Evaluating Criticism of Smart Growth

By Todd Litman
Victoria Transport Policy Institute

8 April 2004

Abstract
This paper evaluates various criticisms of Smart Growth. It defines the concept of Smart Growth, contrasts it with sprawl, and describes common Smart Growth strategies. It examines various criticisms of Smart Growth, including the claim that it does not reflect consumer preferences, infringes on freedom, increases traffic congestion and air pollution, reduces housing affordability, results in socially undesirable levels of density, increases public service costs, requires wasteful transit subsidies and is unjustified. Some specific critics’ papers are examined. This analysis indicates that many claims by critics reflect an incomplete understanding of Smart Growth, and inaccurate analysis. Critics identify some legitimate problems which must be addressed to optimize Smart Growth, but present no convincing evidence to diminish the overall justification of Smart Growth.

This paper was originally written to provide technical background for the author’s arguments in “The Great Debate: Smart Growth Pro and Con,” between Todd Litman and Wendell Cox, at the 2nd Urban Streets Symposium, sponsored by the Transportation Research Board [www.trb.org] held in Anaheim, California, July 30, 2003.
Evaluating Criticism of Smart Growth

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
<td>2</td>
</tr>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Defining Smart Growth</td>
<td>5</td>
</tr>
<tr>
<td>Benefits and Costs</td>
<td>9</td>
</tr>
<tr>
<td>Differing Paradigms</td>
<td>10</td>
</tr>
<tr>
<td>Measurement and Evaluation Issues</td>
<td>11</td>
</tr>
<tr>
<td>What Is Optimal?</td>
<td>15</td>
</tr>
<tr>
<td>Smart Growth Criticism</td>
<td>20</td>
</tr>
<tr>
<td>Consumer Preferences</td>
<td>20</td>
</tr>
<tr>
<td>Infringement on Freedom</td>
<td>24</td>
</tr>
<tr>
<td>Equity Impacts</td>
<td>25</td>
</tr>
<tr>
<td>Failed Policies</td>
<td>26</td>
</tr>
<tr>
<td>Traffic Congestion and Air Pollution Impacts</td>
<td>28</td>
</tr>
<tr>
<td>Density And Social Problems</td>
<td>31</td>
</tr>
<tr>
<td>Economic Development</td>
<td>32</td>
</tr>
<tr>
<td>Housing Affordability</td>
<td>33</td>
</tr>
<tr>
<td>Cost of Living</td>
<td>35</td>
</tr>
<tr>
<td>Smart Growth Forces People To Give Up Single-Family Homes and Driving</td>
<td>36</td>
</tr>
<tr>
<td>Public Service Costs</td>
<td>37</td>
</tr>
<tr>
<td>Health Impacts</td>
<td>38</td>
</tr>
<tr>
<td>Greenspace Preservation Benefits</td>
<td>40</td>
</tr>
<tr>
<td>Transit Cost Efficiency</td>
<td>41</td>
</tr>
<tr>
<td>Induced Traffic Impacts</td>
<td>45</td>
</tr>
<tr>
<td>Jobs/Housing Balance</td>
<td>45</td>
</tr>
<tr>
<td>Considering Alternatives</td>
<td>46</td>
</tr>
<tr>
<td>Responding To Specific Critics</td>
<td>48</td>
</tr>
<tr>
<td>Wendell Cox</td>
<td>48</td>
</tr>
<tr>
<td>Edward Glaeser and Matthew Kahn</td>
<td>52</td>
</tr>
<tr>
<td>Peter Gordon and Harry Richardson</td>
<td>53</td>
</tr>
<tr>
<td>Edwin S. Mills</td>
<td>54</td>
</tr>
<tr>
<td>Randal O’Toole</td>
<td>55</td>
</tr>
<tr>
<td>Critics Perspectives</td>
<td>56</td>
</tr>
<tr>
<td>Self Interest</td>
<td>56</td>
</tr>
<tr>
<td>Ideological</td>
<td>56</td>
</tr>
<tr>
<td>Legitimate Critications</td>
<td>58</td>
</tr>
<tr>
<td>Conclusions</td>
<td>59</td>
</tr>
<tr>
<td>References and Resources</td>
<td>60</td>
</tr>
</tbody>
</table>
Summary

Smart Growth refers to development principles and planning practices that create more efficient land use and transport patterns. It includes numerous strategies that result in more accessible land use patterns and multi-modal transport systems. It is an alternative to sprawl. Smart Growth is supported by diverse interest groups and professional organizations. Smart Growth has been criticized by various individuals and organizations. This paper evaluates such criticism.

Critics tend to assume that consumers prefer large single-family homes in automobile-dependent communities, and that current transport and land use policies are overall efficient and fair. As a result, they criticize Smart Growth as being harmful to consumers and the economy. This ignores evidence that many people will choose other housing and transport options if given suitable options and incentives, and that current markets are distorted in ways that increase sprawl and automobile dependency. Many Smart Growth strategies are market reforms that correct existing market distortions, increasing consumer options, economic efficiency and equity. Critics endorse some Smart Growth strategies in recognition that they increase market efficiency.

