\$0		
TOTAL			40	\$3,160		

Summary of cost, savings and payback for this ECM is below.

	COST & SAVINGS SUMMARY									
ECM INPUTS	INSTALLED COST	# OF UNITS	TOTAL COST	REBATES	NET COST	ENERGY SAVING	PAY BACK YEARS			
RTU-1 Trane YCD300	\$26,000	1	\$26,000	\$1,975	\$24,025	\$639	37.6			
RTU-3 Trane YCD180	\$17,000	1	\$17,000	\$1,185	\$15,815	\$641	24.7			
Total		2	\$43,000	\$3,160	\$39,840	\$1,280	31.1			

There is no significant maintenance savings due to implementation of this ECM.

Energy Savings Summary:

ECM #3 - ENERGY SAVINGS SUMMARY						
Installation Cost (\$):	\$43,000					
NJ Smart Start Equipment Incentive (\$):	\$3,160					
Net Installation Cost (\$):	\$39,840					
Maintenance Savings (\$/Yr):	\$0					
Energy Savings (\$/Yr):	\$1,280					
Total Yearly Savings (\$/Yr):	\$1,280					
Estimated ECM Lifetime (Yr):	15					
Simple Payback	31.1					
Simple Lifetime ROI	-51.8%					
Simple Lifetime Maintenance Savings	\$0					
Simple Lifetime Savings	\$19,205					
Internal Rate of Return (IRR)	-8%					
Net Present Value (NPV)	(\$24,555.17)					

ECM #4: Condensing Boiler Installation

Description:

The primary source of heating for the building is an antiquated, 1,730 MBH, natural gas fired, fire tube steam boiler located in the boiler room in the mezzanine. The boiler is original to the building and it is approximately 58 years old. The boiler is in very poor condition and requires major maintenance and restoration annually in order to keep delivering heat to the building. The insulation on the boiler surfaces is partially missing. The boiler is sized to provide steam for a steam to hot water heat exchanger, which produces heating hot water for the perimeter baseboard heaters. Steam heat is inherently an inefficient method for space heating. It is recommended to replace the steam boiler and the heat exchanger with a condensing hot water boiler.

New condensing boilers could substantially improve the operating efficiency of the heating system of the building. Condensing boiler's peak efficiency tops out at 99% depending on return water temperature. Due to the operating conditions of the building, the annual average operating efficiency of the proposed condensing boiler is expected to be 88%. The estimated efficiency of the existing system is approximately 65%, which results in a 28% increase in overall heating system efficiency. This ECM is based on variable supply water temperature adjusted based on outdoor temperature.

This ECM includes installation of one condensing gas fired boilers to replace the existing steam boiler. The basis for this ECM is Aerco condensing boiler model BMK 2.0 The boiler installation is based on a one for one replacement based on capacity of the existing boiler. Owner should retain a professional engineer to properly size the

Energy Savings Calculations:

Baseline Gas Use for Hot Water: 299 Therms (Ave from July - September Gas Use)

Annual Gas Use for Heating: 17,205 Therms – (299 Therms X 12 Months)

13,618 Therms

Bldg Heat Required = Existing Nat Gas (Therms)× Heating Eff.(%)× Fuel HeatValue
$$\left(\frac{BTU}{Therm}\right)$$

Proposed Heating Gas Usage =
$$\frac{\text{Bldg Heat Required (BTU)}}{\text{Heating Eff.(\%)} \times \text{Fuel Heat Value} \left(\frac{\text{BTU}}{\text{Therm}}\right)}$$

Energy Cost = Heating Gas Usage(Therms) × Ave Fuel Cost
$$\left(\frac{\$}{\text{Therm}}\right)$$

CONDENSING BOILER CALCULATIONS									
ECM INPUTS	EXISTING	PROPOSED	SAVINGS						
ECM INPUTS	Existing Cast Iron Boilers	New Condensing Boilers							
Existing Nat Gas (Therms)	17,205	0							
Boiler Efficiency (%)	65%	88%	23%						
Nat Gas Heat Value (BTU/Therm)	100,000	100,000							
Equivalent Building Heat Usage (MMBTUs)	1,118	1,118							
Gas Cost (\$/Therm)	1.10	1.10							
ENER	GY SAVINGS CAL	CULATIONS							
ECM RESULTS	EXISTING	PROPOSED	SAVINGS						
Natural Gas Usage (Therms)	17,205	12,708	4,497						
Energy Cost (\$)	\$18,925	\$13,979	\$4,946						
COMMENTS:									

Installation cost of the new condensing boilers, demolition, flue piping, boiler water piping modifications, gas piping modifications, electric, etc. is estimated to be \$94,000.

From the **NJ Smart Start Appendix**, the installation of new condensing boilers warrants the following incentive: \$1.75 per MBH.

