THE DCC PROTEIN AND PROGNOSIS IN COLORECTAL CANCER

DAVID SHIBATA, M.D., MICHAEL A. REALE, M.D., PH.D., PHILIP LAVIN, PH.D., MARK SILVERMAN, M.D.,
ERIC R. FEARON, M.D., PH.D., GLENN STEELE, JR., M.D., PH.D., JOHN M. JESSUP, M.D., MASSIMO LODA, M.D.,
AND IAN C. SUMMERHAYES, PH.D.

ABSTRACT

Background Allelic loss of chromosome 18q predicts a poor outcome in patients with stage II colorectal cancer. Although the specific gene inactivated by this allelic loss has not been elucidated, the DCC (deleted in colorectal cancer) gene is a candidate. We investigated whether the expression of the DCC protein in tumor cells is a prognostic marker in colorectal carcinoma.

Methods The expression of DCC was evaluated immunohistochemically in 132 paraffin-embedded samples from patients with curatively resected stage II or III colorectal carcinomas. The Cox proportional-hazards model was used to adjust for covariates including age, sex, tumor site, degree of tumor differentiation, and use of adjuvant therapy.

Results The expression of DCC was a strong positive predictive factor for survival in both stage II and stage III colorectal carcinomas. In patients with stage II disease whose tumors expressed DCC, the five-year survival rate was 94.3 percent, whereas in patients with DCC-negative tumors, the survival rate was 61.6 percent (P<0.001). In patients with stage III disease, the respective survival rates were 59.3 percent and 33.2 percent (P=0.03).

Conclusions DCC is a prognostic marker in patients with stage II or stage III colorectal cancer. In stage II colorectal carcinomas, the absence of DCC identifies a subgroup of patients with lesions that behave like stage III cancers. These findings may thus have therapeutic implications in this group of patients.

©1996, Massachusetts Medical Society.

THE DCC PROTEIN AND PROGNOSIS IN COLORECTAL CANCER

TAGE II or Dukes’ stage B2 colorectal cancer accounts for approximately one third of the cases of colorectal cancer diagnosed annually in the United States. Surgery can cure 80 percent of these cases, but the prognosis is poor in the remainder, and unlike stage III colorectal cancer, stage II disease does not benefit from adjuvant therapy.

A recent study by Jen et al. found that allelic loss of chromosome 18q was linked to the prognosis in patients with stage II colorectal cancer. The retention of both alleles predicted a favorable outcome, whereas the loss of one allele predicted a poor outcome, similar to the outcome of stage III tumors. The determination of chromosome 18q status may thus help stratify patients with stage II disease into good-risk and poor-risk groups.

The specific gene affected by the allelic loss in the colorectal cancers studied by Jen et al. was not identified, but the DCC (deleted in colorectal cancer) gene, which is in chromosome 18q21.2 immediately adjacent to the loci evaluated, is a strong candidate. Hahn et al. recently discovered a gene within that region that they mapped to chromosome 18q21.1 and termed DPC4 (deleted in pancreatic cancer locus 4). This gene, which seems distinct from DCC, also has to be taken into account when loss of heterozygosity occurs in chromosome 18q. To further evaluate the DCC gene in colon cancer, we examined the expression of the DCC protein in stage II and III colorectal cancers immunohistochemically and assessed its importance as an independent prognostic marker.

METHODS

Patients and Tumor Specimens

One hundred thirty-two formalin-fixed, paraffin-embedded samples from patients with stage II or stage III sporadic colorectal carcinomas were obtained from the archival tumor banks of the Joint Center for Radiation Therapy–New England Deaconess Hospital in Boston, and the Lahey–Hitchcock Medical Center in Burlington, Mass. Curative resections were performed from 1965 through 1975 and 1988 through 1990, respectively. Having been compiled for research purposes, the data from these sources represented groups of patients for whom archival tissue and adequate data on pathological findings and clinical follow-up were readily available. Staging was based on pathological and surgical results. Follow-up for this retrospective analysis was carried out by reviewing the patients’ records and contacting the patients’ physicians, with results confirmed as of March 10, 1996.

Antibodies

Paraffin-embedded tumor sections were initially evaluated immunohistochemically with a panel of antibodies against DCC. One monoclonal antibody (clone 97-449, Pharmingen, San Diego, Calif.) and three polyclonal antibodies, 721, 723, and 724, all recognizing epitopes in the cytoplasmic domain of DCC, were used. Antibody 721 was raised against a hexahistidine human...
DCC cytoplasmic-domain fusion protein and purified by affinity chromatography on an antigen--agarose column. Antibodies 723 and 724 were raised against a hexahistidine xenopus DCC cytoplasmic-domain fusion protein and purified in a similar manner. The specificity of each antibody was demonstrated by Western blot analysis with tissue from the central nervous system, where DCC is expressed at high levels, and subsequently tested by immunohistochemical staining of colon tissue. All four antibodies produced an identical pattern of staining of the cytoplasm. Specimens in this study were processed with the arbitrarily chosen antibody 723.

