Macroeconomic Shock Synchronization in the East African Community

By: Albert Mafusire and Zuzana Brixiova

William Davidson Institute Working Paper Number 1031
March 2012
MACROECONOMIC SHOCK SYNCHRONIZATION IN THE EAST AFRICAN COMMUNITY

Albert Mafusire and Zuzana Brixiova

Abstract

The East African Community (EAC) economic integration has gained momentum recently, with the EAC countries officially aiming to adopt a single currency in the summer of 2012. This paper assesses empirically the readiness of the EAC countries for monetary union. First, structural similarity of the EAC countries is measured in terms of intra-industry trade and similarity of production. Second, the symmetry of shocks among the EAC members is examined with structural VAR. Both methods show that the shock synchronization in the EAC is low, albeit increasing, suggesting that the move to EAMU should not be rushed. The paper concludes with policies that would facilitate the EAC regional economic integration, including the eventual establishment of monetary union.

Keywords: shock synchronization; structural VAR; regional integration; East Africa

JEL classification: E32; F42; C53

1 Most of this paper was written when the authors were with the Development Research Department of the African Development Bank. The authors thank Ferdinand Bakoup, Amarakoon Bandara, Tonia Kandiero, and Thierry Kangoye for helpful comments. An earlier version was presented at the workshop of the Halle Institute Network on Studying Transition and Integration (Bologna, May 2011). Views expressed are those of the authors and do not necessarily reflect those of the AfDB or the UNDP. E-mail addresses: a.mafusire@afdb.org and zuzana.brixiova@undp.org.
I. Introduction

Interest in regional integration in Africa has accelerated recently, reflecting a renewed political will and increased resource flows for regional projects under the Extended Integrated Framework and Aid-for-Trade initiatives. Measures towards integration within the East African Economic Community (EAC) regained especially momentum in 2005, after some stagnation. Over the years, the members have established closer economic links through a Free Trade Area (2001), a Customs Union (2005), and a Common Market (2010). These efforts have paid off: a deeper regional integration and trade within the EAC than in other African sub-regions have contributed to East Africa’s resilience during the global financial crisis (GFC) in 2009 and 2010 and the overall fast growth (Brixiova and Ndikumana, 2011; Guerguil et al., 2011, and Winston and Castellanos, 2011).

Given the progress with intra-regional trade, the current official objective of the EAC countries is the establishment of the East African Monetary Union (EAMU), with the circulation of the single currency in the summer of 2012. The March 2010 Joint Meeting of the EAC Ministers adopted the road map for this goal, which includes milestones such the adoption of an Exchange Rate Mechanism (ERM), creation of the regional central bank, and finally the establishment of the EAMU. However, macroeconomic convergence in the EAC has been limited. Questions have thus emerged about the countries’ readiness to join the EAMU within the agreed time frame, especially in light of slow implementation of common market elements such as free mobility of labor, capital and goods.

This paper seeks to investigate whether the targeted speedy creation of the EAMU is economically viable under the recent circumstances and longer-term trends in the region. It adopts the Optimal Currency Area (OCA) approach and tests empirically the extent of the shock synchronization among the EAC members. To put differently, the paper asks whether the EAC countries are exposed to similar shocks and exhibit structural similarity. This test is important because the monetary unions subject its member countries to a common monetary policy. Thus, if the countries in the union have major structural difference (due to, for example, different degree of rigidity in the business environments), common monetary police will have differential impacts that may not be helpful to some members. In turn, these differences may affect the sustainability of the union.

2 The EAC comprises of Kenya, Tanzania, Uganda, Rwanda and Burundi, with a combined population of 126.6 million people and a nominal GDP of USD73 billion in 2010.

3 Bøds (2001) concluded that most of Africa’s regional integration efforts lacked political will to be implemented, and the countries continued to focus on relative national gains and sovereignty. While this general conclusion could have been true at turn of the century, the renewed interest for deeper integration in East Africa this time around seems to represent serious efforts for change.

4 The OCA analysis claims that membership of a currency union provides countries micro economic efficiency gains at the cost of their relinquishing independent monetary and exchange rate policy. This approach is highly relevant for economies with flexible exchange rates, such as the EAC countries.
The paper is organized as follows: After this Introduction, Section II highlights the progress with regional integration in the EAC. In Section III the shock synchronization of the EAC is analyzed using the indexes of structural similarity and the structural VAR model. Section IV draws policy conclusions and recommendations for moving further ahead with regional integration in East Africa.

II. Regional Convergence in the EAC: The Facts

II.1 Convergence Criteria

The OCA theory suggests the macroeconomic convergence as a precondition for forming a monetary union (Mundell, 1961 and others). This applies also to the EAMU. The EAC convergence process, measured mostly through macroeconomic criteria, has three stages: looser macro stance during 2007-10; tighter one during 2011-2014, and the monetary union from 2015 on (Table 1).

Table 1: Macroeconomic Convergence Criteria in the EAC

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Criteria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Budget Deficit to GDP ratio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excluding grants</td>
<td>< 6%</td>
<td>≤ 5%</td>
<td></td>
</tr>
<tr>
<td>Including grants</td>
<td>≤ 3%</td>
<td>≤ 2%</td>
<td></td>
</tr>
<tr>
<td>Inflation</td>
<td>≤ 5%</td>
<td>≤ 5%</td>
<td></td>
</tr>
<tr>
<td>External reserves</td>
<td>≥ 4 months import cover</td>
<td>≥ 6 months imports</td>
<td></td>
</tr>
<tr>
<td>Real exchange rate</td>
<td>Stable</td>
<td>Market based</td>
<td></td>
</tr>
<tr>
<td>Interest rates</td>
<td></td>
<td>Market based</td>
<td></td>
</tr>
<tr>
<td>Real GDP growth</td>
<td>≥ 7%</td>
<td>≥ 7%</td>
<td></td>
</tr>
<tr>
<td>Debt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Savings to GDP ratio</td>
<td>Reduced to sustainable levels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current account (excluding grants)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banking supervision and regulations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payment and settlement systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary Criteria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source: Adapted from Opolot and Luvanda, 2009.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Macroeconomic convergence is crucial, but research on monetary integration suggests that structural similarities among monetary union members are key for the unified impact of their joint macroeconomic (especially monetary) policies. This is because the adoption of a single currency eliminates some of the macro policies (monetary and exchange rate policy) that countries can use to adjust to economic shocks.\(^5\) Instead, all countries in the monetary union are subject to the same monetary policy, which would be more effective under synchronized shocks. Even when shocks are not synchronized though, the monetary union can be economically viable if countries have mobile labor markets (Mundell, 1961), a high degree of economic openness (McKinnon, 1963), enabling business environment and diversification in production and consumption (Kenen, 1969).

Another stream of literature, pioneered by Frankel and Rose (1998), argues the endogeneity of OCA, i.e. OCA is self-fulfilling \textit{ex post}. It underscores that by reducing transactions costs and eliminating the exchange rate risk, a common currency promotes intra-regional trade and synchronizes business cycles, as countries’ economic institutions become similar. More recent work on the OCA (Corsetti, 2009) posits that factors supporting monetary integration are the financial sector integration and counter-cyclical fiscal policy, which are both high among priorities of the EAC policymakers.