SmartStart® Incentive= (Boiler MBH × \$1.75) = $(1500 \times \$1.75)$ = \$2,625

Energy Savings Summary:

ECM #4 - ENERGY SAVINGS SUMMARY						
Installation Cost (\$):	\$94,000					
NJ Smart Start Equipment Incentive (\$):	\$2,625					
Net Installation Cost (\$):	\$91,375					
Maintenance Savings (\$/Yr):	\$1,000					
Energy Savings (\$/Yr):	\$4,946					
Total Yearly Savings (\$/Yr):	\$5,946					
Estimated ECM Lifetime (Yr):	15					
Simple Payback	15.4					
Simple Lifetime ROI	-2.4%					
Simple Lifetime Maintenance Savings	\$15,000					
Simple Lifetime Savings	\$89,195					
Internal Rate of Return (IRR)	0%					
Net Present Value (NPV)	(\$20,388.29)					

ECM #5: Digital Energy Management System (DDC EMS)

Description:

The heating and air conditioning systems within the facility are controlled via a verity of programmable and non-programmable thermostats scattered throughout the space. Although a common practice, multiple independent thermostats throughout is usually an inefficient and cumbersome way of controlling multiple heating and air conditioning systems in a facility. Often the settings on these thermostats are altered, set to hold or over-ride position or set to maximum heat or cool positions by the occupants rendering the supervisory controls inapplicable over the energy systems in the facility.

This ECM includes installing a Building Automation system with Direct Digital Controls (DDC) wired through an Ethernet backbone and front end controller within the building. The system will include new temperature sensors and new local thermostats with limited over-ride capability, a front end computer and main controller. The system will also include central controls for lighting. With the communication between the control devices and the front end computer interface, the facility manager will be able to take advantage of scheduling for occupied and unoccupied periods based on the actual occupancy of each space in the facility. Due to the fact that the building may have diverse hours of occupancy, including evening and weekend activities, having supervisory control over all of the equipment makes sense. The DDC system will also aid in the response time to service / maintenance issues when the facility is not under normal maintenance supervision, i.e. after-hours.

The new DDC system has the potential to provide significant savings by controlling the HVAC systems as a whole and provide operating schedules and features such as space averaging, night set-back, temperature override control, etc. The U.S. Department of Energy sponsored a study to analyze energy savings achieved through various types of building system controls. The referenced savings is based on the "Advanced Sensors and Controls for Building Applications: Market Assessment and Potential R&D Pathways," document posted for public use April 2005. The study has found that commercial buildings have the potential to achieve significant energy savings through the use of building controls. The average energy savings are as follows based on the referenced report:

• Energy Management and Control System Savings: 5%-15%.

Savings resulting from the implementation of this ECM for energy management controls are estimated to be 10% of each utility type utilized in this building.

The basis for this ECM is the Honeywell Light Commercial Energy Management System or similar.

Energy Savings Calculations:

Since some of the key utility consumption and cost information was not available, estimated values are used for the unit cost of natural gas, total electricity usage and unit cost of electricity.

Energy savings for each utility is calculated with the equation below.

Energy Savings (Utility) = Current Energy Consumption × Estimated Savings, %

Following table summarizes energy savings for this facility via implementation of an Energy Management System:

DDC ENERGY MANAGEMENT SYSYEM CALCULATIONS									
ECM INPUTS	EXISTING	PROPOSED	SAVINGS						
ECM INPUTS	Existing Controls w/ Local Thermostats	DDC Controls							
Existing Nat Gas Usage (Therms)	17,205	-							
Existing Electricity Usage (kWh)	300,000	-							
Energy Savings, Nat. Gas	-	10%							
Energy Savings, Electricity	-	10%							
Gas Cost (\$/Therm)	\$1.10	\$1.10							
Electricity Cost (\$/kWh)	\$0.165	\$0.165							
ENER	GY SAVINGS CALO	CULATIONS							
ECM RESULTS	EXISTING	PROPOSED	SAVINGS						
Natural Gas Usage (Therms)	17,205	15,484	1,720						
Electricity Usage (kWh)	300,000	270,000	30,000						
Natural Gas Cost (\$)	\$18,925	\$17,033	\$1,893						
Electricity Cost (\$)	\$49,500	\$44,550	\$4,950						
Energy Cost (\$)	\$68,425	\$61,583	\$6,843						
COMMENTS:	Values in italic were not available during this study therefore they are estimated.								

Demand savings due to implementation of this ECM is minimal.

The cost of a full DDC system with new field devices, controllers, computer, software, programming, etc. is approximately \$4.00 per SF in accordance with recent Contractor pricing

for systems of this magnitude. Savings from the implementation of this ECM will be from the reduced energy consumption currently used by the HVAC system by proper control of schedule and temperatures via the DDC system.

Cost of complete DDC System = $(\$4.00/SF \times 22,000 SF) = \$88,000$

Currently, there are no prequalified NJ SmartSmart Incentives for installation of the DDC system.