Immunohistochemical Analysis

Individual tissue sections of 4 to 5 μm were deparaffinized and heated in a 10 mM citric acid monophosphate buffer (pH 6.0) for 30 minutes in a 1.35-kW microwave oven (model MWS620T, Samsung, Suwon, Korea) at high power. This method of enhancing the recognition of antigen in archival tissue is termed antigen retrieval. To minimize the evaporation of buffer during heating, the tissue slides were microwaved in a nonmetallic kitchen pressure cooker (Nordicware, Minneapolis). Immunohistochemical staining was performed with either an automated immunohistochemical processor (model 320, Ventana Medical Systems, Tucson, Ariz.) or, manually, with the Vectastain Elite ABC reagent kit (Vector Laboratories, Burlingame, Calif.). The primary antibody was used at a dilution of 1:500. The horseradish peroxidase--conjugated secondary antibodies we used were goat antimouse IgG for the monoclonal antibody and goat antirabbit IgG for the polyclonal serum. Slides were counterstained with methyl green or hematoxylin--copper sulfate bluing reagent, rehydrated, and then mounted with Permaslip solution (Alban Scientific, St. Louis). Controls from each specimen were exposed to phosphate-buffered saline, rabbit preimmune serum, or an isotype-matched irrelevant monoclonal antibody, where appropriate. In antibody-adsorption studies, antibodies were incubated overnight at 4°C in the presence of excess peptide antigen. These preparations were then used in immunohistochemical studies.

The status of DCC was assessed in a coded manner by a surgical pathologist without knowledge of the clinical and pathological features of the case or the clinical outcome. At the outset, samples were to be regarded as positive for DCC when at least 25 percent of the tumor cells were immunoreactive. However, this classification proved to be unnecessary, since staining for DCC turned out to be an “all-or-nothing” phenomenon.

Statistical Analysis

The primary outcome in this study was overall survival, as measured from the date of surgery to the time of the last follow-up visit or death. Data on survival were censored if the patient was still alive at the time of the last follow-up visit or had died from other causes. Survival curves were constructed according to the method of Kaplan and Meier. The sample size was adequate to detect with 90 percent power a hazard ratio of 2 for the risk of death associated with DCC status (positivity vs. negativity) for both stage II and stage III disease. The survival curves for stage II and stage III colorectal cancer were compared on the basis of the Cox proportional-hazards model and the distribution of each base-line covariate: age (<65 or ≥65), sex, site of the tumor (colon vs. rectum), the degree of differentiation of the tumor (poorly differentiated vs. well or moderately well differentiated), the use of radiation or chemotherapy, the tumor-node--metastasis (TNM) stage, and DCC status. All covariates were retained in the model to illustrate the lack of effect in the presence of other significant factors. The distribution of each base-line covariate was compared for DCC--negative and DCC--positive subgroups with the Wilcoxon rank-sum test for continuous data and Fisher's exact test for categorical data. A P value of less than 0.05 was considered to indicate statistical significance. All tests were two-sided.

RESULTS

Immunohistochemical Staining

If the antigen-retrieval technique was not used, only faint, patchy staining was observed with the different anti-DCC antibodies. By contrast, after treatment of the sections by microwaving, all four anti-DCC antibodies produced distinct granular cytoplasmic staining in identical patterns (Fig. 1). Staining was abolished when the antibody was first adsorbed with the appropriate peptide antigen (data not shown). Normal colonic mucosa displayed uniform staining of DCC throughout the crypt and luminal epithelial cells; there was no detectable immunoreactivity in nonepithelial cells (Fig. 1A). DCC was also observed in seven of seven incidental adenomatous polyps (Fig. 1B); cells with adenomatous changes and normal mucosa adjacent to the tumor tissue provided positive internal controls for reliably assessing the presence or absence of DCC in the carcinoma. In the cancers in which DCC was detected, a homogeneous pattern of staining was observed throughout the tumor mass (Fig. 1C). Table 1 summarizes the DCC-staining status of the 132 tissue samples.