\textbf{II.2 Macroeconomic Performance}

The EAC grew faster than the rest of the continent both before and during the GFC, the lack of natural resources notwithstanding (Table 2)\(^6\). In spite of the negative impact of the global financial crisis, East Africa posted 5.8\% real GDP growth in 2009 and has already recovered some of the lost growth momentum in 2010. Rwanda, Tanzania and Uganda have led the regional economic expansion, alongside Ethiopia and Sudan. Kenya, which grew rapidly in 2006 and 2007, suffered a setback in 2008 due to the violence that broke out after the elections at the end of 2007. Among the EAC’s members, only Burundi’s growth has been low throughout the 2000s, reflecting in part the country’s fragility.

\begin{table}[!ht]
\centering
\begin{tabular}{lcccccc}
\hline
 & 2002-06 & 2007 & 2008 & 2009 & 2010(e) & 2011(f) \\
\hline
\textbf{EAC} & 6.6 & 7.1 & 7.4 & 4.1 & 5.1 & 5.6 \\
RoEA 2/ & 2.9 & 7.3 & 3.2 & 4.1 & 4.7 & 4.3 \\
West Africa & 4.7 & 4.7 & 5.4 & 3.4 & 4.5 & 5.1 \\
Northern Africa & 4.9 & 4.5 & 4.1 & 2.7 & 4.6 & 3.4 \\
Southern Africa & 4.5 & 5.5 & 4.7 & 2.2 & 4.2 & 5.6 \\
Central Africa & 4.6 & 4.0 & 2.9 & 2.0 & 5.5 & 4.3 \\
\hline
\end{tabular}
\caption{Real GDP growth in East Africa (EAC) and other Africa’s sub-regions 1/}
\end{table}

\textbf{Table 2. Real GDP growth in East Africa (EAC) and other Africa’s sub-regions 1/}

\textbf{Source:} Authors’ calculations based on the African Economic Outlook 2011. 1/ Median values. 2/ Rest of East Africa other than the EAC countries.

\(^5\) On the positive side, countries eliminate the economic costs related to the exchange rate fluctuations.

\(^6\) The discovery of oil and subsequent development of the resources has been changing Uganda’s position. Tanzania also benefitted from rising gold prices although the sector is not the main driver of growth.
Overall macroeconomic performance was mixed. While inflation was in single digits in 2007, it jumped to double digits due to increased food prices in 2008. Following the global financial crisis’ dampening of the inflationary pressures in 2009, the inflation accelerated in 2010 and 2011 due to droughts and rising food prices. On the positive side, external debt sustainable and debt payments are low, in part due to debt relief initiatives from mid-2000s. While the fiscal deficits remained under control despite the stimulus packages adopted in 2009 and 2010, the relatively sizeable trade and current account deficits continue to pose challenge for macroeconomic convergence of the EAC.

Meeting these convergence criteria has so far been elusive. An inspection of the performance of the EAC member countries’ performance since 2000, relative to the convergence criteria, reveals significant variations (Figure 1). Notwithstanding the high regional growth, only Tanzania and Uganda have managed average GDP growth of more than 7% over the last four years to 2010. There are down-side risks to growth in these two countries, especially when the growth has largely been driven by resource-based exports or investments as in the case of Uganda.

Macroeconomic stability in the region remains relatively fragile. Inflation and exchange rates in particular are still volatile. In August 2011 the annual inflation was in double digits – way above the 5 percent target -- in Kenya, Uganda, and Tanzania, due to rising food prices. In 2009 and 2010 the budget deficits (after grants) Kenya and Tanzania exceeded the 3 percent target when counter-cyclical fiscal policies were adopted against the impacts of the global financial crisis (Kasekende, et al., 2010). Ensuring adherence to macroeconomic targets in the absence of any agreed rules therefore poses serious challenges to the proposed EAMU.

Figure 1: EAC Macroeconomic Performance Relative to Convergence Criteria

![Figure 1: EAC Macroeconomic Performance Relative to Convergence Criteria](image)

Source: AfDB Statistical database.

Even though all EAC countries fall into the low income category, substantial differences exist in their levels of development. The different levels of development of the EAC countries and divergence of their economic outcomes have been one of the arguments against speedy creation of the EAMU. On the one side of the spectrum is Kenya, which is
the most developed and the largest EAC member. It is the regional trade hub, while its private enterprises lead the intra-regional investment. Kenyan banks also operate across the region, with subsidiaries in Rwanda and Uganda (AfDB, 2011).7

More broadly, one of the arguments against speedy creation of the EAMU has been the different levels of development of the EAC countries and economic outcomes. For example, the Burundi’s average import growth exceeded that of exports by a factor of 3 since 2003, resulting in the current account deficit of 19.1 percent of GDP in 2008 -- far above the other EAC members. Relative to its peers, Burundi’s fiscal performance was also dismal. While inflation was in single digits until 2007, it jumped to almost 25 percent in 2008 due to the food crisis. The question arises if such divergent performance would reduce the country’s benefits from the EAMU. Conversely, unless Burundi strengthens its macroeconomic situation, its membership may destabilize the EAMU.

II.3 Trade Flows, Structure and Barriers

According to the OCA criteria, rising intra-regional trade is consistent with the objective of monetary integration, as common currency would lead to substantial cuts in transaction costs (McKinnon, 1963). Moreover, intra-industry trade can lead to similar economic policies and structures among the involved countries. In that aspect, the EAC countries fare well, as trade among the EAC members has intensified prior to the GFC.

Figure 2: Intra-EAC and Extra-EAC (ROW) Trade Growth, 2005 - 08 (4-year averages)

![Bar chart showing trade growth for Burundi, Kenya, Rwanda, Tanzania, and Uganda from 2005-2008.](chart)

Source: Authors’ Calculations based on the IMF Direction of Trade Statistics Online Database.

7 Nevertheless barriers to the greater financial integration – one of the preconditions for successful monetary integration – remain high and include capital flows restrictions (Wang, 2010).
Specifically, the share of imports from Europe and other advanced countries has been falling while the share within the EAC rising. About 20 percent of East African exports were within the EAC during 2000-07 (Table 3). The average growth in intra-EAC exports exceeded that of extra-EAC one in Rwanda, Tanzania and Uganda (Figure 2). Still, average import growth within the EAC has been lower than import growth from outside in Burundi, Tanzania and Uganda, reflecting the dominance of primary consumer products in intra-regional trade, with manufacturing coming mostly from the outside.

Another key characteristic of East Africa that bodes well for formal economic integration is the large share of informal trade in the region. For example, the share of the informal trade in total trade in Uganda has increased markedly during 2000s. In fact, in 2009 the informal exports to the EAC countries and other neighbors (Sudan, DRC) exceeded its total formal exports. The large informal trade suggests that formal trade can expand further. To facilitate this process, barriers to trade should be eliminated to reduce the informality and the related transactions cost. Increasing the stock and quality of regional infrastructure is also needed to harness this intraregional trade potential.

