© 2019 Zerto All rights reserved.

Information in this document is confidential and subject to change without notice and does not represent a commitment on the part of Zerto Ltd. Zerto Ltd. does not assume responsibility for any printing errors that may appear in this document. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or information storage and retrieval systems, for any purpose other than the purchaser's personal use, without the prior written permission of Zerto Ltd. All other marks and names mentioned herein may be trademarks of their respective companies.

The scripts are provided by example only and are not supported under any Zerto support program or service. All examples and scripts are provided "as-is" without warranty of any kind. The author and Zerto further disclaim all implied warranties including, without limitation, any implied warranties of merchantability or of fitness for a particular purpose.

In no event shall Zerto, its authors, or anyone else involved in the creation, production, or delivery of the scripts be liable for any damages whatsoever (including, without limitation, damages for loss of business profits, business interruption, loss of business information, or other pecuniary loss) arising out of the use of or inability to use the sample scripts or documentation, even if the author or Zerto has been advised of the possibility of such damages. The entire risk arising out of the use or performance of the sample scripts and documentation remains with you.

ZVR-QSV-7.5
Quick Start to Zerto in vSphere Environments

Zerto is an IT Resilience Platform™ to provide business continuity (BC) and disaster recovery (DR) in a virtual environment, enabling the replication of mission-critical applications and data as quickly as possible and with minimal data loss. When devising a recovery plan, these two objectives, minimum time to recover and maximum data to recover, are assigned target values: the recovery time objective (RTO) and the recovery point objective (RPO). Zerto enables a virtual-aware recovery with low values for both the RTO and RPO. In addition, Zerto enables protecting virtual machines for extended, longer term, recovery using Long Term Retention.

This document provides a quick guide to setting up Zerto in a VMware vCenter Server environment to protect virtual machines.

See the following sections:

- Introduction on page 4
- Recommended Installation Best Practices on page 8
- Installation on page 9
- Registering the Zerto License on page 12
- Installing Virtual Replication Appliances on page 13
- Pairing Sites to Enable Replicating From One Site to Another Site on page 17
- Setting Up the Second Site on page 20
- Enabling Replication to the Same Site on page 21
- Protecting Virtual Machines on page 22
- Testing Disaster Recovery on page 31
Introduction

Zerto helps customers accelerate IT transformation by eliminating the risk and complexity of modernization and cloud adoption. By replacing multiple legacy solutions with a single IT Resilience Platform™, Zerto is changing the way disaster recovery, retention and cloud are managed. This is done by providing enterprise-class disaster recovery and business continuity software for virtualized infrastructure and cloud environments.

In on-premise environments, Zerto (ZVR) is installed with virtual machines to be protected and recovered. In public cloud environments, Zerto Cloud Appliance (ZCA) is installed in the public cloud site that is to be used for recovery.

The installation includes the following:

- **Zerto Virtual Manager** (ZVM): A Windows service that manages everything required for the replication between the protection and recovery sites, except for the actual replication of data. The ZVM interacts with the hypervisor management user interface, such as vCenter Server or Microsoft SCVMM, to get the inventory of VMs, disks, networks, hosts, etc. and then the Zerto User Interface manages this protection. The ZVM also monitors changes in the hypervisor environment and responds accordingly. For example, a VMware vMotion operation, or Microsoft Live Migration of a protected VM from one host to another is intercepted by the ZVM and the Zerto User Interface is updated accordingly.

 - For the maximum number of virtual machines, either being protected or recovered to that site, see Zerto Scale and Benchmarking Guidelines.

- **Virtual Replication Appliance** (VRA): A virtual machine installed on each hypervisor hosting virtual machines to be protected or recovered, to manage the replication of data from protected virtual machines to the recovery site.

 - For the maximum number of volumes, either being protected or recovered to that site, see Zerto Scale and Benchmarking Guidelines.

 Note: *In vSphere installations, OVF to enable installing Virtual Replication Appliances.

- **Virtual Backup Appliance** (VBA): A Windows service that manages File Level Recovery operations within Zerto Virtual Replication.

- **Zerto User Interface**: Recovery using Zerto is managed in a browser or, in VMware vSphere Web Client or Client console.

When Zerto is installed to work with an on-premise hypervisor it also comprises the following component:

- **Data Streaming Service** (DSS): Installed on the VRA machine, and runs in the same process as the VRA. It is responsible for all the retention data path operations.

Zerto also supports both the protected and recovery sites being managed by a single vCenter Server, to handle small branch offices. When the protected and recovery sites are the same site, only one installation of Zerto Virtual Replication is required.
Requirements for Each Site

Click to open and review prerequisites and requirements: VMware vSphere environments

 Routable Networks

The Zerto architecture supports the following network configurations:

- In on-premise environments:
 - Flat LAN networks
 - VLAN networks, including private VLANs and stretched VLANs
 - WAN emulation
 - VPN IPsec
- In Cloud environments:
 - The instance (virtual machine) on which the Zerto Cloud Appliance is installed must use a subnet that is accessible from all Zerto Virtual Managers that may be connected to this instance.