Characteristics of the Patients

Table 1 gives the relevant clinical characteristics of the 132 patients whose tumors were analyzed immunohistochemically. The study population was evenly divided between men and women, and the mean age was 65.4 years. Neither sex nor age correlated with positivity for DCC (P = 0.06 and 0.90, respectively). In approximately two thirds of the patients, the tumor was confined to either the right or left colon; the remaining third had carcinoma of the rectum. There was no difference in the frequency of the absence of DCC in tumors from these sites (P = 1.00). Tumors from 50 percent of the patients had no detectable DCC. DCC was absent in 50 percent of the patients with stage II disease and 50 percent of those with stage III cancer. Of the tumors evaluated, 86 percent were either well or moderately well differentiated; 14 percent were poorly differentiated. The TNM stage was not associated with DCC status (P = 0.31). Although the majority of patients who received adjuvant therapy were categorized as having stage III cancer, there was no significant difference in this group between those who were DCC-positive and those who were DCC-negative (P = 0.44). The mean duration of follow-up was 95.7 months for patients with DCC-positive tumors and 85.1 months for those with DCC-negative tumors (P = 0.96).

The Expression of DCC and Prognosis

The overall survival of the patients in our study was consistent with other survival data for colorectal carcinoma. As expected, the TNM stage was an im-
important prognostic factor (Fig. 2). The overall 5-year survival rate was 78.0 percent for patients with stage II disease and 46.2 percent for those with stage III disease, with median follow-up times of 74.9 months and 78.5 months, respectively. Figure 3 shows Kaplan–Meier life-table analyses of patients with stage II disease, stratified according to DCC status. The 5-year survival rate for patients with DCC-positive tumors (median follow-up, 74.8 months) was 94.3 percent, whereas the rate was 61.6 percent for patients with DCC-negative tumors (median follow-up, 76.9 months). The 5-year survival rate was 59.3 percent among patients with DCC-positive stage III disease and 33.2 percent among patients with DCC-negative stage III tumors, with median follow-up times of 81.0 and 75.0 months, respectively (Fig. 3). The outcome in patients with DCC-negative stage II tumors was very similar to the outcome in patients with DCC-positive stage III tumors (Fig. 3). At the conclusion of the study, 64 percent of patients with DCC-positive tumors were alive, as compared with 33 percent of patients with DCC-negative tumors (P<0.001).

Multivariate Analysis

Multivariate analysis with the Cox proportional-hazards model showed that tumor stage (relative risk of death associated with stage III, 3.1; P<0.001) and DCC status (relative risk of death associated with DCC-negativity, 3.2; P<0.001) were independent prognostic factors (Table 2), whereas age, sex, tumor site, and adjuvant therapy were not significant independent indicators of prognosis. When
Our results demonstrate that the immunohistochemical assessment of DCC in colorectal carcinomas provides information about prognosis in patients with stage II and III cancers. In patients with stage II disease and DCC-negative tumors, the clinical outcome was similar to that in patients with stage III disease. Patients with DCC-positive stage II tumors, by contrast, had significantly longer overall survival.

The patients were stratified according to stage and temporal cohort, adjuvant therapy was not a significant prognostic indicator (data not shown). An unfavorable tumor grade (poorly differentiated vs. well or moderately well differentiated), by contrast, was predictive of mortality (relative risk, 2.2; \(P = 0.02 \)). The results of the multivariate analysis of maximum-likelihood estimates are given in Table 2.

DISCUSSION

Our results demonstrate that the immunohistochemical assessment of DCC in colorectal carcinomas provides information about prognosis in patients with stage II and III cancers. In patients with stage II disease and DCC-negative tumors, the clinical outcome was similar to that in patients with stage III disease. Patients with DCC-positive stage II tumors, by contrast, had significantly longer overall survival. Half the tumors we studied were DCC-negative, with no significant difference in the frequency of DCC-negative tumors between stage II (50 percent DCC-negative) and stage III (50 percent DCC-negative) cancers. The absence of DCC in stage III tumors was also predictive of a poor outcome, but not to the same extent as in patients with stage II tumors. The only other significant independent prognostic indicators that we found were tumor grade and stage.

