Table of Contents
Exercise Testing and Physiology

- A New Impedance Cardiograph Device for the Non-invasive Evaluation of Cardiac Output at Rest and During Exercise: Comparison with the "Direct" Fick Method (p.5)
- Post Immersion Delayed Vasomotor Adjustments to Dehydration? (p.6)
- Non-invasive Cardiac Output Evaluation during a Maximal Progressive Exercise Test, Using a New Impedance Cardiograph Device (p.7)
- Cardiovascular and Oxygen Uptake Kinetics during Sequential Heavy Cycling Exercises (p.8)
- Ephedrine Fails to Accelerate the Onset of Neuromuscular Block by Vecuronium (p.9)
- Effect of Exercise Intensity on Relationship Between VO$_{2\text{max}}$ and Cardiac Output (p.10)
- Cardiac Output and Oxygen Release during very High-intensity Exercise Performed until Exhaustion (p.11)
- Short-term Vasomotor Adjustments to Post Immersion Dehydration are Hindered by Natriuretic Peptides (p.12)
- Measurements of Cardiac Output During Constant Exercises: Comparison of Two Non-Invasive Techniques (p.13)
- Faut-il Mesurer le Débit Cardiaque à L’exercice ? (p.14)
- Eccentric Cycle Exercise: Training Application of Specific Circulatory Adjustments (p.15)
- Heart Rate Deflection Point as a Strategy to Defend Stroke Volume during Incremental Exercise (p.16)
- Sildenafil Inhibits Altitude-induced Hypoxemia and Pulmonary Hypertension (p.17)
- Evolution of Cardiac Output during Resistive Exercise in the Healthy Subject (p.18)
- Reliability of Peak VO$_{2}$ and Maximal Cardiac Output Assessed using Thoracic Bioimpedance in Children (p.19)
- Does Thoracic Bioimpedance Accurately Determine Cardiac Output in COPD Patients during Maximal or Intermittent Exercise? (p.20)
- Sildenafil Improves Cardiac Output and Exercise Performance during Acute Hypoxia, but not Normoxia (p.21)
- Side-effects of L-dopa on Venous Tone in Parkinson's Disease: a Leg-weighing Assessment (p.22)
- Vasoconstrictive Response in the Vascular Bed of the Non-exercising Forearm during Leg Exercise in Patient with Mild Chronic Heart Failure (p.23)
- Non-invasive Evaluation of Maximal Arteriovenous Oxygen Difference and Adolescent Boys' Fitness Levels (p.24)
- Children Cardiorespiratory Performance Index by Simultaneous and Independent Measure of Oxygen Uptake and Cardiac Output (p.25)
- Effect of Interval versus Continuous Training on Cardiorespiratory and Mitochondrial Functions: Relationship to Aerobic Performance Improvements in Sedentary (p.26)
Cardiology and Internal Medicine

- Best Detection of Coronary Artery Disease using a New Generation Impedance Cardiography. Comparison to Exercise Thallium 201 Scintigraphy (p. 27)
- Detection of Coronary Artery Disease (CAD) during Bicycle Exercise, using New Generation Impedance Cardiography (p. 28)
- Changes in Transthoracic Impedance Signal Predict Outcome of 70° Head-up Tilt Test (p. 29)
- Head Upright Tilt Test with Sublingual Nitroglycerin Predicts Hemodynamic Abnormalities in 70° Head-upright Tilt (p. 30)
- Haemodynamics during Exercise are a Better Measure of Vasodilator Response in Human Subjects with Pulmonary Hypertension (p. 31)
- Impedance Cardiography and Quantitative Tissue Doppler Echocardiography for Evaluating the Effect of Cardiac Resynchronization Therapy (p. 32)
- Dynamic Monitoring During Exercise in Familial Amyloid Polyneuropathy (FAP) Type I (p. 33)
- Isolated Left Ventricular Diastolic Dysfunction: Implications for Exercise Left Ventricular Performance in Patients without Congestive Heart Failure (p. 35)
- Thoracic Bioimpedance for Optimizing Atrioventricular and Intraventricular Delays after Cardiac Resynchronization Therapy (p. 36)
- Measurement of Cardiac Output Using Physio Flow® with Different Positions of Electrode Placement (p. 37)
- Evaluation of a New Noninvasive, Thoracic Bioimpedance Monitor for Hemodynamic Monitoring in Pediatric Patients (p. 38)
- New Non Invasive Marker of Heart Failure with Pulmonary Congestion: Thoracic Electrical Bioimpedance (p. 39)
- Patients with Systolic Heart Failure Show Improvement with Long-Acting, Cardioselective Beta-Blocker Nebivolol when Others Fail (p. 40)

Intensive Care

- Advances in Non-invasive Cardiac Output Monitoring (p. 41)
- Cardiac Output Measurements: Comparison between a new Transthoracic Electrical Biomimpedance Method (Physioflow™) and the Swan-Ganz Method (Continuous Cardiac Output or Bolus Technique) (p. 42)
- Hemodynamic Response of a Spontaneous Breathing Trial Monitoring by an Impedance Cardiograph (p. 43)
- Cardiac Output with a New Bioimpedance Monitor: Comparison with Thermodilution Methods (p. 44)
- Shock and Awe: Hemodynamic Changes during ECT Measured with a Non-Invasive Cardiac Output Monitor (p. 45)
- Noninvasive Haemodynamic Monitoring to Predict Outcome and Guide Therapy in Acute Critical Illness (p. 46)
• The Changing Hemodynamic Parameters during Weaning from Mechanical Ventilation (p. 47)

Anesthesia
• Decreased Cardiovascular Hemodynamics as Possible Mechanisms of Hypotension during Cesarean Delivery under Spinal Anesthesia: Role of Thoracic Impedance Cardiography (p. 48)
A New Impedance Cardiograph Device for the Non-invasive Evaluation of Cardiac Output at Rest and During Exercise: Comparison with the "Direct" Fick Method

Authors: Anne Charloux, Evelyne Lonsdorfer-Wolf, Ruddy Richard, Eliane Lampert, Monique Oswald-Mammosser, Bertrand Mettauer, Bernard Geny, Jean Lonsdorfer

Service des Explorations Fonctionnelles Respiratoires, Cardio-Circulatoires et de l'Exercice, Hôpitaux Universitaires de Strasbourg, Hôpital Civil, BP 426, 67091 Strasbourg Cedex, France e-mail: anne.charloux@physio-ulp.unistra.org Tel.: +33-388-116122; Fax: +33-388-116467

Accepted: 3 April 2000

Abstract: The objectives of this study were to evaluate the reliability and accuracy of a new impedance cardiograph device, the Physio Flow, at rest and during a steady-state dynamic leg exercise (work intensity ranging from 10 to 50 W) performed in the supine position. We compared cardiac output determined simultaneously by two methods, the Physio Flow ($Q_{\dot{c}PF}$) and the direct Fick ($Q_{\dot{c}Fick}$) methods. Forty patients referred for right cardiac catheterisation, 14 with sleep apnoea syndrome and 26 with chronic obstructive pulmonary disease, took part in this study. The subjects' oxygen consumption values ranged from 0.14 to 1.19 l · min$^{-1}$. The mean difference between the two methods ($Q_{\dot{c}Fick}-Q_{\dot{c}PF}$) was 0.04 l · min$^{-1}$ at rest and 0.29 l · min$^{-1}$ during exercise. The limits of agreement, defined as mean difference ± 2SD, were -1.34, +1.41 l · min$^{-1}$ at rest and -2.34, +2.92 l · min$^{-1}$ during exercise. The difference between the two methods exceeded 20% in only 2.5% of the cases at rest, and 9.3% of the cases during exercise. Thoracic hyperinflation did not alter $Q_{\dot{c}PF}$. We conclude that the Physio Flow provides a clinically acceptable and non-invasive evaluation of cardiac output under these conditions. This new impedance cardiograph device deserves further study using other populations and situations.

Keywords: Impedance cardiography, Cardiac output, Fick principle, Exercise
Post Immersion Delayed Vasomotor Adjustments to Dehydration?

Authors: Wolf JP1, Galland F2, Robinet C2, Bouhaddi M1, Boussuges A3, Courtière A2, Meliet JL2, Regnard J1.

1: Physiologie, C.H.U. 25030 Besançon,
2: IMNSSA, 83800 Toulon Naval,
3: Réanimation, Hôpital Salvador, 13274 Marseille, France.

Abstract: While hemodynamic and fluid balance changes have been fairly well studied during immersion, the corresponding changes post-immersion are almost totally ignored. Ten trained divers (33 +/- 5 years) underwent two similar 6 hours hyperbaric hyperoxic exposures with intermittent cycling exercise, one day in dry ambience (DY) and three weeks later immersed up to the neck (IM). They had no food or beverage intake during either session. Whole body weight was assessed and venous blood samples were taken before and 15 min after each exposure session. Venous occlusion of the thighs was performed at 30, 40, 50, 60 mmHg during segmental weighing before and after each session. Segmental weighing performed with our original device allows measuring rapid changes in weight of lower limbs, abdomen-pelvis, and thorax related fluid shifts in the body. The data collected during these manoeuvres provided information about venous tone in the legs through distensibility and compliance assessments, and about arterial flow in the leg and splanchnic vessels. During segmental weighing, stroke volume (SV), cardiac output (CO) and heart rate (HR) were recorded using a Physioflow® impedance cardiography device. As described in a companion paper, on average, the final weight losses were similar in the two ambiances (2.2 kg in DY vs 2.3 kg in IM), whereas plasma contraction was greater in the IM session (-14.7% vs –9.7% in DY; p<0.001) as evidenced by changes in hematocrite, blood haemoglobin and plasma proteins. Plasma levels of noradrenaline (NA), arginine-vasopressin (APV) were increased 20 min after each session versus pre-exposure, a change 3 times higher after IM than DY (p>0.01). Inversely, atrial and brain natriuretic peptides (ANP and BNP) as well as cyclic guanosine monophosphate (cGMP) remained increased 20 min post IM (p<0.05). Heart rate was decreased after DY (-7 min-1; p<0.05) but slightly increased after IM (+3 min-1; p<0.05). Conversely, stroke volume was more reduced after IM than DY (-9 mL vs –4 mL respectively; p<0.05). Venous compliance and distensibility of the legs were reduced after DY (p<0.05) but preserved after IM. Indexes of arterial flow in both the leg and splanchnic vascular bed were reduced following DY. Thus on the other hand, after DY the increase in plasma vasoconstrictive mediators (NA, APV) likely supported the increased venous and arterial vasomotor tone required to preserve cardiac output and blood pressure, in turn slightly lowering heart rate through baroreflex activation. On the other hand, the paradoxical coexistence of markedly increased levels of NA and APV 30 min post IM together with unchanged vasomotor tone 1) was consistent with the decreased SV and CO but slightly increased HR; 2) was likely explained by the persistence of high level of natriuretic peptides within the first hour post-immersion.
Non-invasive Cardiac Output Evaluation during a Maximal Progressive Exercise Test, Using a New Impedance Cardiograph Device

Authors: Ruddy Richard, Evelyne Lonsdorfer-Wolf, Anne Charloux, Stéphane Doutreleau, Martin Buchheit, Monique Oswald-Mammosser, Eliane Lampert, Bertrand Mettauer, Bernard Geny, Jean Lonsdorfer

Service des Explorations Fonctionnelles Respiratoires, Cardio-Circulatoires et de l'Exercice, Hôpitaux Universitaires de Strasbourg, Hôpital Civil, BP 426, 67091 Strasbourg Cedex, France
E-mail: ruddy.richard@physio-ulp.u-strasbg.fr
Phone: +33-388116122 Fax: +33-388116467

Accepted: 10 April 2001 / Published Online: 4 July 2001

Abstract. One of the greatest challenges in exercise physiology is to develop a valid, reliable, non-invasive and affordable measurement of cardiac output (CO). The purpose of this study was to evaluate the reproducibility and accuracy of a new impedance cardiograph device, the Physio Flow, during a 1-min step incremental exercise test from rest to maximal peak effort. A group of 12 subjects was evaluated to determine the reproducibility of the method as follows: (1) each subject performed two comparable tests while their CO was measured by impedance cardiography using the new device (CO_{Imp1}, CO_{Imp2}), and (2) in a subgroup of 7 subjects CO was also determined by the direct Fick method (CO_{Fick}) during the second test. The mean difference between the values obtained by impedance (i.e. CO_{Imp1}-CO_{Imp2}) was -0.009 l·min^{-1} (95% confidence interval: -4.2 l·min^{-1}, 4.2 l·min^{-1}), and CO ranged from 3.55 l·min^{-1} to 26.75 l·min^{-1} (n=146). When expressed as a percentage, the difference (CO_{Imp1}-CO_{Imp2}) did not vary with increasing CO. The correlation coefficient between the values of CO_{Imp} and CO_{Fick} obtained during the second exercise test was r=0.94 (P<0.01, n=50). The mean difference expressed as percentage was -2.78% (95% confidence interval: -27.44%, 21.78%). We conclude that CO_{Imp} provides a clinically acceptable evaluation of CO in healthy subjects during an incremental exercise.

