Leverage Aversion and Risk Parity

Cliff Asness, Andrea Frazzini, and Lasse H. Pedersen

This draft: December 27, 2010

Abstract.
Leverage aversion changes the predictions of modern portfolio theory: It causes safe assets to offer higher risk-adjusted returns than riskier assets. Consuming the high risk-adjusted returns offered by safe assets requires leverage, creating an opportunity for investors with the ability and willingness to borrow. A Risk Parity (RP) portfolio exploits this in a simple way, namely by equalizing the risk allocation across asset classes, thus overweighting safe assets relative to their weight in the market portfolio. We show empirically that RP has outperformed the market over the last century by a statistically and economically significant amount.
How should investors allocate their assets? The standard advice provided by the Sharpe-Lintner-Mossin Capital Asset Pricing Model (CAPM) is that all investors should hold the market portfolio, leveraged according to each investor’s risk preference. However, over recent years a new approach to asset allocation called Risk Parity (RP) has surfaced and has been gaining in popularity among practitioners. We fill what we believe is a hole in the current arguments in favor of Risk Parity investing by adding a theoretical justification based on investors’ aversion to leverage and by providing broad empirical evidence.

Risk Parity investing starts from the observation that traditional asset allocations, such the market portfolio or the 60/40 portfolio in U.S. stocks/bonds, are insufficiently diversified when viewed from the perspective of how each investment contributes to the risk of the overall portfolio. Because stocks are so much more volatile than bonds, movement in the stock market dominates the risk in a 60/40 portfolio. Thus, when viewed from a risk perspective, 60/40 is mainly an equity portfolio. In this sense, 60/40 offers little diversification even though 60/40 looks well balanced when viewed from the perspective of dollars invested in each asset class.

Risk Parity advocates suggest a simple cure: Be diversified, but be diversified by risk not by dollars. That is, take a similar amount of risk in equities and in bonds. To diversify by risk, we generally need to invest more money in low-risk assets than in high risk assets. As a result, even if return-per-unit-of-risk is higher, the total aggressiveness and expected return is lower than that of a traditional 60/40 portfolio. Risk Parity investors address this problem by applying leverage to the risk-balanced portfolio to increase its risk and expected return to desired levels. While you do introduce the practical concern of using leverage (a topic for another day), now you have the best of both worlds: You are truly risk (not dollar) balanced across the asset classes and, importantly, you are taking enough risk to matter. Details can vary tremendously (for instance, real life Risk Parity is about much more than just U.S. stocks and bonds), but the above is the essence of Risk Parity investing.

To further bolster the case for Risk Parity investing, beyond simply the idea that more diversification must be better, advocates appeal to the historical experience that Risk Parity portfolios have done better than traditional portfolios. Figure 1 shows the growth of $1 since 1926 in a 60/40 portfolio, in a portfolio that weights by the ex-ante market cap of each asset class, and, finally, in a simple version of a Risk Parity portfolio. While we show one case
here, the historical outperformance of Risk Parity is quite robust. In sum, the popular case for Risk Parity investing rests on (1) the intuitive superiority of balancing risk and not dollars invested and (2) the historical evidence for this approach over traditional approaches.

While these arguments are alluring, unfortunately, we don’t think they are enough. Starting with (1) above, the intuition that a risk balanced portfolio is always better, is simply false. You don’t always want to be as risk balanced as possible. For instance, if the expected return of stocks was high enough versus bonds (a high enough “equity risk premium”) you would gladly invest in a portfolio whose risk was equity dominated. The intuition of “equal risk” is only accurate in the specific case of each asset possessing equal risk adjusted returns. The intuition that 60/40 investors take too much risk in equities at all is only accurate if the equity risk premium versus bonds is not high enough.

In other words, you can’t just assert that equal risk is optimal. Rather, to believe that, you must believe you are not getting paid enough in equities to be so concentrated in them. You cannot think of Risk Parity as only a statement about divvying up risks, as it’s inherently also a statement about your views on expected return. A Risk Parity investor should not say “equal risk is always the best regardless of expected returns.” Instead, they should say “we do not believe expected returns are high enough on equities to make them a disproportionate part of our risk budget.” That’s an important distinction lost in the current discussion of Risk Parity. In fact, according to the CAPM, the risk premia are exactly such that the market portfolio is optimal, so Risk Parity investors need to explain how the CAPM fails in a way that justifies a larger allocation to low-risk assets.

