Standards and Guidance and Rules, Oh My!

WARREN B CRAYCROFT
wcraycroft@ieee.org
Sept 2017

https://www.youtube.com/watch?v=Etx-nDCZzLo
What I Hope to Accomplish This Hour

• Consultant Opportunities
• The Regulatory Environment
• The Legitimacy of Medical Device Regulation
 – Medical device development in the 80’s
• Regulatory Intelligence for Developers and PMs
 – Attacking the knowledge management problem
• Integrating Regulation with Project Management
Medical Device Development; A Consultant’s Perspective

• Opportunities in early-stage small-headcount companies
 – Development project managers
 – Direct engineering contributors

• Regulated development: more areas of responsibility than headcount
 – Valuable contributors wear multiple hats

• Safety is paramount

• Everyone has a regulatory role
What I Hope to Accomplish This Hour

• Consultant Opportunities ✓
• The Regulatory Environment
• The Legitimacy of Medical Device Regulation
 – Medical device development in the 80’s
• Regulatory Intelligence for Developers and PMs
 – Attacking the knowledge management problem
• Integrating Regulation with Project Management
The Regulatory Environment

• Rules (US Acts and Regulations)
 – 21 CFR 820: The Quality System Regulation
 • Design controls are required at an early stage
 • Current Good Manufacturing Practices
 – Acts and Rules on market clearance and approvals, recalls, clinical investigations, ...

• Standards
 – ISO, IEC, AAMI, ASTM, there are a bunch

• Guidances
 – FDA: hundreds of guidances for medical devices
The Regulatory Environment: Moving Target w.r.t. Projects

• Changes in Rules (US Acts and Regulations)
 – Relatively slow rate of change; **lots of warning** in the rule-creation process

• Changes in Standards
 – Usually some warning (need “ear to the ground”)
 – Can be **a significant factor** in a 12 – 24 month project

• Changes in FDA Guidances
 – “Current thinking” can change **without warning**
Some Opinions on Regulation

• A out-of-control bureaucratic nightmare?
• An adversarial relationship to be gamed and minimized?
• A significant burden to be grudgingly endured?
• Too much of a good thing?
• My point of view: NONE OF THE ABOVE
What I Hope to Accomplish This Hour

• Consultant Opportunities ✅
• The Regulatory Environment ✅
• The Legitimacy of Medical Device Regulation
 – Medical device development in the 80’s
• Regulatory Intelligence for Developers and PMs
 – Attacking the knowledge management problem
• Integrating Regulation with Project Management
Key Rules and Standards over Time

• 1976 Good Manufacturing Practice
• **1996 Quality System Regulation**
 – Major addition: design controls
• ISO 13485 2016: Quality Management Systems
 – A medical spinoff of ISO 9001
• ISO 14971 2007: Risk Management Process
 – A mature defect containment process
• IEC 60601-1 2012: Basic Medical Device Safety
 – A mature general safety standard
Key Rules and Standards over Time

- FDA Usability Engineering Guidances
 - “Do it by Design”

- IEC 62366 2015 Part 1: Application of usability engineering to medical devices

- HE-75 2013: Human Factors Engineer
 - Both reflect current FDA thinking
 - Regulatory submissions MUST show UE/HF process
The Roots of the Quality System Regulation

● 1996: Final Rule; Quality System Regulation
 ○ Major revision of the Current Good Manufacturing Practices of 1978
 ○ Major addition: pre-production design controls, 21 CFR 820
 ○ The culmination of a 6-year rule-writing process with significant industry input.

● Driven by the Safe Medical Devices Act of 1990
 ○ Congress passed this act in response to studies of medical device accidents and recalls from 1983 to 1989

● Therac-25: the “poster child” of nonconformances in:
 ● Medical device system design, software design, and human interface design
 ● Risk management process
 ● Quality management systems like CAPA, and
 ● The FDA reporting requirements at that time
A Quick Word on Case Histories

- *Medical Devices: The Therac-25*, Nancy Leveson, 49 pages, available online
- Case histories often involve a series of decisions and actions over time.
- It is unfair to pass judgment using present-day knowledge of all events.
- You must walk the time line with the decision makers, AND USE ONLY THE KNOWLEDGE AND TOOLS KNOWN TO THEM AT THAT TIME.
Therac-25

• A radiation therapy machine: 11 installed in the U.S. and Canada
 – Therac-25 a major upgrade of Therac-20 that REMOVED hardware safety interlocks and relied on software only for beam strength and position
 – hundreds of patients were successfully treated