Keyword: Impedance, Cardiography, Cardiac output, Maximal exercise test
Cardiovascular and Oxygen Uptake Kinetics during Sequential Heavy Cycling Exercises

Authors: Stéphane Perrey ¹, Jodie Scott ¹,², Laurent Mourot ¹,³, Jean-Denis Rouillon ¹

1: Laboratoire des sciences du sport, place St Jacques, 25030 Besançon, France
2: University of Waterloo, Department of Kinesiology, Waterloo, On, N2L 3G1, Canada
3: Laboratoire de Physiologie, place St Jacques, 25030 Besançon, France

Current address:
Stéphane Perrey Ph.D.
Faculté des sciences du sport,
UPRES EA 2991 Sport Performance Santé
700 Av du pic saint loup 34090 Montpellier France
Phone: + 33-4 67 41 57 49
Fax: +33-4 67 41 57 50
E-mail: s. perrey@staps.univ-montpl.fr

Abstract: The purpose of the present study was to assess the relationship between the rapidity of increased oxygen uptake (VO₂) and increased cardiac output (CO) during heavy exercise. Six subjects performed repeated bouts on a cycle ergometer above the ventilatory threshold (~80% of peak VO₂) separated by 10-min recovery cycling at 35% peak VO₂. VO₂ was determined breath-by-breath and CO was determined continuously by impedance cardiography (PhysioFlow, Paris, France). CO and VO₂ values were significantly higher during the 2-min period preceding the second bout. The overall responses for VO₂ and CO were significantly related, and were faster during the second bout. Prior heavy exercise resulted in a significant increase in the amplitude of the fast component of VO₂, with no change in the time constant, and a decrease in the slow component. Under these circumstances, the amplitude of the fast component was more sensitive to prior heavy exercise than was the associated time constant.
Ephedrine Fails to Accelerate the Onset of Neuromuscular Block by Vecuronium

Authors: Ryu Komatsu, MD*, Osamu Nagata, MD*, Makoto Ozaki, MD*, and Daniel I. Sessler, MD**

*Department of Anesthesiology, Tokyo Women’s Medical University, Tokyo, Japan; and
**Outcomes Research™ Institute and Departments of Anesthesiology and Pharmacology & Toxicology, University of Louisville, Louisville, Kentucky

Abstract: The onset time of neuromuscular blocking drugs is partially determined by circulatory factors, including muscle blood flow and cardiac output. We thus tested the hypothesis that a bolus of ephedrine accelerates the onset of vecuronium neuromuscular block by increasing cardiac output. A prospective, randomized study was conducted in 53 patients scheduled for elective surgery. After the induction of anesthesia, the ulnar nerve was stimulated supramaximally every 10 s, and the evoked twitch response of the adductor pollicis was recorded with accelerometry. Patients were maintained under anesthesia with continuous infusion of propofol for 10 min and then randomly assigned to ephedrine 210 µg/kg (n = 27) or an equivalent volume of saline (n = 26). The test solution was given 1 min before the administration of 0.1 mg/kg of vecuronium. Cardiac output was monitored with impedance cardiography. Ephedrine, but not saline, increased cardiac index (17%; P = 0.003). Nonetheless, the onset of 90% neuromuscular block was virtually identical in the patients given ephedrine (183 ± 41 s) and saline (181 ± 47 s). There was no correlation between cardiac index and onset of the blockade. We conclude that the onset of the vecuronium-induced neuromuscular block is primarily determined by factors other than cardiac output. The combination of ephedrine and vecuronium thus cannot be substituted for rapid-acting nondepolarizing muscle relaxants.

Implications: Ephedrine increased cardiac index but failed to speed onset of neuromuscular block with vecuronium. We conclude that ephedrine administration does not shorten the onset time of vecuronium.
Effect of Exercise Intensity on Relationship between VO_2^{max} and Cardiac Output

Authors: Jean-Marie Lepretre 1, Jean-Pierre Koralsztein 2 and Veronique L. Billat 1,2

1 LIGE Départment of Sciences and Technology in Sports and Physical Activities (STAPS), University of Evry Val d’Essonne, Evry, France, and 2 Sport Medical Center of the CCAS, Paris, France.

Abstract: Effect of Exercise Intensity on Relationship between VO_2^{max} and Cardiac Output

Purpose: The purpose of this study was to determine whether the maximal oxygen uptake (VO_2^{max}) is attained with the same central and peripheral factors according to the exercise intensity.

Methods: Nine well-trained males performed an incremental exercise test on a cycle ergometer to determine the maximal power associated with VO_2^{max} (pVO_2^{max}) and maximal cardiac output (Q_{max}). Two days later, they performed two continuous cycling exercises at 100% (tlim$_{\Delta 100}$ = 5 min 12 s ± 2 min 25 s) and at an intermediate work rate between the lactate threshold and pVO_2^{max} (tlim$_{\Delta 50}$ = 12 min 6 s ± 3 min 5 s). Heart rate and stroke volume (SV) were measured (by impedance) continuously during all tests. Cardiac output (Q) and arterial-venous O_2 difference (a-vO_2 diff) were calculated using standard equations.

Results: Repeated measures ANOVA indicated that: 1) maximal heart rate, VE, blood lactate, and VO_2 (VO_2^{max}) were not different between the three exercises but Q was lower in tlim$_{\Delta 50}$ than in the incremental test (24.4 ± 3.6 L·min$^{-1}$ vs 28.4 ± 4.1 L·min$^{-1}$; $P < 0.05$) due to a lower SV ($143 ± 27 \text{ mL·beat}^{-1}$ vs $179 ± 34 \text{ mL·beat}^{-1}$; $P < 0.05$), and 2) maximal values of a-vO_2 diff were not significantly different between all the exercise protocols but reduced later in tlim$_{\Delta 50}$ compared with tlim100 (6 min 58 s ± 4 min 29 s vs 3 min 6 s ± 1 min 3 s, $P = 0.05$). This reduction in a-vO_2 diff was correlated with the arterial oxygen desaturation ($\text{SaO}_2 = -15.3 ± 3.9\%$) in tlim$_{\Delta 50}$ ($r = -0.74$, $P = 0.05$).

Conclusion: VO_2^{max} was not attained with the same central and peripheral factors in exhaustive exercises, and tlim$_{\Delta 50}$ did not elicit the maximal Q. This might be taken into account if the training aim is to enhance the central factors of VO_2^{max} using exercise intensities eliciting VO_2^{max} but not necessarily Q_{max}.

Keywords: Stroke volume, Arterial-venous difference, Cycling, Hypoxemia
Cardiac Output and Oxygen Release during very High-intensity Exercise Performed until Exhaustion

Authors: R. Richard, E. Lonssdorf-Wolf, S. Dufour, S. Doutreleau, M. Oswald-Mammoser, J. Lonsdorfer

Unité de Physiologie et des Explorations Fonctionnelles de l’Exercice, Service de Physiologie Clinique, Hôpitaux Universitaires de Strasbourg, Hôpital Civil, BP 426, 67091 Strasbourg Cedex, France.

V.L. Billat
Département STAPS, UFR de Sciences, Université d’Evry Val-d’Essone, 91025 Evry Cedex, France.

Abstract: Our objectives were firstly, to study the patterns of the cardiac output (Q) and the arteriovenous oxygen difference [(a-v)O2] responses to oxygen uptake (VO2) during constant workload exercise (CWE) performed above the respiratory compensation point (RCP), and secondly, to establish the relationships between their kinetics and the time to exhaustion. Nine subjects performed two tests: a maximal incremental exercise test (IET) to determine the maximal VO2 (VO2peak), and a CWE test to exhaustion, performed at pΔ50 (intermediate power between RCP and VO2 peak). During CWE, VO2 was measured breath-by-breath, Q was measured beat-by-beat with an impedance device, and blood lactate (LA) was sampled each minute. To calculate (a-v)O2, the values of VO2 and Q were synchronised over 10 intervals. A fitting method was used to describe the VO2, Q and (a-v)O2 kinetics. The (a-v)O2 difference followed a rapid monoexponential function, whereas both VO2 and Q were best fitted by a single exponential plus linear increase: the time constant (τ) VO2 [57 (20)s] was similar to τ(a-v)O2, whereas τ for Q was significantly higher [89 (34)s, P<0.05] (values expressed as the mean and standard error). LA started to increase after 2 min CWE then increased rapidly, reaching a similar maximal value as that seen during the IET. During CWE, the rapid component of VO2 uptake was determined by a rapid and maximal (a-v)O2 extraction coupled with a two-fold longer Q increase. It is likely that lactic acidosis markedly increased oxygen availability, which when associated with the slow linear increase of Q, may account for the VO2 slow component. Time to exhaustion was larger in individuals with shorter time delay for (a-v)O2 and greater τ for Q.

Keywords: Oxygen slow component, Cardiac Output, Arteriovenous oxygen difference, Time to exhaustion
Short-term Vasomotor Adjustments to Post Immersion Dehydration are Hindered by Natriuretic Peptides

Authors: L. Mourot1, JP Wolf1, F. Galland2, C. Robinet2, A. Courtiere2, M. Bouhaddi1, J.L. Meliet2, J. Regnard1

1 Physiologie Médecine and EA 479, Faculté de Médecine et de Pharmacie, Place St Jacques 25030 Besançon Cedex France
2 Institut de Médecine Navale du Service de Santé des Armées, BP-610, 83800 Toulon Naval

Abstract: Short-term vasomotor adjustments to post immersion dehydration are hindered by natriuretic peptides. Undersea Hyperb Med 2004, 31(2):000-000. Many studies have described the physiology of water immersion (WI), whereas few have focused on post WI physiology, which faces the global water loss of the large WI diuresis. Therefore, we compared hemodynamics and vasomotor tone in 10 trained supine divers before and after two 6h sessions in dry (DY) and head out WI environments. During each exposure (DY and WI) two exercise periods (each one hour 75W ergometer cycling) started after the 3rd and 5th hours. Weight losses were significant (-2.24 ± 0.13 kg and -2.38 ± 0.19 kg, after DY and WI, respectively), but not different between the two conditions. Plasma volume was reduced at the end of the two conditions (-9.7 ± 1.6 % and -14.7 ± 1.6 %, respectively; p<0.05). This post-WI decrease was deeper than post DY (p<0.05). Cardiac output (CO) and mean arterial blood pressure were maintained after the two exposures. Plasma levels of noradrenaline, antidiuretic hormone and ANP were twofold higher after WI than after DY (p<0.05). After DY total peripheral resistances (TPR) were increased (p<0.05) and heart rate (HR) was reduced (p<0.05). After WI there was a trend for a decrease in stroke volume (p=0.07) with unchanged TPR and HR, despite more sizeable increases in plasma noradrenaline and vasopressin than after DY. We hypothesized that the higher levels of plasma natriuretic peptides after WI were likely counteracting the dehydration-required vasomotor adjustments.
Measurements of Cardiac Output during Constant Exercises: Comparison of Two Non-Invasive Techniques

Authors: N. Tordi2, 3, L. Mourot1, 2, B. Matusheski3, R. L. Hughson3

1 Laboratoire de Physiologie Médecine, Place St Jacques, Besançon, France
2 Laboratoire des Sciences du Sport, Place St Jacques, Besançon, France
3 University of Waterloo, Department of Kinesiology, Waterloo, On, Canada

Abstract: We compared cardiac output (CO) determined simultaneously by electrical impedance cardiography method (COICG) and by the CO2 rebreathing technique (CO2REB) during three different steady-state exercises (target heart rate of 120, 140, and 160 min⁻¹) in 8 healthy fit young men. The mean difference correlation coefficient obtained between the values of COICG and CO2REB was 0.85 and the mean difference (COICG-CO2REB) was 0.06 l/min (0.12 %). At 120 min⁻¹, COICG was lower than CO2REB but the tendency was reversed at 140 and 160 min⁻¹ where COICG was higher than CO2REB. This evolution may be explained by the difficulty of using CO2 rebreathing technique at the highest steady-state exercises and by the progressive acidemia due to exercise. The present results suggest that electrical impedance cardiography method provides acceptable evaluation of CO and may favourably replace the CO2 rebreathing technique during mild (or moderate) to high steady-state exercises.

Keywords: Impedance cardiography, CO2 rebreathing technique, Indirect Fick principle, Steady state exercise
Faut-il Mesurer le Débit Cardiaque à L’exercice?