Let’s turn to (2), the empirical support that a Risk Parity portfolio has outperformed over the long-term. It is indeed useful and relevant evidence in favor of Risk Parity, but it’s also only one draw from history (admittedly a decently long one). We have to ask if this is enough? Does the equity premium over bonds not being large enough in the last 80+ years mean it won’t be large enough going forward? Ideally, we would like to have some out-of-sample evidence, but waiting another 80 years seems an unappealing strategy. We propose another route to potentially increasing our confidence.

The missing links are i) a theoretical justification for Risk Parity investing, combined with ii) broad tests across and within the major asset classes. Frazzini and Pedersen (2010)
Following Fischer Black (1972), they show that if some investors are adverse to leverage, low-beta assets will offer higher risk-adjusted returns, and high-beta assets lower risk-adjusted returns. Leverage aversion breaks the standard CAPM, and according to this theory the highest risk-adjusted return is not achieved by the market, but by a portfolio that over-weights safer assets. Thus, an investor who is less leverage averse (or less leverage constrained) than the average investor can benefit by over-weighting low-beta assets, under-weighting high-beta assets, and applying some leverage to the resulting portfolio.

Empirically, Frazzini and Pedersen (2010) find consistent evidence of this theory within each major asset class. They find that low-beta stocks have higher risk-adjusted returns than high-beta stocks in the U.S. (echoing Black, Jensen, and Scholes (1972)) and in global stock markets, safer corporate bonds have higher risk-adjusted returns than riskier ones, safer short-maturity Treasuries offer higher risk-adjusted returns than riskier long-maturity ones, and similarly within several other asset classes.\(^1\)

As applied to Risk Parity, bonds are the low-beta asset, stocks the high-beta asset, and the benefit of over-weighting bonds is another empirical success of the theory. The theory of leverage aversion not only constitutes a theoretical underpinning for Risk Parity, but it also highlights how further out-of-sample empirical evidence can be achieved by comparing the risk-adjusted returns of safe vs. riskier securities within each of the major asset classes. Having the theory hold up in many other applications (without notable exception) completely separate from the asset allocation decision studied here, makes us far more confident that the empirical superiority of Risk Parity is not a statistical fluke, but rather one more feather in the cap of Fisher Black’s theory, and one more instance to add to the many in Frazzini and Pedersen (2010).\(^2\)

\(^1\) This evidence complements that large literature documenting that the CAPM is violated empirically (Fama and French (1992), Gibbons (1982), Kandel (1984), Karceski (2002), Shanken (1985)). Given the strong assumptions underlying the CAPM, it should perhaps not be a surprise that it is rejected empirically. Indeed, the CAPM assumes that markets are without any frictions and that all investors can use any amount of leverage. According to the CAPM, everyone holds the market portfolio (possibly leveraged) – which is clearly not the case in the real world. However, that these violations tend to go the same way, higher returns on low beta assets than forecast, is very interesting.

\(^2\) Naturally, there are other hypotheses that produce higher risk-adjusted returns of safe assets versus riskier assets. The alternatives include models of delegated portfolio managements with benchmarked institutional investor (Brennan (1993), Baker, Bradley, and Wurgler (2010)), mutual fund managers’ incentive to over-
The rest of the paper is organized as follows. First we lay out our theory of leverage aversion. We present the investment opportunity set for investors who cannot use leverage. As an alternative to leverage, these investors overweight riskier asset, and this increases the equilibrium price of riskier assets or, said differently, reduces the expected return on riskier assets. As a result, if some investors face such leverage constraints or margin requirements, then the market portfolio is not the portfolio with the highest Sharpe ratio as the standard CAPM predicts. Instead, the portfolio with the highest Sharpe ratio over-weights safer assets and under-weights riskier assets, just like the RP portfolio. Next we test the theory's implications for asset allocation. We find that the portfolio with the highest ex post Sharpe indeed over-weights safe asset classes. Further, we find that the implementable RP portfolio is close to the (unimplementable) ex post optimal portfolio. Finally we test the theory's predictions for security selection within asset classes, finding strong consistent evidence that safer assets offer higher risk-adjusted returns than riskier ones. This is important as it is out-of-sample evidence that our story for risk-parity is not limited to the successful history documented in Figure 1. Details about our data and portfolio construction are in Appendix.