Despite the relatively large volume of trade (formal and informal) among the EAC countries, significant challenges to monetary integration remain. For example, the transaction costs for across-the-border trade are large (below). Moreover, over the medium term regional integration strategies need to develop complementarity in higher value added products than basic agricultural commodities to raise capacity of East African countries’ to trade.8 Again, incentives to formalize will be important in this context as informal firms find it more difficult to innovate and adopt new technology. Easing and modernizing immigration policies to facilitate flow of labor and address persistent skill shortages are also key to fostering further intraregional trade, which – together with reforms – is likely to bring about greater structural similarities.

To achieve greater intra-regional trade and structural similarity -- and hence shock synchronization -- barriers to trade within EAC need to be minimal, while common policies towards the outside of the EAC should be adopted. The region’s trade agenda has thus a wider scope than reducing intra-regional tariff barriers. Its current primary focus is on removing structural – mostly non-trade -- barriers to competitiveness and trade.9 Besides its traditional objectives (removing quotas and tariffs), trade policy of the EAC thus now strives to strengthen the members ‘soft’ and ‘hard’ infrastructure so as to enable them to leverage their relative comparative advantages. The focus on relative comparative advantages would also help diversify the EAC product mix and could enhancing scope for intra-regional trade along the value chains.10

8 Additional impediments to monetary integration in the three original EAC countries (e.g., Kenya, Tanzania and Uganda) are substantial financial barriers such as restrictions on capital flows.

9 For linkages between competitiveness, trade and FDI in Africa, please see Blanke et al. (2011).

10 To promote intra-regional trade, the revised EAC Protocol aimed at gradual reduction in tariffs for goods classified under category B, i.e. agricultural products, building materials, plastics, wood and paper, textiles, iron and steel and other manufactures. No tariffs were to be charged on category A products. An annual 2 percent reduction in tariffs was agreed with the objective of complete elimination of the tariffs by 2010.
Table 3. Share of intra-regional and intra-Africa trade by RECs (million US$)

<table>
<thead>
<tr>
<th></th>
<th>2000</th>
<th>2003</th>
<th>2005</th>
<th>2007</th>
<th>2000-07</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAC total exports</td>
<td>3,053</td>
<td>4,133</td>
<td>5,984</td>
<td>7,788</td>
<td>4,951</td>
</tr>
<tr>
<td>intra EAC exports</td>
<td>689</td>
<td>879</td>
<td>1,075</td>
<td>1,385</td>
<td>957</td>
</tr>
<tr>
<td>% of total exp.</td>
<td>22.6</td>
<td>21.3</td>
<td>18.0</td>
<td>17.8</td>
<td>20</td>
</tr>
<tr>
<td>exports to rest of Africa</td>
<td>286</td>
<td>457</td>
<td>664</td>
<td>1,037</td>
<td>572</td>
</tr>
<tr>
<td>% of total exp.</td>
<td>9.4</td>
<td>11.1</td>
<td>11.1</td>
<td>13.3</td>
<td>11.1</td>
</tr>
<tr>
<td>total exports to Africa</td>
<td>32.0</td>
<td>32.3</td>
<td>29.1</td>
<td>31.1</td>
<td>31.1</td>
</tr>
<tr>
<td>AMU total exports</td>
<td>49,048</td>
<td>54,933</td>
<td>99,669</td>
<td>139,040</td>
<td>77,883</td>
</tr>
<tr>
<td>intra UMA exports</td>
<td>1,094</td>
<td>1,338</td>
<td>1,886</td>
<td>3,076</td>
<td>1,698</td>
</tr>
<tr>
<td>% of total exp.</td>
<td>2.2</td>
<td>2.4</td>
<td>1.9</td>
<td>2.2</td>
<td>2.3</td>
</tr>
<tr>
<td>exports to rest of Africa</td>
<td>80.0</td>
<td>14.0</td>
<td>216.0</td>
<td>1,770.0</td>
<td>460</td>
</tr>
<tr>
<td>% of total exp.</td>
<td>0.2</td>
<td>0.0</td>
<td>0.2</td>
<td>1.3</td>
<td>0.4</td>
</tr>
<tr>
<td>total exports to Africa</td>
<td>2.4</td>
<td>2.5</td>
<td>2.1</td>
<td>3.5</td>
<td>2.7</td>
</tr>
<tr>
<td>SADC total exports</td>
<td>47,772</td>
<td>55,998</td>
<td>89,058</td>
<td>133,525</td>
<td>74,735</td>
</tr>
<tr>
<td>intra SADC exports</td>
<td>4,296</td>
<td>5,484</td>
<td>7,454</td>
<td>11,678</td>
<td>6,512</td>
</tr>
<tr>
<td>% of total exp.</td>
<td>9.0</td>
<td>9.8</td>
<td>8.4</td>
<td>8.7</td>
<td>8.8</td>
</tr>
<tr>
<td>exports to rest of Africa</td>
<td>1,230</td>
<td>1,879</td>
<td>2,731</td>
<td>3,740</td>
<td>2,193</td>
</tr>
<tr>
<td>% of total exp.</td>
<td>2.6</td>
<td>3.4</td>
<td>3.1</td>
<td>2.8</td>
<td>3.0</td>
</tr>
<tr>
<td>total exports to Africa</td>
<td>11.6</td>
<td>13.1</td>
<td>11.4</td>
<td>11.5</td>
<td>11.8</td>
</tr>
<tr>
<td>WAEMU total exports</td>
<td>6,662</td>
<td>9,850</td>
<td>12,661</td>
<td>15,039</td>
<td>11,166</td>
</tr>
<tr>
<td>intra WAEMU exports</td>
<td>741</td>
<td>1,076</td>
<td>1,390</td>
<td>1,917</td>
<td>2,063</td>
</tr>
<tr>
<td>% of total exp.</td>
<td>11.1</td>
<td>10.9</td>
<td>11.0</td>
<td>12.7</td>
<td>11.0</td>
</tr>
<tr>
<td>exports to rest of Africa</td>
<td>947</td>
<td>1,194</td>
<td>1,879</td>
<td>2,731</td>
<td>1,658</td>
</tr>
<tr>
<td>% of total exp.</td>
<td>14.2</td>
<td>12.1</td>
<td>14.8</td>
<td>18.2</td>
<td>14.8</td>
</tr>
<tr>
<td>total exports to Africa</td>
<td>25.3</td>
<td>23.0</td>
<td>25.8</td>
<td>30.9</td>
<td>25.9</td>
</tr>
<tr>
<td>CEMAC total exports</td>
<td>8,361</td>
<td>11,552</td>
<td>22,944</td>
<td>29,898</td>
<td>16,683</td>
</tr>
<tr>
<td>intra CEMAC exports</td>
<td>96</td>
<td>146</td>
<td>198</td>
<td>304</td>
<td>177</td>
</tr>
<tr>
<td>% of total exp.</td>
<td>1.1</td>
<td>1.3</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
</tr>
<tr>
<td>exports to rest of Africa</td>
<td>220</td>
<td>282</td>
<td>483</td>
<td>580</td>
<td>382.3</td>
</tr>
<tr>
<td>% of total exp.</td>
<td>2.6</td>
<td>2.4</td>
<td>2.1</td>
<td>1.9</td>
<td>2.5</td>
</tr>
<tr>
<td>total exports to Africa</td>
<td>3.8</td>
<td>3.7</td>
<td>3.0</td>
<td>3.0</td>
<td>3.6</td>
</tr>
</tbody>
</table>
III. Empirical Analysis: Macroeconomic Shock Synchronization

On balance, based on the above facts, the macroeconomic, trade and other structural features of the EAC economies suggest that these countries do not necessarily meet the criteria of the OCA approach for forming a monetary union. Opolot and Luvanda (2009) also find only partial evidence of growth and inflation convergence in the EAC, which occurred since about mid-1990s— as illustrated in Figure 3.