The Zerto architecture does not support NAT (Network Address Translation) firewalls.

Minimum Bandwidth

- The connectivity between sites must have the bandwidth capacity to handle the data to be replicated between the sites. The minimum dedicated bandwidth must be at least 5 Mb/sec.

The Zerto User Interface

For supported browsers, see Interoperability Matrix for All Zerto Versions, in the section Supported Browsers.

The lowest supported screen resolution is 1366x768.

Open Firewall Ports

The following architecture diagram shows the ports that must be opened in the firewalls on all sites.
• Zerto can be installed at multiple sites and each of these sites can be paired to another site enabling protection across sites.

• Zerto also supports protection and recovery on a site being managed by a single vCenter Server.

• If a proxy server is used at the site, specify the IP address of the Zerto Virtual Manager in the exception list in the Proxy Server settings.

The following scenarios are examples of protection and recovery with a single vCenter Server.

When a single vCenter Server is used, port 9081 shown in the above diagram is not used.

• From one datacenter, a branch office, to another datacenter, the main office, both managed by the same vCenter Server.

Zerto recommends installing Zerto in the main office site where protected machines will be recovered.

• From one host to a second host, both managed by the same vCenter Server.

• To the same host but using a different datastore for recovery.

The following table provides basic information, shown in the above diagram, about the ports used by Zerto.

Consider firewall rules if the services are not installed on the same network.

Note: UDP ports in the 444xx range for DHCP are not required and can therefore be blocked.
<table>
<thead>
<tr>
<th>Port</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Required between an ESXi host and the ZVM during installation of a VRA.</td>
</tr>
<tr>
<td>443</td>
<td>Required between the ZVM and the vCenter Server.</td>
</tr>
<tr>
<td>443</td>
<td>Required between an ESXi host and the ZVM during installation of a VRA.</td>
</tr>
<tr>
<td>445</td>
<td>Required between LTR service and a network shared repository on top of SMB protocol.</td>
</tr>
<tr>
<td>2049</td>
<td>Required between LTR service and a network shared repository on top of NFS protocol.</td>
</tr>
<tr>
<td>4005</td>
<td>Log collection between the ZVM and site VRAs.</td>
</tr>
<tr>
<td>4006</td>
<td>Communication between the ZVM and local site VRAs and the site VBA.</td>
</tr>
<tr>
<td>4007</td>
<td>Control communication between protecting and peer VRAs.</td>
</tr>
<tr>
<td>4008</td>
<td>Communication between VRAs to pass data from protected virtual machines to a VRA on a recovery site.</td>
</tr>
<tr>
<td>4009</td>
<td>Communication between the ZVM and local site VRAs to handle checkpoints.</td>
</tr>
<tr>
<td>5672</td>
<td>TCP communication between the ZVM and vCloud Director for access to AMQP messaging.</td>
</tr>
<tr>
<td>9779</td>
<td>Communication between ZVM and ZSSP (Zerto Self Service Portal).</td>
</tr>
<tr>
<td>9989</td>
<td>Communication between ZCM, and ZCM GUI and ZCM REST APIs.</td>
</tr>
<tr>
<td>9080*</td>
<td>Communication between the ZVM, Zerto Powershell Cmdlets, and Zerto Diagnostic tool.</td>
</tr>
<tr>
<td>9081*</td>
<td>Communication between paired ZVMs**</td>
</tr>
<tr>
<td>9180*</td>
<td>Communication between the ZVM and the VBA.</td>
</tr>
<tr>
<td>9669*</td>
<td>Communication between ZVM and ZVM GUI and ZVM REST APIs, and the ZCM.</td>
</tr>
</tbody>
</table>

*The default port provided during the ZVR installation which can be changed during the installation. **When the same vCenter Server is used for both the protected and recovery sites, ZVR is installed on one site only and this port can be ignored.

If a proxy server is used at the site, specify the IP address of the Zerto Virtual Manager in the exception list in the Proxy Server settings.
Recommended Installation Best Practices

Zerto recommends the following best practices:

- Install Zerto on a dedicated virtual machine with a dedicated administrator account and with VMware high availability (HA) enabled, and no other applications installed on this machine, and especially not on the machine running the vCenter Server service. If other applications are installed, the Zerto Virtual Manager service must receive enough resources and HA must remain enabled.

- Install a VRA on every host in a cluster so that if protected virtual machines are moved from one host to another, there is always a VRA to protect the moved virtual machines.

- Install VRAs using static IP addresses and not DHCP.

- Prepare an administrator account for the machine where Zerto is installed.