Méthodes: La mesure du Q à l’effort par impédancemétrie revalorisée par les acquisitions de la technologie moderne (PhysioFlow – Manatec) offre de solides perspectives par rapport aux autres méthodes non invasives (CO₂ rebreathing, échocardiographie, doppler…). Nous l’avons validée par comparaison avec la méthode invasive de Fick au cours de mesures simultanées répétées lors d’une épreuve à puissance constante [3] et lors d’un test d’effort maximal [4] et l’utilisons à présent systématiquement dans nos ECRM. La variation d’impédance produite par la systole permet d’obtenir Q cycle par cycle et de là le VES. En parallèle cette mesure associée à la mesure simultanée de la VO₂ aboutit à une détermination quasi continue de la da v O₂ grâce au calcul du rapport VO₂/Q.

Résultats: 1/ À puissance constante ou lors d’un test maximal à charges croissantes on obtient une détermination directe et quasi continue des ajustements centraux (VES) et périphériques (da v O₂). Nous avons observé ainsi chez les patients des VES d’emblée maximaux ou au contraire s’ajustant jusqu’aux paliers sous maximaux de l’effort. Aucune cinétique évolutive “standard” du VES de l’effort ne peut plus être actuellement affirmée. De même s’agissant de la da v O₂ les valeurs mesurées sont souvent très différentes chez les malades désadaptés que celles communément admises chez les sujets sains, sédentaires ou sportifs.

2/ L’épreuve temps limite : au cours de ce test qui consiste à soutenir à 90% de la VO₂ max du sujet nous pouvons suivre grâce au PhysioFlow la cinétique des grandeurs, Q, FC, VES et, VO₂, da v O₂ et déterminer notamment la constante de temps de chaque monoexponentielle qui les décrit. Chez ces sujets sains la contribution de chaque élément de l’équation de Fick pour assurer à chaque moment l’ajustement de la VO₂ peut être représentée graphiquement – en % de leur valeur maximale. Une telle approche dynamique des ajustements s’avère précieuse chez les cardiaques, tant au plan explicatif que prédictif : ainsi KOIKE et al ont montré la relation entre les constantes de temps de VO₂ et de Q mesurées lors d’un effort constant et les valeurs des fractions d’éjection ventriculaire gauche mesurées au repos.

Conclusion: L’origine de toute dyspnée d’effort est certes multifactorielle ; mais chez le cardiaque prédominent le dysfonctionnement myocardique et ses conséquences : la sédentarité, et donc le déconditionnement physique. La mesure continue du débit cardiaque par impédancemétrie (PhysioFlow), associée aux données de l’épreuve cardiorespiratoire, permet de cerner tous les facteurs d’ajustement de la VO₂ tels qu’exprimés dans l’équation de Fick. La généralisation de cette évaluation « intégrative » grâce à une mesure continue et « non invasive » du débit cardiaque devrait ouvrir vers une meilleure compréhension des « dyspnées ».
Eccentric Cycle Exercise: Training Application of Specific Circulatory Adjustments

Authors: Stephane P. Dufour, Eliane Lampert, Stephane Doutreleau, Evelyne Lonsdorfer-Wolf, Veronique L. Billat, Fancois Piquard, Ruddy Richard

Abstract:
Purpose: Despite identical oxygen uptake (\(\dot{V}_O2\)) and cardiac output (\(Q\)) responses have been reported in eccentric (ECC) versus concentric (CON) cycle exercise. The aim of this study was to describe the specific circulatory adjustments (HR and stroke volume (SV)) to incremental ECC cycle exercise in order to: 1) determine the HR values leading to identical \(\dot{V}_O2\) in ECC and CON cycling; and 2) estimate the interindividual variability of this HR correspondence between the two exercise modes, with emphasis upon rehabilitation and training purposes.

Methods: Eight healthy male subjects (age, 28 +/- 2 yr) participated in this study. They performed CON and ECC cycle incremental exercises (power output increases of 50 W every 3 min). Breath-by-breath gas exchange analysis and beat-by-beat thoracic impedancemetry were used to determine \(\dot{V}_O2\) and \(Q\), respectively.

Results: At the same metabolic power (\(\dot{V}_O2\) of 1.08 +/- 0.05 L\(\text{min}^{-1}\) in CON vs 1.04 +/- 0.06 L\(\text{min}^{-1}\) in ECC), SV was not different, but HR was 17% higher in ECC (\(P < 0.01\)), leading to a 27% enhanced \(Q\) (\(P < 0.01\)). Net adjustments (exercise minus resting values) in ECC versus CON muscle involvement demonstrated important interindividual variability with coefficients of variation amounting to 32% and 30%, respectively.

Conclusion: In practice, if a given level of \(\dot{V}_O2\) is to be reached, ECC HR has to be set above the CON one. Taking into account the interindividual variability of the circulatory adjustments in ECC versus CON muscle involvement, a precise HR correspondence can be established individually from the \(\dot{V}_O2/HR\) relationship obtained using ECC incremental testing, allowing prescription of accurate target HR for rehabilitation or training purposes.

(C)2004 The American College of Sports Medicine
Heart Rate Deflection Point as a Strategy to Defend Stroke Volume during Incremental Exercise

Authors: Pierre-Marie Lepretre,1 Carl Foster,2 Jean-Pierre Koralsztein,3 and Veronique L. Billat1,3

1Laboratoire d'Etude de la Physiologie de l'Exercice, Department of Sciences and Technology in Sports and Physical Activities, University of Evry Val d'Essonne, Evry, France
2University of Wisconsin-La Crosse, La Crosse, Wisconsin; and 3Sport Medicine Center of the Caisse Centrale d'Activités Sociales, Paris, France

Submitted 4 August 2004; accepted in final form 29 November 2004

Abstract: The purpose of this study was to examine whether the heart rate (HR) deflection point (HRDP) in the HR-power relationship is concomitant with the maximal stroke volume (SVmax) value achievement in endurance-trained subjects. Twenty-two international male cyclists (30.3 ± 7.3 yr, 179.7 ± 7.2 cm, 71.3 ± 5.5 kg) undertook a graded cycling exercise (50 W every 3 min) in the upright position. Thoracic impedance was used to measure continuously the HR and stroke volume (SV) values. The HRDP was estimated by the third-order curvilinear regression method. As a result, 72.7% of the subjects (HRDP group, n = 16) presented a break point in their HR-work rate curve at 89.9 ± 2.8% of their maximal HR value. The SV value increased until 78.0 ± 9.3% of the power associated with maximal O2 uptake (VO2max) in the HRDP group, whereas it increased until 94.4 ± 8.6% of the power associated with VO2max in six other subjects (no-HRDP group, P = 0.004). Neither SVmax (ml/beat or ml·beat−1·m−2) nor VO2max (ml/min or ml·kg−1·min−1) were different between both groups. However, SV significantly decreased before exhaustion in the HRDP group (153 ± 44 vs. 144 ± 40 ml/beat, P = 0.005). In the HRDP group, 62% of the variance in the power associated with the SVmax could also be predicted by the power output at which HRDP appeared. In conclusion, in well-trained subjects, the power associated with the SVmax-HRDP relationship supposed that the HR deflection coincided with the optimal cardiac work for which SVmax was attained.

Keywords: Physical work curve break point, Left ventricular ejection fraction, Cycling graded test
Sildenafil Inhibits Altitude-induced Hypoxemia and Pulmonary Hypertension

Authors: Jean-Paul Richalet, Pierre Gratadour, Paul Robach, Isabelle Pham, Michèle Déchaux, Aude Joncquiert-Latarjet, Pascal Mollard, Julien Brugniaux and Jérémy Cornolo

Laboratoire Réponses cellulaires et fonctionnelles à l’hypoxie, Université Paris 13, Bobigny; Service de Physiologie et Explorations Fonctionnelles, hôpital Avicenne, Bobigny; Service d’Anesthésie-réanimation, hôpital Hôtel Dieu, Lyon; Service de Physiologie, hôpital Jean-Verdier, Bondy; Ecole Nationale de Ski et d’Alpinisme, Chamonix; Laboratoire de Physiologie, hôpital Necker, Paris, France

Correspondence and requests for reprints should be addressed to Jean-Paul Richalet, M.D., Ph.D., UFR. SMBH, 74 rue Marcel Cachin, 93017 Bobigny Cedex, France.
E-mail: richalet@smbh.univ-paris13.fr

Abstract: Exposure to high altitude induces pulmonary hypertension that may lead to life-threatening conditions. In a randomized, double-blind, placebo-controlled study, the effects of oral sildenafil on altitude-induced pulmonary hypertension and gas exchange in normal subjects were examined. Twelve subjects (sildenafil [SIL] n = 6; placebo [PLA] n = 6) were exposed for 6 days at 4,350 m. Treatment (3 x 40 mg/day) was started 6 to 8 hours after arrival from sea level to high altitude and maintained for 6 days. Systolic pulmonary artery pressure (echocardiography) increased at high altitude before treatment (+29% versus sea level, p < 0.01), then normalized in SIL (–6% versus sea level, NS) and remained elevated in PLA (+21% versus sea level, p < 0.05). Pulmonary acceleration time decreased by 27% in PLA versus 6% in SIL (p < 0.01). Cardiac output and systemic blood pressures increased at high altitude then decreased similarly in both groups. \(\text{PaO}_2 \) was higher and alveolar-arterial difference in \(\text{O}_2 \) lower in SIL than in PLA at rest and exercise (p < 0.05). The altitude-induced decrease in maximal \(\text{O}_2 \) consumption was smaller in SIL than in PLA (p < 0.05). Sildenafil protects against the development of altitude-induced pulmonary hypertension and improves gas exchange, limiting the altitude-induced hypoxemia and decrease in exercise performance.

Keywords: Cardiac output, Exercise, Gas exchange, Hypoxia
Evolution of Cardiac Output during Resistive Exercise in the Healthy Subject

Authors: M. Lamotte, F. Feys, A. Bourgeois, G. Niset, D. Decanniere, Ph van de Borne, N. Preumont

CUB-ULB Erasme Hospital -Brussels-Belgium.

Abstract: Muscular reinforcement is a type of training that is often used in physical rehabilitation. The acute impact of such training on cardiac training is not well known. It seems important to understand this hemodynamic response better in order to apply this technique to numerous different patient populations, including cardiac patients. The aim of this study is to follow the evolution of cardiac parameters (heart rate (HR), blood pressure (SBP and DBP), cardiac output (Qc), stroke volume (SV), and derivative parameters (rate pressure product RPP, and peripheral systemic resistance PSR) in a continuous and non invasive manner during a classical resistive training.

Method: 23 healthy subjects (average age: 24 years) realised 3 series of 10 knee flexion-extensions on a quadriceps chair (Technogym). The imposed load was 75% of maximal voluntary contraction (MVC). The work rhythm was of 1 second for a complete extension and 1 second to return to the flexed position. The recovery period was fixed at 1 minute between series. The blood pressure was continuously measured with the “Finapres”. Qc and SV were continuously measured with a “Physio-flow”®.

Result: We observe an 8 to 36% increase of Qc during the exercise. The Qc decreases during the periods of rest but never reaches the starting values within the imposed 1 minute of rest time. This increase of Qc is essentially due to an increase of the HR (+45, 19 and 11% during the first, second and third series). The SV practically doesn’t vary (+/- 5%). The observed raise of Qc is relatively low compared to what is described in the literature for an equivalent dynamic effort (75% of VO2 max / 75%CMV). The DP follows an evolution previously described in the literature.

Conclusions: The Qc increases in a moderate manner during a short but intense resistive effort. The Qc doesn’t return to the rest values within 1 minute of recovery. The SV contributes little to the raise of Qc. The raise of Qc is essentially due to the HR increase.
Reliability of Peak VO(2) and Maximal Cardiac Output Assessed using Thoracic Bioimpedance in Children

Authors: Welsman J, Bywater K, Farr C, Welford D, Armstrong N.

Children's Health and Exercise Research Centre, University of Exeter, Heavitree Road, Exeter, EX1 2LU, UK. j.r.welsman@ex.ac.uk

Abstract: The purpose of this study was to evaluate the reliability of a thoracic electrical bioimpedance based device (PhysioFlow) for the determination of cardiac output and stroke volume during exercise at peak oxygen uptake (peak VO(2)) in children. The reliability of peak VO(2) is also reported. Eleven boys and nine girls aged 10-11 years completed a cycle ergometer test to voluntary exhaustion on three occasions each 1 week apart. Peak VO(2) was determined and cardiac output and stroke volume at peak VO(2) were measured using a thoracic bioelectrical impedance device (PhysioFlow). The reliability of peak VO(2) cardiac output and stroke volume were determined initially from pairwise comparisons and subsequently across all three trials analysed together through calculation of typical error and intraclass correlation. The pairwise comparisons revealed no consistent bias across tests for all three measures and there was no evidence of non-uniform errors (heteroscedasticity). When three trials were analysed together typical error expressed as a coefficient of variation was 4.1% for peak VO(2) 9.3% for cardiac output and 9.3% for stroke volume. Results analysed by sex revealed no consistent differences. The PhysioFlow method allows non-invasive, beat-to-beat determination of cardiac output and stroke volume which is feasible for measurements during maximal exercise in children. The reliability of the PhysioFlow falls between that demonstrated for Doppler echocardiography (5%) and CO(2) rebreathing (12%) at maximal exercise but combines the significant advantages of portability, lower expense and requires less technical expertise to obtain reliable results.
Does Thoracic Bioimpedance Accurately Determine Cardiac Output in COPD Patients during Maximal or Intermittent Exercise?