Energy Savings Summary:

ECM #5 - ENERGY SAVINGS SUMMARY						
Installation Cost (\$):	\$88,000					
NJ Smart Start Equipment Incentive (\$):	\$0					
Net Installation Cost (\$):	\$88,000					
Maintenance Savings (\$/Yr):	\$0					
Energy Savings (\$/Yr):	\$6,843					
Total Yearly Savings (\$/Yr):	\$6,843					
Estimated ECM Lifetime (Yr):	15					
Simple Payback	12.9					
Simple Lifetime ROI	16.6%					
Simple Lifetime Maintenance Savings	\$0					
Simple Lifetime Savings	\$102,638					
Internal Rate of Return (IRR)	2%					
Net Present Value (NPV)	(\$6,314.65)					

ECM #6: Window Replacement

Description:

The majority of the facility's envelope was updated with double pane windows in aluminum frames. However, there are several offices and storage spaces with older windows with single pane glass and uninsulated metal frames.

The windows account for significant energy use through leakage heat loss and conductive heat loss. The age and condition of the windows contribute to the leakage rate of the building. The single pane construction allows higher thermal (conductive) energy loss. These factors lead to increased energy use in the heating season. The heating loss due to single pane glass is combined with heat loss due to poor seals at each operable window. New double pane windows with low E glazing offer a substantial improvement in thermal performance in the summer months.

This ECM includes the replacement of all remaining older windows single pane glass in the facility with double pane windows with low emissivity glass. The proposed windows include reduced outside air leakage. In addition the double pane structure will significantly increase the insulation value compared to the existing single pane window structure.

The basis for this ECM is Anderson Windows at \$75 per SF of window installed. Below is a list of areas with older and inefficient windows:

WINDOW REPLACEMENT SUMMARY								
ECM INPUTS	NUMBER OF WINDOWS	SIZE	TOTAL AREA					
Offices and storage spaces	18	Various	220					
TOTAL		-	220					

Energy Savings Calculations:

$$Infiltration \left(\frac{Ft^3}{Min.} \right) = Window \ Area \left(Ft^2 \right) \times \ Estimated \ Infiltration \ per \ SF \ of \ Window \left(\frac{CFM}{Ft^2} \right)$$

Heat Load
$$\left(\frac{\text{Btu}}{\text{Hr.}}\right) = 1.1 \times \text{Infiltration}\left(\frac{\text{Ft}^3}{\text{Min}}\right) \times \text{Design Temperature Difference (°F)}$$

Cooling Load (Ton) = Infiltration
$$\left(\frac{Ft^3}{Min}\right) \times \frac{1 \text{ Ton Cooling}}{400 \left(\frac{Ft^3}{Min}\right)}$$

$$Heating Leakage Energy (Therms) = \frac{Heat Load \left(\frac{Btu}{Hr.}\right) \times HDD(Day \, ^{\circ}F) \times 24 \left(\frac{Hr.}{Day}\right) \times (0.60)}{65 (^{\circ}F) \times Fuel Heat Value \left(\frac{Btu}{Therms}\right) \times Heating Efficiency (\%)}$$

$$Conductive \ Energy \left(Therms\right) = \frac{U - Value \times Area(Ft^2) \times HDD(Day \ ^\circ F) \times 24\left(\frac{Hr.}{Day}\right) \times (0.60)}{65(^\circ F) \times Fuel \ Heat \ Value\left(\frac{Btu}{Therms}\right) \times Heating \ Efficiency \left(\%\right)}$$

Heating Energy Cost = Total Heating Energy (Therms) × Ave Fuel Cost $\left(\frac{\$}{\text{Therms}}\right)$

Cooling Energy Cost = Total Cooling Energy(kWh)× Ave Fuel Cost $\left(\frac{\$}{kWh}\right)$

WINDOW REPLACEMENT CALCULATIONS										
ECM INPUTS	EXISTING	PROPOSED	SAVINGS							
Description:		Double Pane Low-E	-							
•	Windows	Windows								
Window (SF)	220	220	-							
U-Value (BTU/HR/SF*°F)	0.8	0.45	0.35							
Estimated Infiltration, CFM per SF Window	3	2	-							
Total Infiltration, CFM	660	440	220							
Heating System Efficiency (%)	65%	65%	-							
Heating Degree Days (HDD)	4,750	4,750	-							
Design Day Temp Diff (°F)	65	65	-							
Heating Hrs Per Day (Hrs)	24	24	-							
Full Load Cooling Hours	800	800	-							
Average Cooling Efficiency, EER	9.0	9.0	-							
Gas Cost (\$/Therm)	1.10	1.10	-							
Electric Cost (\$/kWh)	0.165	0.165	-							
Gas Heat Value (BTU/Therm)	100,000	100,000	-							
ENERGY	ENERGY SAVINGS CALCULATIONS									
ECM RESULTS	EXISTING	PROPOSED	SAVINGS							
Heat Load (BTU/Hr)	47,190	31,460	15,730							
Leakage Energy (Therms)	764	509	255							
Conductive Energy (Therms)	185	104	81							
Total Heating Energy (Therms)	949	613	336							
Cooling Load (Ton)	2	1	1							
Cooling Demand (kW)	0.6	0.4	0.2							
Total Cooling Energy (kWh)	1,760	1,173	587							
Gas Energy Cost (\$)	\$1,044	\$675	\$369							
Electric Energy Cost (\$)	\$290	\$194	\$97							
Total Energy Cost (\$)	\$1,334	\$868	\$466							
Comments:	Proposed window U-v Utility cost data estimate	value Based on ASHRAE ed.	90.1 - 2007							