- You must exclude the following folders from antivirus scanning:

 Zerto Virtual Replication
 %ProgramData%\Zerto\Data\zvm_db.mdf
 C:\Program Files\Zerto\Zerto Virtual Replication\Zerto.Zvm.Service.exe
 C:\Program Files\Zerto\Zerto Virtual Replication\Zerto.Vba.VbaService.exe
 C:\Program Files\Zerto\Zerto Virtual Replication\Zerto Online Services Connector\Zerto.Online.Services.Connector.exe
 C:\Program Files\Zerto\Zerto Virtual Replication\Embedded DB Manager Service\Zerto.LocalDbInstanceManagerService.exe

 Failure to do so may lead to the Zerto Virtual Replication folder being incorrectly identified as a threat and in some circumstances corrupt the Zerto Virtual Replication folder.

- Synchronize the clocks on the machines where Zerto is installed using NTP.
Installation

The Zerto installation deploys the Zerto Virtual Manager and copies the installation software for the Virtual Replication Appliance.

A complete installation includes installing Zerto on the protected and peer, recovery, sites.

Note: When both these sites are managed by a single vCenter Server, Zerto is installed on only one site. In this case, Zerto recommends installing Zerto in the main site where protected machines will be recovered.

You can install Zerto using the defaults provided by Zerto or perform a custom install, in which you can define the ports that will be used by Zerto.

Performing an Express Installation

You can install Zerto using the defaults provided by Zerto. Site information and information to connect to vCloud Director can be provided, if required, after the installation in the Zerto User Interface.

Note: You cannot install Zerto on the same machine where another version of Zerto has been installed, for example, if the Zerto for Microsoft Hyper-V version has been installed on the machine.

To perform an express install of Zerto:

1. Run [Zerto Installer.exe](#).

 Note: If the required version of Microsoft .NET Framework is not installed, you are prompted to install the required version of .NET Framework, which is included as part of the Zerto installation package. After .NET is installed the machine automatically restarts and the Zerto installation begins.

2. Follow the wizard through the installation until the Choose Installation Type dialog and select the [Express installation](#) option.

3. Click [NEXT](#).

 The vCenter Server Connectivity dialog is displayed.
4. Specify the following:

IP / Host Name: The IP address or host name of the machine where the vCenter Server runs.

Username: The user name of a user with administrator level privileges in the vCenter Server. The name can be entered using either of the following formats:

- `username`
- `domain\username`

Password: A valid password for the given user name.

Site Name: A name to identify the site.

5. Click **NEXT**.

The Validation dialog is displayed.

The installation performs checks to make sure that the installation can proceed successfully.

6. After the checks complete successfully, click **RUN** and continue to the end of the installation.

7. If you intend to manage disaster recovery from this machine, open the Zerto User Interface at the end of the installation, logging in with the user name and password for the vCenter Server connected to the Zerto Virtual Manager.

8. You must exclude the following folders from **antivirus scanning**:

 Zerto Virtual Replication
 %ProgramData%\Zerto\Data\zvm_db.mdf
 C:\Program Files\Zerto\Zerto Virtual Replication\Zerto.Zvm.Service.exe
 C:\Program Files\Zerto\Zerto Virtual Replication\Zerto.Vba.VbaService.exe
 C:\Program Files\Zerto\Zerto Virtual Replication\Zerto Online Services Connector\Zerto.Online.Services.Connector.exe
 C:\Program Files\Zerto\Zerto Virtual Replication\Embedded DB Manager Service\Zerto.LocalDbInstanceManagerService.exe

Failure to do so may lead to the Zerto Virtual Replication folder being incorrectly identified as a threat and in some circumstances corrupt the Zerto Virtual Replication folder.
9. Repeat the procedure to install Zerto on the peer site.
Registering the Zerto License

Access the Zerto User Interface from a browser as follows:

1. In a browser, enter the following URL:

 https://zvm_IP:9669

 where zvm_IP is the IP address of the Zerto Virtual Manager for the site you want to manage.

2. Login using the user name and password for the vCenter Server connected to the Zerto Virtual Manager.

On the very first access to the Zerto User Interface, you must either register your use of Zerto, by entering the license key supplied by Zerto or pair to a site where a license has already been entered.

After entering a valid license, the DASHBOARD tab is displayed with a summary of the site. Before you can start protecting virtual machines in this site, you must configure Zerto Virtual Manager at each site by installing Virtual Replication Appliances on the hosts in the site and pair the protected and recovery sites, as described in the following sections.

Note: Complete the configuration of one site at a time.
Installing Virtual Replication Appliances

The Zerto installation includes the OVF template for Virtual Replication Appliances (VRAs). A VRA is a Zerto virtual machine that manages the replication of virtual machines across sites. A VRA must be installed on every host that manages virtual machines that require protecting in the protected site and on every host that manages virtual machines in the recovery site. The VRA compresses the data that is passed across the WAN from the protected site to the recovery site. The VRA automatically adjusts the compression level according to CPU usage, including totally disabling it if needed.

A VRA can manage a maximum of 1500 volumes, whether these volumes are being protected or recovered.