Figure 3a: Trends in EAC GDP Growth, 1982 - 2009

Figure 3b: Trends in EAC Inflation, 1982 - 2009

Note: Last letter of the variables refer to Burundi, Kenya, Rwanda, Tanzania and Uganda, respectively
Sections below test the degree of shock synchronization among the EAC countries formally, adopting simple correlation and structural vector analysis (SVAR) methods on the real GDP growth and inflation data during 1982 - 2009. Moreover, given the increased formal intra-regional trade and high informal trade within the EAC countries, the empirical analysis will also examine the endogeneity of the OCA hypothesis. This will be carried out by subdividing the period into two sub-periods: before and after 1990.

III.1 Correlation of the Economic Activity

First, we examine the degree of synchronization of economic shocks between the EAC countries using correlations for output growth and inflation for all pairs of countries. Pair-wise correlations of the real GDP growth and inflation during 1982 – 2009 are mostly positive, albeit low, and increased during 1990 - 2009 (Figure 4).

Figure 4a. Pair-wise correlations between the real GDP growth in the EAC countries

![Figure 4a](image1.png)

Figure 4b. Pair-wise correlations between the inflation rates in the EAC countries

![Figure 4b](image2.png)

Source: Authors’ calculations based on the IMF WEO database.
III.2 Structural Similarity Indexes

a. Structural Similarity Measured by Value Added

The structural similarity of production between the EAC members and Kenya is measured in terms of Bray-Curtis index. Denoting x_{ij} to be the share of sector i in the total value added of country j, with countries in this case being (i) the EAC members other than Kenya and (ii) Kenya, and N as total number of sector, the index is defined as:

$$d_{ij} = \frac{\sum_{i=1}^{N} |x_{ij} - x_{ik}|}{\sum_{i=1}^{N} (x_{ij} + x_{ik})}$$

(1)

The index takes values between [0,1]. The index is a measure of distance, and hence lower values indicate a greater structural similarity between sectoral contributions to total values added in (i) the EAC members other than Kenya and (ii) Kenya. According to this index, the EAC’s production structure – measured by six categories (agriculture, industry, construction, trade, other private sector services, social services) – has converged to that of Kenya over the past twenty years. Most of the convergence occurred during 1990s though, with stagnation afterwards. Moreover, in all countries except Uganda and Kenya, the share of agriculture is 30 percent or more of the output. The large share of similar low value production in countries’ GDP inhibits trade and regional integration.

Figure 5. Bray-Curtis Similarity Index: Kenya and other EAC members, 1991 - 2010

Source: Authors’ calculations based on data from the UN national account statistics.
b. Structural Similarity Measured by Exports

Despite increasing intra-regional trade, the EAC countries exhibit export dissimilarities. Indices presented in Table 4 show no evidence of export similarities between Kenya and the other EAC members. Following Xu and Song (2002) the indices focus on the market domain, where the objective is to compare the similarity between Kenya’s exports and those of the other EAC countries. The indices, where x_{ik} is the export of good k by country i, are obtained as follows:

$$s_j = \sum_k \left\{ \frac{x_{ik} - x_{jk}}{x_i - x_j} \frac{(x_{ik} + x_{jk}) - (x_{ik} - x_{jk})}{x_{ik} + x_{jk}} \right\} \times 100 \quad (2)$$

The index ranges between 0 and 100, where zero and 100 denote no similarity and perfect similarity, respectively. For both years, Burundi’s and Rwanda’s exports to the EAC are the least similar to those of Kenya while there is very limited similarity between the latter’s exports and those of Tanzania and Uganda (Table 4).

<table>
<thead>
<tr>
<th>Year</th>
<th>Burundi</th>
<th>Rwanda</th>
<th>Tanzania</th>
<th>Uganda</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>1.4</td>
<td>2.4</td>
<td>14.0</td>
<td>19.6</td>
</tr>
<tr>
<td>2010</td>
<td>0.7</td>
<td>2.7</td>
<td>25.1</td>
<td>19.2</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations.

III.3 Structural VAR Approach

This section applies a two-variable structural VAR (SVAR) framework to assess suitability of the EAC countries for monetary union. The economic shocks experienced by the EAC countries are decomposed into supply and demand shocks and their correlations examined. The section also examines whether the supply and demand shocks have become more synchronized over time.

The SVAR framework was developed by Blanchard and Quah (1989) and utilized by Bayoumi and Eichengreen (1993) to analyze the suitability of the European monetary integration. More recently, it was applied by Fidrmuc and Korhonen (2003) and Brixiova, et al., (2010), among others, to assess the degree of synchronization of countries of Central and Eastern Europe with the Eurozone. In the Asian context this approach was utilized for example, by Yuen and Ling (2001) and Zhang et al. (2004), among others.

III.2.1 The AD-AS Model

The shock synchronization model is based on a two variable (output growth and inflation) aggregate demand-aggregate supply (AD-AS) macroeconomic framework. The AD-AS framework assumes that fluctuations in real output, y_t, and the price level, p_t, are due to supply and demand shocks. In this framework the long run aggregate supply curve is vertical at the full employment level of output, but the short run one is upwards...
sloping due to sticky wages. In the EAC context, it is worthwhile to note that as all members have removed most price controls, prices in the goods and services markets are best characterized as flexible. However, wages are sticky due to the presence of minimum wages and the role of public sector wages as a reference point for the private sector wage levels. Moreover, unemployment in the region remains high.

As discussed above, in this AD-AS framework, the responses of real output and the price level to positive demand and supply shocks can be summarized as follows (Table 5).

<table>
<thead>
<tr>
<th>Output response to</th>
<th>Type of shock</th>
<th>Short Run</th>
<th>Long Run</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive AS shock</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
</tr>
<tr>
<td>Positive AD shock</td>
<td>Positive</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Price response to</th>
<th>Type of shock</th>
<th>Short Run</th>
<th>Long Run</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive AS shock</td>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>Positive AD shock</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
</tr>
</tbody>
</table>

III.2.2 Estimation Results

Data

We use annual and seasonally unadjusted data on real GDP and inflation from the five EAC countries for the period 1980 - 2009. The data was obtained from the African Development Bank online data platform. To avoid any spurious relationships the Ng-Perron unit-root test was used to determine the process generating the data series. The Ng-Perron unit-root test was used because experiences in the application of the Augmented-Dickey-Fuller (ADF) and Phillip-Perron (PP) unit root tests have shown that they are affected by finite sample power and size problems. Specific attention was given to the lag truncation criterion, with optimal lag determined as one. The results of the stationarity and estimation tests are presented in Annex B. Overall, output growth and inflation series from the five countries were found to be stationary while inflation data for Tanzania and Uganda only became stationary after the first difference.