Estimated cost for replacing the inefficient windows at this facility \$16,500.

Energy Savings Summary:

ECM #6 - ENERGY SAVINGS SUMMARY					
Installation Cost (\$):	\$16,500				
NJ Smart Start Equipment Incentive (\$):	\$0				
Net Installation Cost (\$):	\$16,500				
Maintenance Savings (\$/Yr):	\$0				
Energy Savings (\$/Yr):	\$466				
Total Yearly Savings (\$/Yr):	\$466				
Estimated ECM Lifetime (Yr):	15				
Simple Payback	35.4				
Simple Lifetime ROI	-57.6%				
Simple Lifetime Maintenance Savings	0				
Simple Lifetime Savings	\$6,991				
Internal Rate of Return (IRR)	-9%				
Net Present Value (NPV)	(\$10,936.27)				

REM: Renewable Energy Measures

Description:

Solar Energy Analysis: Based on a preliminary structural analysis, the roof of the Probation Office is not suitable for a substantial solar system. Therefore, a solar photovoltaic system is not recommended.

Wind Energy Analysis: Based on CEG's review of the applicability of wind energy for the facility; the low average wind speed, proximity to residential neighborhoods, and limited site space make this facility a poor candidate for wind energy production.

V. ADDITIONAL RECOMMENDATIONS

The following recommendations include no cost/low cost measures, Operation & Maintenance (O&M) items, and water conservation measures with attractive paybacks. These measures are not eligible for the Smart Start Buildings incentives from the office of Clean Energy but save energy none the less.

- A. Chemically clean the condenser and evaporator coils periodically to optimize efficiency. Poorly maintained heat transfer surfaces can reduce efficiency 5-10%.
- B. Maintain all weather stripping on windows and doors.
- C. Clean all light fixtures to maximize light output.
- D. Provide more frequent air filter changes to decrease overall system power usage and maintain better IAQ.
- E. Turn off computers when not in use. Ensure computers are not running in screen saver mode which saves the monitor screen not energy.
- F. Ensure outside air dampers are functioning properly and only open during occupied mode.

ECM COST & SAVINGS BREAKDOWN

CONCORD ENGINEERING GROUP

Bergen County Probation Office

_	Det gen Councy 1 Tourism Office														
ECM ENE	CM ENERGY AND FINANCIAL COSTS AND SAVINGS SUMMARY														
		INSTALLATION COST			YEARLY SAVINGS		ECM	LIFETIME ENERGY SAVINGS	LIFETIME MAINTENANCE SAVINGS	LIFETIME ROI	SIMPLE PAYBACK	INTERNAL RATE OF RETURN (IRR)	NET PRESENT VALUE (NPV)		
ECM NO.	DESCRIPTION	MATERIAL	LABOR	REBATES, INCENTIVES	NET INSTALLATION COST	ENERGY	MAINT./ SREC	TOTAL	LIFETIME	(Yearly Saving * ECM Lifetime)	(Yearly Maint Svaing * ECM Lifetime)	(Lifetime Savings - Net Cost) / (Net Cost)	(Net cost / Yearly Savings)	$\sum_{n=0}^{N} \frac{C_n}{(1 + IRR)^n}$	$\sum_{n=0}^{\infty} \frac{c_n}{(n+DR)^n}$
		(\$)	(\$)	(\$)	(S)	(\$/Yr)	(\$/Yr)	(\$/Yr)	(Yr)	(\$)	(\$)	(%)	(Yr)	(\$)	(\$)
ECM #1	Lighting equipment upgrade	\$10,630	\$15,946	\$1,820	\$24,756	\$7,193	\$304	\$7,496	15	\$112,447	\$4,553	354.2%	3.3	29.67%	\$64,736.72
ECM #2	CRT Monitors	\$4,600	\$0	\$0	\$4,600	\$759	\$0	\$759	15	\$11,385	\$0	147.5%	6.1	14.27%	\$4,460.89
ECM #3	AC Unit upgrades	\$28,000	\$15,000	\$3,160	\$39,840	\$1,280	\$0	\$1,280	15	\$19,205	\$0	-51.8%	31.1	-7.99%	(\$24,555.17)
ECM #4	Replace steam boiler with hot water boiler	\$35,000	\$59,000	\$2,625	\$91,375	\$4,946	\$1,000	\$5,946	15	\$89,195	\$15,000	-2.4%	15.4	-0.30%	(\$20,388.29)
ECM #5	Install Building Automation System	\$88,000	\$0	\$0	\$88,000	\$6,843	\$0	\$6,843	15	\$102,638	\$0	16.6%	12.9	1.99%	(\$6,314.65)
ECM #6	Window Replacement	\$16,500	\$0	\$0	\$16,500	\$466	\$0	\$466	15	\$6,991	\$0	-57.6%	35.4	-9.21%	(\$10,936.27)