Authors: Bougault V, Lonsdorfer-Wolf E, Charloux A, Richard R, Geny B, Oswald-Mammosser M.

Service des Explorations Fonctionnelles Respiratoires et de l'Exercice, Hopital Civil, BP 426, 67091 Strasbourg Cedex, France

Abstract;
Study Objectives: The monitoring of cardiac output (CO) during exercise rehabilitation in patients with COPD, often including strenuous exercise, is advisable. Invasive methods (thermodilution, Fick method) are accurate, but for clinical routine use noninvasive CO estimation is required. We have shown that impedance cardiography (Physio Flow; Manatec Biomedical; Macheren, France) is reliable in COPD patients at rest and during a recumbent, light-intensity exercise. The aim of our study was to evaluate the validity of this noninvasive device in COPD patients during a maximal incremental exercise test (IET) and also during a strenuous intermittent work exercise test (IWET).

Design: Prospective comparative study of the impedance cardiograph vs the direct Fick method applied to oxygen.

Patients: Eight patients with moderate-to-severe COPD (59 +/- 6 years old; FEV(1), 38 +/- 15% predicted; residual volume, 194 +/- 64% predicted) [mean +/- SD]. Measurements and main results: Forty-nine simultaneous measurements of CO by means of the direct Fick method (COfick) and CO measured by the impedance cardiograph (COpf) were obtained during the IET, and 108 measurements were made during the IWET. The correlation coefficients between the two measurements were r = 0.85 and r = 0.71 for the IET and the IWET, respectively. COpf was higher than COfick. The difference between the two methods was 3.2 +/- 2.9 L/min during the IET and 2.5 +/- 2.1 L/min during the IWET. Expressed as a percentage of the mean of the two measurements, this corresponded to 31 +/- 21% and 25 +/- 20%, respectively.

Conclusion: The relatively high number of values differing by > 20% precludes the use of impedance cardiography in clinical routine in such a difficult setting (hyperinflated patients and intense exercise).

IMPORTANT NOTE FROM THE MANUFACTURER

In an effort to present all publications involving PhysioFlow we have decided to include this particular one in our list. Its results may not look as favorable as all the other abstracts. However, it is to be noted that the protocol was performed in a way that is not compliant with the manufacturer’s instructions: The investigators have used a particular prototype version of the PhysioFlow software in spite of our insistence that they should not do so. They have used electrodes that were not those recommended for optimal results. Moreover, data of this study have disappeared form the hard disk of the computer, making it impossible to reanalyze them with the appropriate version of the software. In addition, it is questionable that Fick would perform well under incremental or strenuous intermittent work exercise test.
Sildenafil Improves Cardiac Output and Exercise Performance during Acute Hypoxia, but not Normoxia

Authors: Andrew R. Hsu¹, Kimberly E. Barnholt¹, Nicolas K. Grundmann¹, Joseph H. Lin², Stewart W. McCallum³, and Anne L. Friedlander¹, 4

¹Exercise Physiology Laboratory, Clinical Studies Unit, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304; ²Department of Medicine, Pulmonary and Critical Care, Stanford University School of Medicine, Palo Alto, CA 94305; ³Department of Urology, Stanford University Medical Center, Palo Alto, CA 94305; ⁴Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304

Abstract: Sildenafil causes pulmonary vasodilation, thus potentially reducing impairments of hypoxia-induced pulmonary hypertension on exercise performance at altitude. The purpose of this study was to determine the effects of Sildenafil during normoxic and hypoxic exercise. We hypothesized that 1) sildenafil would have no significant effects on normoxic exercise, and 2) Sildenafil would improve cardiac output, arterial oxygen saturation, and performance during hypoxic exercise. Ten trained males performed 1 practice and 3 experimental trials at sea level (SL) and simulated high altitude (HA) of 3,874 m. Each cycling test consisted of a set work rate portion (55% \text{Wattspeak}: 1 \text{h SL}, 30 \text{min HA}) followed immediately by a time-trial (10 km SL, 6 km HA). Double-blinded capsules (placebo, 50, or 100 mg) were taken 1 h prior to exercise in a randomly, counterbalanced order. For HA testing, subjects also began breathing hypoxic gas (12.8% O₂) 1 h prior to exercise. At SL, Sildenafil had no effects on any cardiovascular or performance measures. At HA, Sildenafil increased stroke volume (measured by electrical impedance cardiography), cardiac output (Q), and arterial oxygen saturation (Sao₂) during set work rate exercise. Sildenafil lowered 6 km time-trial time by 15\% (P < 0.05). Sao₂ was also higher during the time trial (P < 0.05) in response to Sildenafil, despite higher work rates. Post-hoc analyses revealed two subject groups, Sildenafil responders and non-responders, who improved time-trial performance by 39\% (P < 0.05) and 1.0\%, respectively. No dose-response effects were observed. During cycling exercise in acute hypoxia, Sildenafil can greatly improve cardiovascular function, arterial oxygen saturation, and performance for certain individuals.

Keywords: Phosphodiesterase-5 inhibitor, Simulated altitude, Viagra, Physioflow, Pulmonary hypertension
Side-effects of L-dopa on Venous Tone in Parkinson's Disease: a Leg-weighing Assessment

Authors: Jean-Pierre Wolf, Malika Bouhaddi, Francis Louisy, Andrei Mikehiev, Laurent Mourot, Sylvie Cappelle, Fabrice Vuillier, Pierre Andre, Lucien Rumbach, and Jacques Regnard

Abstract: In the present study, the effects of L-dopa treatment on cardiovascular variables and peripheral venous tone were assessed in 13 patients with Parkinson's disease (PD) with Hoehn and Yahr stages 1–4. Patients were investigated once with their regular treatment and once after 12 h of interruption of L-dopa treatment. L-Dopa intake significantly reduced systolic and diastolic blood pressure, heart rate and plasma noradrenaline and adrenaline in both the supine and upright (60°) positions. A significant reduction in stroke volume and cardiac output was also seen with L-dopa. The vascular status of the legs was assessed through thigh compression during leg weighing, a new technique developed in our laboratory. Healthy subjects were used to demonstrate that this technique provided reproducible results, consistent with those provided by strain gauge plethysmography of the calf. When using this technique in patients with PD, L-dopa caused a significant lowering of vascular tone in the lower limbs as shown, in particular, by an increase in venous distensibility. Combined with the results of the orthostatic tilting, these findings support that the treatment-linked lowering of plasma noradrenaline in patients with PD was concomitant with a significant reduction in blood pressure, heart rate and vascular tone in the lower limbs. These pharmacological side-effects contributed to reduce venous return and arterial blood pressure which, together with a lowered heart rate, worsened the haemodynamic status.

Abbreviations: AFI, arterial flow index; BP, blood pressure; CO, cardiac output; C_slope, slope of compliance; CV, coefficient of variation; DBP, diastolic BP; HR, heart rate; NG, nitroglycerine; PD, Parkinson's disease; SBP, systolic BP; SGP, strain gauge plethysmography; SV, stroke volume; TC, thigh compression; VDI, venous distensibility index

Keywords: nitroglycerine, noradrenaline, orthosympathetic control, Parkinson's disease, vascular tone, vascular plethysmography.
Vasoconstrictive Response in the Vascular Beds of the Non-Exercising Forearm during Leg Exercise in Patients with Mild Chronic Heart Failure

Authors: Yoshifumi Chiba, MD; Kazuhira Maehara, MD; Hiroyuki Yaoita, MD; Akiomi Yoshihisa, MD; Jiro Izumida, MD; Yukio Maruyama, MD

Abstract: Background reduced exercise capacity may be related to decreased redistribution of blood flow from the non-exercising tissues to the exercising skeletal muscle in patients with mild chronic heart failure (CHF). Methods and Results In the present study 14 patients with mild CHF and 10 healthy subjects (N) underwent symptom-limited multistage-ergometer exercise, during which forearm vascular resistance (FVR), cardiac index (CI), systemic vascular resistance index (SVRI), and oxygen uptake (VO_2) were measured non-invasively using the plethysmograph, impedance, and respiratory gas analysis methods, respectively. The VO_2 and CI at peak exercise were lower (p<0.01 each), and SVRI and FVR at both rest and peak exercise were higher in the CHF group than in N. However, both the percent increase in FVR and percent decrease in SVRI from the resting state to peak exercise were lower in CHF than N, and both of them correlated with not only peak VO_2, but also the corresponding resting value of FVR and SVRI (p<0.01 each). Conclusions Redistribution of blood flow from the non-exercising tissues to the working skeletal muscles, which may participate in exercise capacity, can be blunted in CHF. The decreased vasoconstrictive response in the non-exercising tissues is intimately related to the increased resting vascular tone in CHF.

Conclusion: Not only an impaired reduction in SVRI, mainly because of attenuated reduction of working vascular resistance, but also blunted redistribution of blood flow from non-working to exercising muscles, which is expected from the attenuation of the % increase in FVR, may play a role in the exercise intolerance of CHF patients. The development of a new strategy for alleviating these abnormalities in the nonexercising vascular bed, as well as the impaired vascular relaxation in exercising skeletal muscle, is recommended to ameliorate the decreased exercise capacity of CHF patients.
Non-invasive Evaluation of Maximal Arteriovenous Oxygen Difference and Adolescent Boys' Fitness Levels

Authors: N. Ben Brahim Boudhina, J. Lonsdorfer, T. Vogel, P.-M. Leprêtre and M. Hadj Yahmed

Abstract:
Objective: To evaluate non-invasively the patterns of the Fick equation components during an incremental ergocycle test.

Methods: Simultaneous measurements of gas exchanges and cardiac output (\dot{Q}_c) — thoracic impedance device Physioflow Manatec — supply the Fick equation's variables:

$$\dot{V}O_2 = \dot{Q}_c \times d(a - \dot{V})O_2$$

Their dynamics are studied at 1st and 2nd ventilatory threshold (SV1, SV2) and at PMT (Max Tolerated Power) in 41 active adolescent boys; 25 of them are highly trained (TP) and 16 occasionally (P). There is no anthropometric difference between the 2 groups.

Results: 1) Individual slopes "a" of \dot{Q}_c regression against $\dot{V}O_2$ are negative: the higher the "a" value the lower PMT, maximal tissular O_2 extraction $d(a - \dot{V})O_2$max, and… the adolescents' performance; 2) as early as at SV1, $d(a - \dot{V})O_2$max in TP is always higher than in P; whereas \dot{Q}_c, FC and stroke volume (VES) have similar values in both groups at SV1, SV2 and PMT; 3) in all subjects, TP and P, VES max and $d(a - \dot{V})O_2$max were reached at the level of SV2.

Conclusion: Non invasive and simultaneous \dot{Q}_c and $\dot{V}O_2$ measurements during incremental test lead to Fick equation adjustments, $\dot{Q}_c/\dot{V}O_2$ a” slope and $d(a - \dot{V})O_2$ difference contributing thus to interesting indications of subjects’ fitness.
Children Cardiorespiratory Performance Index by Simultaneous and Independent Measure of Oxygen Uptake and Cardiac Output

Authors: N. Ben Brahim Boudhina a, J. Lonsdorfer b, P.-M. Leprêtre c, T. Vogel b and M. Hadj Yahmeda

Abstract;

Objective: To demonstrate that the linear coefficient of the relationship $\dot{Q}_c = \dot{V}O_2$ is an indice of the tissular oxygen extraction capacity in children.

Synthesis of facts: Twelve soccers (11.7 ± 0.7 years) performed a maximal progressive test. Our results show that \dot{Q}_c is strongly correlated with $\dot{V}O_2 (r = 0.96, p < 0.01)$, and the individual values of the linear coefficient of the $\dot{Q}_c - \dot{V}O_2$ relationship are conversely correlated with $\dot{V}O_2$ max values ($r = -0.91, p < 0.05$).

Conclusion: It thus seems that $\dot{V}O_2$ max is the main predicting factor for $\dot{V}O_2$ max.