Critics sometimes misrepresent Smart Growth and make various analytical errors which can lead to false conclusions. They often evaluate Smart Growth based simply on gross regional population density. They ignore interrelationships between city size, density, congestion, travel patterns, income and cost-of-living, and the tendency of Smart Growth to be implemented in areas with rapid population and economic growth. As a result, some evidence presented by critics misrepresents key issues. Specific Smart Growth criticisms are summarized below and evaluated in detail in the body of this report.

Consumers Prefer Sprawl and Automobile Dependency

Critics claim that consumers prefer sprawl and automobile dependency. But there is considerable evidence that many consumers prefer Smarter Growth communities and alternative transport modes, particularly if supported with suitable policies. Critics ignore many direct benefits that Smart Growth can provide to consumers, including financial savings, increased physical exercise, community cohesion, improved transport options for non-drivers, and greenspace preservation.

Smart Growth Increases Regulation and Reduces Freedom

Critics claim that Smart Growth significantly increases regulation and reduces freedoms. But many Smart Growth strategies reduce existing regulations and increase various freedoms. Overall, Smart Growth tends to increase more freedoms than it reduces, for example, by allowing more flexible development designs and providing more consumer travel options.

Smart Growth Reduces Affordability

Critics claim that Smart Growth increases housing costs by reducing land supply, but ignore the many ways that Smart Growth reduces costs by reducing unit land requirements, increasing housing options, reducing parking and infrastructure costs, and reducing consumer transport costs. The evidence critics use to evaluate housing affordability fails to account for confounding factors, such as higher housing costs in larger cities, and the tendency of Smart Growth to be implemented in areas experiencing rapid population and economic growth, which tends to raise housing costs.
Evaluating Criticism of Smart Growth

Smart Growth Increases Congestion
Critics claim that Smart Growth increases traffic congestion and therefore reduces transport system quality, based on simple models of the relationship between density and trip generation. However, Smart Growth does more than just increase density, it also increases accessibility and travel options, and provides incentives to reduce urban-peak vehicle trips, which tend to reduce congestion. Traffic congestion alone is an ineffective indication of transport system quality since increased congestion can be offset if travel distances decline and travel options improve, so less driving is needed to reach destinations. Empirical data indicate that Smart Growth does not increase per-capita congestion delay or average commute times.

Public Service Costs
Although many studies indicate Smart Growth can reduce development and public service costs, critics dismiss these studies, claiming that sprawl provides overall savings. But critics incorrectly measure Smart Growth only in terms of density, consider a limited set of total infrastructure and public costs, and ignore higher wages and public service quality in larger cities.

Transit Benefits
Critics claim that public transit investments are not cost effective because the costs of attracting additional riders are high and overall ridership is too small to reduce traffic congestion. This overlooks the fact that transit ridership tends to be greatest on major urban corridors where congestion is greatest, that transit improvements are often more cost effective than highway capacity expansion, that Smart Growth strategies can increase transit operating efficiency and ridership, and that public transit service provides many other benefits to society. When all costs and benefits are considered, Smart Growth programs that improve transit service and encourage transit ridership are often the most cost effective way to improve transportation systems.

Economic Development
Critics claim that Smart Growth is harmful to the economy. But Smart Growth can increase economic efficiency and productivity, and is associated with higher incomes and economic growth.

Some objections raised by critics are actually justifications for more Smart Growth. For example, critics argue that density increases traffic congestion, which justifies implementing additional Smart Growth strategies to improve accessibility and encourage use of non-automobile modes in urban and suburban areas experiencing growth. Critics raise some legitimate concerns, such as that Smart Growth can have unintended consequences and can increase some costs. But these can be addressed with good planning. They are not fatal flaws.
Introduction

Home is where the heart is, and community is where the home is. As a result, there are few issues that affect people more deeply than community design factors, since it touches at our hearts. It should therefore be no surprise that there are considerable debates over public policies that affect how communities develop.

There are many possible ways to organize a community. Around the world you will find people leading happy, productive lives in a wide variety of settlement patterns, ranging from dispersed rural homes, to small towns to large city skyscrapers. Similarly, there are many ways to connect the various parts of a community, that is, to structure transportation systems, ranging from walkable villages to transit-oriented neighborhoods to automobile-dependent suburbs. Different land use patterns and transport systems have various advantages and disadvantages, both to individuals and to society overall.

Over the last several decades many communities have experienced sprawl development patterns, with dispersed, low-density, automobile-dependent urban fringe expansion. These trends have been supported by various public policies and investments, ranging from generous parking requirements to major suburban highway investments. This development pattern exacerbates many problems, ranging from the economic costs to consumers and governments of an automobile-dependent transportation system, to the environmental and aesthetic costs of development that displaces greenspace.