Notes: 1) The variable Cn in the formulas for Internal Rate of Return and Net Present Value stands for the cash flow during each period.

2) The variable DR in the NPV equation stands for Discount Rate

3) For NPV and IRR calculations: From n=0 to N periods where N is the lifetime of ECM and Cn is the cash flow during each period.

Concord Engineering Group, Inc.

520 BURNT MILL ROAD VOORHEES, NEW JERSEY 08043

PHONE: (856) 427-0200 FAX: (856) 427-6508

SmartStart Building Incentives

The NJ SmartStart Buildings Program offers financial incentives on a wide variety of building system equipment. The incentives were developed to help offset the initial cost of energy-efficient equipment. The following tables show the current available incentives as of February, 2010:

Electric Chillers

Water-Cooled Chillers	\$12 - \$170 per ton
Air-Cooled Chillers	\$8 - \$52 per ton

Energy Efficiency must comply with ASHRAE 90.1-2004

Gas Cooling

Gas Absorption Chillers	\$185 - \$400 per ton
Gas Engine-Driven Chillers	Calculated through custom measure path)

Desiccant Systems

\$1.00 per cfm – gas or electric	
----------------------------------	--

Electric Unitary HVAC

Unitary AC and Split Systems	\$73 - \$93 per ton	
Air-to-Air Heat Pumps	\$73 - \$92 per ton	
Water-Source Heat Pumps	\$81 per ton	
Packaged Terminal AC & HP	\$65 per ton	
Central DX AC Systems	\$40- \$72 per ton	
Dual Enthalpy Economizer Controls	\$250	
Occupancy Controlled Thermostat (Hospitality & Institutional Facility)	\$75 per thermostat	

Energy Efficiency must comply with ASHRAE 90.1-2004

Ground Source Heat Pumps

	\$450 per ton, EER ≥ 16
Closed Loop & Open Loop	\$600 per ton, EER \geq 18
	\$750 per ton, EER \geq 20

Energy Efficiency must comply with ASHRAE 90.1-2004

Gas Heating

Gas Fired Boilers < 300 MBH	\$300 per unit	
Gas Fired Boilers ≥ 300 - 1500 MBH	\$1.75 per MBH	
Gas Fired Boilers ≥1500 - ≤ 4000 MBH	\$1.00 per MBH	
Gas Fired Boilers > 4000 MBH	(Calculated through Custom Measure Path)	
Gas Furnaces	\$300 - \$400 per unit, AFUE ≥ 92%	

Variable Frequency Drives

Variable Air Volume	\$65 - \$155 per hp	
Chilled-Water Pumps	\$60 per hp	
Compressors	\$5,250 to \$12,500 per drive	

Natural Gas Water Heating

Gas Water Heaters ≤ 50 gallons	\$50 per unit	
Gas-Fired Water Heaters > 50 gallons	\$1.00 - \$2.00 per MBH	
Gas-Fired Booster Water Heaters	\$17 - \$35 per MBH	
Gas Fired Tankless Water Heaters	\$300 per unit	

Prescriptive Lighting

Retro fit of T12 to T-5 or T-8 Lamps w/Electronic Ballast in Existing Facilities	\$10 per fixture (1-4 lamps)	
Replacement of T12 with new T-5 or T- 8 Lamps w/Electronic Ballast in Existing Facilities	\$25 per fixture (1-2 lamps) \$30 per fixture (3-4 lamps)	
Replacement of incandescent with screw-in PAR 38 or PAR 30 (CFL) bulb	\$7 per bulb	
T-8 reduced Wattage (28w/25w 4', 1-4 lamps) Lamp & ballast replacement	\$10 per fixture	
Hard-Wired Compact Fluorescent	\$25 - \$30 per fixture	
Metal Halide w/Pulse Start	\$25 per fixture	
LED Exit Signs	\$10 - \$20 per fixture	
T-5 and T-8 High Bay Fixtures	\$16 - \$284 per fixture	
HID ≥ 100w Retrofit with induction lamp, power coupler and generator (must be 30% less watts/fixture than HID system)	\$50 per fixture	
HID ≥ 100w Replacement with new HID ≥ 100w	\$70 per fixture	
LED Refrigerator/Freezer case lighting replacement of fluorescent in medium and low temperature display case	\$42 per 5 foot \$65 per 6 foot	