• 6 patients massively overdosed over nearly 2 year period (!)
 – 4 patients died as a result of overdose
 – “worst accidents in 35-year medical accelerator history”
Timeline of Overdose Events

1. 6/3/85: Marietta Georgia; patient seriously injured
2. 7/26/85: Ontario, Canada: patient died 11/3/85
 • 7/30/85: FDA first informed; issues Class II recall
3. 12/1985: Yakima, WA; minor disability
 • 3/86: AECL (Mfg) notifies FDA of 1st lawsuit (rec’vd 11/85!)
4. 3/21/86: Tyler, TX; patient died 8/86
5. 4/11/86: Tyler, TX; patient died 5/1/86
 • 6/13/86: Mfg’s 1st Corrective Action Report (CAR) to FDA
6. 1/17/87: Yakima, WA; patient died 4/87
 • 5/26/87: Mfg’s 4th CAR to FDA; FDA Class I Recall
 • 7/21/87: Mfg’s 5th CAR to FDA; intensive list of changes
Therac-25 Lessons Learned 1

• Lessons Learned are interrelated
• Overconfidence in Software
 – Hardware interlocks of Therac-20 were removed
 – First Risk Analysis did not include software!
• Confusing Software Reliability with Safety
 – Mfg. assumed software was safe because it was reliable
 – Probability of systemic failure was falsely estimated as extremely low.
Therac-25 Lessons Learned 2

• Lack of Defensive Design
 – Lack of self-checks, independent checks and effective exception handling.
 – Machine “lied” to operators on dosage levels
 • Low doses were displayed while patients yelled in pain
 – Single-point failures were allowed in software

• Failure to Eliminate Root Causes
 – Inadequate depth of investigation; stopped at first defect
 – Incomplete fixes dribbled out over 2 year period
Therac-25 Lessons Learned 3

• Unrealistic Risk Assessments
 – “Complacency” in a technology with risk
 – “Software does not wear out” mentality
 – Assigned single low probability to systemic soft errors

• Inadequate Investigation or Follow-up on Accident Reports
 – No risk-based process of investigation at first hint of a problem
• Inadequate Software Engineering Practices
 – Specs and documentation were “afterthoughts”
 – No software quality assurance practices/standards
 • No V & V activities other than testing
 – Inadequate testing practices: no test plan, no unit testing, undocumented testing ...

• Complacency
 – Two previous decades of excellent medical accelerator safety
 – False assumption of mfg’s cumulative safety design experience
Therac-25 Lessons Learned 5

• Safe versus Friendly User Interfaces
 – Poor presentation of information to operators
 – Cryptic, undocumented error messages
 – Never tested with real users under actual use conditions

• User & Government Oversight and Standards
 – Inadequate incident reporting requirements
 – Users kept in dark; late but effective user group response
 – Inadequate FDA rules and guidance on software
Influence on Current Regulation 1

• “Overconfidence in Software”
 – In general, significant improvement in rules, standards, and guidance for safety-significant software development and maintenance
 – Software Risk assessments are required (14971, 62304)
 • Significant risks mitigated by software alone are now suspect from a risk control perspective
 • Examples include independent hardware watchdogs on software systems
Influence on Current Regulation 2

• “Confusing Software Reliability with Safety”
 – Systemic software failures are evaluated by severity only; probability not considered (14971)
 – True reliability assessed by unit testing, code reviews and inspections, user testing,

• “Lack of Defensive Design”
 – Self-checks, independent checks and effective exception handling are state-of-art safety-significant software design practices.
 – Single-point failures directly causing hazards not allowed (60601-1)
Influence on Current Regulation 3

• “Failure to Eliminate Root Causes”
 – Corrective and Preventive Action process (21 CFR 820.100)
 – FDA: HEART OF QUALITY MANAGEMENT

• “Unrealistic Risk Assessments”
 – Each new device judged on its own risk assessment
 – Systemic software failures are evaluated by severity only; probability not considered (14971)
• “Inadequate Investigation or Follow-up on Accident Reports”
 – A “complaints” reporting process required
• “Inadequate Software Engineering Practices”
 – Extensive “temporal” doc requirements (62304)
 – SQA plans required (62304)
 • Including detailed V & V plans– NOT JUST TESTING
 – Extensive test planning and testing requirements
Influence on Current Regulation 5

