Dialysis Staff Encouragement and Fluid Control Adherence in Patients On Hemodialysis

Yoko Yokoyama
Yoshimi Suzukamo
Osamu Hotta
Shin Yamazaki

Takehiko Kawaguchi
Takeshi Hasegawa
Shigemi Chiba
Toshiko Moriya

Emi Abe
Satoshi Sasaki
Megumi Haga
Shunichi Fukuhara

Background: Fluid control in patients on dialysis is an important predictor of outcome but is a difficult restriction to achieve. The authors examined the association between dialysis staff encouragement and fluid control adherence in patients on hemodialysis.

Methods: This cross-sectional study used the dialysis staff encouragement subscale (DSE). The outcome measure was intradialytic weight loss (IWL) of dry weight (DW), with nonadherence defined as IWL/DW greater than 5.7%. Predictors of nonadherence were identified using logistic regression. Odds ratio (OR) was for the occurrence of nonadherence as it correlated with a one standard deviation (SD) decrease in scale score.

Results: Seventy-two patients on hemodialysis participated, 45 men (62.5%) and 27 women. The crude OR in DSE score was 1.75 (95% confidence interval [CI]: 1.02 to 3.0) and adjusted odds ratio was 2.51 (95% CI: 0.99 to 6.34).

Conclusion: Dialysis staff encouragement is important in improving fluid control adherence.

Goal: To provide an overview of the importance of dialysis staff encouragement and fluid control adherence in patients on hemodialysis.

Objectives
1. Describe the relationship between patients’ perceptions of dialysis staff encouragement and fluid control adherence as outlined in this study.
2. Discuss the components of the health belief model and fluid control adherence.

much attention is now focused on social support as an important psychosocial factor related to fluid control adherence in patients on dialysis (Heaney & Israel, 2002). Social support is defined as support by social and interactional activities (Cassel, 1976; Heaney & Israel, 2002; House, Landis, & Umberson, 1988) from sources such as family, friends, colleagues, and medical staff (Kovac, Patel, Peterson, & Kimmel, 2002).

The patient’s perception of family support is associated with not only lower levels of interdialytic weight gain, but also survival (Kara, Caglar, & Kılıc, 2007; Patel, Peterson, & Kimmel, 2005; Thong, Kaptein, Krediet, Boeschoten, & Dekker, 2007). Although the regularity and extended duration of each treatment episode provides patients on dialysis a greater

This offering for 1.4 contact hours is being provided by the American Nephrology Nurses’ Association (ANNA).

ANNA is accredited as a provider of continuing nursing education (CNE) by the American Nurses Credentialing Center’s Commission on Accreditation.

ANNA is a provider approved by the California Board of Registered Nursing, provider number CEP 00910.

This CNE article meets the Nephrology Nursing Certification Commission’s (NNCC’s) continuing nursing education requirements for certification and recertification.

Authors’ biographic statements appear on page 290.

Authors’ Note: Members of Dialysis Nutrition Research Group are listed in the Appendix.

Acknowledgments: This work was supported by grants from the Japan Dialysis Outcome Research Group.

Disclosure Statements: The authors reported no actual or potential conflict of interest in relation to this continuing nursing education article.
chance of receiving support from dialysis staff than those with other chronic diseases, few studies have clarified the relationship between staff support and fluid control adherence in these patients (Kovac et al., 2002). Further, the degree to which dialysis staff support is associated with fluid control adherence compared with that of other psychosocial components of the Health Belief Model (HBM) is also unknown, notwithstanding the HBM’s status as one of the most widely used conceptual frameworks in health behavior (Janz, Champion, & Strecher, 2002).

The authors investigated the relationship between patients’ perceptions of dialysis staff encouragement (Kidney Disease Quality of Life subscale instrument – KDQOL) and fluid control adherence. They also examined the relationship between the psychosocial factors of the HBM and fluid control adherence in comparison with that of dialysis staff encouragement.