Keywords: Non invasive cardiac output, O2 arteriovenous difference, PhysioFlow slope analysis
Effect of Interval versus Continuous Training on Cardiorespiratory and Mitochondrial Functions: Relationship to Aerobic Performance Improvements in Sedentary

Authors: Daussin FN, Zoll J, Dufour SP, Ponsot E, Lonsdorfer-Wolf E, Doutreleau S, Mettauer B, Piquard F, Geny B, Richard R.

Abstract: The goal of the study was to determine the effects of continuous (CT) vs. intermittent (IT) training yielding identical mechanical work and training duration on skeletal muscle and cardiorespiratory adaptations in sedentary subjects. Eleven subjects (6 men and 5 women, 45 +/- 3 years) were randomly assigned to two periods of 24 trainings sessions over 8 weeks in a cross-over design, separated by 12 weeks of detraining. Maximal oxygen uptake (VO2max) measured during maximal exercise testing increased after both trainings (9% with CT vs. 15% with IT), whereas only IT was associated with faster VO2 kinetics (tau: 68.0 +/- 1.6 vs. 54.9 +/- 0.7 sec, p<0.05) measured during a test to exhaustion (TTE) and with improvements in maximal cardiac output (Qmax, from 18.1 +/- 1.1 to 20.1 +/- 1.2 L.min(-1), p<0.01). Skeletal muscle mitochondrial oxidative capacities (Vmax) were only increased after IT (3.3 +/- 0.4 before and 4.5 +/- 0.6 micromol O2.min(-1).gdw(-1) after training, p<0.05) whereas capillary density increased after both trainings, with a 2-fold higher enhancement after CT (+21 +/- 1% for IT and +40 +/- 3% after CT, p<0.05). The gain of Vmax was correlated with the gain of TTE and the gain of VO2max with IT. The gain of Qmax was also correlated with the gain of VO2max. These results suggest that fluctuations of workload and oxygen uptake during training sessions, rather than exercise duration or global energy expenditure, are key factor in improving muscle oxidative capacities. In an integrative view, IT seems optimal in maximizing peripheral muscle and central cardiorespiratory adaptations, permitting significant functional improvement. These data support the symmorphosis concept in sedentary subjects. Key words: mitochondria, endurance training, performance.
Best Detection of Coronary Artery Disease using a New Generation Impedance Cardiography: Comparison to Exercise Thallium 201 Scintigraphy

Authors: JM Dupuis, F Prunier, W Abi-Khalil, Ph Pezard, F Bour, Ph Geslin, department of cardiology, C.H.U. Angers France.

Abstract: During exercise in patients with ischemia, contractility is impeded before electrical signs or angina appear. Therefore, measurement of contractility impairment could provide a highly sensitive approach to the detection of an ischemia. The protocol was designed to determine if a new, non invasive cardiac output measuring device (Physio Flow® : PF03, Manatec France) whose measurements are based on analysis of instant thoracic impedance (ICG) variations could be helpful to detect ischemia during exercise thallium scintigraphy.

Methods: The efficiency of ICG in detecting myocardial ischemia was compared to treadmill exercise/redistribution thallium-201 scintigraphy. During exercise, patients had simultaneous measurement of stroke volume with ICG. ICG was considered abnormal if stroke volume at the peak of exercise was lower than another stroke volume measured before, and separated by at least 1 min from peak. Clinical was considered as positive if typical angina occurred and an abnormal ECG if ST-segment horizontal or descending depression > 1 mV lasting for at least 30 seconds. Ischemia was affirmed by a mismatch between exercise/redistribution thallium-201 scintigraphy.

Results: 36 patients (30 men, age 62 +/- 11 years), 30 with proved CAD were submitted to treadmill exercise/redistribution thallium-201 scintigraphy. Stroke volume profile alteration always occurred earlier in exercise than ECG ST segment depression and angina. The sensitivity (Se), specificity (Sp), positive (PPV) and negative (NPV) predictive values are summarized in the following table.

<table>
<thead>
<tr>
<th></th>
<th>Se</th>
<th>Sp</th>
<th>PPV</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angina</td>
<td>46%</td>
<td>74%</td>
<td>50%</td>
<td>71%</td>
</tr>
<tr>
<td>ECG(+)</td>
<td>31%</td>
<td>65%</td>
<td>33%</td>
<td>63%</td>
</tr>
<tr>
<td>ECG(+) and/or Angina</td>
<td>41%</td>
<td>66%</td>
<td>41%</td>
<td>66%</td>
</tr>
<tr>
<td>ECG(+) and Angina</td>
<td>33%</td>
<td>76%</td>
<td>43%</td>
<td>68%</td>
</tr>
<tr>
<td>ICG(-)</td>
<td>100%</td>
<td>74%</td>
<td>67%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Conclusions: Use of ICG during exercise allows for the estimation of stroke volume changes over time. These preliminary results show that it is a promising technique compared to ECG or other criteria for the detection of ischemia during exercise test with an excellent NPV.
Detection of Coronary Artery Disease (CAD) during Bicycle Exercise, using New Generation Impedance Cardiography

Abstract: During exercise in patients with CAD, contractility is impeded before electrical signs or angina appear. Therefore, measurement of contractility impairment could provide a highly sensitive approach to the detection of CAD. The protocol was designed to determine if a new, non invasive cardiac output measuring device (Physio Flow® : PF03, Manatec France) whose measurements are based on analysis of instant thoracic impedance (ICG) variations that does not use average impedance baseline values could be helpful to detect CAD.

Methods: On a 12 months period, subjects suspected of CAD had been submitted to an incremental bicycle exercise test (30 W / 2 min). Those who presented either an interpretable and abnormal ECG : [ECG(+)] ST-segment horizontal or descending depression > 1 mV lasting for at least 30 seconds, or typical angina during the exercise test were submitted to coronarography (n=29, 18 men/11 women, age = 57+/−10 years. Weight = 80+/−12 Kg. Height = 170+/−9 cm). Coronarography, considered as the gold standard for comparison, were performed and analyzed by independent observers and quoted abnormal for at least 50% stenosis of the coronary arteries : coro(+). During exercise, patients had simultaneous measurement of stroke volume with ICG. ICG was considered abnormal if stroke volume at the peak of exercise was lower than another stroke volume measured before, and separated by at least 1 min from peak.

Results: Number of patients in each group are summarized in the table. Stroke volume profile alteration always occurred earlier in exercise than ECG ST segment depression. The sensitivity, specificity, positive and negative predictive values were respectively: 63, 20, 60, 22% for ECG alone; 68, 20, 62, 25 for angina alone; 84, 10, 64, 25% for ECG or angina; 100, 50, 79, 100% for ICG.

<table>
<thead>
<tr>
<th></th>
<th>coro(+) n=19</th>
<th>coro(-) n=10</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECG(+)</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>Angina</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>ECG(+) and Angina</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>ECG(+) and/or Angina</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>ICG SV depression</td>
<td>19</td>
<td>5</td>
</tr>
</tbody>
</table>

Conclusions: Use of ICG during exercise allows for the estimation of stroke volume changes over time. As such, these preliminary results show that it is a promising technique for the non-invasive diagnosis of CAD.
Changes in Transthoracic Impedance Signal Predict Outcome of 70º Head-up Tilt Test.

Authors: Elisabeth Bellard*, Jacques-Olivier Fortrat*, Daniel Schang†, Jean-Marc Dupuis‡, Jacques Victor‡ and Georges Lefthériotis*

From the *Laboratoire de Physiologie - UPRES EA 2170, Faculté de Médecine, rue haute de Reculée, 49035 Angers, France, †Ecole Supérieure d'Électronique de l'Ouest, 4 rue Merlet de la Boulaye, PO Box 926, 49009 Angers Cedex 01, France, ‡Département de Cardiologie, Centre Hospitalier d'Angers, rue Larrey, 49033 Angers cedex, France.

Pr G. Lefthériotis, Laboratoire de Physiologie, UPRES-EA 2170, Faculté de médecine, rue haute de Reculée, 49035 Angers.
Tel: 0-33-2-41-35-46-17,
Fax: 0-33-2-41-35-50-42
E-mail: geleftheriotis@chu-angers.fr

Abstract: We determined if the early changes in central hemodynamics determined by transthoracic impedance induced by head-upright tilt test (70ºHUT) could predict syncope. Heart rate, arterial blood pressure and central hemodynamics (pre-ejection period and rapid left ventricular ejection time (T1), slow ejection time (T2) and dZ/dtmax, assessed by the transthoracic impedance technique), were recorded during supine rest and 45 min 70ºHUT in 68 patients (40±2 years) with history of unexplained recurrent syncope. Thirty-eight patients (42±3 years) had a symptomatic outcome to 70ºHUT (fainters) and 30 (39±2 years) had a negative outcome (non-fainters). Between the 5th and 10th minutes of 70ºHUT, T2 increased significantly only in the fainters and a change of T2 >40 ms from baseline predicted a positive outcome with a sensitivity of 68% and a specificity of 70%. During supine rest, fainters exhibited a shorter T2 than non-fainters (183±10 ms vs. 233±14 ms, p<0.01). A T2 <199ms predicted a positive 70ºHUT outcome with a sensitivity of 68% and a specificity of 63%. The combination to the changes from rest to 70ºHUT of the other hemodynamic variables (heart rate >11 bpm, systolic <2 mmHg, diastolic <7 mmHg and pulse <3 mmHg pressures) increased the specificity to 97% as well as the positive predictive value (93%). Transthoracic impedance could detect differences between fainters and non-fainters in central hemodynamics during supine rest and the initial period of 70ºHUT with a consistent sensitivity and specificity when combined with peripheral hemodynamic variables.
Head-upright Tilt Test with Sublingual Nitroglycerin Predicts Hemodynamic Abnormalities in 70° Head-upright Tilt

Authors: Bellard Elisabeth, Fortrat Jacques-Olivier, Dupuis Jean-Marc, Victor Jacques, Lefthériotis Georges.

Abstract: We aimed to determine if the outcome to a head upright tilt test (70°HUT) with sublingual nitroglycerin (NTG) could retrospectively help to determine abnormal changes in central and peripheral hemodynamics to a standard (STD) 45 min 70°HUT without NTG in patients with unexplained syncope. 32 patients with negative outcome to a 70°HUT-STD were submitted to consecutive 70°HUT+NTG. Heart rate, arterial blood pressure (BP) and central hemodynamic assessed by transthoracic impedance variables (pre ejection + rapid left ventricular ejection time (T1, ms) and peak of first derivative of signal (dZ/dtmax) were recorded during supine rest, initial 5 min and 40-45 min of a 70°HUT-STD. Changes from rest value of these variables (mean+/−SEM) were retrospectively compared (unpaired T test) between patients with a negative (n=15,NTG-) and positive (n=17,NTG+) outcome to a 70°HUT+NTG. Differences were only observed during 40-45 min of 70°HUT-STD: systolic (NTG+:−18+/−4 vs NTG−:−2+/−4 mmHg;p<0.01), mean BP (−1+/−2 vs 6+/−2 mmHg;p<0.05) and dZ/dtmax (−51+/−30 vs 35+/−21 Ohm.s−1;p<0.05). A drop of systolic BP >10mmHg and/or dZ/dtmax >13 Ohm.s−1 predicted positive outcome to 70°HUT+NTG with a sensitivity of 82% and a specificity of 60% suggesting that abnormal response to a 70°HUT+NTG was linked to 70°HUT-STD outcome.
Accepted for the *British Thoracic Society* winter meeting

Haemodynamics during Exercise are a Better Measure of Vasodilator Response in Human Subjects with Pulmonary Hypertension

Authors: R. Syyed, A.J. Peacock Scottish Pulmonary Vascular Unit, Western Infirmary, Glasgow, UK

Abstract: Patients with pulmonary hypertension (PHT) are deemed ‘non-responders’ (NR) if they show no response to vasodilators at rest. We therefore decided to investigate the effects of vasodilators on pulmonary haemodynamics during exercise.

Methods: We investigated 4 patients, (2 female, 2 male) with PHT to determine pressure and flow changes over a range of flows. Flow was changed by straight leg raising. A micromanometer tipped continuous pulmonary artery pressure (PAP) catheter was inserted. All 4 were non-responders to a vasodilator challenge (defined as a reduction of >20% in pulmonary vascular resistance). Resting pressure was measured and then 3 mins of supine alternate straight leg raising was performed, whilst the subjects inhaled air or nitric oxide (NO, 40-80 ppm) and oxygen (O2, 15L min). Cardiac Output (CO) was measured by non-invasive impedance cardiography. Subject data was pooled using the method described by Poon (*J. Appl Physiol.* 1998; 64:854-9). The best-fit line for Pressure Flow (P-Q) plots was determined by linear regression. An adjusted two paired student t-test was used to compare the line gradients.

Results: We found that although total pulmonary vascular resistance (as defined as mean PAP/ CO) showed no change at rest, the slope of the P-Q plots decreased with vasodilators during exercise (p<0.0005).