Our study of DCC arose from questions about the loss of heterozygosity in chromosome 18q in colorectal tumors and other malignant conditions.\(^8,15,31\) Analysis of the loss of heterozygosity can-
not pinpoint the lost allele in the deletion region encompassing the DCC gene (chromosome 18q21.2), a point highlighted by the mapping of the DPC4 gene to the same region (chromosome 18q21.1). Reports of reduced levels of DCC messenger RNA in different kinds of tumors known to have undergone allelic loss of chromosome 18q26,32,33 support the loss of a DCC allele, but immunohistochemical analyses of DCC in tissues, which used several anti-DCC antibodies and frozen tissue sections, gave conflicting results.34,36 Like others, we observed that frozen sections of normal human colonic tissue did not stain with anti-DCC antibodies. However, by retrieving the antigen with microwaving, we were able to detect DCC in formalin-fixed, paraffin-embedded tissue sections. Under such conditions we found DCC protein throughout the normal colonic mucosa using four different DCC antibodies. Staining in the human cerebellum was confined to the Purkinje cells, verifying previous results with immunostaining procedures.15 We are indebted to Dr. David Schoetz, Dr. Anjelica Selim, Mr. William Hamilton, Mr. Ronald Schnirel, and Mr. Jeffrey Martin for their valuable assistance.

Supported by a grant (CA44704) from the National Institutes of Health (to Dr. Summernays).

We are indebted to Dr. David Schoetz, Dr. Anjelica Selim, Mr. William Hamilton, Mr. Ronald Schnirel, and Mr. Jeffrey Martin for their valuable assistance.

REFERENCES

1732

sion and alternative splicing of the deleted in colorectal cancer (DCC) gene in
11. Brown BW, Chiralá R. Utility of microwave-citrate antigen retrieval in
12. Kaplan EL, Meier P. Nonparametric estimation from incomplete ob
187-220.
14. Kodner JI, Fry RD, Fleshman JW, Birnbaum EH. Colon, rectum, and an
17. Scheck AC, Coons SW. Expression of the tumor suppressor gene DCC in
the deleted in colorectal carcinoma gene locus and its association with
histologic phenotypes in breast carcinoma. Virchows Arch 1995;426:441-
6.
20. Lumadue JA, Griffin CA, Osman M, Hruban RH. Familial pancreatic can
75:845-55.
tations and allelic deletion of tumor suppressor gene DCC in human esopha
geval squamous cell carcinomas and their relation to metastasis. Can
22. Cordon-Cardo C, Dubbign G, Sarkis AS, Reuter VE. Genetic altera
23. Brewster SF, Gingell JC, Browne S, Brown KW. Loss of heterozygosity on
chromosome 18q is associated with muscle-invasive transitional cell car
24. Brewster SF, Browne S, Brown KW. Somatic allelic loss at the DCC, APC,
nm23-H1 and p53 tumor suppressor gene loci in human prostatic car
25. Murty VV, Li RG, Houldsworth J, et al. Frequent allelic deletions and
loss of expression characterize the DCC gene in male germ cell tumors.
alteration in human endometrial carcinomas. Int J Cancer 1994;57:
480-5.
heterozygosity in the DCC gene in neoplasms of the human female repro
in colorectal carcinoma gene in human primary leukemia. Blood 1993;82:
927-30.
30. Frosgott NJ, Leveson SH, Garner RC. Low frequency and late occur
rence of p53 and dcc aberrations in colorectal tumours. J Cancer Res Clin
heterozygosity of tumour suppressor gene loci in human colorectal car
32. Gao X, Homin KV, Grignon D, Sakr W, Chen YQ. Frequent loss of ex
pression and loss of heterozygosity of the putative tumor suppressor gene
33. Hohne MW, Halatsch ME, Kahl GF, Weinel RJ. Frequent loss of ex
pression of the potential tumor suppressor gene DCC in ductal pancreatic
DCC gene product in cellular differentiation and colorectal tumor
35. Chuong CM, Jiang TX, Yin E, Widelitz RB. DCC (chicken homo
logue to a gene deleted in colorectal cancer) is an epithelial adhesion
molecule expressed in the basal cells and involved in epithelial-mesenchy
leted in colon (DCC) protein in human tissues. Cancer Res 1995;
37. Lawlor KG, Narayan R. Persistent expression of the tumor suppressor
gene DCC is essential for neuronal differentiation. Cell Growth Differ
the deleted in colorectal cancer tumor suppressor gene product stimu
late neurite outgrowth in rat PC12 pheochromocytoma cells. J Cell Biol
putative tumor-suppressor gene DCC transforms Rat-l fibroblasts. Onc
40. Shibata D, Rieger KM, Hess DT, Summerhayes IC, Steele G Jr. Disrup
tion of DCC expression results in the acquisition of metastatic cell be
suppresses the malignant phenotype of transformed human epithelial cells.
DCC (Deleted in Colorectal Cancer), is required in motile cells re
44. Kolodziej PA, Timpe LC, Mitchell KJ, et al. Frazzled encodes a dros
ophila member of the DCC immunoglobulin subfamily and is required for
ysis and mutations in colorectal carcinomas. Genomics 1994;19:525-
31.