Document information

<table>
<thead>
<tr>
<th>Info</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keywords</td>
<td>RF power transistor, Doherty architecture, LDMOS, RF performance, Digital PreDistortion (DPD), IS-95, W-CDMA, BLF7G27LS-150P</td>
</tr>
<tr>
<td>Abstract</td>
<td>This application note describes 2.5 GHz to 2.7 GHz RF performance tests for a Doherty power amplifier design using the BLF7G27LS-150P LDMOS power transistor</td>
</tr>
</tbody>
</table>
1. Introduction

This application note describes RF performance tests over the range 2.5 GHz to 2.7 GHz for a Doherty power amplifier design using the BLF7G27LS-150P LDMOS power transistor.

The amplifier uses one BLF7G27LS-150P push-pull device in a Doherty architecture on a 0.76 mm (0.030") thick RF-35 printed-circuit board (PCB). One section functions as the main amplifier for the carrier signal, while the other functions as the peak amplifier for signal peaks. The design ensures high-efficiency while maintaining a very similar peak power capability of two sections of the push-pull device combined. The input and output sections are internally matched, contributing to high gain and good gain flatness and phase linearity over a wide frequency band.

The BLF7G27LS-150P is 150 W push-pull N-channel Enhancement-Mode Laterally Diffused MOSFET: a seventh generation LDMOS device using NXP Semiconductors' advanced LDMOS process.

The amplifier board layout is shown in Figure 1. The component layout is shown in Figure 12 on page 10 and the list of components are given in Table 1 on page 11.
2. Test summary

Amplifier under test: board number: 1298; date code D101003BP.

The amplifier was set up and tested under the following conditions:

- **Frequency band**: 2500 MHz to 2700 MHz
- **Network analyzer measurements** for gain (G_p), delay (τ_d) and Input Return Loss (IRL) at:
 - output power (P_L) = 43 dBm
 - drain-source voltage (V_{DS}) = 28 V
 - main power amplifier quiescent drain current ($I_{Dq (main)}$) = 500 mA
 - gate-source voltage of peak amplifier ($V_{GS (peak)}$) = 0.4 V
- **CDMA Interim Standard (IS-95)** at $V_{DS} = 28$ V, $I_{Dq (main)} = 500$ mA and $V_{GS} = 0.4$ V
- **Peak output power (P3dB) capability**
 - using CDMA IS-95 signal, ratio of peak power to average power = 9.7 dB at 0.01 % probability, $V_{DS} = 28$ V, $I_{Dq (main)} = 500$ mA and $V_{GS (peak)} = 0.4$ V
 - using a pulsed signal and measuring the 3 dB compression points with a pulse width of 12 μs, 10 % duty cycle at $V_{DS} = 28$ V, $I_{Dq (main)} = 500$ mA and $V_{GS (peak)} = 0.4$ V
- **Digital PreDistortion (DPD) measurements** using a DPD system, 2-carrier W-CDMA signal, 10 MHz spacing, Peak-to-Average ratio (PAR) = 7.4 dB at 0.01 % probability (total signal), $V_{DS} = 28$ V, $I_{Dq (main)} = 500$ mA, $V_{GS (peak)} = 0.4$ V
3. RF Performance

3.1 Network analyzer measurements

Network analyzer measurements were made under the following conditions:

- \(P_L = 43 \text{ dBm} \)
- \(V_{DS} = 28 \text{ V} \)
- \(I_{Dq \text{ (main)}} = 500 \text{ mA} \)
- \(V_{GS \text{ (peak)}} = 0.4 \text{ V} \)

Fig 2. Power gain and input return loss as a function of frequency

Fig 3. Delay and input return loss as a function of frequency
3.2 IS-95 measurements

The IS-95 measurements were made under the following conditions:

- Bias: \(V_{DS} = 28 \) V
- \(I_{DQ\text{ (main)}} = 500 \) mA
- \(V_{GS\text{ (peak)}} = 0.4 \) V

![Graph showing power gain and drain efficiency as a function of average output power, IS-95](image)

Fig 4. Power gain and drain efficiency as a function of average output power, IS-95

1. \(G_p = 2500 \) MHz.
2. \(G_p = 2600 \) MHz.
3. \(G_p = 2700 \) MHz.
4. \(\eta_D = 2500 \) MHz.
5. \(\eta_D = 2600 \) MHz.
6. \(\eta_D = 2700 \) MHz.

![Graph showing adjacent channel power ratio as a function of output power](image)

Fig 5. Adjacent channel power ratio as a function of output power

1. 2500 MHz – 885 kHz.
2. 2500 MHz + 885 kHz.
3. 2600 MHz – 885 kHz.
4. 2600 MHz + 885 kHz.
5. 2700 MHz – 885 kHz.
6. 2700 MHz + 885 kHz.
7. 2500 MHz – 1.98 MHz.
8. 2500 MHz + 1.98 MHz.
9. 2600 MHz – 1.98 MHz.
10. 2600 MHz + 1.98 MHz.
11. 2700 MHz – 1.98 MHz.
12. 2700 MHz + 1.98 MHz.