A Theory of Leverage Aversion

Before we introduce leverage aversion, let us revisit the standard predictions of Modern Portfolio Theory (MPT) of Markowitz (1952) and the Capital Asset Pricing Model (CAPM) of Sharpe (1964), Lintner (1965) and Mossin (1966). MPT considers how an investor should choose a portfolio with a good trade-off between risk and expected return. This is often illustrated using a mean-volatility diagram as in Figure 2, which uses data from 1926 to 2010. The figure shows that the overall stock market has had average returns of 7.4% per year with a volatility of 16.0%, while the overall bond market provided a lower average return of 5.2% at a lower volatility of 3.4%. The hyperbola connecting these two points represents all possible portfolios of stocks and bonds. For instance, the 60-40 portfolio represents an investment of 60% of capital in stocks and 40% of capital in bonds. (This

weight high beta stocks due to the option-like payoffs generated by the convexity of the flow-performance relation (Falkenstein (1994) and Karceski (2002)), or money illusion (Cohen, Polk, and Vuolteenaho (2005)). These alternatives are not mutually exclusive but they deliver predictions that apply to a specific setting (for example the universe of active equity mutual fund managers), as a result each of these alternatives can explain some but all the evidence within and across each of the major asset classes. They can of course be complementary to our unified leverage aversion theory.
portfolio is rebalanced every month to these weights.)

The diagram also shows that the risk-free T-bill rate has averaged 3.58% per year, represented by the point at the y-axis. Combining investments in the risk-free asset with investments in risky assets produces lines connecting the risk-free point to the hyperbola. The best such line for an investor who prefers higher returns and lower risk is the line from the risk-free point to the so-called *tangency portfolio*, namely the portfolio with the highest possible Sharpe ratio. In our data, the ex-post tangency portfolio invests 88% in bonds and 12% in stocks. MPT says that an optimal portfolio is somewhere on this line: Risk-averse investors’ portfolios should be between the tangency and the risk-free, investing some money in cash and the rest in the tangency portfolio. Risk tolerant investors should be on the line segment extending beyond the tangency portfolio, meaning that they should use leverage (i.e., borrowing at the risk-free rate rather than investing at the risk-free rate) to invest more than 100% of their capital in the tangency portfolio.

The CAPM goes beyond MPT by assuming that all investors in fact invest in this way and concludes as a result that the tangency portfolio most be equal to the *market portfolio*, that is, the value-weighted portfolio of all assets. Figure 2 illustrates the historical risk and return of the market portfolio. We see that the historical performance of market portfolio is quite different from that the tangency portfolio. The market portfolio has provided a significantly lower Sharpe ratio than the tangency portfolio for two reasons: First, the market portfolio invests on average 75% in stocks and 25% in bonds, thus allocating a much larger fraction of its capital to stocks than what has been optimal historically. Second, the market weights of stocks relative to bonds have varied over time in such a way that the risk-return characteristics of the market are in fact inside the hyperbola.

While these results may be puzzling in light of the CAPM, we believe that they can be understood using a theory of leverage aversion. Consider an investor who would like higher expected return than the tangency portfolio and is willing to accept the extra risk, but is not willing (or allowed) to use any leverage. What portfolio will he choose? He prefers an unleveraged portfolio with more stocks than the tangency portfolio, perhaps investing all his money in stocks or investing in the 60-40 portfolio. The presence of such investors changes the CAPM conclusions since they rely on *everyone* investing on the line in the mean-
Specifically, the tangency portfolio is not equal to the market portfolio when there exist leverage averse investors.

So what is the tangency portfolio? Frazzini and Pedersen (2010) show that the tangency portfolio over-weights safer assets, just as is the case empirically. This result is intuitive: Since some investors choose to overweight riskier assets to avoid leverage, the price of riskier assets is elevated or, equivalently, the expected return on riskier assets is reduced. In contrast, the safe assets are under-weighted by these investors, and therefore trade at low prices, i.e., offer high returns. Hence, investors who are able to apply leverage can achieve higher risk-adjusted returns by having the opposite portfolio tilts, namely over-weighting safe assets. This is why the tangency portfolio consists of a disproportional amount of safe assets.