The VRA is a custom, very thin, Linux-based virtual machine with a small footprint, disk - memory and CPU - and increased security since there are a minimum number of services installed.

Zerto recommends installing a VRA on every hypervisor host so that if protected virtual machines are moved from one host in the cluster to another host in the cluster there is always a VRA to protect the moved virtual machines.

VRA Installation Requirements

To install a VRA you require the following on the host:

- **15GB** storage space
- At least **1GB** of reserved memory.
- *(vSphere only)* The ESX/ESXi version must be in accordance with supported ESX/ESXi versions in the Interoperability Matrix, and Ports 22 and 443 must be enabled on the host during the installation.
- Port **8100** must be enabled on SCVMM.
- *(Hyper-V only)* Minimum PowerShell version: 4.0
- The following PowerShell cmdlet has been run:
  ```powershell
  Install-WindowsFeature -Name Hyper-V -IncludeManagementTools -Restart
  ```

Before You Begin:

You must know the following information to install a VRA:

- *(vSphere only)* If the ESXi version is 5.5 or higher and the VRA should connect to the host with user credentials, or if the ESXi version is lower than 5.5, the password to access the host root account.

 Note: For ESXi versions 5.5 or higher, by default the VRA connects to the host with a vSphere Installation Bundle, VIB. Therefore, it is not necessary to enter the password used to access the host root account.
• The **storage** the VRA will use, and the **local network** used by the **host**.
• The **network settings** to access the **peer** site; either the default gateway or the IP address, subnet mask, and gateway.

Note: When the gateway is not required, you can specify 0.0.0.0 as the gateway, for example when performing self replication.

• If a **static IP** is used, instead of DHCP, which is the Zerto recommendation, you need to know the IP address, subnet mask, and default gateway to be used by the VRA.

Note: In a non-production environment it is often convenient to use DHCP to allocate an IP to the VRA. In a production environment this is not recommended. For example, if the DHCP server changes the IP allocation on a reboot, the VRA does not handle the change.

• If the **peer site VRAs** are **not** on the **default gateway**, you must **set up routing** to enable the VRAs on this site to communicate with the peer site VRAs before defining the VRAs.
 • Setting up routing **after** defining VRAs only applies to VRAs installed after the routing is set.
 • Any **existing VRA** is not affected and access to these VRAs continues via the default gateway.
 • If the default gateway stops being used, you must reinstall the VRAs that were installed before setting up paired site routing.

• (vSphere only) For the duration of the installation of the VRA, the Zerto Virtual Manager enables SSH in the vCenter Server.

• (vSphere only) You must know the following information to install a VRA:
 • The **password** to access the **host root account**, for ESXi 5.x.
 • The **datastore** the VRA will use and the **local network** used by the host.
 • The **network settings** to access the **peer** site; either the default gateway or the IP address, subnet mask, and gateway.
 • If a **static IP** is used, instead of DHCP, which is the Zerto recommendation, you need to know the IP address, subnet mask, and default gateway to be used by the VRA.

Note: In a non-production environment it is often convenient to use DHCP to allocate an IP to the VRA. In a production environment this is not recommended. For example, if the DHCP server changes the IP allocation on a reboot, the VRA does not handle the change.

If the peer site VRAs are not on the same network as the peer site Zerto Virtual Manager, you must set up routing to enable the Zerto Virtual Manager to communicate with the peer site VRAs, as described in the Zerto Virtual Manager Administration Guide for the VMware vSphere Environment.

To install Zerto Virtual Replication Appliances (VRAs) on ESX/ESXi hosts:
1. In the Zerto User Interface, click **SETUP > VRAs**.

2. Select a host which requires a VRA and click **NEW VRA**.

 The Configure and Install VRA dialog is displayed. The dialog displayed depends on the ESXi/i version:

 - **ESXi versions from 5.5**
 - **ESXi versions before version 5.5**

 ![Configure and Install VRA dialog](image)

 Note: If you selected a cluster or multiple hosts, the VRA is installed on the first host in the displayed list.

3. Specify the following in the **Host Details** section:

 Host: The host on which the VRA is installed. The drop-down displays the hosts that do not have a VRA installed, with the selected host displayed by default.

 From ESXi 5.5, by default, Zerto Virtual Manager uses a vSphere Installation Bundle, VIB, to connect to the host. When using VIB:

 - The user does not enter a password.
 - Once a day, Zerto Virtual Manager checks that the VRA and host can connect. If the connection fails, Zerto Virtual Manager re-initiates the connection automatically and logs it.

 For ESXi/i versions earlier than 5.5, when using a password, root access is required. Once a day, Zerto Virtual Manager checks that the password is valid. If the password was changed, an alert is issued, requesting the user enter the new password.

 Use credentials to connect to host: When unchecked, the Zerto Virtual Manager uses VIB to...
connect to the host. This field is only relevant for ESXi 5.5 and later.