Correlations of Demand and Supply Shocks

11 Real wages initially decline with price increases, leading to higher employment and output. With lag (in the long run), real wages adjust to their initial value.

12 While the depiction of the short-run AS relationship as a reduced form mark-up price-setting equation of a disequilibrium labor market has been questioned, Rao (2007), Boyd (2010) and others have supported it.

13 Identification of supply and demand shocks is detailed in Annex A.

14 DeJong, et al (1992) has shown that the ADF and PP tests can result in rejecting the alternative hypothesis of stationarity. On the other hand, the ADF and PP tests are also known to suffer from severe size distortions leading to bias towards rejecting the null hypothesis of non-stationarity (Schwert, 1989).
Table 6 presents correlation coefficients of the supply and demand shocks (the SVAR error terms) between Kenya and the remaining four EAC countries. Only recently the EAC members agreed on convergence criteria and none of them has satisfied them to date, leaving Kenya as a natural anchor. Kenya, the largest and most developed economy in the region was thus chosen as the reference point for the degree of convergence.

Table 6a. Correlation of shocks between Kenya and the EAC-4 (1981 – 2009)

<table>
<thead>
<tr>
<th>Country</th>
<th>Supply shock</th>
<th>Demand shock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burundi</td>
<td>0.0940</td>
<td>0.2429</td>
</tr>
<tr>
<td>Rwanda</td>
<td>0.0011</td>
<td>0.2779</td>
</tr>
<tr>
<td>Tanzania</td>
<td>0.1207</td>
<td>0.2510</td>
</tr>
<tr>
<td>Uganda</td>
<td>0.0113</td>
<td>-0.3034</td>
</tr>
</tbody>
</table>

Table 6b. Correlation of shocks between Kenya and the EAC-4 (1990 – 2009)

<table>
<thead>
<tr>
<th>Country</th>
<th>Supply shock</th>
<th>Demand shock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burundi</td>
<td>0.0432</td>
<td>0.1714</td>
</tr>
<tr>
<td>Rwanda</td>
<td>-0.0122</td>
<td>0.2101</td>
</tr>
<tr>
<td>Tanzania</td>
<td>-0.1574</td>
<td>0.5142*</td>
</tr>
<tr>
<td>Uganda</td>
<td>-0.0677</td>
<td>-0.0302</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations. * Indicates statistical significance. Note: Kenya is the reference country in the comparisons.

Table 6a shows the limited degree of shock synchronization between the EAC-4 (Burundi, Rwanda, Uganda, and Tanzania) and Kenya during 1981-2009. While most shocks are positively correlated, the correlation coefficients are low and none of them is statistically significant. Moreover, the demand shock has an opposite effect in Uganda. The results are not surprising in light of the major disparities in macroeconomic performances of the EAC countries, especially before 2000.

Impulse Response

This section utilizes impulse response function to examine responses of the EAC countries to the supply and demand shocks in terms of size and the speed of the adjustment. The larger the size of the shock and the slower the adjustment, the more costly it would be for a country to maintain membership in monetary union.

An examination of the impulse response functions (Figure 6) suggests that while demand shocks have no effect on the long-run output in Burundi, Rwanda and Uganda, adjustment to such shocks takes a minimum of three years. Such slow adjustment points to rigidities in the business environments and labor markets (greater wage stickiness, for example). Moreover, past demand shocks in Tanzania and Kenya seem to have a long-lasting effect on output, suggesting that these were accompanied by supply shocks (i.e. increases in government spending accompanied by greater outlays on infrastructure, which could increase the countries’ potential outputs).

On the other hand, and as predicted by the AD-AS framework, a positive income/output shocks appear to have long-run effects on inflation in all EAC countries, with the greatest
impacts in Uganda and Tanzania. These two countries have exhibited higher that the average regional variability in inflation. In general as low – income countries with high income propensity to consume, the EAC members may experience self-reinforcing effects when an income shocks occur. Specifically, a positive income shock may lead to higher demand response that is reflected in rising prices.

Figure 6: Impulse Responses to One S.D. in Shocks
Variance Decomposition

This section examines which of the underlying shocks – supply and demand – contributes most to the variance of output and prices. The information helps gauge the degree of convergence between their transmission mechanisms and coordination of their policies.

Variance decomposition of the structural VAR revealed that supply shocks accounted for most of the real output variability in all countries and tended to last longer. On the other hand, demand shocks had large effects on the variability in prices in all countries except Uganda. It is also observed that in Burundi prices responded more to output shocks than the rest of the regional countries. The immediate effect of the output shock was limited. As alluded to above, the high levels of inflation Uganda until the mid-1990s tended to reinforce inflationary pressures in the short-run. Results are detailed in Table 7.
Table 7: Variance Decompositions – Full Sample