The specific composition of the tangency portfolio depends on how many leverage constrained investors there are and this can change over time. Hence, in practice, we cannot know for sure what the tangency portfolio is. However, Risk Parity (RP) investment offers a simple suggestion, which is in the direction suggested by the leverage aversion theory: RP investments allocate the same amount of risk to stocks and bonds. This means investing 15% in stocks and 85% in bonds on an unlevered basis, on average. Figure 2 shows that the historical performance of the RP portfolio is more similar to that of the tangency portfolio than either the market or the 60-40 portfolios. As seen in the Figure 2, despite being not exactly ex post optimal, the RP portfolio has been as good approximation since over-weighting safe assets has paid off. While we should not take the precise prescription to have exactly equal risk in stocks and bonds (parity) too seriously, it is quite a strong and accurate move in the right direction ex post.

The leverage aversion theory is laid out more formally by Frazzini and Pedersen (2010), who also present several other testable asset pricing predictions. Further, according to this theory, no one holds the market portfolio, but equilibrium is achieved nevertheless since some investors over-weight safe assets while others over-weight riskier assets. Both groups of investors are satisfied: Some accept low Sharpe ratios but achieve high expected returns without leverage; others achieve high expected returns with a better risk-return tradeoff by using leverage.
Risk and Return Across Asset Classes: The Market vs. Risk Parity vs. 60-40

To test our predicted implications of leverage aversion, we compare the historical performance of the value-weighted market portfolio, the Risk Parity portfolio, and the 60-40 stock/bond portfolio. We do this over two different data samples: Our “Long Sample” covers U.S. stocks and bonds from 1926 to 2010, and our “Broad Sample” covers global stocks, U.S. bonds, credit, and commodities from 1973 to 2010. Summary statistics are seen in Table 1 and further details on the data and the portfolios are in the appendix.

Table 2 shows the performance statistics, with Panel A using our Long Sample, while Panel B covers the Broad Sample. In both cases, we see that stocks have delivered higher average returns than bonds, and stocks have realized much higher volatility than bonds. As a result, the value-weighted market portfolio and the 60-40 portfolio have had higher average returns than the unleveraged Risk Parity portfolio. Therefore, an investor who cannot and or will not use leverage may prefer to hold the market or the 60-40 portfolio or even all stocks, and such behavior is what can cause riskier assets to be overpriced relative to the standard CAPM.

An investor who is able to use leverage will prefer the historical performance of the Risk Parity portfolio, however, because of its higher Sharpe ratio (risk-adjusted return). Indeed, the leveraged Risk Parity portfolio has the same volatility as the market portfolio, but a considerably higher average return. Figure 3 illustrates the significant improvement in Sharpe ratio of the Risk Parity portfolio over the market and 60-40 portfolios.

The strong historical performance of Risk Parity is also seen in the cumulative return plot illustrated in Figure 1 (as discussed in the introduction). To test the significance of this outperformance, Table 2 reports t-statistic of the Risk Parity portfolio’s realized alpha. Here, alpha is the intercept in a time series regression of monthly excess return on the value-weighted benchmark. The t-statistics are far north of 2 implying strong statistical significance. As a further test, we construct long-short portfolios that go long the Risk Parity portfolio and go short the market portfolio (or go short the 60-40 portfolio) over each sample. These long-short portfolios have statistically significant excess returns and alphas over both our Long Sample and our Broad Sample.

A classic illustration of the empirical failure of the standard CAPM is the notion that
the “Security Market Line is too flat,” originally pointed out by Black, Jensen, and Scholes (1972) for U.S. stocks. The Security Market Line is the connection between the actual excess return across securities and the CAPM-predicted excess returns, given by beta times the market excess return. Rather than looking at the Security Market Line across stocks, we are interested in the Security Market Line across assets classes. Figure 4 shows the Security Market Line for the asset classes in our Broad Sample, where betas are the slopes from a time series regression of monthly excess return on the value-weighted benchmark.

The CAPM predicts that securities line up on the 45 degree line. However, Figure 4 shows that the empirical Security Market Line is more flat since safe asset classes (bonds and credit) provide too high returns relative to the CAPM, while riskier asset classes (domestic and global stocks) provide too low returns relative to their risk. The same result (a flat asset class Security Market Line) is also true for our Long Sample as shown by Figure 1.

Risk and Return Within Asset Classes: High Beta is Low Alpha

Our evidence that the Security Market Line is too flat holds not just across asset classes, but also within asset classes. Said differently, safe assets have higher risk-adjusted returns than riskier assets when comparing securities within the same asset class, just as in the case of comparing across asset classes.