Host Root Password: When the VRA should connect to the host with a password, check **Use credential to connect to host** and enter the root user password used to access the host. When the box on the right side is checked, the password is displayed in plain text. This field is only relevant for ESXi 5.x hosts.

Datastore: The datastore that contains the OS disks of the VRA VM. You can install more than one VRA on the same datastore.

Network: The network used to access the VRA.

4. Leave the VRA **RAM** and VRA **Group** values with their defaults.

5. Specify the following in the VRA **Network Details** section:

 Configuration: Specify DHCP.

 Note: In a production environment the **Static** option is the recommended option.

6. Click **INSTALL**.

 The VRA installation starts and the status is displayed in the TASKS popup dialog in the status bar and under **MONITORING > TASKS**.

 The VRA displayed name and DNS name is **Z-VRA-hostname**. If a virtual machine with this name exists, for example when a previous VRA was not deleted, the VRA name has a number appended to it.

Add a VRA to every host that hosts virtual machines that you want replicated. Zerto recommends installing a VRA on every listed host. An alert is issued after the first VRA is installed in a cluster that tells you to install a VRA on the other hosts in the cluster. The alert is automatically removed when all the hosts in the cluster have VRAs installed.

Note: VRAs are configured and managed by the Zerto Virtual Manager. You cannot take snapshots of VRAs as snapshots cause operational problems for the VRAs.
Pairing Sites to Enable Replicating From One Site to Another Site

See the following sections:
- Pair to Another Site on page 17
- Unpairing Sites on page 18

Pair to Another Site

You can pair to any site where Zerto is installed.

Zerto can be installed at multiple sites and each of these sites can be paired to any other site on which Zerto has been installed. Virtual machines that are protected on one site can be recovered to any paired site.

To pair to a site:

1. From the remote site to which you will pair, in Zerto Virtual Manager > Sites tab, click the button **Generate Pairing Token**.

2. The Generate Pairing Token window opens.

 ![Generate Pairing Token Window](image)

3. Click **Copy**, to copy the token.

 The token **expires** when the earliest of one of the following conditions is met:
 - 48 hours after clicking Copy
 - At the next ZVM process termination
 - After the token is used to authenticate the pairing request

4. From the site which will initiate the pairing, in the Zerto Virtual Manager > Sites tab, click **PAIR**.

 The Add Site window is displayed.
Quick Start to Zerto in vSphere Environments

5. Specify the following:
 - **Host name/IP**: IP address or fully qualified DNS host name of the **remote** site Zerto Virtual Manager to pair to.
 - **Port**: The TCP port communication between the sites. Enter the port that was specified during the installation. The default port during the installation was 9081.
 - **Token**: Paste the token which you copied above.

6. Click **PAIR**.

 The sites are paired, meaning that the Zerto Virtual Manager for the local site is connected to the Zerto Virtual Manager at the remote site.

 After the pairing completes the content of the SITES tab updated to include summary information about the paired site.

Unpairing Sites

You can unpair any two sites that are paired to each other.

Important: If there is a VPG on either of the sites you are unpairing, the VPGs will be **deleted**.

> **To unpair two sites**:

1. In the Zerto User Interface, in the SITES tab, select the site which you want to unpair.

2. Click **UNPAIR**.

 A message appears warning the user that the sites are about to unpair.

 If there are either protected or recovered VPGs on the paired sites, a message appears warning the user that the VPGs will be deleted.
3. For vSphere, Hyper-V and Azure platforms, you can select to keep disks to use for preseeding if the VMs are re-protected. If you select this option, the disks are not removed from the recovery site.

4. To unpair, click **CONTINUE**.
 The sites are no longer paired. If there are VPGs on either site, they are deleted.
 The VRA on the recovery site that handles the replication for the VPG is updated including keeping or removing the replicated data for the deleted VPG, depending if you selected to keep disks to use for preseeding.
 The locations of the saved target disks are specified in the **Events** tab in the ZVM application on the **Recovery** site.

If a single vCenter is used, for example with remote branch offices, when replicating from one datacenter to another datacenter, both managed by the same vCenter Server, you have to enable replication to the same vCenter Server and pairing is not required. For details, see **Enabling Replication to the Same Site** on page 21.
Setting Up the Second Site

After pairing the sites you can access the second site without entering a license and then install VRAs in
the site.

Install VRAs on hosts in the second site by repeating the procedure, Installing Virtual Replication
Appliances on page 13.
Enabling Replication to the Same Site

When a single vCenter is used, for example with remote branch offices, when replicating from one datacenter to another datacenter, both managed by the same vCenter Server, you must enable replication to the same vCenter Server and pairing is not required. In this case, replication to the same vCenter must be set in the Site Settings dialog.

To enable replication to the same vCenter Server:

1. In the Zerto User Interface, click SETTING (SETTINGS) in the top right of the header and select Site Settings.
 The Site Settings dialog is displayed, with the default tab, Site Information, open.