In recent years many individuals and groups have decided that they want to change their community’s development pattern based on a set of principles and strategies called Smart Growth. These principles increase land use accessibility, reduce per capita land consumption and vehicle travel, and create more complete, mixed use communities.

There is considerable debate over the merits of Smart Growth, with critics raising various arguments to suggest that Smart Growth provides fewer benefits and imposes greater costs than proponents claim. Some criticism concerns the goals of Smart Growth, others with the methods used to achieve these goals.

Much of this debate concerns what policies can be considered neutral. Critics assume that existing policies are overall neutral, and so current land use and transport patterns reflect consumer preferences, and Smart Growth policy changes are therefore harmful to consumers and the economy. But there are many existing market distortions that tend to increase land use consumption and motor vehicle travel. Many Smart Growth strategies are market reforms that correct these distortions, and so tend to increase efficiency and equity, making consumers and the economy better off overall. Other strategies, such as regulations and favorable tax policies and public investments to support Smart Growth, may be justified on second-best grounds until all market-based reforms are fully implemented and their full effects have had time to occur.

This paper evaluates Smart Growth criticism. It attempts to provide a fair and objective examination of the arguments made by Smart Growth critics, and the evidence they present to support their arguments.
Defining Smart Growth

Smart Growth (also called *New Urbanism*) refers to development principles and planning practices that result in more efficient land use and transport patterns. It is an alternative to sprawl, which refers to low-density, dispersed, automobile-dependent land use patterns. Major differences between these two land use patterns are compared in Table 1.

<table>
<thead>
<tr>
<th></th>
<th>Smart Growth</th>
<th>Sprawl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>Higher-density, clustered activities.</td>
<td>Lower-density, dispersed activities.</td>
</tr>
<tr>
<td>Growth pattern</td>
<td>Infill (brownfield) development.</td>
<td>Urban periphery (greenfield) development.</td>
</tr>
<tr>
<td>Land use mix</td>
<td>Mixed.</td>
<td>Single use, segregated</td>
</tr>
<tr>
<td>Scale</td>
<td>Human scale. Smaller buildings, blocks and roads.</td>
<td>Large scale. Larger buildings, blocks, wide</td>
</tr>
<tr>
<td></td>
<td>Attention to detail, since people experience the</td>
<td>roads. Less detail, since people experience the</td>
</tr>
<tr>
<td></td>
<td>landscape up close, as pedestrians.</td>
<td>landscape at a distance, as motorists.</td>
</tr>
<tr>
<td>Public services</td>
<td>Local, distributed, smaller. Accommodates walking</td>
<td>Regional, consolidated, larger. Requires</td>
</tr>
<tr>
<td>(shops, schools,</td>
<td>access.</td>
<td>automobile access.</td>
</tr>
<tr>
<td>parks)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport</td>
<td>Multi-modal transportation and land use patterns</td>
<td>Automobile-oriented transportation and land</td>
</tr>
<tr>
<td></td>
<td>that support walking, cycling and public transit.</td>
<td>use patterns, poorly suited for walking,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cycling and transit.</td>
</tr>
<tr>
<td>Connectivity</td>
<td>Highly connected roads, sidewalks and paths,</td>
<td>Hierarchical road network with many unconnected</td>
</tr>
<tr>
<td></td>
<td>allowing more direct travel by motorized and</td>
<td>roads and walkways, and barriers to nonmotorized</td>
</tr>
<tr>
<td></td>
<td>nonmotorized modes.</td>
<td>travel.</td>
</tr>
<tr>
<td>Street design</td>
<td>Streets designed to accommodate a variety of</td>
<td>Streets designed to maximize motor vehicle</td>
</tr>
<tr>
<td></td>
<td>activities. Traffic calming.</td>
<td>traffic volume and speed.</td>
</tr>
<tr>
<td>Planning process</td>
<td>Planned and coordinated between jurisdictions</td>
<td>Unplanned, with little coordination between</td>
</tr>
<tr>
<td></td>
<td>and stakeholders.</td>
<td>jurisdictions and stakeholders.</td>
</tr>
<tr>
<td>Public space</td>
<td>Emphasis on the public realm (streetscapes,</td>
<td>Emphasis on the private realm (yards, shopping</td>
</tr>
<tr>
<td></td>
<td>pedestrian areas, public parks, public</td>
<td>malls, gated communities, private clubs).</td>
</tr>
<tr>
<td></td>
<td>facilities).</td>
<td></td>
</tr>
</tbody>
</table>

This table compares various features of Smart Growth and Sprawl.

Smart Growth emphasizes *accessibility*, that is, people’s ability to reach desired goods, services and activities (“Accessibility,” VTPI, 2003), while sprawl emphasizes *mobility* (physical movement) and *automobility* (movement by automobile). It reduces distances between common activities (home, work, schools, services) and supports alternative modes (walking, cycling and transit), while sprawl disperses destinations and is automobile dependent. Sprawl results in longer but faster automobile trips, while Smart Growth results in shorter, slower trips, some by alternative modes.