Indeed, Black, Jensen and Scholes (1972) famously found that the Security Market Line is too flat across U.S. stocks. Frazzini and Pedersen (2010) confirm this finding adding 40 years of out-of-sample evidence: the Security Market Line has remained remarkably flat since the study of Black, Jensen and Scholes. Further, Frazzini and Pedersen (2010) find that the Security Market Line is also too flat in all the other major asset classes. It is too flat in global stocks markets, in 18 of 19 developed equity markets, too flat across Treasuries, across corporate bonds, and even across futures.

Figure 5 reports the evidence of Frazzini and Pedersen (2010) across U.S. stocks (Panel A) and across bonds (Panel B). In each case, we see that the Security Market Line is flatter than the CAPM-predicted 45-degree line, meaning that safe assets provide higher risk-adjusted returns.

The within-asset-class results are very important to the inherently across-asset-class
results of risk-parity, as they represent strong out-of-sample confirmation that what’s going on for asset classes is ubiquitous and thus less likely data mining.

Conclusion: You Can Eat Risk Adjusted Returns

Risk Parity investing has become a popular alternative to traditional methods of strategic asset allocation. However, existing justifications leave a lot to be desired. It is not enough to simply desire diversification by risk not dollars, however intuitive. If you were paid enough in expected return to be dominated in risk-space by a single asset class you'd do so gladly. It's not enough to show that historically you have not in fact been paid enough to be so dominated (the equivalent of a backtest showing that Risk Parity is historically superior to traditional allocations). Historical evidence is always welcome, but even long histories of asset class return can be dominated by a few large data points or arise from data mining. Risk Parity investors need not despair, however. While there is no certainty in finance, perhaps the closest we ever come is a realistic theory that holds up consistently in out of sample tests across and within different asset classes. Leverage aversion, pioneered by Black (1972) is such a theory.

Assuming that some market participants are unable or unwilling to use leverage is not unrealistic. Indeed, using leverage requires acquiring a certain “technology” to apply the leverage, and to manage the leverage and the dynamic portfolio over time. Our capital markets present plenty of examples of investors that are not allowed (or choose not) to employ leverage to increase their returns. For example, the majority of mutual funds and many pension funds are prevented from borrowing or limited in the amount leverage they can take. As another example, mutual fund families typically provide suggested asset allocations for low to high risk tolerant investors. The high risk recommendations rarely use leverage, but rather recommend a very extreme concentration in equities. Similarly, the rise of embedded leverage in exchange traded funds (ETFs) shows that some investors choose not to employ leverage directly, but prefer instruments with embedded leverage.

The results in Black, Jensen, and Scholes (1972) and Frazzini and Pedersen (2010) show that the predictions of a theory of leverage aversion hold up in a very wide variety of tests across and within many asset classes. This paper shows that Risk Parity investing is
simply another instance of this theory working out of sample, and thus greatly enhances our confidence that Risk Parity’s superiority to traditional methods is not a figment of the data but real and important.
References

Appendix: Data and Portfolio Construction

Our study focuses on a *Long Sample* from January 1926 to June 2010 which consists of U.S. stocks and government bonds, and a *Broad Sample* from January 1973 to June 2010 which consists of global stocks, bonds, corporate bonds, and commodities.

The data for the Long Sample is drawn from the CRSP database. We use the CRSP value weighted market return (including dividends) as the aggregate stock return. Similarly, our aggregate bond return is the value-weighted average of the unadjusted holding period return for each bond in the CRSP Monthly US Treasury Database. Bonds are weighted by their outstanding face value.

To include data on global stocks, commodities, and credit in our Broad Sample, we need the more recent time period from 1973. Our global stock market proxy is the MSCI World index provided by MSCI/Barra. For corporate bonds, we use the Barclays aggregate US Credit index from Barclays Capital’s Bond.Hub database. Finally, we use the S&P GSCI index as a benchmark for investment in commodity markets obtained from Bloomberg. Unfortunately, the commodities series is the only asset class for which we lack a source of monthly total market capitalization, thus forcing us to make an assumption when constructing value-weighted aggregate benchmarks. We assume a constant market weight of 10% on commodities. All returns and market capitalization series are in USD and excess returns are above the US Treasury bill rate.