<table>
<thead>
<tr>
<th>Period</th>
<th>Burundi</th>
<th>Kenya</th>
<th>Rwanda</th>
<th>Tanzania</th>
<th>Uganda</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q Variance to Own Shock</td>
<td>Q Variance to Inf Shock</td>
<td>Q Variance to Own Shock</td>
<td>Q Variance to Inf Shock</td>
<td>Q Variance to Own Shock</td>
</tr>
<tr>
<td>1</td>
<td>100.0</td>
<td>0.0</td>
<td>90.8</td>
<td>9.2</td>
<td>100.0</td>
</tr>
<tr>
<td>2</td>
<td>81.3</td>
<td>18.6</td>
<td>91.1</td>
<td>8.9</td>
<td>75.4</td>
</tr>
<tr>
<td>3</td>
<td>81.4</td>
<td>18.6</td>
<td>91.0</td>
<td>8.9</td>
<td>74.1</td>
</tr>
<tr>
<td>4</td>
<td>81.4</td>
<td>18.6</td>
<td>90.3</td>
<td>9.7</td>
<td>73.5</td>
</tr>
<tr>
<td>5</td>
<td>81.4</td>
<td>18.6</td>
<td>89.9</td>
<td>10.1</td>
<td>73.6</td>
</tr>
<tr>
<td>6</td>
<td>81.4</td>
<td>18.6</td>
<td>89.9</td>
<td>10.1</td>
<td>73.7</td>
</tr>
<tr>
<td>7</td>
<td>81.4</td>
<td>18.6</td>
<td>89.9</td>
<td>10.1</td>
<td>73.6</td>
</tr>
<tr>
<td>8</td>
<td>81.4</td>
<td>18.6</td>
<td>89.9</td>
<td>10.1</td>
<td>73.6</td>
</tr>
<tr>
<td>9</td>
<td>81.4</td>
<td>18.6</td>
<td>89.9</td>
<td>10.1</td>
<td>73.6</td>
</tr>
<tr>
<td>10</td>
<td>81.4</td>
<td>18.6</td>
<td>89.9</td>
<td>10.1</td>
<td>73.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Period</th>
<th>Inf Variance to Own Shock</th>
<th>Inf Variance to Inf Shock</th>
<th>Inf Variance to Own Shock</th>
<th>Inf Variance to Inf Shock</th>
<th>Inf Variance to Own Shock</th>
<th>Inf Variance to Inf Shock</th>
<th>Inf Variance to Own Shock</th>
<th>Inf Variance to Inf Shock</th>
<th>Inf Variance to Own Shock</th>
<th>Inf Variance to Inf Shock</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.7</td>
<td>92.3</td>
<td>1.3</td>
<td>98.7</td>
<td>1.0</td>
<td>99.0</td>
<td>0.1</td>
<td>99.9</td>
<td>9.0</td>
<td>91.0</td>
</tr>
<tr>
<td>2</td>
<td>29.8</td>
<td>70.2</td>
<td>5.7</td>
<td>94.3</td>
<td>18.7</td>
<td>81.3</td>
<td>3.7</td>
<td>96.3</td>
<td>44.2</td>
<td>55.8</td>
</tr>
<tr>
<td>3</td>
<td>34.2</td>
<td>65.8</td>
<td>5.7</td>
<td>94.3</td>
<td>21.5</td>
<td>78.5</td>
<td>8.4</td>
<td>91.6</td>
<td>68.5</td>
<td>31.5</td>
</tr>
<tr>
<td>4</td>
<td>34.7</td>
<td>65.3</td>
<td>6.7</td>
<td>93.3</td>
<td>22.4</td>
<td>77.6</td>
<td>10.7</td>
<td>89.3</td>
<td>75.3</td>
<td>24.7</td>
</tr>
<tr>
<td>5</td>
<td>35.1</td>
<td>64.9</td>
<td>7.4</td>
<td>92.6</td>
<td>22.5</td>
<td>77.5</td>
<td>12.2</td>
<td>87.8</td>
<td>76.8</td>
<td>23.2</td>
</tr>
<tr>
<td>6</td>
<td>35.4</td>
<td>64.6</td>
<td>7.6</td>
<td>92.4</td>
<td>22.5</td>
<td>77.5</td>
<td>13.2</td>
<td>86.8</td>
<td>76.9</td>
<td>23.1</td>
</tr>
<tr>
<td>7</td>
<td>35.5</td>
<td>64.5</td>
<td>7.6</td>
<td>92.4</td>
<td>22.5</td>
<td>77.5</td>
<td>13.8</td>
<td>86.2</td>
<td>77.0</td>
<td>23.0</td>
</tr>
<tr>
<td>8</td>
<td>35.7</td>
<td>64.3</td>
<td>7.6</td>
<td>92.4</td>
<td>22.5</td>
<td>77.5</td>
<td>14.3</td>
<td>85.7</td>
<td>77.2</td>
<td>22.8</td>
</tr>
<tr>
<td>9</td>
<td>35.6</td>
<td>64.4</td>
<td>7.6</td>
<td>92.4</td>
<td>22.5</td>
<td>77.5</td>
<td>14.7</td>
<td>85.3</td>
<td>77.4</td>
<td>22.6</td>
</tr>
<tr>
<td>10</td>
<td>35.6</td>
<td>64.4</td>
<td>7.6</td>
<td>92.4</td>
<td>22.5</td>
<td>77.5</td>
<td>15.0</td>
<td>84.9</td>
<td>77.5</td>
<td>22.5</td>
</tr>
</tbody>
</table>

Note: Inf = Inflation; Q = Output

IV. Conclusions and Policy Recommendations

Would the EAC countries benefit from fast monetary integration, i.e. adopting a single currency by 2015, as stated in recent policy documents? In this paper, we apply the OCA approach to gain some insights into this issue. Both the OCA theory and the actual practice of monetary integration are underpinned by a diverse set of factors, including politics, increased credibility of monetary policy and more favorable expectations. Given this complexity, there is no (and cannot be) a “benchmark correlation coefficient” that would determine that the shock correlation of a country with potential monetary zone is sufficient for it to benefit from a common currency. Still, given the EAC’s low -- albeit increasing -- synchronization of shocks and business cycles as well as the rigidities in the business environment and underdeveloped infrastructure, costs of a quick adoption of common currency in the region are likely to exceed its benefits.

While the OCA approach is only one angle that countries consider when deciding whether or not to proceed with monetary integration, the revealed shock asymmetry cautions against hasty process. It underscores the importance of developing broader...
adjustment mechanisms other than monetary and exchange rate policies. Labor and product market flexibility, and integration financial markets are critical before establishing the EAMU. These mechanisms are crucial not only for the EAC’s monetary integration, but first of all for creating a prosperous and economically well connected region that could compete in the global economy.

The absence of macroeconomic convergence further strengthens the case against a hurried transition into a monetary union in the EAC. Given the divergent macroeconomic outcomes in the EAC countries, structural reforms, including closing infrastructure gaps, and harmonized macroeconomic policies that would raise synchronization of business cycles need to be in place before a definite move to monetary union is put on policy agenda. In that context, the role of appropriately prudent and coordinated fiscal policy cannot be emphasized enough. As the example of the Eurozone shows, well-functioning fiscal transfer system may be needed for the longer-term viability of monetary union. Strengthening institutions charged with coordinating the regional integration agenda and increased information sharing within the region would also help in this regard.

15 While the compensation framework to cover costs of implementing the EAC protocol is in place, it could come under immense pressure if the transition to the EAMU is hurriedly established.
References

Annex A. The AD-AS Framework and Identification of Supply and Demand Shocks

Formally, the AD-AS framework is described as:

\[y_t^S = E_{t-1} y_t + \alpha (p_t - E_{t-1} p_t) + \varepsilon_t^S \] \hspace{1cm} (A1)

\[y_t^D + p_t = E_{t-1} (y_t^D + p_t) + \varepsilon_t^D \] \hspace{1cm} (A2)

\[y_t = y_t^S = y_t^D \] \hspace{1cm} (A3)

where \(y_t \) is (the log of) output in period \(t \), and \(E_{t-1} y_t \) is (the log of) output expected in period \(t \) given information at \(t-1 \). Similarly, \(p_t \) is (the log of) price level in period \(t \), while \(E_{t-1} p_t \) is (the log of) price level expected at \(t-1 \). The superscripts \(S \) and \(D \) represent supply and demand, and \(\varepsilon_t^S \) and \(\varepsilon_t^D \) denote the (serially uncorrelated) structural aggregate supply and structural aggregate demand shock, respectively.