Lighting Controls – Occupancy Sensors

Wall Mounted	\$20 per control	
Remote Mounted	\$35 per control	
Daylight Dimmers	\$25 per fixture	
Occupancy Controlled hi-low Fluorescent Controls	\$25 per fixture controlled	

Lighting Controls – HID or Fluorescent Hi-Bay Controls

Occupancy hi-low	\$75 per fixture controlled
Daylight Dimming	\$75 per fixture controlled
Daylight Dimming - office	\$50 per fixture controlled

Premium Motors

Three-Phase Motors	\$45 - \$700 per motor
Fractional HP Motors Electronic Communicated Motors (replacing shaded pole motors in refrigerator/freezer cases)	\$40 per electronic communicated motor

Other Equipment Incentives

Performance Lighting	\$1.00 per watt per SF below program incentive threshold, currently 5% more energy efficient than ASHRAE 90.1-2004 for New Construction and Complete Renovation	
Custom Electric and Gas Equipment Incentives	not prescriptive	
Custom Measures	\$0.16 KWh and \$1.60/Therm of 1st year savings, or a buy down to a 1 year payback on estimated savings. Minimum required savings of 75,000 KWh or 1,500 Therms and a IRR of at least 10%.	
Multi Measures Bonus	15%	

STATEMENT OF ENERGY PERFORMANCE

Probation Office

Not able to generate report due to incomplete utility data.

Concord Engineering Group

Bergen County Probation Office

Boilers

Dullers		
Tag	Boiler-1	
Unit Type	Fire-tube Steam boiler	
Qty	1	
Location	Boiler room in mezz.	
Area Served	Entire facility hot water baseboard	
Manufacturer	Superior	
Model #	C4RB40A	
Serial #	F230614	
Input Capacity (MBH)	1730 CFH (Burner firing rate)	
Rated Output Capacity (MBH)	-	
Approx. Efficiency %	60% estimated overall efficiency	
Fuel	Natural Gas	
Approx Age	58	
ASHRAE Service Life	30	
Remaining Life	(28)	
Comments	Superior burner model # 4B-G-40. Very old and inefficient boiler with many maintenance problems	

Concord Engineering Group

Bergen County Probation Office

Pumps

<u>r umps</u>		
Tag	HWP-1	
Unit Type	Heating hot water circulator	
Qty	1	
Location	Boiler room	
Area Served	Perimeter hot water heating loop	
Manufacturer	BG	
Model #	-	
Serial #	-	
Horse Power	1/2	
Flow	-	
Motor Info	-	
Electrical Power	-	
RPM	-	
Motor Efficiency %	-	
Approx Age	10	
ASHRAE Service Life	20	
Remaining Life	10	
Comments		

Concord Engineering Group

Bergen County Probation Office

Domestic Water Heaters

HWH_1		
Tank heater		
1		
Boiler room		
Faucets		
Rheem		
21V50-2		
RN 0397D00121		
50		
36 MBH		
-		
80%		
Natural Gas		
14		
12		
(2)		
	1 Boiler room Faucets Rheem 21V50-2 RN 0397D00121 50 36 MBH - 80% Natural Gas 14 12	Tank heater 1 Boiler room Faucets Rheem 21V50-2 RN 0397D00121 50 36 MBH - 80% Natural Gas 14 12

Concord Engineering Group

Bergen County Probation Office

Packaged AC Units

Tag	RTU-1	RTU-2	RTU-3				
Unit Type	Rooftop AC Unit	Rooftop AC Unit	Rooftop AC Unit				
Qty	1	1	1				
Location	Roof	Roof	Roof				
Area Served	Offices	Offices	Offices				
Manufacturer	Trane	Trane	Trane				
Model #	YCD300B3H0DB	TCD241C3HRCB	YCD180B3L0DB				
Serial #	J31145131D	617100732D	U34142BD40				
Cooling Type	Direct expansion	Direct expansion	Direct expansion				
Cooling Capacity (Tons)	25	20	15				
Cooling Efficiency (SEER/EER)							
Heating Type	Gas fired	Gas fired	Gas fired				
Heating Input (MBH)	400	400	250				
Efficiency	81%	81%	81%				
Fuel	Natural gas	Natural gas	Natural gas				
Approx Age	17	5	17				
ASHRAE Service Life	15	15	15				
Remaining Life	(2)	10	(2)				
Comments							