Constructing Risk Parity Portfolios

We construct simple Risk Parity portfolios (hereafter RP) that are rebalanced monthly such as to target an equal risk allocation across the available asset classes. To construct a RP portfolio, at the beginning of each calendar month, we estimate volatilities \(\hat{\sigma}_i \) of all the available asset classes (using data up to month t-1) and set the portfolio weight in security i to:

3 The data can be downloaded at: http://www.mscibarra.com
4 The data can be downloaded at https://live.barcap.com
5 Formerly the Goldman Sachs Commodity Index
We estimate $\hat{\sigma}_i$ as the 3-year rolling volatility of monthly excess returns, but we get similar results for other volatility estimates. The constant k_i is a constant (same for all assets), which controls the amount of leverage (or the target volatility) of the RP portfolio.

We consider two very simple RP portfolios: The first portfolio is an unlevered RP, obtained by setting

$$k_i = \sum_i \hat{\sigma}_i^{-1}$$

This corresponds to a simple value-weighted portfolio that over-weights less volatile assets and under-weights more volatile assets.

The second portfolio is a levered RP obtained by setting

$$k_i = k$$

for all periods. Of course, since k is constant across periods, the exact level of k does not affect statistical inference. For comparison purposes, we set k so that the average annualized volatility of this portfolio matches the ex-post realized volatility of the value-weighted benchmark. This portfolio corresponds to a portfolio targeting a constant volatility in each asset class, levered up to match the volatility of the value weighted benchmark. (We get similar results if we choose k to match the volatility of the benchmark at the time of portfolio formation.)

Portfolios are rebalanced every calendar month and the monthly excess return over T-bills is given by

$$r_{it}^{RP} = \sum_i w_{t-1,i} (r_{it} - rf)$$

where r is the month-t USD gross return and rf is the 1-month Treasury bill rate. Table A1 reports the list of instruments.
Table 1
Summary Statistics

This table reports the list of instruments included in our data and the corresponding date range.

<table>
<thead>
<tr>
<th>Asset Class</th>
<th>Index</th>
<th>ME available</th>
<th>Start Year</th>
<th>End Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stocks</td>
<td>CRSP Value-Weighted Index</td>
<td>Y</td>
<td>1926</td>
<td>2010</td>
</tr>
<tr>
<td>Bonds</td>
<td>CRSP Value-Weighted Index</td>
<td>Y</td>
<td>1926</td>
<td>2010</td>
</tr>
<tr>
<td>Broad Sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global stocks</td>
<td>MSCI Global Index</td>
<td>Y</td>
<td>1973</td>
<td>2010</td>
</tr>
<tr>
<td>Bonds</td>
<td>CRSP Value-Weighted Index</td>
<td>Y</td>
<td>1973</td>
<td>2010</td>
</tr>
<tr>
<td>Credit</td>
<td>Barclays Capital Credit Index</td>
<td>Y</td>
<td>1973</td>
<td>2010</td>
</tr>
<tr>
<td>Commodities</td>
<td>GSCI</td>
<td>N</td>
<td>1973</td>
<td>2010</td>
</tr>
</tbody>
</table>
Table 2
Risk Parity vs. the Market vs. 60-40: Historical Performance

This table shows calendar-time portfolio returns. “Value Weighted Portfolio” is a market portfolio weighted by total market capitalization and rebalanced monthly to maintain value weights. “Risk Parity” is a portfolio that targets equal risk allocation across the available instruments. To construct the Risk Parity portfolio, at the beginning of each calendar month, we compute a 3-year rolling covariance of monthly excess returns of all the available asset classes (using data up to month t-1) and set the portfolio weight in each security equal to the inverse of the estimated volatility. In the unlevered Risk Parity portfolio weights are rescaled to sum to one at each rebalance. The levered Risk Parity portfolio is levered to match the ex-post realized volatility of the value-weighted benchmark. Panel A includes returns of stocks and bonds only, the sample period run from 1926 to 2010. In Panel A, “60-40” is a portfolio that allocates 60% in stocks and 40% in bonds, rebalanced monthly to maintain constant weights. Panel B included all the available asset classes. The sample period run from 1973 to 2010. In computing the aggregate value weighted portfolio the weight in commodities is assumed to be 10%, other instruments are weighted by total market capitalization each month. Returns are in USD and excess returns are above the US Treasury bill rate. Alpha is the intercept in a regression of monthly excess return. The explanatory variables are the monthly returns of the value weighted benchmark. Returns, alphas and volatilities are annual percent. Sharpe ratios are annualized and 5% statistical significance is indicated in bold.