Subjects and Methods

Study Design and Subjects

The study was conducted under a cross-sectional design from January 2007 to April 2007 in 72 participants from a public hospital (52 patients) and a dialysis clinic (20 patients) in a single district in northeast Honshu, Japan. Inclusion was restricted to outpatients 20 years of age or older undergoing hemodialysis (HD) treatment for end stage renal disease (ESRD) for at least six months before entry.

Background Data

Demographic characteristics, including gender, age, education, marital status, living situation, job, and income, were collected using a self-reported questionnaire. Information on the primary cause of kidney failure, diabetes, diuretic use, duration of dialysis, frequency of dialysis per week, and body mass index (BMI) was obtained from the dialysis staff. Laboratory values for serum hematocrit, albumin, normalized protein catabolic rate (nPCR), potassium, phosphate, and Kt/V were collected from January 2007 to April 2007. Average values were calculated from 11 samples for mean serum hematocrit, 3 to 6 for albumin (depending on the hospital), 3 for nPCR, 14 for potassium, and 11 for phosphate.

Assessment of Fluid Control Adherence

The outcome measure was intradialytic weight loss (IWL) to dry weight (DW), defined as the amount of weight lost during an HD session. Mean IWL from January 24, 2007, to April 10, 2007, was used, while mean dry weight was from January 2007 to March 2007. In accordance with the cutoff defined by Leggat et al. (1998), nonadherence was defined as an IWG of more than 5.7% of dry weight (Hecking et al., 2004; Leggat et al., 1998).

Dialysis Staff Support

Dialysis staff support was measured using the dialysis staff encouragement subscale (DSE) of the KDQOL-SF™ (Green et al., 2001). Development and validation of the KDQOL-SF have been described elsewhere (Green et al., 2001).

The DSE contains two statements: (1) the dialysis staff encouraged me to be as independent as possible, and (2) the dialysis staff supported me in coping with my kidney disease. For each statement, subjects were asked to choose one of the following responses: definitely true (1 point), mostly true (2 points), don’t know (3 points), mostly false (4 points), and definitely false (5 points). The score was computed by summing the scores from each question item and then transforming the raw scores into a 0 to 100-point scale (Green et al., 2001), with a higher score reflecting greater staff encouragement.

Self-Efficacy

Dietary self-efficacy was measured using the dietary management self-efficacy scale (DMSES), a 9-item scale whose development and validation have been described elsewhere (Oka & Chaboyer, 2001; Oka, Tomura, Munakata, & Tsuchiya, 1996). The DMSES contains the following two series of statements.
I have confidence in my ability to manage my diet:
• When irritated.
• When I eat out.
• When hungry.
• When dining out or at a party.
• When feeling unpleasant.
• When I feel a constant need to have something in my mouth.
• In a reasonable way.
I have confidence in my ability to avoid a favorite food which caused a bad result on my blood test:
• Even when it is in front of me, or
• When it is suggested that I eat it.
For each statement, the subjects were asked to choose one of the following responses: definitely true (1 point), mostly true (2 points), don’t know (3 points), mostly false (4 points), and definitely false (5 points). Items from each of these domains were scored as Likert scales. Item responses were summed to provide a scale score that ranged from 0 to 100, with a higher score reflecting a lower locus of control.

Health Locus of Control

Internal health locus of control was measured using the Japanese version of the internal health locus of control subscale (IHLC) of the Health Locus of Control Scale, a 5-item scale whose development and validation have been described elsewhere (Horige, 1991).

The IHLC contains the following statements:
• The main thing which affects my health is what I myself do.
• My physical well being depends on how well I take care of myself.
• If I become sick, I have the power to make myself well again.
• I take care of myself to stay healthy.
• If I become sick, whether I become well or not, depends on myself.