3.3 Peak output power measurements

Two methods were used to measure peak output power.

- Using a standard IS-95 signal (PAR = 9.7 dB at 0.01 % probability on the CCDF), determining the output power where the PAR reaches 6.7 dB at 0.01 % probability on the CCDF, measured as the 3 dB compression point (Figure 6)
- Using the pulsed signal (12 \(\mu \)s width and 10 % duty cycle), measuring the 1 dB and 3 dB compression points (Figure 7)

The peak power measurements were made under the following conditions:
4. DPD measurements

4.1 Test signal

The DPD measurements were made using an in-house designed DPD system under the following conditions:

- 2-carrier W-CDMA signal, spacing: 10 MHz, PAR = 7.4 dB at 0.01 % probability (total signal)
- $V_{DS} = 28 \text{ V}$, $I_{Dq \text{ (main)}} = 500 \text{ mA}$, $V_{GS \text{ (peak)}} = 0.4 \text{ V}$
4.2 2.6 GHz DPD correction

The following DPD measurements were made under the following conditions:

- $f_c = 2.6$ GHz
- $P_L = 45$ dBm
- $IMD = 15$ MHz offset from f_c
- $IBW = 3.84$ MHz

Fig 8. Test signal CCDF

4.3 2.5 GHz DPD correction

The following DPD measurements were made under the following conditions:

- $f_c = 2.5$ GHz
- $P_L = 45$ dBm
- $IMD = 15$ MHz offset from f_c
- $IBW = 3.84$ MHz
4.4 2.7 GHz DPD correction

The following DPD measurements were made under the following conditions:

- $f_c = 2.7$ GHz
- $P_L = 45$ dBm
- IMD = 15 MHz offset from f_c
- IBW = 3.84 MHz

Fig 10. DPD measurement, $f_c = 2.5$ GHz

(1) IMD uncorrected: −30.6 dBc (lower) −29.8 dBc (upper).
(2) IMD corrected: −55.2 dBc (lower) −54.9 dBc (upper).

Fig 11. DPD measurement, $f_c = 2.7$ GHz

(1) IMD uncorrected: −32.3 dBc (lower) −33.5 dBc (upper).
(2) IMD corrected: −54.8 dBc (lower) −54.5 dBc (upper).
5. BLF7G27LS-150P Doherty amplifier board

(1) To ensure RF performance results given in this Application Note, add thin copper to area indicated.

Fig 12. BLF7G27LS-150P Doherty amplifier board component layout
5.1 BLF7G27LS-150P Doherty amplifier board components