Smart Growth includes various implementation strategies, such as those listed on the next page. Which strategies are appropriate for implementation varies depending on conditions and objectives. Because its impacts tend to be synergistic (total impacts are greater than the sum of their individual impacts) Smart Growth is best implemented as an integrated program. For example, increased density, improved walkability or increased transit service by themselves cannot be considered Smart Growth; rather, a Smart Growth program might involve all of these plus other supporting strategies.
Smart Growth Strategies ("Smart Growth," VTPI, 2003)

- **Strategic planning.** Establish a comprehensive community vision that individual land use and transportation decisions should support.

- **Create more self-contained communities.** Locate compatible land uses within proximity of each other. For example, develop schools, shops and recreation facilities in or adjacent to residential areas. Mix land uses at the finest grain feasible.

- **Foster distinctive, attractive communities with a strong sense of place.** Encourage urban development that creates a sense of civic pride and community cohesion, including attractive public spaces, high-quality design and maintenance standards, preservation of special cultural and environmental resources, and activities that highlight a community’s unique features.

- **Encourage “village” development.** Establish well-defined “urban villages,” walkable centers that contain an appropriate mixture of land uses (residential, commercial, institutional, recreational) with distinct names and characters. Reduce minimum lot sizes, building setbacks, minimum parking requirements, and minimum street size particularly around transit and commercial centers.

- **Concentrate activities.** Concentrate commercial activities in these areas. Retain strong downtowns and central business districts. Use access management to discourage arterial strip commercial development.

- **Encourage infill development.** Locate new development within already developed areas. Encourage redevelopment of older facilities and brownfields.

- **Reform tax and utility rates.** Structure property taxes, development fees and utility rates to reflect the lower public service costs of clustered, infill development, and focus economic development incentives to encourage businesses to locate in more accessible locations.

- **Manage parking for efficiency.** Encourage shared parking, parking maximums, and other parking management strategies. Reserve the most convenient parking for rideshare vehicles.

- **Avoid overly-restrictive zoning.** Reduce excessive and inflexible parking and road capacity requirements. Limit undesirable impacts (noise, smells and traffic) rather than broad categories of activities.

- **Create a network of interconnected streets.** Keep streets as narrow as possible, particularly in residential areas and commercial centers. Use traffic management and traffic calming to control vehicle impacts rather than dead ends and cul de sacs.

- **Site design and building orientation.** Encourage buildings to be oriented toward city streets, rather than set back behind large parking lots. Avoid large areas of parking or other unattractive land uses in commercial areas.

- **Improve nonmotorized travel conditions.** Encourage walking and cycling by improving sidewalks, paths, crosswalks, protection from fast vehicular traffic, and providing street amenities (trees, awnings, benches, pedestrian-oriented lighting, etc.).

- **Implement mobility management.** Use mobility management to reduce total vehicle traffic and encourage the use of efficient modes.

- **Encourage mixed housing types and prices.** Develop affordable housing near employment, commercial and transport centers. Encourage secondary suites, apartments over shops, lofts, location-efficient mortgages and other affordable housing innovations.
Evaluating Criticism of Smart Growth

Smart Growth involves clustered land use, with mixed, medium-density development; and transportation systems that balance walking, cycling, driving and public transit. Sprawl typically involves dispersed land use, with commercial strip development along arterials and lower-density single-family housing; and automobile-oriented transport systems.

Smart Growth places a high value on redeveloping and infilling existing urbanized areas in order to improve accessibility, make use of existing infrastructure, support existing communities (particularly disadvantaged communities) and preserve greenspace. Smart Growth strives to provide a balance of mobility and land use accessibility, as opposed to automobile dependency which relies almost entirely on automobile transportation at the expense of other forms of access, and car-free areas where automobile use is prohibited.

Smart Growth is sometimes incorrectly portrayed as a conflict between urban and suburban communities. Smart Growth can be implemented under urban, suburban and rural conditions, as described below.

- **Urban:** In urban areas it emphasizes redevelopment and infill of existing neighborhoods, improving design features (such as traffic calming of urban streets), and enhancing multi-modal transport systems, particularly walking and public transit.

- **Suburban:** In suburban areas it creates medium-density, mixed-use, multi-modal centers and corridors, either by incrementally developing existing suburban communities or by master-plan developments that reflect Smart Growth principles. It encourages more complete suburban communities (more services and employment in suburban jurisdictions), and improved regional travel options such as cycling, rideshare and transit improvements.

- **Rural:** In rural areas Smart Growth involves policies that help channel development and public services into accessible, mixed-use villages (for example, having schools, stores and affordable housing located close together and well connected by good walking facilities), and rural mobility management strategies such as cycling and rideshare improvements.
Suburban Smart Growth Example

Suburban Langford is developing a town center based on Smart Growth principles: clustering activities, improving walking and cycling conditions, and avoiding overly wide roads.

