APPLYING NEGATIVE SEQUENCE TO MUTUALLY COUPLED TRANSMISSION LINES – A UTILITY PROSPECTIVE

GIROLAMO ROSSELLI, P.E.
San Diego Gas & Electric
San Diego, California, U.S.A.

69th Annual
Georgia Tech Protective Relaying Conference
Atlanta, Georgia
April 29 to May 1st, 2015

©2015 San Diego Gas & Electric Company. All copyright and trademark rights reserved
BACKGROUND INFORMATION

• On December 23, 2013, San Diego Gas & Electric experienced a misoperation of a 69 kV transmission line, which was mutually coupled to a 230 kV line.

• The 230 kV line relays cleared the fault properly.

• A 69 kV two-terminal line was installed on the same tower, which also operated on both ends of the line at the same time as the 230 kV line.

• The 69 kV line targeted an instantaneous directional ground element on Station A and TTR to the other station.
The line reclosed by relay action and held closed, implying no permanent fault.

This line had misoperated before on zero sequence mutual coupling, and steps were taken early on to desensitize the residual/ground elements.

What caused this misoperation?
TL-AB RELAYS

• The line relays at Station A are older type SEL-100 series without much flexibility in isolating some of the component elements such as I2.

• The line relays at Station B are newer type SEL-300 series with much more flexibility in isolating some of the component elements.

• What can be done to increase security and keep the same sensitivity at Stations A & B using the existing relays?
PARTIAL SYSTEM DIAGRAM
LINE CONSTRUCTION
SUBSTATION A LINE RELAY EVENT
PHASOR AND SEQUENCE DIAGRAM
<table>
<thead>
<tr>
<th>Channel</th>
<th>Mag</th>
<th>Angle</th>
<th>Scale</th>
<th>Show</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPOL</td>
<td>1582.6</td>
<td>10.1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IR</td>
<td>2889.3</td>
<td>16.1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IA</td>
<td>786.1</td>
<td>351.5</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>IB</td>
<td>758.0</td>
<td>39.6</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>IC</td>
<td>1473.2</td>
<td>16.9</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>VA</td>
<td>34.0</td>
<td>238.8</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>VB</td>
<td>33.0</td>
<td>131.7</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>VC</td>
<td>40.4</td>
<td>0.0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>I0</td>
<td>961.1</td>
<td>16.0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>I1</td>
<td>437.9</td>
<td>18.3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>I2</td>
<td>74.6</td>
<td>20.1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>V0</td>
<td>1.5</td>
<td>280.2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>V1</td>
<td>35.6</td>
<td>3.2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>V2</td>
<td>4.6</td>
<td>353.4</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
SOLUTION
CHANGES MADE TO THE SEL-121H AND SEL-167 RELAYS AT STATION A

- Switch elements 50N1 with 50N3 (50N3 can be time delayed).
- Make setting changes to 50N3 more sensitive with 1 cycle delay.
- Make setting changes to 50N1 less sensitive and cover close in-line fault instantaneously.

OUTPUT = 50N3T * TDPU 1 CYCLE [with IR=FOR (67NT)] + 50N1 + OTHER TRIP ELEMENTS
CHANGES MADE TO THE SEL-300 SERIES RELAYS AT STATION B

- Supervise the 50N1 element with the negative sequence overcurrent element I2 since zero sequence mutual coupling does not have I2 (theoretically)

\[
\text{OUTPUT} = 67N1T \times 67Q1T + \text{OTHER TRIP ELEMENTS}
\]
CHANGES MADE TO SEL-300 SERIES RELAYS AT STATION B

FOR MUTUAL COUPLING CONDITION

50N1T * 50Q1T

1 * 0

OUTPUT = 0 NO TRIP CONDITION

FOR IN-LINE FAULT CONDITION

50N1T * 50Q1T

1 * 1

OUTPUT = 1 TRIP CONDITION
BENEFIT

- Increased Security
 - Speed is not compromised
 - Same Selectivity
 - Increased Sensitivity
 - Simplicity- No Complication
 - Immune to Mutual Coupling Condition

BEST OF ALL NO VIOLATION OF THE PRINCIPLE OF 5-S’s

TRIP OUTPUT = 67N1T * 67Q1T + Other Trip Conditions
The PQ Teaching Toy Link can be found at the following site:

http://www.powerstandards.com/PQTeachingToyIndex.php
PQ TEACHING TOY SIMULATOR

BRINGING THE 3-PHASES TOGETHER WILL SHOW HOW YOU CAN SIMULATE MUTUAL COUPLING
EVENT SIMULATION USING PQ TEACHING TOY

Phasor Elements

Sequence Elements

Positive sequence
Red - Blue - Yellow

Negative sequence
Red - Blue - Yellow

Zero sequence

Vector sum

IA IB IC IR 310 VA VB VC

IN 52A OUT A4 OUT A2 OUT A1 OUT TP 61H 67H 69H

Cycles

Digital
CONCLUSIONS

Hopefully, this paper will provide new insights to the relay engineer so that better relay settings can be set for the transmission system, thus enhancing the security, sensitivity, and to provide the ability to maintain coordination and avoid any future disturbances due to zero sequence mutual coupling.
ANY QUESTIONS ?