TRAIN-THE-TRAINER:
APPLYING KOLB'S EXPERIENTIAL LEARNING CYCLE TO COURSE DESIGN

Blan L. Teagle, Deputy State Courts Administrator
DRC 24th Annual Conference
August 12, 2016
Learning Objectives

As a result of this session, the participants will be better able to:

1. Define experiential learning theory.
2. Summarize one of several learning styles related methodologies, Dr. David Kolb’s approach to the experiential learning cycle.
3. Explore the potential implications of this theory to teaching and learning.
4. Consider the strengths and recognized limitations of the Kolb model.
5. Apply Kolb’s learning theory in developing education programming in the ADR instructional setting.
Lectures are a way of transferring [our] lecture notes to students’ [notes] without passing through the brain of either. – Eric Mazur
Experiential Learning

- For the things we have to learn before we can do them, we learn by doing them. [We] become builders by building. – Aristotle, Nicomachean Ethics

- Experience plus reflection equals learning. – John Dewey

- Learning is experience. Everything else is just information. – Albert Einstein
Learning Style Cycle

Concrete Experience

Reflective Observation

Active Experimentation

Abstract Conceptualization
<table>
<thead>
<tr>
<th>The Four Stages of the Learning Cycle</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete Experience (CE)</td>
<td>This stage of the learning cycle emphasizes personal involvement with people in everyday situations. In this stage, you would tend to rely more on your feelings than on a systemic approach to problems and situations. In a learning situation, you would rely on your ability to be open-minded and adaptable to change.</td>
</tr>
<tr>
<td>Reflective Observation (RO)</td>
<td>In this stage of the learning cycle, people understand ideas and situations from different points of view. In a learning situation you would rely on patience, objectivity, and careful judgement but would not necessarily take any action. You would rely on your own thoughts and feelings in forming opinions.</td>
</tr>
<tr>
<td>Abstract Conceptualization (AC)</td>
<td>In this stage, learning involves using logic and ideas, rather than feelings to understand problems or situations. Typically, you would rely on systematic planning and develop theories and ideas to solve problems.</td>
</tr>
<tr>
<td>Active Experimentation (AE)</td>
<td>Learning in this stage takes an active form – experimenting with influencing or changing situations. You would take a practical approach and be concerned with what really works, as opposed to simply watching a situation. You value getting things done and seeing the results of your influence and ingenuity.</td>
</tr>
<tr>
<td>Preferred Learning Styles</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Accommodator</td>
<td>Diverger</td>
</tr>
<tr>
<td>• Adapts well to immediate circumstances</td>
<td>• Imaginative</td>
</tr>
<tr>
<td>• Intuitive; trial and error</td>
<td>• Many perspectives</td>
</tr>
<tr>
<td>• Likes technical or practical fields such as business</td>
<td>• Broad Cultural Interests</td>
</tr>
<tr>
<td>• Specializes in the arts and humanities</td>
<td>• Specializes in the arts and humanities</td>
</tr>
<tr>
<td>Converger</td>
<td>Assimilator</td>
</tr>
<tr>
<td>• Practical application of ideas</td>
<td>• Ability to create theoretical models</td>
</tr>
<tr>
<td>• Does well on conventional tests</td>
<td>• Assimilates disparate observations</td>
</tr>
<tr>
<td>• Hypothetical-deductive reasoning</td>
<td>• Inductive reasoning</td>
</tr>
<tr>
<td>• Engineering and physical sciences</td>
<td>• Likes abstract concepts – basic science and math</td>
</tr>
</tbody>
</table>
Comparison of the Learning Cycle with Problem-Solving Skills

- Choose a Model or Goal
- Compare it with Reality
- Identify Difference (Problems)
- Evaluate Consequences of Solutions
- Consider Alternative Solutions
- Select a Problem
- Reflective Observation
- Select a Solution
- Active Experimentation
- Execute the Solution

Concrete Experience

Converger
Diverger
Accommodator
Assimilator

Abstract Conceptualization

Comparison of the Learning Cycle with Problem-Solving Skills
Cycle of Kolb’s learning styles & class activities

Concrete Experience
- Speaking: Projects, Feedback activities, Small-group discussion, Opportunities for practice
- Listening: Games, Dialogues, Role plays, Discussion/feedback, Personalized counseling, New and specific experiences, Feeling & people-related activities

Reflective Observation
- Reading: Theory reading, Study time alone, Clear, well-structured presentation of ideas, Checklists of steps to guide
- Writing: Lectures, Journal writing, Activities that encourage viewing things from different perspectives

Active Experimentation
- Speaking: Ss solve a problem, T & Ss interact
- Listening: T creates a reason to learn, T-initiated, T-controlled

Abstract Conceptualization
- Reading: Ss try it, T coaches & facilitates theory, Ss test & practice theory
- Writing: T gives Ss facts, T teaches, Ss generalize & give more concepts

Ss are creative
- T is a resource & evaluator
- Ss teach it to themselves, S-initiated, S-controlled
Kolb's Learning Styles

(1984)

Active Experience → Concrete Experience → Observing + Reflecting

Abstract Conceptualization → Active Experience

Influenced by Rogers, Jung, Piaget, Dewey, James

As individuals we tend to enter the cycle at a preferred point.

Active Experience is at the center of learning.

Learner Experience

Experience

- We learn best when we shift and move through the cycle.
- We don't stay stuck in our preferred mode.
- Everyone learns from his/her own experience.

Learning is dynamic.
- We learn differently.

At case!
STEP 1: ASSEMBLE PART A TO PART B. STEP 2: GLUE THESE PIECES SECURELY. STEP 3: FIND PART C AND CONNECT TO PART D...