2. Click the tab Policies.

3. Select the checkbox Enable Replication to Self.

4. Click APPLY or SAVE.

 The Zerto Virtual Manager, when used to protect to itself, can manage the protection of up to 5000 virtual machines.

Quick Start to Zerto in vSphere Environments
Protecting Virtual Machines

You can protect virtual machines to a recovery site vCenter Server. The procedure is the same whether you intend to protect one virtual machine or multiple virtual machines.

Note: You cannot protect virtual machines with VirtualEthernetCardLegacyNetworkBackingInfo NICs or with IDE devices.

To create a virtual protection group (VPG) to recover in vCenter:

1. In the Zerto User Interface, select **Actions > Create VPG**.
 The General step of the Create VPG wizard is displayed.

2. Specify the name of the VPG and the priority of the VPG.
 - **VPG Name:** The VPG name must be unique. The name cannot be more than 80 characters.
 - **Priority:** Determine the priority for transferring data from the protected site to the recovery site when there is limited bandwidth and more than one VPG is defined on the protected site.
 - **High Priority:** When there are updates to virtual machines protected in VPGs with different priorities, updates from the VPG with the highest priority are passed over the WAN first.
 - **Medium Priority:** Medium priority VPGs will only be able to use whatever bandwidth is left after the high priority VPGs have used it.
 - **Low Priority:** Low priority VPGs will use whatever bandwidth is left after the medium priority VPGs have use it.
Updates to the protected virtual machines are always sent across the WAN before synchronization data, such as during a bitmap or delta sync.

During synchronization, data from the VPG with the highest priority is passed over the WAN before data from medium and low priority VPGs.

3. Click **NEXT**.

The VMs step is displayed.

4. Select the VMs that will be part of this VPG and click the right-pointing arrow to include these VMs in the VPG.
 - Zerto uses the SCSI protocol. Only virtual machines with disks that support this protocol can be specified.
 - When using the **Search** field, you can use the wildcards; * or ?

Virtual machines that are not yet protected are displayed in the list. A VPG can include virtual machines that are not yet protected and virtual machines that are already protected.

5. You can view protected virtual machines in the **Advanced (One-to-Many)** section, by clicking **Select VMs**.

The Select VMs dialog is displayed.
Note: Virtual machines can be protected in a maximum of three VPGs. These VPGs cannot be recovered to the same site. Virtual machines protected in the maximum number of VPGs are not displayed in the Select VMs dialog.

Protecting virtual machines in several VPGs is enabled only if both the protected site and the recovery site, as well as the VRAs installed on these sites, are of version 5.0 and higher.

6. To define the boot order of the virtual machines in the VPG, click DEFINE BOOt ORDER, otherwise go to the next step.

When virtual machines in a VPG are started in the recovery site, by default these machines are not started up in a particular order. If you want specific virtual machines to start before other machines, you can specify a boot order. The virtual machines are defined in groups and the boot order applies to the groups and not to individual virtual machines in the groups. You can specify a delay between groups during startup.

Note: Up to 20 virtual machines may boot on a host simultaneously. Following the boot, a 15 second (default) delay occurs until the next boot batch.

Initially, virtual machines in the VPG are displayed together under the Default group. If you want specific machines to start before other virtual machines, define new groups with one or more virtual machines in each group.
7. Click **ADD GROUP** to add a new group. Then, do the following:

a. To change the name of a group, click the Pencil icon next to the group.

 b. To delete a group, click the delete icon on the right side. You cannot delete the Default group nor a group that contains a virtual machine.

 c. Drag virtual machines to move them from one group to another.

 d. Drag groups to change the order the groups are started, or, optionally, in **Boot Delay**, specify a time delay between starting up the virtual machines in the group and starting up the virtual machines in the next group.

 For Example: Assume three groups, Default, Server, and Client, defined in this order. The boot delay defined for the Default group is 10, for the Server group is 100, and for the Client group 0. The virtual machines in the Default group are started together and after 10 seconds the virtual machines in the Server group are started. After 100 seconds the virtual machines in the Client group are started.

 e. Click **OK** to save the boot order.

 Click NEXT.

 The Replication step is displayed.
Quick Start to Zerto in vSphere Environments

Note: If the protected site is paired with only one recovery site, the recovery step is displayed with the **Recovery Site** field automatically filled in and defaults set for the SLA and Advanced settings, as shown below.

8. Specify the values to use when replicating to this site.

Recovery Site: The site to which you want to recover the virtual machines. After specifying the recovery site, the host and datastore on the site to use for replication can be specified. If you specified that replication is possible to the same site, as described in Enabling Replication to the Same Site on page 21, then you can specify the local site here.

Host: The default cluster, resource pool or host in the recovery site that handles the replicated data.

When a resource pool is specified, Zerto checks that the resource pool capacity is enough for any virtual machines specified in the VPG.

All resource pool checks are made at the level of the VPG and do not take into account multiple VPGs using the same resource pool. If the resource pool CPU resources are specified as unlimited, the actual limit is inherited from the parent but if this inherited value is too small, failover, move, and failover test operations can fail, even without a warning alert being issued by Zerto Virtual Manager.