Equation (A1) is the AS curve, where output increases with unexpected increases in the positive supply shocks and price level. The AD in (A2) increases with its expected value and positive demand shocks. In (A1) – (A3) the long-run independence of nominal and real variables are independent in the long run, as the short run AS curve is upward sloping, but the long-run AS curve is vertical. System (A1) – (A3) can be written as:

\[
\begin{bmatrix}
 y_t \\
 p_t
\end{bmatrix}
= \begin{bmatrix}
 E_{t-1} y_t \\
 E_{t-1} p_t
\end{bmatrix} + \begin{bmatrix}
 1 \\
 \frac{1}{1 + \alpha}
\end{bmatrix} \begin{bmatrix}
 \alpha \\
 \frac{1}{1 + \alpha}
\end{bmatrix} \begin{bmatrix}
 \varepsilon_t^S \\
 \varepsilon_t^D
\end{bmatrix}
\] \hspace{1cm} (A4)

The joint process of changes in real output and prices can be represented by an infinite moving average representation of a vector of two variables -- real output and prices) and a vector of supply and demand shocks:

\[X_t = A_0 \varepsilon_t + A_1 \varepsilon_{t-1} + A_2 \varepsilon_{t-2} + \ldots = \sum_{i=0}^{\infty} L^i A_i \varepsilon_t \] \hspace{1cm} (A5)

where \(X_t = \begin{bmatrix} y_t \\ \pi_t \end{bmatrix} \), \(\varepsilon_t = \begin{bmatrix} \varepsilon_t^S \\ \varepsilon_t^D \end{bmatrix} \), and \(L \) is the lag operator. The matrices \(A_i \) represent the impulse response functions that transmit effects of the shocks to the variables (elements of \(X_t \)). A finite version of (A5) can be estimated as VAR:
The matrices B_i can be estimated from $A_i = B_iA_0$ and $\sum_{i=0}^{\infty} A_i = \sum_{i=0}^{\infty} B_iA_0$. The regression residuals e_{yt}, e_{pt} consist of the underlying structural supply and demand shocks ε_t^D, ε_t^S. Since these shocks are not observed, they need to be identified from the VAR residuals. The equations (A5) – (A7) describe the relationship between the estimated residuals (e) and the original shocks (ε), which can be written as $e_j = A_0\varepsilon_j$:

$$
\begin{bmatrix}
e_{yt}\\ e_{pt}
\end{bmatrix} =
\begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{bmatrix}
\begin{bmatrix}
\varepsilon_t^S \\
\varepsilon_t^D
\end{bmatrix}
$$

(A8)

where a_{ij} is the effect of shock j on variable i. Therefore we need to know the elements of A_0 to calculate the underlying supply and demand shocks. From (A4), the variance-covariance matrix of the VAR residuals e_{yt}, e_{pt} is given by:

$$
\begin{bmatrix}
Var(e_{yt}) & Cov(e_{yt}, e_{pt}) \\
Cov(e_{yt}, e_{pt}) & Var(e_{pt})
\end{bmatrix} =
\begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{bmatrix}
\begin{bmatrix}
\sigma_{S}^2 & \sigma_{SD} \\
\sigma_{SD} & \sigma_{D}^2
\end{bmatrix}
\begin{bmatrix}
a_{11} & a_{21} \\
a_{12} & a_{22}
\end{bmatrix}
$$

(A9)

Since estimation of the VAR yields $Var(e_{yt}), Var(e_{pt}), Cov(e_{yt}, e_{pt})$, the identification of the structural model requires four restrictions being imposed on the VAR. Standard assumptions are that $\sigma_S^2 = 1, \sigma_D^2 = 1$, that is variability of the demand and supply shocks is equal and normalized to unity, and that the shocks to aggregate demand and supply are uncorrelated with each other, $Cov(\varepsilon_S, \varepsilon_D) = 0$. In addition, the long-run neutrality restriction implies that cumulative effect of demand shocks on output must be zero, that is $\sum_{j=1}^{\infty} a_{12}(j) = 0$ (demand shocks has no permanent impact on output). Alternatively, the last restriction can be written as $a_{12}[1-b_{22}(1)] + a_{22}b_{12}(1) = 0$. Finally, model assumptions that positive demand shock will raise prices in both short and long run, while positive supply shock will lower them are below used for interpreting the results of the model.
Annex B Tests for Stationarity and Residual Normality

Ng-Perron Stationarity Statistics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Burundi</td>
<td>GDP Growth</td>
<td>-9.27826</td>
<td>-6.83788</td>
</tr>
<tr>
<td></td>
<td>Inflation</td>
<td>-12.7881</td>
<td>-8.72226</td>
</tr>
<tr>
<td>Kenya</td>
<td>GDP Growth</td>
<td>-11.1380</td>
<td>-8.29530</td>
</tr>
<tr>
<td></td>
<td>Inflation</td>
<td>-10.1670</td>
<td>-6.60626</td>
</tr>
<tr>
<td>Rwanda</td>
<td>GDP Growth</td>
<td>-13.8411</td>
<td>-9.31760</td>
</tr>
<tr>
<td></td>
<td>Inflation</td>
<td>-8.94909</td>
<td>-10.8064</td>
</tr>
<tr>
<td>Tanzania</td>
<td>GDP Growth</td>
<td>-10.9057</td>
<td>-8.79786</td>
</tr>
<tr>
<td></td>
<td>Inflation</td>
<td>-1.60702**</td>
<td>-2.30190**</td>
</tr>
<tr>
<td>Uganda</td>
<td>GDP Growth</td>
<td>-9.08951</td>
<td>-644.906</td>
</tr>
<tr>
<td></td>
<td>Inflation</td>
<td>-4.65552**</td>
<td>-6.29288</td>
</tr>
</tbody>
</table>

*Ng-Perron (2001) Table 1

Asymptotic critical values

1% -13.8000
5% -8.10000
10% -5.70000

Notes: ** Stationary after differencing once

Example of the VAR Residual Normality Tests for Tanzania

<table>
<thead>
<tr>
<th>Component</th>
<th>Skewness</th>
<th>Chi-sq</th>
<th>df</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.940304</td>
<td>16.94151</td>
<td>1</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>0.645145</td>
<td>1.872955</td>
<td>1</td>
<td>0.1711</td>
</tr>
</tbody>
</table>

Joint 18.81446 2 0.0001

<table>
<thead>
<tr>
<th>Component</th>
<th>Kurtosis</th>
<th>Chi-sq</th>
<th>df</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.575759</td>
<td>34.97522</td>
<td>1</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>3.098419</td>
<td>0.010897</td>
<td>1</td>
<td>0.9169</td>
</tr>
</tbody>
</table>

Joint 34.98612 2 0.0000

<table>
<thead>
<tr>
<th>Component</th>
<th>Jarque-Bera</th>
<th>df</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>51.91673</td>
<td>2</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>1.883852</td>
<td>2</td>
<td>0.3899</td>
</tr>
</tbody>
</table>

Joint* 53.80058 4 0.0000

* Null Hypothesis that residuals are multivariate normal cannot be rejected using the joint Jarque-Bera test.
VAR Lag Order Selection