For each statement, the subjects were asked to choose one of the following responses: strongly agree (6 points), moderately agree (5 points), slightly agree (3 points), moderately disagree (2 points), and strongly disagree (1 point). Items from each of these domains were scored as Likert scales. Item responses were summed to provide a scale score that ranged from 0 to 30, with a higher score reflecting a higher locus of control.

Psychological Burden

Psychological burden was measured using the mental health subscale (MH) of the Short-Form Health Survey (SF-36), a 5-item scale whose development and validation have been described elsewhere (Fukuhara, Bito, Green, Hsiao, & Kurokawa, 1998). The MH contains the following questions: How much of the time during the last month have you:
• Been a very nervous person?
• Felt downhearted and blue?
• Felt calm and peaceful?
• Felt so down in the dumps that nothing could cheer you up?
• Been a happy person?

For each question, the subjects were asked to choose one of the following responses: all of the time (1 point), most of the time (2 points), a good bit of the time (3 points), some of the time (4 points), a little of the time (5 points), or none of the time (6 points). Because some items ask about positive feelings, their scoring was reversed. Items from each of these domains were scored as Likert scales. Item responses were summed to provide a scale score that ranged from 0 to 100, with a higher score reflecting a lower psychological burden.

Diet Therapy Burden

Diet therapy burden was measured using the Burden of Diet therapy subscale (BD) of the Diet-Related Quality of Life (DQOL) survey, a 6-item scale whose development and validation have been described elsewhere (Sato, Suzukamo, Miyashita, & Kazuma, 2004; Suzukamo, Fukuhara, Ohishi, & Shiigai, 2000; Suzukamo, Ono, & Fukuhara, 2000). The BD subscale contains the following questions: Have you felt any sense of burden in:
• The necessity to keep the protein, energy, and salt intake constant?
• The necessity to make menus?
• The inability to eat your favorite foods?
• The inability to eat the same foods as others at gatherings, etc.?
• The inability to eat the same foods as other family members?
• The necessity to cook or have someone cook the dialytic diet?

For each question, the subjects were asked to choose one of the following responses: definitely true (1 point), mostly true (2 points), don’t know (3 points), mostly false (4 points), and definitely false (5 points). Items from each of these domains were scored as Likert scales. Item responses were summed to provide a scale score that ranged from 0 to 100, with a higher score reflecting a lower diet therapy burden.

Statistical Analysis

Baseline demographic, socioeconomic, and laboratory factors are described as the mean ± standard deviation (SD) for continuous variables and frequency distributions for dichotomous variables. The statistical significance of differences between groups was tested using 2-sample t-tests for continuous variables and the Chi-square test for categorical variables.

The degree of correlation between continuous variables was assessed using Pearson’s correlation coefficient. Predictors of nonadherence were identified using logistic regression. Odds ratio (OR) was for the occurrence of nonadherence as it correlated with a one SD decrease in scale score. Variables entered into the multivariate logistic models included age, gender, diuretic use, education, duration of diet therapy, BMI, Kt/V, and diabetes mellitus. The results are expressed as adjusted odds ratios. The patient’s residual urine volume was taken into account by adjusting for diuretic use on the basis of a previous study showing that diuretic users had almost twice the odds of retaining residual urine volume (greater than 200 mL of urine output in a 24-hour period) compared with
Dialysis Staff Encouragement and Fluid Control Adherence in Patients on Hemodialysis

For these analyses, p values less than 0.05 were considered significant. All analyses were done using SPSS (Statistical Package for Social Science, SPSS Inc., Chicago, IL, USA) version 15.0 for Windows. The study protocol was approved by the Ethical Committee of the University of Kyoto. All participants in this study provided written informed consent.

Results

Subjects

A total of 77 patients were invited to participate, of whom 72 agreed, while 5 declined due to work or other scheduling conflicts. Three DMSES and 2 IHLC data were missing.

Background Characteristics

Patients’ characteristics are shown in Table 1. Mean age of the adherence and nonadherence groups was 58.1 years (range 32 to 82) and 53.4 years (range 22 to 75), respectively. Significant differences between groups were seen for education, duration of dialysis, BMI, nPCR, serum potassium, serum phosphate, and Kt/V.