Concord Engineering Group

Bergen County Probation Office

Packaged AC Units

Tag	Window Unit	Mini split unit	
Unit Type	Window AC Unit	Ductless mini split unit	
Qty	1	1	
Location	Conference room in mezz.	CU on roof, Indoor unit Chief's office	
Area Served	Conference room in mezz.	Chief's office	
Manufacturer	Friedrich	Sanyo	
Model #	-	CL1211	
Serial #	-	0013861	
Cooling Type	Direct Expansion	Direct Expansion	
Cooling Capacity (Tons)	12,000 BTU/h (Est)	12,000 BTU/h	
Cooling Efficiency (SEER/EER)	9 EER (Est)	10 SEER	
Heating Type	-	-	
Heating Input (MBH)	-	-	
Efficiency	-	-	
Fuel	-	-	
Approx Age	5	5	
ASHRAE Service Life	15	15	15
Remaining Life	10	10	
Comments			

Investment Grade Lighting Audit

CEG Job #: 9C10085

Project: Bergen County Probation

> 133 River St Hackensack, NJ

Bldg. Sq. Ft. 22,205

Bergen County Probation

KWH COST: \$0.165

	1: Lighting Up	ograd	e - G	enera	l																	
	GLIGHTING										OSED	LIGHTING					_		SAVING			
CEG	Fixture	Yearly	No.	No.	Fixture	Fixt	Total	kWh/Yr	Yearly	No.	No.	Retro-Unit	Watts	Total	kWh/Yr	Yearly	Unit Cost	Total	kW	kWh/Yr	Yearly	Yearly Simple
Type	Location	Usage	Fixts	Lamps	Type	Watts	kW	Fixtures	\$ Cost	Fixts	Lamps	Description	Used	kW	Fixtures	\$ Cost	(INSTALLED)	Cost	Savings	Savings	\$ Savings	Payback
					2x4, 3-Lamp, 34w T12, Mag.							2 Lamp, 28w T8, Elect. Ballast,										
132.24	Open Office	2600	176	3	Ballast, Recessed Mnt.,	127	22.35	58,115.2	\$9,589.01	176	2	Specular Reflector; retrofit	50	8.80	22880	\$3,775.20	\$100.00	\$17,600.00	13.55	35235.2	\$5,813.81	3.03
					Parabolic Lens								<u> </u>									
221.11	D. 1 17 11	2600	9	2	1x4, 2 Lamp, 32w 700 Series	62	0.56	1.450.0	\$239.38	9	_	Relamp - Sylvania Lamp	50	0.45	1170	¢102.05	614.00	£126.00	0.11	200.0	646.22	2.72
221.11	Back Hall	2600	9	2	T8, Elect. Ballast, Surface Mnt., Prismatic Lens	62	0.56	1,450.8	\$239.38	9	2	FO28/841/SS/ECO	50	0.45	1170	\$193.05	\$14.00	\$126.00	0.11	280.8	\$46.33	2.72
					2x4, 3 Lamp, 32w T8, Elect.																	1
232.21	Back Open Office	2600	74	3	Ballast, Recessed Mnt.,	86	6.36	16,546.4	\$2,730.16	74	3	Relamp - Sylvania Lamp	72	5.33	13852.8	\$2,285.71	\$21.00	\$1,554.00	1.04	2693.6	\$444,44	3.50
232.21	Back Open Office	2000	,	,	Prismatic Lens	00	0.50	10,540.4	φ2,730.10	/	,	FO28/841/SS/ECO	12	5.55	13032.0	Ψ2,203.71	\$21.00	\$1,554.00	1.04	2075.0	φ	3.50
					2x4, 3 Lamp, 32w T8, Elect.																	
232.21	Lunch Room	2600	8	3	Ballast, Recessed Mnt.,	86	0.69	1,788.8	\$295.15	8	3	Relamp - Sylvania Lamp	72	0.58	1497.6	\$247.10	\$21.00	\$168.00	0.11	291.2	\$48.05	3.50
					Prismatic Lens							FO28/841/SS/ECO										
					Recessed Down Light.																	
563	Side Entrance	1600	5	2	(2)26w Quad CFL Lamp	52	0.26	416.0	\$68.64	5	0	No Change	0	0.00	0	\$0.00	\$0.00	\$0.00	0.00	0	\$0.00	0.00
					., .																	
					1x4, 1-Lamp, 34w T12, Mag.							Reballast & Relamp; Sylvania										
111.11	Desk Task Lighting	2600	83	1	Ballast, Surface Mnt.,	48	3.98	10,358.4	\$1,709.14	83	1	Lamp FO28/841/SS/ECO	25	2.08	5395	\$890.18	\$80.00	\$6,640.00	1.91	4963.4	\$818.96	8.11
					Prismatic Lens 2x4, 2 Lamp, 32w 700 Series							_	<u> </u>									