• “Complacency”
 – An intensive, thorough risk assessment is best defense against complacency
 – Defensive design: apply Murphy’s law

• “Safe versus Friendly User Interfaces”
 – Usability Engineering Process (62366)
 – Clear, documented error messages (60601-1, 62366)
 – Early usability testing with rep. users (62366)
Influence on Current Regulation 6

• “User & Government Oversight and Standards”
 – FDA Reporting requirements strengthened and expanded to users (21 CFR 803)
 – Clinical trial reporting “near misses” (ISO 14155:2011)
Influence on Current Regulation, Summary

• Current S, G, and R, along with current safety-significant software development practices, would have either
 – eliminated many issues during design, or
 – given earlier warning to FDA and users

• Exercise: highlight Leveson case-history where events are prevented by regulation
 – Original flawed design would not have occurred
 – “If it did”, detection would have occurred earlier
“What if” Examples

• Assuming no AECL malfeasance, an effective CAPA process would have collected incident info in one place with a process to investigate and correct.
 – June, 1985: The first phone call to AECL after first non-fatal overdose triggers a “safety” CAPA.
 – July, 1985: The 2nd overdose “connects two overdose dots”; Therac-25 taken out of service
 – Result: One non-serious injury, one death
“What if” Examples

• Other examples of connecting dots early:
 – The manufacturer’s Complaint process triggers a CAPA after second overdose incident
 – Improved FDA reporting requirements; especially user-required reporting
Legitimacy

• Painful lessons learned can be directly traced to current regulation, standards, and guidance
• Legitimacy analogous to building and fire codes
• The volume of lessons-learned is continually increasing – that’s a good thing!
• It’s a Knowledge Management Problem
What I Hope to Accomplish This Hour

- Consultant Opportunities ✅
- The Regulatory Environment ✅
- The Legitimacy of Medical Device Regulation ✅
 - Medical device development in the 80’s ✅
- Regulatory Intelligence for Developers and PMs
 - Attacking the knowledge management problem
- Integrating Regulation with Project Management
Regulatory Intelligence

• **Regulatory intelligence:** the process of gathering, monitoring and analyzing regulatory information and data to track developments in the changing regulatory environment.

• Mature companies: most of this burden is on Regulatory Department

• Early-Stage companies: You may not yet have a seasoned, “current” Regulatory person
Regulatory Intel Methods

• Join your local regulatory affairs group
 – San Diego Regulatory Affairs Network (SDRAN)
 – Orange County Regulatory Affairs Discussion Grp

• Subscribe to FDA newsletters
 – Notification of guidances, recalls, warning letters

• Subscribe to a standards service
 – British Standards BSOL
Regulatory Intel Methods

• Consultants that dangle content:
 – Rob Packard, Greenlight, Emergo

• Consultancies in the trenches:
 – Experien, Norblitt and Rueland, ...
 – SDRAN is thick with consultants
Regulatory Intel Methods

- FDA: CDRH Learn, Device Advice
- Buy training on key regulations, standards, and quality management processes
 - If you have Regulatory personnel, schedule regular presentations to development personnel
 - Buy lunch!
 - Build a company knowledge base on your particular device space

Warren Craycroft Inc
What I Hope to Accomplish This Hour

• Consultant Opportunities ✓
• The Regulatory Environment ✓
• The Legitimacy of Medical Device Regulation ✓
 – Medical device development in the 80’s ✓
• Regulatory Intelligence for Developers and PMs ✓
 – Attacking the knowledge management problem ✓
• Integrating Regulation with Project Management
Effective Project Management

• Regulatory Affairs is a roiling cauldron of change.

• PMs MUST keep current on regulatory affairs pertaining to the medical device “space”
 – By systematic interaction with Regulatory personnel as well as your own intel gathering
 – Keep current on FDA guidance docs

• MUST know the key standards pertaining to the “space”

• Embrace change!
Risk Management (ISO 14971)

• A vital input to product requirements
• Make Risk Management the centerpiece of requirements management
 – The risk assessment process generates safety requirements
 – Trace to design implementation, verification and validation testing
• Start risk assessment early in the design process!
We Did It!

• Consultant Opportunities ✓
• The Regulatory Environment ✓
• The Legitimacy of Medical Device Regulation ✓
 – Medical device development in the 80’s ✓
• Regulatory Intelligence for Developers and PMs ✓
 – Attacking the knowledge management problem ✓
• Integrating Regulation with Project Management ✓