Fluid Control Adherence

Figure 1 shows the histogram for IWL/DW. The prevalence of nonadherence, defined as IWL/DW greater than 5.7%, was 30.6% (22/72).

Table 1

Baseline Characteristics of the Study Population by Fluid Control Adherence

<table>
<thead>
<tr>
<th>Variable</th>
<th>Overall (n = 72)</th>
<th>Adherence (n = 50)†</th>
<th>Nonadherence (n = 22)†</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>45 (62.5)</td>
<td>34 (68.0)</td>
<td>11 (50.0)</td>
<td>0.189</td>
</tr>
<tr>
<td>Female</td>
<td>27 (37.5)</td>
<td>16 (32.0)</td>
<td>11 (50.0)</td>
<td></td>
</tr>
<tr>
<td>Age, mean (range)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Years</td>
<td>56.7 (22 to 82)</td>
<td>58.1 (32 to 82)</td>
<td>53.4 (22 to 75)</td>
<td>0.143</td>
</tr>
<tr>
<td>Education, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junior college or above</td>
<td>34 (47.2)</td>
<td>15 (30.6)</td>
<td>1 (4.5)</td>
<td>0.015*</td>
</tr>
<tr>
<td>Bachelor’s degree or above</td>
<td>38 (53.3)</td>
<td>25 (50.0)</td>
<td>13 (59.1)</td>
<td></td>
</tr>
<tr>
<td>Marital status, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>54 (73.8)</td>
<td>42 (84.0)</td>
<td>12 (54.5)</td>
<td></td>
</tr>
<tr>
<td>Unmarried</td>
<td>18 (25.0)</td>
<td>8 (16.0)</td>
<td>10 (45.5)</td>
<td></td>
</tr>
<tr>
<td>Living situation, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Living with someone</td>
<td>65 (90.3)</td>
<td>45 (90.0)</td>
<td>20 (90.9)</td>
<td>1.000</td>
</tr>
<tr>
<td>Living alone</td>
<td>7 (9.7)</td>
<td>5 (10.0)</td>
<td>2 (9.1)</td>
<td></td>
</tr>
<tr>
<td>Employment, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employed</td>
<td>27 (37.5)</td>
<td>16 (32.0)</td>
<td>11 (50.0)</td>
<td>0.189</td>
</tr>
<tr>
<td>Unemployed</td>
<td>45 (62.5)</td>
<td>34 (68.0)</td>
<td>11 (50.0)</td>
<td></td>
</tr>
<tr>
<td>Annual household income, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 5 million yen</td>
<td>37 (51.4)</td>
<td>24 (48.0)</td>
<td>13 (59.1)</td>
<td>0.384</td>
</tr>
<tr>
<td>5 to 10</td>
<td>17 (23.6)</td>
<td>14 (28.0)</td>
<td>3 (13.6)</td>
<td></td>
</tr>
<tr>
<td>> 10</td>
<td>5 (6.9)</td>
<td>3 (6.0)</td>
<td>2 (9.1)</td>
<td></td>