Conclusion: In each of these 4 subjects, whilst there was no vasodilator response at rest, there was an improving relationship between pressure and flow during exercise whilst receiving the vasodilators NO & O2. In patients with PHT, the assessment of vasodilator response may be better performed during exercise than at rest.
Impedance Cardiography and Quantitative Tissue Doppler Echocardiography for Evaluating the Effect of Cardiac Resynchronization Therapy

Authors: Hitoshi Adachi, MD; Tomoya Hiratsuji, MD; Shigeki Sakurai, MD; Hiroshi Tada, MD; Takuji Tomoya, Koichi MD FJCC; Shigeto Naito, MD; Hiroshi Hoshizaki, MD; Shigeru Oshima, MD FJCC; Taniguchi, MD FJCC.

Abstract: An 83-year-old woman presented with dilated cardiomyopathy. Cardiac resynchronization therapy was performed. Two weeks later, cardiac output and ventricular wall motion were estimated using impedance cardiology and tissue Doppler echocardiography with and without pacing. Cardiac output increased from 3.5 to 4.5 l/m during biventricular pacing with a 120 msec atrioventricular interval. Intraventricular phase difference for contraction decreased from 190 to 150 msec. When the atrioventricular interval was 180 msec, cardiac output and phase difference became 4.6 l/m and 170 msec. These assessments were performed rapidly and non-invasively. New impedance cardiography and tissue Doppler echocardiography are useful to evaluate the effect of cardiac resynchronization therapy.

Conclusion: The present case demonstrates usefulness of impedance cardiology and tissue Doppler echocardiography in the evaluation of the effect of cardiac resynchronization therapy on cardiac function. Using impedance cardiology, the cardiac output could be assessed easily and non-invasively. Impedance cardiography and tissue Doppler are useful for evaluating the beneficial effect of cardiac resynchronization therapy and determined the optimal AV delay interval.

References:
Dynamic Monitoring during Exercise in Familial Amyloid Polyneuropathy (FAP) Type I

Authors: Tetsuro Kusaba¹, Yoshifumi Nakahara, Akiyoshi Matsumuro, Takashi Nakamura, Shouhei Sawada, Masamitsu Nakazato².

１Department of Cardiology, Saiseikai Shiga Hospital
２Third Department of Internal Medicine, Miyazaki Medical College

Abstract: A 64-years-old man was admitted to our hospital with complaints of orthostatic faintness and occasional diarrhea. An echocardiogram of the left ventricle demonstrated a severe restrictive disorder and granular sparkling appearance in the thickened walls. Microscopic findings of the myocardial biopsy revealed massive intramuscular accumulation of eosinophilic exudates and severe atrophy of myocytes. Cardiac ⁹⁹ᵐTc-pyrophosphate (PYP) findings showed diffuse marked uptake in both left and right ventricles. Cardiac ¹²³ᵐI-meta-iodobenzyl-guanidine (MIBG) findings showed complete defect on both early and delayed images. Genetic analysis revealed a single amino acid substitution at codon 30 of transthyretine (TTR), named FAP type I. Dynamic monitoring of the cardiac index peripheral vascular resistance in postural positions and exercise was measured by non invasive methods (PhysioFlow™ Lab-1). The results of analysis indicated that the fall in blood pressure during exercise in our case was markedly affected by the lowering of peripheral vascular resistance. The cardiac index showed almost the same value during monitoring.

These findings suggest that orthostatic hypotension without increase in heart rate and output in a denervated myocardium is markedly accelerated by peripheral vascular sympathetic denervation in FAP type I. The present case is considered to be the first one encountered in Shiga.

Keywords: FAP type I, Cardiac amyloidosis, PhysioFlow™ Lab-1
Impedance Cardiography - a Rapid and Cost-effective Screening Tool for Cardiac Disease

Authors: Jean Bour, MD; John Gale Kellett, MD

Abstract: Impedance cardiography (ICG) charts the rises and falls of thoracic impedance as the fluid content of the chest changes with each heartbeat. Breathing, arrhythmia, movements and posture interfere with the ICG. Modern pattern recognition software can now produce a composite Signal Averaged ICG, which considerably simplifies interpretation.

The first derivative velocity waveform shows a smooth S wave that corresponds with systole, while the second derivative acceleration waveform (dZ/dt) contains several reference points that outline the A-wave, S and O-wave. Normally the A-wave follows atrial contraction and occurs in late diastole. It can, therefore, be abnormal in both atrial and ventricular arrhythmias, and is abnormally increased when there is diastolic dysfunction. The S-wave reflects ventricular contractility, and is deformed by ventricular dyssynchrony. The O-wave is associated with mitral valve opening and is abnormally enlarged in heart failure.

These different patterns of ICG waveform are relatively easy to recognise and can be cost-effectively and quickly obtained to reliably distinguish between normal and abnormal cardiac function.

Keywords: Impedance cardiography, Heart failure, Diastolic dysfunction, Dyssynchrony
Isolated Left Ventricular Diastolic Dysfunction: Implications for Exercise Left ventricular Performance in Patients without Congestive Heart Failure

Authors: V. Palmieri, C. Russo, E. Palmieri, E. Arezzi, S. Pezzullo, S. Minichiello, S. Martino, P. Migliaresi, A. Celentano

Abstract:
Objective: Clinical relevance of left ventricular (LV) diastolic dysfunction in the absence of congestive heart failure (CHF) and LV systolic dysfunction is not fully established.

Methods: Asymptomatic outpatients, sedentary, with cardiovascular risk factors but no history of cardiovascular events, underwent echocardiographic evaluation of LV structure and function by standard Doppler, color M-mode, and Doppler tissue methods, and exercise testing with simultaneous noninvasive assessment of LV stroke index and cardiac index. LV ejection fraction less than 50% and significant valvular disease or stress test suggestive of coronary disease were additional exclusion criteria.

Results: In 70 patients selected (40 ± 10 years old, 63% men, 34% hypertensive, 34% diabetic, 4% diabetic and hypertensive, 11% with LV hypertrophy), LV diastolic dysfunction was detected in 26%, which was associated with hypertension, higher LV mass index, lower systolic function, lower peak exercise heart rate, and chronotropic reserve (all P < .05), and with lower peak exercise stroke index and cardiac index (both covariates adjusted P < .05), but not with lower peak exercise metabolic equivalents (P > .5). Abnormal LV relaxation was independently correlated with lower peak exercise cardiac index and stroke index (both P < .05). Peak exercise systolic and cardiac indices were comparable between patients with CHF risk factors (74%) versus those without.

Conclusion: Isolated LV diastolic dysfunction was independently associated with lower peak exercise LV systolic performance in patients without CHF. Its diagnosis may provide a target for aggressive CHF risk management.
Thoracic Bioimpedance for Optimizing Atrioventricular and Intraventricular Delays after Cardiac Resynchronization Therapy

Authors: Fabrice Bauer, MD, Mathieu Lemercier, MD, Sidney Tapiero, MD, Arnaud Savouré, MD, Bénédicte Godin, MD, Frédéric Anselme, MD, PhD, Alain Cribier, MD, PhD.

From the Section of Echocardiography, Department of Cardiology, Rouen University Hospital, Rouen, FR. and from unité INSERM U644, Rouen University Medical School, Rouen FR.

Abstract

Background: The lack of easy and fast method for optimizing AV and VV delay after cardiac resynchronization therapy (CRT), is a major deficiency of two-dimensional echocardiography combined with tissue Doppler imaging (TDI). The aim of our human study was to test a new non-invasive system for optimizing cardiac resynchronization.

Methods and Results: Six to 12 months before bioimpedance and 2D echocardiographic study, 10 patients with symptomatic systolic heart failure were resynchronized with CRT device. At the subsequent session, a total of 78 different steady-state hemodynamic conditions were studied by serially changing the pacemaker delays. 2D echocardiography with TDI capability was used as gold standard for optimal cardiac resynchronization. A validated system was employed for measuring the thoracic electrical bioimpedance (TEB). Physioflow TEB signals were recorded on a computer and left ventricular stroke volume was determined online by morphological analysis of the impedance waveforms. Optimal AV and VV delays by Physioflow TEB were defined when stoke volume was maximal. Optimal VV and AV delays obtained by echocardiography averaged 0±10 ms and 129±18 ms. Those obtained by bioimpedance averaged 0±21 ms and 133±28 ms, respectively. Bland-Altman analysis showed a good agreement between the echocardiography-obtained optimal delays and bioimpedance (mean difference, 2±22ms).

Conclusions: The Physioflow thoracic electrical bioimpedance system provided an accurate approach for adjusting AV and VV delays, suggesting an important application in cardiac resynchronization therapy.

Keywords: Bioimpedance, Echocardiography, Systolic dysfunction, Heart failure, Resynchronization therapy
Measurement of Cardiac Output Using Physio Flow® with Different Positions of Electrode Placement

Authors: Tan K H, Lai F O, Hwang N C

Abstract;
Introduction: Physio Flow is a non-invasive impedance cardiograph device that measures cardiac output. Recommended electrode placements involve six electrodes, including two near the xiphisternum (Z3 and Z4/EcG3/neutral). This study aims to evaluate if changing the positions of these two leads to the left fourth and fifth intercostal spaces along the mid-axillary line results in a change in the cardiac output measurement.

Methods: This was a prospective, controlled, crossover, paired study of 30 patients where electrodes were placed in the recommended positions and cardiac output (CO1) obtained after two minutes. The second cardiac output (CO2) was then obtained with the electrodes Z3 and Z4/EcG3/neutral repositioned at the left mid-axillary line at the fourth and fifth intercostal spaces. The final step involved switching the Z3 and Z4/EcG3/neutral leads back to the recommended position and the cardiac output (CO3) was measured. Results: the average of the initial and third readings (COave) was compared with the measured CO2 and analyzed. The regression equation was: CO at the proposed site (CO2) = COave at the recommended site + 0.058. The paired samples correlation was 0.995. Within the 95 percent limits of agreement, the bias with CO measured at the proposed site of electrode placement was 0.046 L/min with the limits at -0.24 L/min and 0.34 L/min. the mean difference was 0.86% of the average CO.

Conclusion: A small positive bias was demonstrated when Physio Flow measurements were taken with the leads Z3 and Z4/EcG3/neutral placed in the mid-axillary line fourth and fifth intercostal spaces.

Keywords: Electrode placements, Impedance, Non-invasive cardiac output monitoring, Physio Flow®
Evaluation of a New Noninvasive, Thoracic Bioimpedance Monitor for Hemodynamic Monitoring in Pediatric Patients

Gary R Haynes, PhD, MD and Jeremy Ringewald, MD
Departments of Anesthesia and Perioperative Medicine and Pediatrics, Division of Pediatric Cardiology
Medical University of South Carolina, Charleston, South Carolina

Hemodynamic monitoring with a pulmonary artery catheter is a common practice in adults, but anesthesiologists and surgeons rarely use invasive monitoring routinely in pediatric patients because of the technical difficulties and associated risks. A reliable, non-invasive method for determining cardiac output and hemodynamic values may be useful in pediatric patients for optimal management. We report preliminary data evaluating a new thoracic bioimpedance (TBI) system for determination of hemodynamic values in pediatric patients in a prospective, observational study.

Enrollment: N = 38
Mean Std Dev Min Max
Age (year) 9.6 7.8 2 24.8
Weight (Kg) 34.6 24.5 4.3 76
BSA (M²) 0.97 0.59 0.26 1.96
BMI (Kg/M²) 24 26 11.9 31.6

Males – 18
Females - 20

TBI determines CO by measuring the change in an electrical impedance signal, Z. This is measured by attaching skin electrodes at the base of the neck and sternum. Some devices use the absolute value of the signal (Zo), which has been described as a limiting factor in the usefulness of TBI. We evaluated a new monitor that uses relative values of the impedance signal rather than absolute values. This system has good agreement with the TD method for measuring CI in adults.2

The data provided by this monitor has good agreement with values obtained by thermodilution. Difficulties in obtaining simultaneous TBI readings while obtaining blood samples for the modified Fick and using estimates for oxygen uptake instead of measuring oxygen consumption accounts for the greater difference between TBI and Fick CI values. TBI may be a useful method for the noninvasive monitoring pediatric hemodynamics.

References

Cardiology

Heart Failure Congress, Milano 2008

New Non Invasive Marker of Heart Failure with Pulmonary Congestion: Thoracic Electrical Bioimpedance

Authors: F. Bauer1, S. Cordier Pouchain2, E. Benmokhtar2, B. Kurtz2, G. Grezis Soulie2, A. Cribier2 - (1) C.H.U. Charles Nicolle, Rouen Cedex, France (2) C.H.U. Charles Nicolle, Rouen, France

Abstract:
Objective: Brain Natriuretic Peptide (BNP) is usually utilized to diagnose heart failure. However, BNP is expensive, measured invasively and is not specific to the left ventricle. The aim of this study was to calculate the thoracic fluid index (TFI, ohm), a new marker of pulmonary congestion measured using the electrical bioimpedance, and to correlate it to BNP level in normals and patients with heart failure.