<table>
<thead>
<tr>
<th>Panel A: Long Sample</th>
<th>Excess Return</th>
<th>t-stat</th>
<th>Alpha</th>
<th>t-stat</th>
<th>Volatility</th>
<th>Sharpe Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stocks and Bonds, 1926 - 2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRSP Stocks</td>
<td>6.68</td>
<td>3.17</td>
<td></td>
<td></td>
<td>19.05</td>
<td>0.35</td>
</tr>
<tr>
<td>CRSP Bonds</td>
<td>1.56</td>
<td>4.28</td>
<td></td>
<td></td>
<td>3.28</td>
<td>0.47</td>
</tr>
<tr>
<td>Value Weighted Portfolio</td>
<td>3.83</td>
<td>2.29</td>
<td></td>
<td></td>
<td>15.08</td>
<td>0.25</td>
</tr>
<tr>
<td>60 - 40 Portfolio</td>
<td>4.63</td>
<td>3.58</td>
<td></td>
<td></td>
<td>11.68</td>
<td>0.40</td>
</tr>
<tr>
<td>Risk Parity (unlevered)</td>
<td>2.20</td>
<td>4.66</td>
<td>1.39</td>
<td>4.44</td>
<td>4.25</td>
<td>0.52</td>
</tr>
<tr>
<td>Risk Parity*</td>
<td>7.98</td>
<td>4.78</td>
<td>5.51</td>
<td>4.31</td>
<td>15.08</td>
<td>0.53</td>
</tr>
<tr>
<td>Risk Parity* minus Value Weighted</td>
<td>4.15</td>
<td>2.96</td>
<td>5.51</td>
<td>4.31</td>
<td>12.69</td>
<td>0.33</td>
</tr>
<tr>
<td>Risk Parity* minus 60-40</td>
<td>3.35</td>
<td>2.93</td>
<td>3.77</td>
<td>3.33</td>
<td>10.31</td>
<td>0.32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B: Broad Sample</th>
<th>Excess Return</th>
<th>t-stat</th>
<th>Alpha</th>
<th>t-stat</th>
<th>Volatility</th>
<th>Sharpe Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global stocks, bonds, credit, and commodities, 1973 - 2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSCI Global</td>
<td>5.07</td>
<td>2.01</td>
<td></td>
<td></td>
<td>14.78</td>
<td>0.34</td>
</tr>
<tr>
<td>CRSP Bonds</td>
<td>1.88</td>
<td>3.09</td>
<td></td>
<td></td>
<td>3.58</td>
<td>0.53</td>
</tr>
<tr>
<td>GSCI</td>
<td>3.29</td>
<td>1.00</td>
<td></td>
<td></td>
<td>19.24</td>
<td>0.17</td>
</tr>
<tr>
<td>Credit</td>
<td>3.15</td>
<td>2.59</td>
<td></td>
<td></td>
<td>7.14</td>
<td>0.44</td>
</tr>
<tr>
<td>Value Weighted Portfolio</td>
<td>3.55</td>
<td>2.17</td>
<td></td>
<td></td>
<td>9.59</td>
<td>0.37</td>
</tr>
<tr>
<td>Risk Parity (unlevered)</td>
<td>2.85</td>
<td>3.56</td>
<td></td>
<td></td>
<td>4.69</td>
<td>0.61</td>
</tr>
<tr>
<td>Risk Parity*</td>
<td>5.49</td>
<td>3.32</td>
<td>2.97</td>
<td>2.51</td>
<td>9.70</td>
<td>0.57</td>
</tr>
<tr>
<td>Risk Parity* minus Value Weighted</td>
<td>1.94</td>
<td>1.53</td>
<td>2.97</td>
<td>2.51</td>
<td>7.44</td>
<td>0.26</td>
</tr>
</tbody>
</table>