Note that if a resource pool is specified and DRS is disabled for the site later on, all the resource pools are removed by VMware and recovery will be to any one of the hosts in the recovery site with a VRA installed on it.

Datastore: The datastore volume to use for all recovered virtual machine files as well as for their data volumes. Every datastore for the selected recovery host is included in the drop-down list. If a cluster or resource pool is selected for the host, only datastores that are accessible by every host in
the cluster or resource pool are displayed. When specifying the recovery storage for a virtual machine with a storage cluster, you must specify a datastore in the cluster.

9. The following settings can be changed later by editing the VPG definition. For your first VPG, leave the default values and click **NEXT**.

After clicking **NEXT**, the STORAGE step is displayed. By default the storage used for the virtual machine definition is also used for the virtual machine data. For each virtual machine in the VPG, Zerto displays its storage-related information.

Note: Steps that do not require input are marked with a check mark. You can jump directly to a step that has been marked with a check mark to edit the values for that step. Every step must be marked with a check mark before you can click **DONE** to create the VPG.

10. For your first VPG, leave the default values. These settings can be changed later by editing the VPG definition. Click **NEXT**.

The RECOVERY step is displayed. Recovery details include the networks to use for failover, move, and for testing failover, and whether scripts should run as part of the recovery operation.

RECOVERY step in on-premise environments:

RECOVERY step in AWS environments:

11. Select the recovery settings.
• **Failover/Move Network:** The network to use during a failover or move operation in which the recovered virtual machines will run.

• **Failover Test Network:** The network to use when testing the failover of virtual machines in the recovery site. Zerto recommends using a fenced-out network so as not to impact the production network at this site.

• **Recovery Folder:** The folder to which the virtual machine is recovered.

Note: If the recovery site is a cloud service provider site, it is not possible to select a recovery folder.

12. You can run scripts as part of the recovery process, and these scripts are defined in the VPG. Script settings can be added later by editing the VPG definition. For your first VPG, leave the default values and click **NEXT**.

The NICs step is displayed. In this step, you can specify the NIC details to use for the recovered virtual machines after a failover, a test failover, or migration.

NICs step in on-premise environments:

13. Again, leave the defaults and click **NEXT**.

The Retention Policy step is displayed. Retention properties govern the VPG retention, including the repository where the retention sets are saved.
14. Again, leave the defaults and click NEXT.

The SUMMARY step is displayed. It shows the VPG configuration that you defined in previous tabs.

15. Click DONE.

The VPG is created.

The VRA in the recovery site is updated with information about the VPG and then the data on the protected virtual machines are synchronized with the replication virtual machines managed by the VRA on the recovery site. This process can take some time, depending on the size of the VMs and the bandwidth between the sites.

Note: For synchronization to work, the protected virtual machines must be powered on.

Once synchronized, the VRA on the recovery site includes a complete copy of every virtual machine in the VPG. After synchronization, the virtual machines in the VPG are fully protected, meeting their SLA, and the delta changes to these virtual machines are sent to the recovery site.
In order to verify that the disaster recovery that you have planned is the one that will be implemented, Zerto recommends testing the recovery of the VPGs defined in the protected site to the recovery site.
Testing Disaster Recovery

Use the Failover Test operation to test that during recovery the virtual machines are correctly replicated at the recovery site. The Failover Test operation creates test virtual machines in a sandbox, using the test network specified in the VPG definition, as opposed to creating virtual machines in a production network, to a specified point-in-time, using the virtual disks managed by the VRA. All testing is written to scratch volumes. The longer the test period the more scratch volumes are used, until the maximum size is reached, at which point no more testing can be done. The maximum size of all the scratch volumes is determined by the journal size hard limit and cannot be changed. The scratch volumes reside on the storage defined for the journal.

The Failover Test operation has the following basic steps:

1. Starting the test.
 a. The test virtual machines are created at the remote site using the network specified for testing in the VPG settings and configured to the checkpoint specified for the recovery.
 b. The virtual machines are powered on, making them available to the user. If applicable, the boot order defined in the VPG settings is used to power on the machines.

2. Testing. The virtual machines in the VPG are created as test machines in a sandbox and powered on for testing using the test network specified in the VPG definition and using the virtual disks managed by the VRA. All testing is written to scratch volumes. The longer the test period the more scratch volumes are used, until the maximum size is reached, at which point no more testing can be done. The maximum size of all the scratch volumes is determined by the journal size hard limit and cannot be changed. The scratch volumes reside on the storage defined for the journal. Using scratch volumes makes cleaning up the test failover more efficient.

 Note: You must not delete, clone, migrate to another host or change the disk properties of any of the test virtual machines.

3. Stopping the test.
 a. The test virtual machines are powered off and removed from the inventory.
 b. The following tag is added to the checkpoint specified for the test: Tested at startDateAndTimeOfTest

 The tagged checkpoint can be used to identify the point-in-time to restore the virtual machines in the VPG during a failover.