Methods and Results: 6 normals and 15 patients with EF < 35% were investigated. The BNP level was measured with the Triage assay (Biosite). A commercially available system for measuring the thoracic bioimpedance (Physioflow, FR) was used for calculating TFI from 4 electrodes (2 at the upper chest and 2 in front of the xyphoid process) connected to a computer interfacing with a dedicated platform. Both BNP level and TFI were measured simultaneously. Mean BNP concentration and TFI were 777 ± 700 pg/ml (range from 5 to 2038 pg/ml) and 114 ± 37 ohm (range from 45 to 170 ohm), respectively. Multiple regression analyses showed a good correlation and agreement between the BNP and TFI (r=0.93, figure. Cut-offs are in represented by dashed lines). Measurement of TFI was obtained in less than 2 minutes.

Conclusions: The Thoracic Fluid Index provided good estimation of heart failure, suggesting an important application of this new parameter and bioimpedance method to detect heart failure.
PATIENTS WITH SYSTOLIC HEART FAILURE SHOW IMPROVEMENT WITH LONG-ACTING, CARDIOSELECTIVE BETA-BLOCKER NEBIVOLOL WHEN OTHERS FAIL

AUTHORS: F. Bauer1, J. Bour2, B. Kurtz1, M. Lemercier1, B. Godin1, F. Anselme1, A. Cribier

(1) C.H.U. Charles Nicolle, Rouen, France
(2) Centre Hospitalier Lemire, Saint Avold, France

Abstract;
Purpose: β-blockers are highly effective by reducing morbimortality in patients with systolic heart failure (SHF). However, failure to (re-)start or to titrate β-blockers is frequent, occurring in 10% of these patients. We hypothesized that β-blockers intolerance is attributable to persistent elevated afterload and that nebivolol would efficiently normalize it.

Patients and Methods: We selected 20 SHF patients intolerant to β-blockers. Reasons for intolerance were worsening heart failure and symptomatic peripheral hypoperfusion during up-titration. Using commercially available bioimpedancemeter (Physioflow, FR), we measured cardiac index (CI), total intrathoracic fluid (TIF), blood pressure, heart rate and NYHA functional class with the first β-blocker and after substituting it to equidose nebivolol. Systemic vascular resistance index (SVRi) was calculated along with left cardiac work index (LCWi) using validated equations.

Results and Discussion: Patients aged 63±15y. Both mean arterial pressure and heart rate significantly decreased with nebivolol from 106±12 to 99±7 mm Hg (p=0.002) and 74±14 to 71±12 (p=0.05), respectively. Effects of replacing the β-blocker to nebivolol are shown in the table. There was a significant improvement in NYHA functional class from 2.9±0.5 to 2.1±0.9 (p=0.001)

CONCLUSION: Patients with systolic heart failure, intolerant to β-blockers, exhibit persistent elevated systemic vascular resistance. By reducing the systemic vascular resistances, nebivolol enhances cardiac output, decreases intrathoracic fluid, and therefore improves NYHA functional class.

Hemodynamic Data by Bioimpedance

<table>
<thead>
<tr>
<th></th>
<th>With the first β-blocker</th>
<th>Under nebivolol</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI (l/min/m²)</td>
<td>2.7±0.6</td>
<td>2.9±05</td>
<td>0.02</td>
</tr>
<tr>
<td>SVRi (Dynesxs/cm5/m²)</td>
<td>3028±540</td>
<td>2564±470</td>
<td>0.00002</td>
</tr>
<tr>
<td>LCWi (Joules)</td>
<td>3.96±1.16</td>
<td>3.93±0.82</td>
<td>NS</td>
</tr>
<tr>
<td>TIF (1/ohm)</td>
<td>129±27</td>
<td>113±22</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

CI: cardiac index, TIF: total intrathoracic fluid, SVRi: Systemic vascular resistance index, LCWi: left cardiac work index
Advances in Non-invasive Cardiac Output Monitoring

Authors: David M. Linton and Dan Gilon Medical Intensive Care Unit and Department of Cardiology Hadassah Medical Organization, P.O. Box 12000, Jerusalem II 911201

Abstract: In EIC (Electrical Impedance Cardiographs) devices using Zo baseline impedance, large amounts of thoracic fluid may interfere with the impedance signal, making haemodynamic data unattainable or unreliable.32-54 Severe pulmonary oedema may decrease the signal-to-noise ratio, damp the dZ/dt waveform, and inhibit haemodynamic data acquisition.

The latest methods of EIC (PhysioFlow®) are baseline impedance independent and use more advanced forms of impedance waveform morphology analysis.43-46 New noninvasive impedance monitors are able to provide continuous trend monitoring of HR and SV giving derived CO and index parameters without the need for baseline impedance measurement. They use stroke waveform morphology analysis to determine SV and then calculate all the derived parameters.

Preload assessment is essential in any patient who may be at a risk of hypoperfusion. Assessment and management of preload catheter can be a challenge for clinicians. The insertion of a CVP catheter may help decision making but isolated measurements of CVP are not very informative. The trend of the CVP and in particular its response to a fluid challenge is far more valuable in planning the therapy. In PA catheterisation, the PAOP indirectly measures LV end-diastolic pressure and is related to LV end-diastolic volume, or preload. However, many factors affect the extrapolation of the PAOP to LV preload, such as reduced LV compliance, pulmonary hypertension or mechanical ventilation.

A simple manoeuvre using EIC to assess intravascular volume is to give a fluid challenge using the patient's own circulating volume as the fluid bolus. By elevating the legs or placing the patient in the "head clown" position, fluid moves from the lower extremities, increasing venous return. In a normal heart, the SV will increase. Patients who are hypovolaemic may show a significant increase in SV and would benefit from volume administration.

Patients with LV dysfunction or fluid overload may have minimal or no change in SV in response to a physiologic fluid bolus. These individuals do not have adequate cardiac reserve and cannot tolerate additional fluid. These patients may require treatment with inotropes or agents that reduce preload and afterload. Use of EIC to assess preload with a fluid affords valuable information regarding the patient's ability to tolerate additional fluids. The latest methods of EIC use advanced waveform morphology analysis to determine a filling index (FI) for the heart. Where CVP measurements are available the information can be used to supplement the FI data. The trend of the FI is likely to be of more value than isolated measurements particularly for monitoring response to interventions or planning therapy.

Conclusion: Recent technological advances have allowed the development of noninvasive methods of measuring CO with continuous on-line measurement and trending of SV and HR. Derived parameters such as SVI, CI, SVR, LCWI and EF can also be shown and recorded continuously. The new noninvasive technology is safe, reliable and relatively inexpensive and is increasingly being used in clinical practice and research. Completely noninvasive CO monitoring by modern EIC technology is suitable for continuous on-line and trend monitoring of SV, HR and derived parameters; and echocardiography, mainly TEE in the ICU, should be used for structural and functional evaluation of the heart as well as confirmation of SV and EF.
Cardiac Output Measurements: Comparison Between a New Transthoracic Electrical Biomimpedance Method (Physioflow™) and the Swan-Ganz Method (Continuous Cardiac Output or Bolus Technique)

Authors: Moreau X, Rousseau JM*, Thiranos JC**, Dubé L, Corbeau JJ, Granry JC, Beydon L.

ICU – University Hospital Angers
* ICU, Val de Grâce Military Hospital, Paris
** ICU, Cardiovascular Surgery, Strasbourg

Abstract: Cardiac Output (CO) measurement using Transthoracic Electrical Bioimpedance (TEB) has been recently improved. We have tested a system using exclusively relative values of the impedance signal, and not absolute values (Z0). Indeed, the Z0 value has been described as being at origin of the practical limitations of TEB. We have chosen the Swan-Ganz method to provide reference values, using boluses (B), or continuous cardiac output (CCO) (BAXTER™ Vigilance®).

Results: 107 ICU patients underwent simultaneous CO measurements using the two methods (CO Swan Ganz : 20 B and 87 CCO). One measurement was performed on every patient (84 Male/23 Female, age 69±11 years, weight 75±15 Kg, height 167±8 cm). Pathologies: aortic and bypass surgery 65 %, septic shock 18%, heart failure 7%, pulmonary patients 7%, misc. 3%. Linear regression factor was 0.88 (p<0.001). CO PhysioFlow = 0.75 CO Swan + 1.33. Bland and Altman diagram is represented below (bias = -0.014 L/min).

Conclusion: This study has been done under the most difficult conditions for TEB: one single measurement per patient, and patients presenting a very large variety of pathologies. This new TEB method deserves further investigations, using the Fick method, on the same range of unselected ICU patients. Indeed, literature displays that Fick as a reference method features a reduced dispersion of results compared to thermodilution.1

Hemodynamic Responses of a Spontaneous Breathing Trial Monitoring by an Impedance Cardiograph

Authors: Le Tacon S, Kara F, Harlay ML, Bosquet C, Hasselmann M and Sauder P.

Service de réanimation médicale. Hôpital Civil, Strasbourg, France.

Introduction: Left ventricular insufficiency is a common cause of ventilator weaning failure. We evaluated the hemodynamic parameters during a T-piece trial.

Methods: We conducted a prospective, open study in an intensive care unit. Heart rate (Hr), stroke volume (SV) and cardiac index (Ci) measurements were performed by PhysioFlow™ in ventilated adults ready for weaning. Patients with a SaO2>90% while breathing with a FiO2 of 40% or less, a PEEP<5cmH2O, a hemoglobin level above 8g/dl and without electrolyte disorders were included. Patients with inotropic drugs, altered mental status or pregnant women were excluded. We assessed the cardiac function during mechanical ventilation (MV) and during a T-piece trial of 30 minutes (SV). If a patient had any signs of poor tolerance during the trial the mechanical ventilation was reinstated. Comparison of continuous variables was done with Student’s T-test. A p value under 0.05 was considered as significant. Results are expressed as mean +/- standard error.

Results: 7 patients were included and 10 trials were executed. The rate of success was 70%. Three patients failed the trial (two met the criteria of a respiratory distress (respiratory frequency greater than 30/min) and one altered his Glasgow score. For the patients with a respiratory distress the Hr (108 +/- 11 bpm vs 108 +/- 15 bpm), Sv (73 +/- 10 ml vs 89 +/- 16 ml) and Ci (4.5 +/- 1.5 l/min.m² vs 5.6 +/- 2.1 l/min.m²) were unchanged during SV compared with MV. For the other patients Hr increased from 85 +/- 21 bpm to 90 +/- 19 bpm (p<0.05), Sv dropped from 80 +/- 10 ml to 72 +/- 14 ml (p<0.05) and Ci was unchanged with 3.5 +/- 0.7 vs 3.3 +/- 0.6 l/min.m².

Conclusion: We showed that the hemodynamic consequences of a spontaneous breathing trial was a decrease of Sv for the patients without signs of respiratory distress. Thoracic bioimpedance could be a good tool for the hemodynamic assessment during ventilator weaning.
Cardiac Output with a New Bioimpedance Monitor: Comparison with Thermodilution Methods

Authors: Gary R. Haynes, Ph.D., M.D., Xavier Moreau, M.D., J. M. Rousseau, M.D., J. C. Thiranos, M.D., L. Dubè, M.D.

Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, South Carolina

Introduction: Thoracic electrical bioimpedance methods (TBI) for determining cardiac output (CO) have many potential advantages over invasive methods. TBI methods for determining cardiac output (CO) have improved in recent years. We evaluated a new monitor that uses relative values of the impedance signal (Z) rather than absolute values (Zo). The Zo value has been described as a limiting factor in the usefulness of TBI. This initial validation compares the TBI method to reference values obtained with the Swan-Ganz thermodilution (TD) method.

Methods: The Institutional Review Boards approved this study. The study was conducted at four hospitals in the US and France. CO measurements were made with pulmonary artery catheters placed for either intraoperative or ICU management of patients. Cardiac output determination by PA catheter (CO_TD) was made by using both the continuous CO readout catheters (Baxter™Vigilance®) and by the bolus injectate technique. Simultaneous CO measurements were made with a TBI monitor (PF_CO), (PhysioFlow™, Manatec Biomedical). Single measurements were made in the intensive care units following surgery or while the patients were being managed for other medical conditions. In a subset of patients comparative measurements were made pre-operatively following induction of general anesthesia and placement of the PA catheter. Values were compared by use of Pearson's correlation and Bland-Altman analysis.