<table>
<thead>
<tr>
<th>Designator</th>
<th>Description</th>
<th>Part identifier</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input PCB</td>
<td>RF35; $\varepsilon_r = 3.5$; thickness 0.76 mm (0.030”)</td>
<td>BLF7G27LS-150P Doherty PA Input-Rev1</td>
<td>Ohio circuits</td>
</tr>
<tr>
<td>Output PCB</td>
<td>BLF7G27LS-150P Doherty PA Output-Rev1</td>
<td>Ohio circuits</td>
<td></td>
</tr>
<tr>
<td>C1, C2, C7, C8</td>
<td>1 μF ceramic chip capacitor</td>
<td>GRM31MR71H105K88L</td>
<td>MuRata</td>
</tr>
<tr>
<td>C3, C4, C5, C6, C9, C10</td>
<td>100 nF ceramic chip capacitor</td>
<td>S0805W104K1HRN-P4</td>
<td>Multicomp</td>
</tr>
<tr>
<td>C11, C12</td>
<td>12 pF ceramic chip capacitor</td>
<td>100B</td>
<td>American Technical Ceramics</td>
</tr>
<tr>
<td>C13</td>
<td>0.2 pF ceramic chip capacitor</td>
<td>100B</td>
<td>American Technical Ceramics</td>
</tr>
<tr>
<td>C14, C15</td>
<td>8.2 pF ceramic chip capacitor</td>
<td>100B</td>
<td>American Technical Ceramics</td>
</tr>
<tr>
<td>C16, C17</td>
<td>100 nF ceramic chip capacitor</td>
<td>GRM21BR71H104KA01L</td>
<td>MuRata</td>
</tr>
<tr>
<td>C18, C19, C26, C27</td>
<td>12 pF ceramic chip capacitor</td>
<td>100B</td>
<td>American Technical Ceramics</td>
</tr>
<tr>
<td>C20, C21, C22, C23, C28</td>
<td>10 μF ceramic chip capacitor</td>
<td>GRM32ER7YA106K88L</td>
<td>MuRata</td>
</tr>
<tr>
<td>C24, C25</td>
<td>2200 μF electrolytic capacitor</td>
<td>PCE3474CT-ND</td>
<td>Panasonic</td>
</tr>
<tr>
<td>C29</td>
<td>0.4 pF ceramic chip capacitor</td>
<td>100B</td>
<td>American Technical Ceramics</td>
</tr>
<tr>
<td>D1, D2</td>
<td>0805 Green SMT LED</td>
<td>APT2012CGCK</td>
<td>KingBright</td>
</tr>
<tr>
<td>L1, L2, L3, L4</td>
<td>Ferroxcube bead</td>
<td>2743019447</td>
<td>Fair Rite</td>
</tr>
<tr>
<td>L5</td>
<td>3.6 nF inductor</td>
<td></td>
<td>Colcraft</td>
</tr>
<tr>
<td>Q1, Q2</td>
<td>78L08 voltage regulator</td>
<td>NJM#78L08UA-ND</td>
<td>NJR</td>
</tr>
<tr>
<td>Q3, Q4</td>
<td>SMT 2N2222 NPN transistor</td>
<td>PMBT2222</td>
<td>NXP Semiconductors</td>
</tr>
<tr>
<td>Q5</td>
<td>BLF7G27LS-150P</td>
<td>BLF7G27LS-150P</td>
<td>NXP Semiconductors</td>
</tr>
<tr>
<td>R1, R2, R7, R8, R12</td>
<td>432 Ω resistor</td>
<td>CRCW0805432RFKEA</td>
<td>Vishay Dale</td>
</tr>
<tr>
<td>R3</td>
<td>75 Ω resistor</td>
<td>CRCW080575R0FKEA</td>
<td>Vishay Dale</td>
</tr>
<tr>
<td>R4</td>
<td>0 Ω resistor</td>
<td>CRCW08050R0FKEA</td>
<td>Vishay Dale</td>
</tr>
<tr>
<td>R5, R6, R13, R14</td>
<td>1.1 kΩ resistor</td>
<td>CRCW08051K10FKEA</td>
<td>Vishay Dale</td>
</tr>
<tr>
<td>R9, R10</td>
<td>200 Ω potentiometer</td>
<td>3214W-1-201E</td>
<td>Bourns</td>
</tr>
<tr>
<td>R11</td>
<td>2 kΩ resistor</td>
<td>CRCW08052K00FKTA</td>
<td>Vishay Dale</td>
</tr>
<tr>
<td>R15, R16</td>
<td>11 kΩ</td>
<td>CRCW080511K0FKEA</td>
<td>Vishay Dale</td>
</tr>
<tr>
<td>R17, R18</td>
<td>5.1 Ω</td>
<td>CRCW08055R1FKEA</td>
<td>Vishay Dale</td>
</tr>
<tr>
<td>R19, R20, R28, R29</td>
<td>9.1 Ω resistor</td>
<td>CRCW08059R09FKEA</td>
<td>Vishay Dale</td>
</tr>
<tr>
<td>R21, R22</td>
<td>499 Ω/0.25 W resistor</td>
<td>CRCW2010499RFKEF</td>
<td>Vishay Dale</td>
</tr>
<tr>
<td>R23, R24</td>
<td>5.1 kΩ resistor</td>
<td>CRCW08055K10FKTA</td>
<td>Vishay Dale</td>
</tr>
<tr>
<td>R25, R26</td>
<td>910 Ω resistor</td>
<td>CRCW0805909RFKTA</td>
<td>Vishay Dale</td>
</tr>
<tr>
<td>R27</td>
<td>100 Ω/1 W resistor</td>
<td>-</td>
<td>Panasonic</td>
</tr>
</tbody>
</table>
6. Abbreviations

Table 2. Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACPR</td>
<td>Adjacent Channel Power Ratio</td>
</tr>
<tr>
<td>CCDF</td>
<td>Complementary Cumulative Distribution Function</td>
</tr>
<tr>
<td>DPD</td>
<td>Digital PreDistortion</td>
</tr>
<tr>
<td>IBW</td>
<td>Integration BandWidth</td>
</tr>
<tr>
<td>LDMOS</td>
<td>Laterally Diffused Metal-Oxide Semiconductor</td>
</tr>
<tr>
<td>MOSFET</td>
<td>Metal Oxide Silicon Field Effect Transistor</td>
</tr>
<tr>
<td>PAR</td>
<td>Peak-to-Average power Ratio</td>
</tr>
<tr>
<td>W-CDMA</td>
<td>Wideband Code Division Multiple Access</td>
</tr>
</tbody>
</table>
7. Legal information

7.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

7.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Evaluation products — This product is provided on an “as is” and “with all faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out the use of or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages.

Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer’s exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose.

7.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

NXP Semiconductors
AN10933
Doherty power amplifier using the BLF7G27LS-150P

Application note Rev. 01 — 16 August 2010

AN10933 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.