Langford is a rapidly growing suburb located 10 miles from Victoria, in British Columbia. Once a rural community, during the last half century it grew based on a conventional sprawl land use pattern, with scattered residential tracts and a network of country roads that are now lined with strip commercial development. Langford now wants to grow smarter. In the mid-1990s it established a strategic plan that identifies a central area to be the city’s downtown. There it located public offices such as the city hall and police station, built an attractive park complete with a bandstand for public events, landscaped streets, built sidewalks and bikelanes, and is encouraging local businesses and multi-family housing to establish there rather than in outlying areas. The city is working with regional transport agencies to promote walking, cycling, ridesharing and public transit use to help reduce traffic congestion and the need to expand road capacity by widening roads.

This is an example of suburban Smart Growth. These development pattern changes can provide a variety of economic, social and environmental benefits compared with continued sprawl. However, since these changes do not eliminate suburban growth and have little effect on jurisdictional density (they change the location of development, but not the total number of people or businesses in Langford), this type of Smart Growth is essentially invisible to the evaluation methods commonly used by critics.

Smart Growth is supported by various interest groups and professional organizations such as the American Planning Association and the Institute of Transportation Engineers (SGN, 2001; APA 2003; ITE, 2003; “Smart Growth,” VTPI, 2003). It is opposed by various organizations and individuals, called critics in this paper (Cascade Policy Foundation; Cox, various years; Glaeser and Kahn, 2003; Gordon and Richardson, 1997 and 2000; Heartland Institute; Mills, 1999; Moretti, 1999; Public Purpose; RailRoading America; Reason Public Policy Institute; The Thoreau Institute). These critics can be divided into two general groups: those that oppose a particular aspect of Smart Growth out of self-interest (i.e., they or their industry will lose benefits or bear costs), and those that have an ideological opposition, on the assumption that Smart Growth increases government intervention in a free market.
Benefits and Costs

By increasing accessibility and reducing vehicle mileage, Smart Growth provides various benefits, as listed in Table 2. Of course, a particular Smart Growth program’s benefits depend on its specific design and conditions. Smart Growth can involve a number of costs, including reduced private land consumption, reduced driving and additional design requirements. Critics claim that actual benefits are smaller and costs are greater than predicted by Smart Growth proponents. These issues are discussed later in this paper.

Table 2 Smart Growth Benefits (ICCMA, 1998; USEPA, 2003; VTPI, 2003)

<table>
<thead>
<tr>
<th>Economic</th>
<th>Social</th>
<th>Environmental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced development costs.</td>
<td>Improved transport options and mobility, particularly for non-drivers.</td>
<td>Greenspace & habitat preservation.</td>
</tr>
<tr>
<td>Reduced public service costs.</td>
<td>Improved housing options.</td>
<td>Reduced air pollution.</td>
</tr>
<tr>
<td>Reduced transportation costs.</td>
<td>Community cohesion.</td>
<td>Increased energy efficiency.</td>
</tr>
<tr>
<td>Economies of agglomeration.</td>
<td>Preserves unique cultural resources (historic sites, traditional neighborhoods, etc.)</td>
<td>Reduced water pollution.</td>
</tr>
<tr>
<td>More efficient transportation.</td>
<td></td>
<td>Reduced “heat island” effect.</td>
</tr>
<tr>
<td>Supports industries that depend on high quality environments (tourism, farming, etc.).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Smart Growth can provide a variety of benefits.

Although individual Smart Growth strategies have modest impacts, typically reducing per capita vehicle travel and land consumption by just a few percentage points, their impacts are cumulative and synergetic. For example, increasing density, improving walkability and encouraging alternative commute modes may each only reduce per-capita vehicle travel by 2-4%, but if implemented together their total impacts are much larger. Comprehensive Smart Growth programs often reduce per capita land use and vehicle travel by 20% or more compared with conventional planning practices (“Land Use Impacts On Travel,” VTPI, 2003). Table 3 summarizes some Smart Growth projects, indicating that these reduce per capita vehicle travel by 14-52% compared with conventional development, and since these projects only include a portion of Smart Growth strategies (for example, none include substantial changes in regional transportation investments, development fees, utility pricing and vehicle user charges that require regional and state policy reforms), even greater travel reductions are possible.