Results: There were 112 patients enrolled in the study. The average age was 68 [±11 yrs (range 41 - 90) with a gender distribution of 84 male: 28 female subjects. The mean BSA was 1.88 ±0.22 M². One measurement was performed in each patient and in four instances two determinations (pre-op and post-op) were performed. Patient diagnoses included coronary artery bypass surgery (41%); shock (cardiogenic and septic, 21%); heart valve procedures, 13%; aortic reconstruction surgery, 12%; and other conditions, 13%. The Pearson correlation is 0.85 (p < 0.0001) with the estimate for TBI CO = 1.58 + 0.72 * TD-CO (Fig 1). For all measurements the CO_PF was 5.41 ± 1.63 L/min and the CO_TD was 5.31 ± 1.93 L/min. The Bland-Altman plot is shown in Fig. 2. The absolute difference between the PF_CO and TD_CO measurements was less than 20% in 75% of observations.

Conclusions: This study validates the PhysioFlow thoracic bioimpedance monitor for the non-invasive determination of cardiac output against the thermodilution method as a reference standard. There is good agreement between the PhysioFlow monitor and pulmonary artery catheter for determination of the CO. A comparison of the PhysioFlow monitor to cardiac output by the Fick method is in progress.

[figure1][figure2]
Shock and Awe: Hemodynamic Changes during ECT Measured with a Non-Invasive Cardiac Output Monitor

Authors: Gary R. Haynes, Ph.D., M.D., Milton J. Foust, M.D.

Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, South Carolina

Introduction: Typical cardiovascular effects of ECT include hypertension and tachycardia. Blood pressure tends to transiently increase 30-40% and there is about a 10% increase in heart rate (1). These changes result from an increase in sympathetic nervous system activity following an initial parasympathetic response to a seizure. There is little information about the hemodynamic changes occurring in patients with normal cardiac function during this procedure. We investigated the changes occurring in normal subjects using a thoracic bioimpedance monitor to assess cardiac function.

Methods: Patients were enrolled in the study after providing informed consent. Patients with cardiovascular disease were excluded from this study. General anesthesia was induced with glycopyrrolate, 0.1-0.2 mg; propofol, 1-1.5 mg/kg; and succinylcholine, 1 mg/kg. Patients were ventilated by mask with 100% oxygen throughout the treatment. Continuous hemodynamic measurements were made using a PhysioFlow™ thoracic bioimpedance cardiac output monitor. Patients were followed throughout their treatment with measurements recorded at the following intervals: baseline, immediately pre-seizure stimulus, 1 min after end of seizure stimulus and 5 min after end of seizure stimulus. The data was analyzed using the student's t-test for paired samples.

Results: Nine patients (M:F=2/5), were studied. The average age was 39.7 ± 9.5 yrs (range: 23-52 yr). Eleven treatments in were studied in total. The BSA was 1.91 ± 0.31 (range:1.31-2.02). The CI gradually decrease through to 1 min after the end of seizure stimulus and then increases. The HR and SV were constant through the treatment period. There is a trend of increasing EDV with decreasing EF and systemic vascular resistance during the treatment and into the post-ictal phase.

Conclusion: The CI is maintained during ECT and increases in the post-ictal period. The EDV gradually increases while the EF decreases, resulting in a rather constant SV throughout the treatment. Because there is a trend toward decreasing SVR and since no intravenous fluids were administered during these treatments, the increase in EDV probably reflects transient cardiovascular depression from propofol. These observations reflect how younger patients without cardiovascular disease respond to propofol anesthesia and the stress of ECT. The changes are consistent with other reports in the literature suggesting that non-invasive hemodynamic monitoring is reliable in clinical situations. Evaluation of the hemodynamic response in older patients (>65 yr) without cardiovascular disease is in progress.

Noninvasive Haemodynamic Monitoring to Predict Outcome and Guide Therapy in Acute Critical Illness

Author: William Shoemaker, MD

Abstract:
Aim: To compare invasive pulmonary artery catheter (PAC) data with continuous noninvasive haemodynamic monitoring using a program to predict outcome and guide therapy beginning shortly after emergency department (ED) admission in a university-run inner city public hospital.

Methods: We compared PAC data with noninvasive monitored: cardiac function by cardiac output (CI), mean arterial blood pressure (MAP), and heart rate (HR); respiratory function by arterial oxygen saturation (SapO2); tissue perfusion/oxygenation by transcutaneous tensions of CO2 and O2 indexed to FIO2. A search and display program calculated survival probabilities (SP) and a decision support program predicted effects of various therapies.

Results: Survivors’ MAP, CI, SapO2, and PtcO2/FIO2, and SP were significantly higher (p <0.05) than nonsurvivors’ values in each diagnostic category.

Conclusion: Compared with the PAC, noninvasive monitoring is safer, simpler, easier, quicker, cheaper, reasonably accurate, and available anywhere in the hospital or prehospital areas. Increased CI and tissue oxygenation determined by the distribution of metarteriolar flow are underlying haemodynamic patterns associated with survival.
The Changing Hemodynamic Parameters during Weaning from Mechanical Ventilation

Authors: Shih-Yi Lee, Chien-Liang Wu, Pei-Jan Chen, Chiao-Hsien Lee, Fung-J Lin

Abstract;
Background: Several weaning parameters have been broadly used for prediction the probability of weaning. Spontaneous breath trial does, too. However, there still some patients (pts) well tolerate T-piece for 2hrs, but fail to wean from mechanical ventilation (MV). Hemodynamic conditions have been thought one of the reasons of weaning failure. Do they really affect the result of weaning?

Methods: A prospective study in medical ICU in patients (pts) meeting the criteria for weaning was analyzed the hemodynamic parameters, including ejection fraction (EF), stroke volume (SV), heart rate (HR), cardiac output (CO) and cardiac index (CI) during 2hr-spontaneous breath trial. Nineteen pts were included between Oct 2004 and Jan 2006, in Mackay Memorial Hospital, Taiwan. All the hemodynamic data were collected by Physio flow.

Results: Ten pts succeeded to wean, and nine pts failed. In success group, the CI (l/min/m2), CO (l/min), SV (ml), and HR (bpm) presented fine fluctuation. In failure group, CI (l/min/m2), CO (l/min), SV (ml), and HR (bpm) increased persistently during spontaneous breath trial. All pts did not show oxygen desaturation. (The initial and last CI (l/min/m2) during 2 hr-spontaneous breath were 3.75 and 3.69; CO (l/min) 4.97 and 4.91; SV (ml) 54.53 and 54.01; HR (bpm) 91.99 and 93.05 in success group. In failure group, the initial and last CI (l/min/m2) during 2 hr-spontaneous breath were 3.82 and 4.66; CO (l/min) 6.36 and 7.79; SV (ml) 63.50 and 69.34; HR (bpm) 100.55 and 109.93.) The trends of hemodynamic parameters have been shown in figures.

Conclusion: 1. Increasing oxygen demand during weaning from MV will be compensated by cardiac performance. However, persistent increasing cardiac work may result in failure of weaning.
2. Monitoring the hemodynamic parameters during spontaneous breath trial may be a tool to avoid unnecessary muscle fatigue.
Decreased Cardiovascular Hemodynamics as Possible Mechanisms of Hypotension during Cesarean Delivery under Spinal Anesthesia: Role of Thoracic Impedance Cardiography

Authors: Nico Terblanche, MD, FCA (SA); Bruno Borges, MD; Jose C.A. Carvalho, MD, PhD, FANZCA, FRCP; Kong E. You-Ten , MD, PhD, FRCP

Department of Anesthesia and Pain Management, Mount Sinai Hospital, University of Toronto, 600 University Avenue, Room 781, Toronto, Ontario, Canada, M5G 1X5

Abstract;
Background: Maintaining normal baseline blood pressure in pregnant patients is important for normal placental blood flow and to avoid undesirable symptomatic adverse effects such as nausea and vomiting. Despite our practice to maintain normal baseline blood pressure with phenylephrine, an α1-agonist, hypotension remains the most common complication during Cesarean delivery under spinal anesthesia. A decrease in cardiac output as a result of decreased preload, and a decrease in systemic vascular resistance from spinal-induced sympathetic blockade are two mechanisms postulated to be responsible for the hypotension in this patient population. Other drugs used intra-operatively, such as oxytocin, may further compromise patient hemodynamics. Normal cardiovascular functions, including cardiac output, stroke volume, heart rate, and systemic vascular resistance, are known to maintain blood pressure. We propose that a continuous monitoring of these cardiovascular functions (ie. hemodynamics) may provide insights into the mechanism(s) of hypotension during a Cesarean delivery under spinal anesthesia.

Objectives: In the present pilot study, we aim to (1) measure several cardiovascular hemodynamics continuously during elective Cesarean delivery under spinal anesthesia using noninvasive thoracic impedance cardiography, and (2) to determine whether these cardiovascular hemodynamics may be responsible for changes in blood pressure.

Methods: With Institutional Research Ethics Board approval, and patients’ informed consent, 10 ASA I and II patients undergoing elective Cesarean delivery under spinal anesthesia were observed in a prospective, non-randomized, non-blinded observational cross-sectional pilot study. The Physioflow Impedance Device (VasoCom Inc, Philadelphia) was used to measure the cardiac index (CI), systemic vascular resistance (SVRI), stroke volume (SV), systolic blood pressure (SBP) and heart rate (HR). Baseline hemodynamics were measured before the spinal anesthesia. All patients were in a left lateral position with a wedge and standard anesthesia monitors were applied. Spinal anesthesia was then performed with 12.5 mg of 0.75% hyperbaric bupivacaine, 10 mcg fentanyl and 100 mcg morphine via a 27G Whittacre needle. Thereafter, hemodynamics were monitored every minute until completion of the surgical procedure. All patients were preloaded with 1000 ml of Lactated Ringers’ solution prior to the insertion of the spinal anesthesia. Phenylephrine at doses of 100-200 mcg bolus was the preferred treatment of hypotension with the aim to preserve systolic blood pressure at 100% of baseline. Repeated measures analysis of variance (ANOVA) was used to compare any differences from baseline controls, with p value < 0.05 to be statistically significant.

Results: We were successful in measuring continuously several cardiovascular functions in all 10 patients until the completion of the Cesarean delivery. We observed the greatest change of the cardiovascular hemodynamics before and after delivery. Table 1 showed that the SBP before (98.3 ± 7.0) and after (98.3 ± 5.7) were significantly decreased by 25% when compared to baseline control (133 ± 5.6). In addition, all measured cardiovascular functions (CI, HR, SV, SVRI) were also significantly decreased before and after delivery.

Conclusion: Despite a preventive approach using phenylephrine to maintain baseline blood pressure, significant hypotension still occurs during Cesarean delivery under spinal anesthesia. Our results suggest that significant
decrease in several cardiovascular functions (CI, HR, SV, and SVRI) may be responsible for the occurrence of hypotension. In addition, thoracic impedance cardiography with the Physioflow Impedance device provides a reliable noninvasive monitoring of the cardiovascular hemodynamics. Thus, continuous monitoring of cardiovascular functions with noninvasive impedance may provide insights into the mechanisms of hypotension. This may lead to preemptive treatments before significant hypotension occurs and to avoid undesirable symptomatic effects. A larger study is further required to confirm these preliminary findings.

Table 1. Cardiovascular Hemodynamics Before and After Delivery^a

<table>
<thead>
<tr>
<th>Hemodynamics Parameters<sup>b</sup></th>
<th>Baseline Control</th>
<th>Delivery Before<sup>c</sup></th>
<th>Delivery After<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>SBP</td>
<td>133 ± 5.6</td>
<td>98.3 ± 7.04</td>
<td>98.3 ± 5.7</td>
</tr>
<tr>
<td>CI</td>
<td>4.6 ± 0.32</td>
<td>2.9 ± 0.16</td>
<td>3.5 ± 0.31</td>
</tr>
<tr>
<td>HR</td>
<td>93.3 ± 3.0</td>
<td>63.1 ± 1.6</td>
<td>72.4 ± 3.6</td>
</tr>
<tr>
<td>SV</td>
<td>94.3 ± 5.48</td>
<td>79.7 ± 4.5</td>
<td>83.4 ± 5.7</td>
</tr>
<tr>
<td>SVRI</td>
<td>1823.2 ± 206.7</td>
<td>1336.5 ± 165.5</td>
<td>1224.2 ± 171.5</td>
</tr>
</tbody>
</table>

^aAll data are presented as mean ± S.E of n = 10 patients.

^bSBP: systolic blood pressure (mmHg), CI: cardiac index (L/min/m²), HR: heart rate (bpm), SV: stroke volume (ml/beat), SVRI: systemic vascular resistance index (dyne / s/cm²/m²).

^cAll results before and after delivery were significant p < 0.05, when compared to control baseline.

References:
Tihtonen, K et al. BJOG 2006; 113, 657