* Levered to match volatility of the value-weighted benchmark
This Figure shows total cumulative returns (log scale) of portfolios of stocks and bonds. “Value Weighted Portfolio” is a market portfolio weighted by total market capitalization and rebalanced monthly to maintain value weights. “60-40” is a portfolio that allocates 60% in stocks and 40% in bonds, rebalanced monthly to maintain constant weights. “Risk Parity” is a portfolio that targets equal risk allocation across the available instruments. To construct the Risk Parity portfolio, at the beginning of each calendar month, we compute a 3-year rolling covariance of monthly excess returns (using data up to month t-1) and set the portfolio weight in each security equal to the inverse of the estimated volatility. The Risk Parity portfolio is levered to match the ex-post realized volatility of the value-weighted benchmark. This figure includes Stocks and Bonds only.
This Figure shows the efficient frontier of portfolios of stocks and bonds based on monthly returns between 1926 and 2010. “Value Weighted Portfolio” is a market portfolio weighted by total market capitalization and rebalanced monthly to maintain value weights. “60-40” is a portfolio that allocates 60% in stocks and 40% in bonds, rebalanced monthly to maintain constant weights. “Risk Parity” is a portfolio that targets equal risk allocation across the available instruments. To construct the Risk Parity portfolio, at the beginning of each calendar month, we compute a 3-year rolling covariance of monthly excess returns (using data up to month t-1) and set the portfolio weight in each security equal to the inverse of the estimated volatility. In the unlevered Risk Parity portfolio weights are rescaled to sum to one at each rebalance. The levered Risk Parity portfolio is levered to match the ex-post realized volatility of the value-weighted benchmark. This figure includes stocks and bonds only.
This Figure shows annualized Sharpe ratios portfolios of stocks and bonds. “Value Weighted Portfolio” is a market portfolio weighted by total market capitalization and rebalanced monthly to maintain value weights. “60-40” is a portfolio that allocates 60% in stocks and 40% in bonds, rebalanced monthly to maintain constant weights. “Risk Parity” is a portfolio that targets equal risk allocation across the available instruments. To construct the Risk Parity portfolio, at the beginning of each calendar month, we compute a 3-year rolling covariance of monthly excess returns (using data up to month t-1) and set the portfolio weight in each security equal to the inverse of the estimated volatility. The Risk Parity portfolio is levered to match the ex-post realized volatility of the value-weighted benchmark.
Figure 4
Security Market Line Across Asset Classes

This Figure shows the theoretical and empirical security market line (SML) of portfolios of stocks, bonds, credit and commodities based on monthly returns between 1973 and 2010. The “market excess return” is the excess return of a market portfolio weighted by total capitalization and rebalanced monthly to maintain value weight. In computing the aggregate value weights, the weight in commodities is assumed to be 10%, other instruments are weighted by total market capitalization each month. “Beta” is the slope of a regression of monthly excess return. The explanatory variables are the monthly returns of the value weighted benchmark. The 45% degree line represents the theoretical CAPM security market line. The solid line plots the empirical security market line. The empirical SML is the fitted valued of a cross sectional regression of average excess returns (left-hand side) on realized betas (right-hand side).
This Figure shows the theoretical and empirical security market line (SML) of ten beta-sorted portfolios from Frazzini and Pedersen (2010). At the beginning of each calendar month stocks are ranked in ascending order on the basis of their estimated beta at the end of the previous month. Betas are estimated using 1-year rolling regressions. The ranked stocks are assigned to one of ten deciles portfolios. All stocks are value-weighted within a given portfolio, and the portfolios are rebalanced every month to maintain value weights. The “market excess return” is the CRSP value-weighted excess return. “Beta” is the slope of a regression of monthly excess return. The explanatory variables are market monthly returns. The 45% degree line represents the theoretical CAPM security market line. The solid line plots the empirical security market line. The empirical SML is the fitted valued of a cross sectional regression of average excess returns (left-hand side) on realized betas (right-hand side). The data run from 1926 to 2010.
This Figure shows the theoretical and empirical security market line (SML) of the CRSP Monthly Treasury - Fama Bond Portfolios with maturity ranging from 1 to 30 years. The portfolio returns are an equal weighted average of the unadjusted holding period return for each bond in the portfolios in excess of the risk-free rate. Only non-callable, non-flower notes and bonds are included in the portfolios. The “market excess return” is the value-weighted mean excess return. “Beta” is the slope of a regression of monthly excess return. The explanatory variables are market monthly returns. The 45% degree line represents the theoretical CAPM security market line. The solid line plots the empirical security market line. The empirical SML is the fitted value of a cross-sectional regression of average excess returns (left-hand side) on realized betas (right-hand side). The data run from 1952 to 2010.