Testing that recovery is accomplished successfully should be done periodically so that you can verify that a failover will work. Zerto also recommends testing all the VPGs being recovered to the same cluster together. For example, in a cluster, if the HA configuration in a cluster includes admission control to prevent virtual machines being started if they violate availability constraints, testing the failover of every VPG configured for recovery to this cluster, at the same time, will show whether the constraints are violated or not.

When configuring a VPG, specify the period between tests for that VPG in the Test Reminder field in the REPLICATION step of the Create VPG wizard.
Starting a Failover Test

You can test a single VPG or multiple VPGs to make sure that if an actual failover is needed, the failover will perform as expected.

Note: You can initiate the failover test from either the protected site or recovery site.

➢ **To test failover:**

1. In the Zerto User Interface click .

 The Failover Test wizard is displayed.

2. Select the VPGs to test. By default, all VPGs are listed.
 a. To select specific VMs in a VPG, click the icon next to each VPG to get a list of VMs. The Select VMs to Failover dialog is displayed. By default, all VMs are selected.
b. Select the VMs to test.

Note: Selecting specific VMs in a VPG to failover is not supported when replicating from a vCD site.

At the bottom, the selection details show the amount of data and the total number of virtual machines selected.

The **Direction** arrow shows the direction of the process: from the protected site to the peer, recovery, site.

3. Click **NEXT**.

The **PARAMETERS** step is displayed.

You can select the checkpoint to use for the recovery and see if a boot order and scripts are defined for the VPG. By default, the last checkpoint added to the journal is displayed. The checkpoints determine the RPO and ensure crash consistency and write-fidelity when the virtual machines in a VPG are recovered. These checkpoints are written every few seconds and you can recover to any of the available checkpoints.

4. Click **NEXT**.

The **FAILOVER TEST** step is displayed. The topology shows the number of VPGs and virtual machines being tested to failover to each recovery site.
5. To start the test, click **START FAILOVER TEST**.

The test starts for the selected VPGs. The test begins with an initialization period during which the virtual machines are created in the recovery site.

After Starting a Test, What Happens?

During the initiation phase, the virtual machines in the virtual protection group are created at the recovery site with the suffix testing recovery.

All testing is written to scratch volumes. The longer the test period the more scratch volumes are used, until the maximum size is reached, at which point no more testing can be done. The maximum size of all the scratch volumes is determined by the journal size hard limit and cannot be changed. The scratch volumes reside on the storage defined for the journal. Using these test scratch volumes makes cleaning up the test failover more efficient.

While a test is running:

- The virtual machines in the VPGs continue to be protected.
- You can add checkpoints to the VPGs, and if necessary fail over the VPGs.
- You cannot take a snapshot of a test machine, since the virtual machine volumes are still managed by the VRA and not by the virtual machine. Using a snapshot of a test machine will create a corrupted virtual machine.
- You cannot move VPGs being tested.
- You cannot initiate a failover while a test is being initialized or closed.

Monitor the status of a failover test by doing the following:
• In the Zerto User Interface, click the VPGs tab. The Operation field in the GENERAL view displays Testing Failover when a failover test is being performed.

[Image of VPG tab]

• In the Zerto User Interface, click the VPGs tab, and then click the name of a VPG you are testing. A dynamic tab is created displaying the specific VPG details including the status of the failover test.

[Image of dynamic VPG tab]

Stopping a Failover Test

To stop a failover test:

1. Click the Stop icon, in either the Dashboard or the dynamic tab, to stop the test in the specific VPG tab.
You can also stop the test via the TASKS popup dialog in the status bar, or by selecting MONITORING > TASKS.

The Stop Test dialog is displayed.

2. In the Result field specify whether the test succeeded or failed.

3. Optionally, in the Notes field, add a description of the test. For example, specify where external files that describe the tests performed are saved. Notes are limited to 255 characters.

4. Click STOP.

5. In the Result field specify whether the test succeeded or failed.

6. Optionally, in the Notes field, add a description of the test. For example, specify where external files that describe the tests performed are saved. Notes are limited to 255 characters.

7. Click STOP.

After stopping a test, the following occurs:

- Virtual machines in the recovery site are powered off and removed.
- The resource group created for the operation is deleted.
- The checkpoint that was used for the test has the following tag added to identify the test: Tested at startDateAndTimeOfTest.
This checkpoint can be used to identify the point-in-time to use to restore the virtual machines in the VPG during a failover.
Zerto enhances the Zerto IT Resilience Platform by converging disaster recovery and backup to deliver continuous availability within a simple, scalable platform. Zerto delivers enhanced analytics, platform improvements and cloud performance upgrades required in the future of IT resilience.

Learn more at Zerto.com.

For assistance using Zerto’s Solution, contact: @Zerto Support.

© 2019 Zerto Ltd. All rights reserved.