Table 3 Infill Vehicle Travel Reductions (CCAP, 2003)

<table>
<thead>
<tr>
<th>Location</th>
<th>Description</th>
<th>VMT Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlanta</td>
<td>138-acre brownfield, mixed-use project.</td>
<td>15-52%</td>
</tr>
<tr>
<td>Baltimore</td>
<td>400 housing units and 800 jobs on waterfront infill project.</td>
<td>55%</td>
</tr>
<tr>
<td>Dallas</td>
<td>400 housing units and 1,500 jobs located 0.1 miles from Dallas Area Rapid Transit (DART) station.</td>
<td>38%</td>
</tr>
<tr>
<td>Montgomery County</td>
<td>Infill site near major transit center</td>
<td>42%</td>
</tr>
<tr>
<td>San Diego</td>
<td>Infill development project</td>
<td>52%</td>
</tr>
<tr>
<td>West Palm Beach</td>
<td>Auto-dependent infill project</td>
<td>39%</td>
</tr>
</tbody>
</table>

Smart Growth can significantly reduce vehicle travel compared with conventional development.
Evaluating Criticism of Smart Growth

Differing Paradigms
The debate of Smart Growth reflects a paradigm shift (a change in how problems are defined and solutions evaluated), as summarized in Table 4.

Table 4

<table>
<thead>
<tr>
<th>Issue</th>
<th>Old</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal of transport</td>
<td>Mobility/Traffic: considers movement an end in itself.</td>
<td>Accessibility: the ability to reach desired goods, services and destinations.</td>
</tr>
<tr>
<td>“The” transport problem</td>
<td>Urban traffic congestion.</td>
<td>There are many significant transport problems.</td>
</tr>
<tr>
<td>Roadway function</td>
<td>Traffic flow: values the cheapest way to move the maximum amount of traffic.</td>
<td>Multifunctional: values diverse activities on roads, including walking and socializing.</td>
</tr>
<tr>
<td>Roadway users</td>
<td>Streets are for vehicular traffic.</td>
<td>Streets are for people.</td>
</tr>
<tr>
<td>Resident perspective</td>
<td>Residents are mobile consumers who are quick to leave troubled areas and move to a “better” community.</td>
<td>Residents are community members who want to improve existing neighborhood and make their community a better place to live.</td>
</tr>
<tr>
<td>Transportation perspective</td>
<td>Motorists perspective.</td>
<td>Motorists, transit users, cyclists, pedestrians, residents and businesses.</td>
</tr>
<tr>
<td>Role of non-motorized modes</td>
<td>Usually of little importance. Mainly recreational. Can generally be ignored.</td>
<td>Is critical for system connections, mobility for non-drivers and personal health.</td>
</tr>
</tbody>
</table>

This table compares the old and new transportation paradigm.

Smart Growth reflects the new paradigm, which focuses on accessibility, multi-modalism and comprehensive analysis, while Smart Growth criticism tends to reflect the older paradigm which focuses on vehicle traffic conditions. For example, the new paradigm tends to support land use clustering, transit priority and traffic calming, since they improve accessibility, while the old paradigm tends to oppose these strategies because they reduce automobile traffic speeds, and many of the benefits are outside the traditional range of transport planning evaluation.

Path Dependence – Implications for Planning
Path dependence refers to how some patterns become “locked in.” For example, traditional measuring units (feet, miles, pounds) are well established, and so it has been difficult for many people and industries to convert to metric despite the benefits that would result.

Land use and transportation patterns tend to exhibit path dependence. For example, once an area becomes automobile-dependent it is difficult to create a more balanced transport system. Because of path dependence, decisions can “leverage” much larger long-term effects. As a result, it may be worthwhile to make land use and transport planning decisions that may seem economically inefficient in the short term, in order to influence long term patterns.

Debates over Smart Growth often reflect differences in perceptions about path dependence. Critics argue that projects such as rail transit systems and urban redevelopment have excessive unit costs and little consumer demand. From a short-term perspective highway capacity expansion may appear more cost effective, but not from a longer-term perspective.
Evaluating Criticism of Smart Growth

Measurement and Evaluation Issues
Many differences between Smart Growth supporters and Critics reflect differences in how impacts are measured and evaluated, as discussed below.

Misrepresenting Smart Growth
Critics often misrepresent Smart Growth. For example, they claim incorrectly that Smart Growth requires:

- That all development occur within existing urban areas, and any development or population growth in other areas represents sprawl. Smart Growth principles can be applied in urban, suburban and rural areas.
- Extremely high regional population densities, such as 50,000 residents per square mile. Smart Growth involves clustering and infill development, not high area-wide densities.
- Eliminating automobile travel. Smart Growth creates a more balanced and efficient transport system, but still accommodates automobile travel for many trips.

Extrapolating Trends
Critics often extrapolate trends inappropriately. For example, critics argue that since home size and vehicle ownership rates generally increase with income, sprawl is inevitable. But such trends do not diminish the value of Smart Growth. There are many exceptions and counter-trends, such as many wealthy people’s preference for more urban homes and alternatives to driving. For example, critics are wrong to claim that because Europe is suburbanizing, Smart Growth is futile, since most European suburbs have far more efficient land use and transport patterns than in the US due to Smart Growth features. Smart Growth can significantly reduce per capita land consumption and vehicle travel compared with what would otherwise occur, and so could still be considered successful even if total land use and vehicle travel increase.