</tr>
<tr>
<td>Cause of renal failure, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>9 (12.5)</td>
<td>6 (12.0)</td>
<td>3 (13.6)</td>
<td>0.156</td>
</tr>
<tr>
<td>Glomerulonephritis</td>
<td>29 (40.3)</td>
<td>22 (44.0)</td>
<td>7 (31.8)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>33 (47.2)</td>
<td>21 (42.0)</td>
<td>12 (54.5)</td>
<td></td>
</tr>
<tr>
<td>Diabetes mellitus, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>11 (15.3)</td>
<td>8 (16.0)</td>
<td>3 (13.6)</td>
<td>1.000</td>
</tr>
<tr>
<td>No</td>
<td>61 (84.7)</td>
<td>42 (84.0)</td>
<td>49 (86.4)</td>
<td></td>
</tr>
<tr>
<td>Using diuretics, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>9 (12.5)</td>
<td>8 (16.0)</td>
<td>1 (4.5)</td>
<td>0.259</td>
</tr>
<tr>
<td>No</td>
<td>63 (87.5)</td>
<td>42 (84.0)</td>
<td>51 (95.5)</td>
<td></td>
</tr>
<tr>
<td>Duration of dialysis, mean (SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Months</td>
<td>112 (101)</td>
<td>87 (80.0)</td>
<td>166 (109)</td>
<td>0.002**</td>
</tr>
<tr>
<td>Frequency of dialysis per week, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 (times)</td>
<td>70 (97.2)</td>
<td>48 (96.0)</td>
<td>22 (100.0)</td>
<td>0.636</td>
</tr>
<tr>
<td>3 (times)</td>
<td>1 (1.4)</td>
<td>1 (2.0)</td>
<td>0 (0.0)</td>
<td></td>
</tr>
<tr>
<td>4 (times)</td>
<td>1 (1.4)</td>
<td>1 (2.0)</td>
<td>0 (0.0)</td>
<td></td>
</tr>
<tr>
<td>BMI, mean (SD)</td>
<td>21.7 (3.2)</td>
<td>22.2 (3.2)</td>
<td>20.4 (2.9)</td>
<td>0.021*</td>
</tr>
<tr>
<td>Hematocrit, mean (SD)</td>
<td>32.9 (3.9)</td>
<td>33.1 (4.4)</td>
<td>32.6 (2.8)</td>
<td>0.507</td>
</tr>
<tr>
<td>Albumin, mean (SD)</td>
<td>3.7 (0.4)</td>
<td>3.7 (0.4)</td>
<td>3.8 (0.3)</td>
<td>0.472</td>
</tr>
<tr>
<td>nPCR, mean (SD)</td>
<td>1.0 (0.2)</td>
<td>1.0 (0.3)</td>
<td>1.1 (0.2)</td>
<td>0.041*</td>
</tr>
<tr>
<td>Potassium, mean (SD)</td>
<td>5.3 (0.6)</td>
<td>5.2 (0.6)</td>
<td>5.5 (0.6)</td>
<td>0.046*</td>
</tr>
<tr>
<td>Phosphate, mean (SD)</td>
<td>5.5 (0.9)</td>
<td>5.3 (0.9)</td>
<td>5.8 (1.0)</td>
<td>0.022*</td>
</tr>
<tr>
<td>Kt/V, mean (SD)</td>
<td>1.7 (0.3)</td>
<td>1.6 (0.3)</td>
<td>1.9 (0.4)</td>
<td>0.000**</td>
</tr>
</tbody>
</table>