222.21	Restrooms	2600	2	2	T8, Elect. Ballast, Recessed	62	0.12	322.4	\$53.20	2	2	Relamp - Sylvania Lamp	50	0.10	260	\$42.90	\$14.00	\$28.00	0.02	62.4	\$10.30	2.72
222.21	Restrooms	2000		2	Mnt., Prismatic Lens	02	0.12	322.4	\$33.20		-	FO28/841/SS/ECO	50	0.10	200	342.70	\$14.00	\$28.00	0.02	02.4	\$10.50	2.72
					1x4, 2-Lamp, 34w T12, Mag.								†									
121.14	Mezzanine	500	2	2	Ballast, Surface Mnt., No	78	0.16	78.0	\$12.87	2	2	Reballast & Relamp; Sylvania	50	0.10	50	\$8.25	\$80.00	\$160.00	0.06	28	\$4.62	34.63
					Lens							Lamp FO28/841/SS/ECO										
					8' Channel, 1 Lamp, 60w							(1) 8' Lamps to (2) 4' Lamps -										
118.14	Mezzanine	500	3	1	T12, Mag. Ballast, Surface	76	0.23	114.0	\$18.81	3	1	28w T8, Elect Ballast; retrofit	50	0.15	75	\$12.38	\$100.00	\$300.00	0.08	39	\$6.44	46.62
					Mnt., No Lens							20w 10, Elect Banast, felfont										
				_	8' Channel, 2 Lamp, 96w							(2) 8' Lamps to (4) 4' Lamps -										
128.11	Mezzanine	500	1	2	T12, Mag. Ballast, Surface	209	0.21	104.5	\$17.24	1	4	28w T8, Elect Ballast; retrofit	96	0.10	48	\$7.92	\$100.00	\$100.00	0.11	56.5	\$9.32	10.73
					Mnt., No Lens 1x4, 2 Lamp, 32w 700 Series								<u> </u>									
221.11	Storage Room #1	500	1	2	T8. Elect. Ballast, Surface	62	0.06	31.0	\$5.12	1	2	Relamp - Sylvania Lamp	50	0.05	25	\$4.13	\$14.00	\$14.00	0.01	6	\$0.99	14.14
221.11	Storage Room #1	300	1	2	Mnt., Prismatic Lens	02	0.00	31.0	Φ3.12	1	-	FO28/841/SS/ECO	50	0.03	23	94.13	\$14.00	\$14.00	0.01	U	\$0.55	14.14
					1x4, 2 Lamp, 32w 700 Series																	
221.11	Storage Room #2	500	1	2	T8, Elect. Ballast, Surface	62	0.06	31.0	\$5.12	1	2	Relamp - Sylvania Lamp FO28/841/SS/FCO	50	0.05	25	\$4.13	\$14.00	\$14.00	0.01	6	\$0.99	14.14
	Ť				Mnt., Prismatic Lens							FO28/841/SS/ECO										
					1x4, 2-Lamp, 34w T12, Mag.							Reballast & Relamp; Sylvania										
121.11	Mezzanine Corridor	2600	3	2	Ballast, Surface Mnt.,	78	0.23	608.4	\$100.39	3	2	Lamp FO28/841/SS/ECO	50	0.15	390	\$64.35	\$80.00	\$240.00	0.08	218.4	\$36.04	6.66
					Prismatic Lens							· · ·										
			_	_	2x4, 3-Lamp, 34w T12, Mag.					_		Delamp 1, 2 Lamp, 28w T8,										
132.15	Mens Room	2600	3	3	Ballast, Surface Mnt.,	127	0.38	990.6	\$163.45	3	2	Elect. Ballast, Specular Reflector;	50	0.15	390	\$64.35	\$100.00	\$300.00	0.23	600.6	\$99.10	3.03
					Akrylic Lens 2x4, 3-Lamp, 34w T12, Mag.							retrofit Delamp 1, 2 Lamp, 28w T8,	1				-	-				
132.15	Ladies Room	2600	3	3 3	Ballast, Surface Mnt.,	127	0.38	990.6	\$163.45	3	2	Elect. Ballast, Specular Reflector;	50	0.15	390	\$64.35	\$100.00	\$300,00	0.23	600.6	\$99.10	3.03
132.13	Zudies Room	2000	,	,	Akrylic Lens	127	0.50	770.0	9105.45	,	_	retrofit	30	0.13	370	\$04.55	ψ100.00	\$500.00	0.23	000.0	Ψ//.10	3.03
					1x4, 2-Lamp, 34w T12, Mag.																	
121.11	Conference Room	500	2	2	Ballast, Surface Mnt.,	78	0.16	78.0	\$12.87	2	2	Reballast & Relamp; Sylvania	50	0.10	50	\$8.25	\$80.00	\$160.00	0.06	28	\$4.62	34.63
	<u> </u>				Prismatic Lens		<u> </u>	<u> </u>	<u> </u>	L	L_	Lamp FO28/841/SS/ECO		<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u></u>
	Totals		362	23				89,190	\$14,716	362	22			17.6	45,180	\$7,455		\$26,576	16.9	43,594	\$7,193	3.69