Measurement Units
Critics often choose measurement units that support their arguments, and ignore others. For example, there are more than a dozen ways to measure congestion, including roadway Level of Service (LOS) ratings, per-capita congestion delay and average commute travel time, some of which reflect a mobility paradigm and others an accessibility paradigm (TRB, 1997; Litman, 2003c). Denser areas tend to have higher roadway LOS ratings (more intense congestion on a particular roadway) but relatively low per-capita congestion delay because shorter trip distances and improved travel options reduce per-capita vehicle mileage, while sprawled areas tend to have less intense congestion but more per capita congestion delay because residents travel more miles by automobile (STPP, 1999). Critics claim that density increases traffic congestion may be correct if measured per square mile, but not if measured per capita. Similarly, there are many possible ways to measure and compare impacts such as housing affordability, pollution emissions and health risks. Inevitably, critics choose the measurement units that make Smart Growth look bad and sprawl look good.
Confounding Factors
Many land use and transportation factors are interrelated, so simplistic analysis can lead to inappropriate conclusions. For example, density, congestion, commute distance, income and wages, transit mode split, parking prices and rates of home renting (rather than ownership) all tend to increase with city size, but critics are wrong to suggest that Smart Growth causes increased congestion delays, longer commute times, higher transit operating costs or increased housing costs. On the contrary, these costs would probably increase further with more sprawl and per capita vehicle travel.

Similarly, Smart Growth tends to be most common in urban regions experiencing rapid population and economic growth, and so are likely to experience rising congestion and housing costs, but that does not mean that Smart Growth causes these problems. It can help reduce many of these impacts, as discussed later in this paper. Yet, critics often ignore these factors and assume that statistical correlation proves causation.

Density
Researchers have developed Smart Growth indices that reflect factors such as clustering, land use mix, street connectivity and transport diversity (Galster, et al. 2001; Ewing, Pendall and Chen, 2002), but critics often evaluate Smart Growth based simply on jurisdictional density (e.g., county, regional or state population per square mile), giving inaccurate results. As mentioned above, since population density tends to increase with city size, it is easy to identify spurious relationships and reach incorrect conclusions. Finer-scale density data and more comprehensive statistical analysis are needed to give meaningful information about Smart Growth impacts.

Figure 2 Density Versus Sprawl (Cox, No Date; Ewing, Pendall and Chen, 2002)

This figure shows regional population density and sprawl index ratings for 25 major U.S. cities. Critics often evaluate Smart Growth based only on regional population density (shifts along the vertical axis), ignoring true Smart Growth factors (shifts along the horizontal axis). For example, Detroit is denser than Boston regions, but ranks lower in the Smart Growth Index.
Evaluating Criticism of Smart Growth

Figure 2 shows the regional population density and sprawl index for 25 major U.S. cities. Critics assume that Smart Growth consists of shifts along the vertical access, that is, an increase in regional population density. They are wrong. Smart Growth consists of shifts along the vertical access. Smart Growth does not require that a smaller city become a larger city, rather, it requires that for a given population, a town or city develop in ways that increase clustering, connectivity, land use mix and transportation diversity. Two areas can have the same regional density but one reflects Smart Growth and the other does not, as illustrated in Figure 3. For example, as described earlier, the city of Langford is shifting from sprawl to Smarter Growth development by creating a clustered, multi-modal downtown. Yet, this change is invisible to the quantification methods used by critics, since it occurs in a suburban community and will not significantly increase the city’s population or its population density.

Figure 3 Sprawl Versus Smart Growth Land Use Patterns

<table>
<thead>
<tr>
<th>Sprawl</th>
<th>Smart Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>h h h h h h s</td>
<td>h h h</td>
</tr>
<tr>
<td>e h h h h h</td>
<td>h ses h h h</td>
</tr>
<tr>
<td>h s h h e s</td>
<td>h s h</td>
</tr>
<tr>
<td>h h e h h s</td>
<td>h h h h ese h</td>
</tr>
</tbody>
</table>

Both boxes contain the same overall density of housing (h), employment (e) and services (s), but on the left they are more dispersed and on the right they are more clustered, creating “villages.”

Role of Automobile Travel

Critics argue that alternative modes (walking, cycling and public transit) are of little importance in wealthy countries because more than 90% of households own a motor vehicle and more than 95% of personal travel is by automobile. But these statistics are incomplete and biased. For example, according to the National Personal Transportation Survey data, although only about 2% of total US trips are made by public transit, about 5% of adults report that they rely primarily on public transit, about 12% used public transit at least once during the previous two months, and many households contain at least one member who uses public transit. Similarly, although most travel surveys indicate that only about 5% of trips are made completely by walking, 16-33% of urban trips involve at least one walking link. Most people can expect to rely on alternative modes at some periods during their life, for example when they are too young to drive, if they become economically or physically disabled, or when they live or travel to transit-oriented areas. Improving transportation system diversity provides many benefits ignored by critics (“Evaluating Transportation Diversity,” VTPI, 2003).
Overlooking Diversity
Critics claim that Americans (or Canadians, Britons, etc.) want to live in suburbs and drive automobiles, without acknowledging our diverse needs and preferences. Although some people may prefer large-lot homes and driving, others prefer smaller homes and more balanced travel patterns, and many people may be happy to make marginal shifts if given modest incentives, such as better quality urban neighborhoods, improved walking and cycling conditions, improved transit service, and financial benefits to people who use alternative modes.