Notes: SD = standard deviation, BMI = body mass index, nPCR = normalized protein catabolic rate, IWL = intradialytic weight loss, DW = dry weight.

*p < 0.05
**p < 0.01
†Adherence IWL/DW less than 5.7%; nonadherence, IWL/DW greater than 5.7%.

...
Psychosocial Factors

The association between psychosocial factors and IWL/DW is shown in Table 2. DSE correlated with patient fluid control (Pearson’s correlation coefficient $r = -0.30$). Associations between HBM components are also shown in Table 2. BD correlated with DMSES ($r = 0.42$) and MH ($r = 0.44$). Scores for psychosocial factors in the adherence and nonadherence groups are found in Table 3. The mean DSE score differed statistically and significantly between the groups ($p = 0.03$).

The crude and adjusted analysis results obtained using logistic regression are included in Figure 3. Crude odds ratio and 95% confidence interval (CI) were estimated for the occurrence of nonadherence as it correlated with a one SD decrease in DSE score (OR: 1.75 [95% CI: 1.02 to 3.0]). The association remained closely similar even after adjustment for sex, age, diuretic use, education, duration of dialysis, Kt/V, BMI, and diabetes mellitus (OR: 2.51 [95% CI: 0.99 to 6.34]) (see Figure 2). Crude odds ratios of nonadherence for each one SD decrease in scale score were 1.51 (95% CI: 0.89 to 2.56) for DMSES, 1.46 (95% CI: 0.87 to 2.46) for IHLC, 1.10 (95% CI: 0.67 to 1.82) for MH, and 1.23 (95% CI: 0.74 to 2.05) for BD.

In the adjustment model, a lower diet therapy burden, defined as a higher BD score, was associated with significantly greater fluid control adherence (OR: 2.37 [95% CI: 1.04 to 5.40]) (see Figure 2). The adjusted odds ratios of nonadherence for each one SD increase in scale score was 2.27 (95% CI: 0.89 to 5.21) for DMSES, 1.89 (95% CI: 0.76 to 4.70) for IHLC, and 1.49 (95% CI: 0.71 to 3.15) for MH.

Discussion

The results of this study of the relationship between patients’ perceptions of dialysis staff encouragement and fluid control adherence and the association between adherence and HBM components (such as self-effica-
Dialysis Staff Encouragement and Fluid Control Adherence in Patients on Hemodialysis

Crude analysis of these data showed a significant correlation between patient perception of DSE (KDQOL subscale) and an increase in fluid control adherence. These notes:

Table 3

Comparison Between Adherence and Nonadherence to Fluid Control Requirements

<table>
<thead>
<tr>
<th>Psychosocial Variables</th>
<th>Overall (n = 72)</th>
<th>Adherence (n = 50)†</th>
<th>Nonadherence (n = 22)†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>Range</td>
<td>Mean (SD)</td>
<td>Mean (SD)</td>
</tr>
<tr>
<td>DSE‡</td>
<td>0 to 100</td>
<td>73.4 (18.6)</td>
<td>76.5 (16.5)</td>
</tr>
<tr>
<td>DMSES‡</td>
<td>0 to 36</td>
<td>24.0 (4.8)</td>
<td>24.6 (4.4)</td>
</tr>
<tr>
<td>IHLC‡</td>
<td>0 to 30</td>
<td>24.4 (4.3)</td>
<td>24.9 (3.3)</td>
</tr>
<tr>
<td>MH‡</td>
<td>0 to 100</td>
<td>69.9 (19.3)</td>
<td>70.5 (18.4)</td>
</tr>
<tr>
<td>BD‡</td>
<td>0 to 100</td>
<td>65.1 (20.0)</td>
<td>66.3 (18.2)</td>
</tr>
</tbody>
</table>

Notes: DSE = dialysis staff encouragement, DMSES = dietary management self-efficacy scale, IHLC = internal health locus of control, MH = mental health, BD = burden of diet therapy, SD = standard deviation, IWL = intradialytic weight loss, DW = dry weight.

* p < 0.05
†Adherence, IWL/DW less than or equal to 5.7%; nonadherence, IWL/DW greater than or equal to 5.7%.
‡Higher scale scores denote better condition.

Fig 2

Psychosocial Factors of Fluid Control Adherence

(n = 72)

Notes: Odds ratios and 95% confidence intervals (CIs) were estimated for the occurrence of nonadherence as it correlates with a one standard deviation decrease in scale score.

Dialysis staff encouragement (DSE) ranged 0 to 100; dietary management self-efficacy scale (DMSES) (0 to 36); internal health locus of control (IHLC) (0 to 30); mental health (MH) (0 to 100); burden of diet therapy (BD) (0 to 100). Higher scale scores of these scales denote better condition.

*Adjusted for age, sex, diuretic use, education, duration of dialysis, Kt/V, BMI, and diabetes mellitus.
social support was related to better survival or good adherence (Christensen et al., 1992; Kimmel, 2000; Kimmel et al., 1998; Kimmel et al., 1996; Loghmain-Adham, 2003; Obrien, 1990; Patel et al., 2005).