<table>
<thead>
<tr>
<th>Endogenous variables:</th>
<th>Lag</th>
<th>FPE</th>
<th>AIC</th>
<th>SC</th>
<th>HQ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1172.426</td>
<td>12.74250</td>
<td>12.84001</td>
<td>12.76954</td>
</tr>
<tr>
<td>GDPB, INF B</td>
<td>1</td>
<td>857.4511*</td>
<td>12.42739*</td>
<td>12.71992*</td>
<td>12.50853*</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>949.3369</td>
<td>12.52059</td>
<td>13.00814</td>
<td>12.65581</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1180.660</td>
<td>12.71885</td>
<td>13.40142</td>
<td>12.90817</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1493.049</td>
<td>12.91679</td>
<td>13.79438</td>
<td>13.16019</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>403.3516</td>
<td>11.67548</td>
<td>11.77299</td>
<td>11.70252</td>
</tr>
<tr>
<td>GDPK, INF K</td>
<td>1</td>
<td>315.3601*</td>
<td>11.42715*</td>
<td>11.71968*</td>
<td>11.50828*</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>400.6108</td>
<td>11.65781</td>
<td>12.14536</td>
<td>11.79304</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>502.4777</td>
<td>11.86458</td>
<td>12.54715</td>
<td>12.05389</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>440.8077</td>
<td>11.69682</td>
<td>12.57441</td>
<td>11.94023</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>30860.12</td>
<td>16.01289</td>
<td>16.11040</td>
<td>16.03993</td>
</tr>
<tr>
<td>GDPR, INF R</td>
<td>1</td>
<td>6900.221*</td>
<td>14.51274*</td>
<td>14.80527*</td>
<td>14.59387*</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>8017.876</td>
<td>14.65425</td>
<td>15.14180</td>
<td>14.78948</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>9004.647</td>
<td>14.75052</td>
<td>15.43309</td>
<td>14.93984</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>9819.409</td>
<td>14.80033</td>
<td>15.67792</td>
<td>15.04373</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1224.112</td>
<td>12.78564</td>
<td>12.88315</td>
<td>12.81269</td>
</tr>
<tr>
<td>GDPT, INF T</td>
<td>1</td>
<td>180.9008*</td>
<td>10.87138*</td>
<td>11.16391*</td>
<td>10.95251*</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>248.4010</td>
<td>11.17987</td>
<td>11.66742</td>
<td>11.31509</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>305.0350</td>
<td>11.36545</td>
<td>12.04802</td>
<td>11.55477</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>409.8930</td>
<td>11.62411</td>
<td>12.50170</td>
<td>11.86751</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>32088.84</td>
<td>16.05193</td>
<td>16.14944</td>
<td>16.07898</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>7307.924</td>
<td>14.56154</td>
<td>15.04909</td>
<td>14.69676</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5839.882</td>
<td>14.31749</td>
<td>15.00006</td>
<td>14.50681</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4557.396*</td>
<td>14.03272*</td>
<td>14.91031</td>
<td>14.27612*</td>
</tr>
</tbody>
</table>

* indicates lag order selected by the criterion
LR: sequential modified LR test statistic (each test at 5% level)
FPE: Final prediction error
AIC: Akaike information criterion
SC: Schwarz information criterion
HQ: Hannan-Quinn information criterion.
<table>
<thead>
<tr>
<th>Publication</th>
<th>Authors</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1028: International Stock Market Integration: Central and South Eastern Europe Compared</td>
<td>Roman Horvath & Dragan Petrovski</td>
<td>Feb 2012</td>
</tr>
<tr>
<td>No. 1027: LABOUR MARKET REFORMS AND OUTCOMES IN ESTONIA</td>
<td>Zuzana Brixiova and Balazs Egert</td>
<td>Feb 2012</td>
</tr>
<tr>
<td>No. 1025: CREDIT CONSTRAINTS AND PRODUCTIVE ENTREPRENEURSHIP IN AFRICA</td>
<td>Mina Baliamoune-Lutz, Zuzana Brixiova & Léonce Ndikumana</td>
<td>Dec 2011</td>
</tr>
<tr>
<td>No. 1024: Entry Costs and Increasing Trade</td>
<td>William F. Lincoln and Andrew McCallum</td>
<td>Nov 2011</td>
</tr>
<tr>
<td>No. 1023: The Dependence Of CEECs On Foreign Bank Claims: Direct And Indirect Risks Of Capital Withdrawal</td>
<td>Sophie Brana and Delphine Lahet</td>
<td>Nov 2011</td>
</tr>
<tr>
<td>No.1022: The Development Effects Of Natural Resources: A Geographical Dimension</td>
<td>Fabrizio Carmignani & Abdur Chowdhury</td>
<td>Nov 2011</td>
</tr>
<tr>
<td>No. 1020: Volatility transmission in emerging European foreign exchange markets</td>
<td>Evzen Kocenda, Vit Bubak & Filip Zikes</td>
<td>July 2011</td>
</tr>
<tr>
<td>No. 1019: Whither human capital? The woeful tale of transition to tertiary education in India</td>
<td>Sumon Bhaumik and Manisha Chakrabarty</td>
<td>July 2011</td>
</tr>
<tr>
<td>No. 1017: Institutions, Governance and Technology catch-up in North Africa</td>
<td>Imed Drine</td>
<td>May 2011</td>
</tr>
<tr>
<td>No. 1016: Financial Efficiency and the Ownership of Czech Firms</td>
<td>Evzen Kocenda, Jan Hanousek and Michal Masika</td>
<td>May 2011</td>
</tr>
<tr>
<td>No. 1015: Default Predictors in Retail Credit Scoring: Evidence from Czech Banking Data</td>
<td>Evzen Kocenda & Martin Vojtek</td>
<td>April 2011</td>
</tr>
<tr>
<td>No. 1014: Exchange Rate Pass-Through in Transition Economies: The Case of Republic of Macedonia</td>
<td>Besnik Fetai</td>
<td>April 2011</td>
</tr>
<tr>
<td>No. 1013: Establishing Data Collection Procedures Equivalence in International Business Research</td>
<td>Agnieszka Chidlow & Pervez N. Ghauri</td>
<td>March 2011</td>
</tr>
<tr>
<td>No. 1012: The Link between Innovation and Productivity in Estonia’s Service Sectors</td>
<td>Prit Vahter & Jaan Masso</td>
<td>March 2011</td>
</tr>
<tr>
<td>No. 1011: Learning by exporting: evidence based on data of knowledge flows from innovation surveys in Estonia</td>
<td>Prit Vahter</td>
<td>Feb 2011</td>
</tr>
<tr>
<td>No. 1009: Industrial Enlargement And Competitiveness Index</td>
<td>Art Kovacic</td>
<td>Jan 2011</td>
</tr>
<tr>
<td>No. 1008: SUPPORTING AFRICA’S POST-CRISIS GROWTH: THE ROLE OF MACROECONOMIC POLICIES</td>
<td>Zuzana Brixiova, Leonce Ndikumana & Kaouther Abderrahim</td>
<td>Jan 2011</td>
</tr>
<tr>
<td>No. 1007: The Funding & Efficiency of Higher Education in Croatia & Slovenia: A Non-Parametric Comparison w/ the EU & OECD Countries.</td>
<td>Aleksander Aristovnik and Alka Obadic</td>
<td>Jan 2011</td>
</tr>
</tbody>
</table>