Social support can enhance the individual’s ability to access new contacts and information, and to identify and solve problems (Heaney & Israel, 2002; Loghmain-Adham, 2003). Social support may also diminish the negative effects of exposure to stressors, such as depression, loneliness, burden of disease, and acceptance of disease (Heaney & Israel, 2002). Therefore, patients who perceive that the dialysis staff supports them may communicate better, and thus, have a better chance of receiving tailored medical and nutritional information.

Patients on dialysis interact with dialysis staff at every dialysis session. Patients who perceive dialysis staff encouragement to adhere to fluid control restrictions may do so to maintain good relations with dialysis staff.

Components of the Health Belief Model and Fluid Control Adherence

The HBM explains health-related behaviors, the key concepts of which include self-efficacy and perceived benefits and barriers (Janz et al., 2002). Self-efficacy and health locus of control are defined as “the conviction that one can successfully execute the behavior required to produce the outcomes” (Bandura, 1977, p. 193). “If the person perceives that the event is contingent upon his own behavior or his own relatively permanent characteristics, we have termed this a belief in internal control” (Rotter, 1966, p. 1). Patients who have greater self-efficacy or internal health locus of control are thought to achieve greater adherence as they actively take part in health behavior and overcome perceived barriers.

Further, it is generally believed that people will be compliant with regard to healthy behavior if they believe that the anticipated barriers are outweighed by the benefits (Janz et al., 2002). Results from the current study are consistent with previous studies reporting associations between greater self-efficacy (Oka & Chaboyer, 2001; Takaki & Yano, 2006; Zrinyi et al., 2003), greater internal health locus of control (Sensky, Leger, & Gilmour, 1996; Takaki & Yano, 2006), greater perceived barriers (Kaveh & Kimmel, 2001), better psychological condition (Akman et al., 2007; Taskapan et al., 2005), and greater adherence.

Some limitations of this study warrant mention. First, the study was cross-sectional, and therefore, cannot determine causality. It is possible that patients who adhere to fluid control requirements have a better relationship with dialysis staff and an improved perception of dialysis staff encouragement. Second, the external validity of this study may be limited. Here, for example, patients whose primary cause of kidney disease was diabetic nephropathy accounted for only 12.5% of subjects (9/72), but for 27.7% in the Japan-Dialysis Outcomes Practices Pattern study (Tanaka et al., 2007). Present subjects were also participants in a validation study for a diet questionnaire, and it is therefore possible that only physically and mentally well patients were selected. Selection bias may also have resulted from the characteristics of the hospitals and region. Third, information bias should be considered. Nonadherent patients may have invoked responses (comments and recommendations) from the dialysis staff that lead to a lower perception of encouragement (Kovac et al., 2002). Conversely, adherent patients may have been praised by dialysis staff, which could have led to a greater perception of encouragement (Kovac et al., 2002). On this basis, the relationship may have been driven by patient adherence, at least in part. Fourth, a definition of fluid control adherence has not been established. The authors have used a cutoff defined by Leggat et al. (1998), but the clinical relevance of this cutoff value remains controversial (Denhaerynck et al., 2007). Finally, the sample size was small, likely limiting statistical power in detecting significant associations. The present findings should be confirmed in a larger sample size with objective verification of the test hypothesis. Moreover, qualitative research is needed to clarify the efficacy and feasibility of encouragement, as well as patient perception of the benefit of dialysis staff encouragement.

Conclusion

Fluid control has a direct bearing on outcome in patients undergoing dialysis, but is one of the most difficult restrictions with which to comply.
This situation highlights the importance of effective interventions to fluid control.

Results from this current study indicate that in addition to HBM components, patient-perceived encouragement from dialysis staff is an important factor in improving fluid control adherence. These data cannot determine causality. However, even from the perspective that the patient’s behavior drives the encouragement-adherence relationship, the ability of a dialysis staff member to discuss and relate to the concerns of less-adherent patients in a positive manner should improve the perception of dialysis staff encouragement and increase adherence behavior (Kovac et al., 2002). Further, given the regular and extended periods of time patients on dialysis spend in the hospital setting, dialysis staff support is one of the most feasible of the various social support systems available. The relationships between patients on dialysis and nephrology nurses are often long (Barnett, Yoong, Pinikahana, & Si-Yen, 2008), and a nephrology nurse is one of the most important dialysis staff members to discuss and relate to the concerns of nonadherent patients in a positive manner.

References

American Journal of Kidney Diseases, 39(6), 1236-1244.
ANSWER/EVALUATION FORM

Dialysis Staff Encouragement and Fluid Control Adherence in Patients on Hemodialysis
Yoko Yokoyama, MPH, MA; Yoshimi Suzukamo, PhD; Osamu Hotta, MD, PhD; Shin Yamazaki, PhD; Takehiko Kawaguchi, MD, MPH; Takeshi Hasagawa, MD, PhD; Shigemi Chiba, MD, PhD; Toshiko Moriya, RD; Emi Abe, RD; Satoshi Sasaki, MD, PhD; Megumi Haga, RD, PhD; Shunichi Fukuhara, MD, DMSc

1.4 Contact Hours
Expires: June 30, 2011
ANNA Member Price: $15
Regular Price: $25

Posttest Instructions
• Select the best answer and circle the appropriate letter on the answer grid below.
• Complete the evaluation.
• Send only the answer form to the ANNA National Office; East Holly Avenue Box 56; Pitman, NJ 08071-0056; or fax this form to (856) 589-7463.
• Enclose a check or money order payable to ANNA. Fees listed in payment section.
• If you receive a passing score of 70% or better, a certificate for the contact hours will be awarded by ANNA.
• Please allow 2-3 weeks for processing. You may submit multiple answer forms in one mailing; however, because of various processing procedures for each answer form, you may not receive all of your certificates returned in one mailing.

Complete the Following:
Name: __
Address: __
__
Telephone: ______________________ Email: _____________________________
CNN: ___ Yes ___ No CDN: ___ Yes ___ No CCHT: ___ Yes ___ No

Payment:
ANNA Member: ____ Yes ____ No Member #___________________________
☐ Check Enclosed ☐ American Express ☐ Visa ☐ MasterCard
Total Amount Submitted: _________________
Credit Card Number: _______________________________ Exp. Date: _______
Name as it Appears on the Card: ______________________________________

Special Note
Your posttest can be processed in 1 week for an additional rush charge of $5.00.
☐ Yes, I would like this posttest rush processed. I have included an additional fee of $5.00 for rush processing.

Submit Online!
Online submissions through a partnership with HDCN.com are accepted on this posttest at $20 for ANNA members and $30 regular price. CNE certificates will be available immediately upon successful completion of the posttest.

Note: If you wish to keep the journal intact, you may photocopy the answer sheet or access this posttest at www.annanurse.org/journal

1. What would be different in your practice if you applied what you have learned from this activity?
__
__
__
__
__

2. By completing this offering, I was able to meet the stated objectives
 a. Describe the relationship between patients’ perceptions of dialysis staff encouragement and fluid control adherence as outlined in this study.
 b. Discuss the components of the health belief model and fluid control adherence.
3. The content was current and relevant.
4. This was an effective method to learn this content.
5. Time required to complete reading assignment: ___________ minutes.

I verify that I have completed this activity ____________________________

(Signature)

To provide an overview of the importance of dialysis staff encouragement and fluid control adherence in patients on hemodialysis.

Please note that this continuing nursing education activity does not contain multiple-choice questions. This posttest substitutes the multiple-choice questions with an open-ended question. Simply answer the open-ended question(s) directly above the evaluation portion of the Answer/Evaluation Form and return the form, with payment, to the National Office as usual.