Problems Versus Solutions
Many objections raised by critics are actually justifications for more comprehensive Smart Growth. For example, critics argue that increased development density increases traffic congestion, which is a justification for implementing additional Smart Growth strategies to improve accessibility and encourage use of non-automobile modes in urban and suburban areas experiencing growth, so this problem can be avoided. Critics often assume that obstacles are unsolvable, rather than challenges to address. For example, critics see poor transit service quality (slow, infrequent, uncomfortable, etc.) as evidence of the inferiority of transit, while Smart Growth advocates see this as justification for transit improvements and incentives to increase ridership and operating efficiency. Similarly, critics see infrastructure and social problems in urban neighborhoods as evidence that development should shift to suburbs, while Smart Growth advocates see this as justification for investing more resources in urban redevelopment. It is not surprising that individuals perceive such problems to be unsolvable, since most consumers can do little to improve transit service or address urban degradation, but Smart Growth public policies can address these problems, and so are justified as solutions.

Outdated References
Critics often use selective, biased and outdated evidence. For example, Mills cites a 1985 study to conclude that motor vehicle user fees cover all roadway costs (other studies find that they do not) and Cox claims that there is no evidence that transit reduces traffic congestion, although many studies find such effects (“Transit Evaluation,” VTPI, 2003).
What Is Optimal?

What land use pattern is best? What level of automobile travel is optimal? According to economic theory, the optimal level of consumption (land, vehicle travel, etc.) is what consumers would choose in an efficient market, with adequate consumer options, cost-based pricing, and neutral public policies (“Market Principles,” VTPI, 2003; Litman, 2003a). Several current market distortions encourage sprawl, such as those listed in the table below. Some of these distortions are obvious and their impacts on consumption patterns relatively easy to measure, but others are more subtle and their impacts difficult to quantify (Hanson, 1992; Voith 1999; Lewyn, 2000a & b; Litman, 2002).

Table 5 Market Distortions That Favor Sprawl (“Market Principles,” VTPI, 2003; Litman, 2003a)

<table>
<thead>
<tr>
<th>Market Distortion</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underpricing Location-Related Costs</td>
<td>Although public service costs tend to be higher for sprawl development, development charges, utility fees and local taxes do not generally reflect these location-related costs.</td>
</tr>
<tr>
<td>Excessive Parking and Roadway Requirements</td>
<td>Most zoning codes and development standards require generous road and parking capacity. This encourages lower-density, urban fringe development where land is cheaper, and underprices vehicle travel.</td>
</tr>
<tr>
<td>Roadway Right-of-Way</td>
<td>By convention, land use for public roads and parking facilities is exempt from rent and taxes. Economic neutrality implies that land used for roads should be priced and taxed at the same rate for competing uses.</td>
</tr>
<tr>
<td>Planning and investments that favor suburbs</td>
<td>Many current planning and public investment practices favor new, lower-density, automobile-dependent development over urban infill.</td>
</tr>
<tr>
<td>Undervaluing Nonmotorized Modes and Transit</td>
<td>Transportation planning practices tend to undervalue nonmotorized transport modes and transit services, and so underinvest in them.</td>
</tr>
<tr>
<td>Residential Lending Practices</td>
<td>Mortgage lenders usually treat car ownership as a financial asset. As a result, lower-income households are encouraged to purchase homes in automobile-dependent suburban areas rather than in multi-modal urban locations.</td>
</tr>
<tr>
<td>Underpricing Automobile Travel</td>
<td>Automobile travel is underpriced through underpricing of road use, free parking, fixed insurance and registration fees, and various external costs.</td>
</tr>
</tbody>
</table>

This table describes market distortions that encourage sprawl and automobile dependency.

Land use and transportation choices involve many tradeoffs. For example, when selecting a home location, households often must balance lot size, housing costs, proximity to services, quality of public services (such as schools), neighborhood livability and prestige, commute distance and other factors. Consumer decisions tend to follow a bell curve, with some preferring more urban, multi-modal communities, and others preferring more dispersed, automobile-dependent communities. Some current public policies cause consumers to choose more sprawl and automobile travel than they otherwise would, as illustrated in Figure 4. For example, zoning codes limit development densities and require generous amounts of parking, and various market distortions underprice low-density development and automobile travel, increasing sprawl and automobile dependency. Conversely, Smart Growth policies can help correct existing market distortions, encourage urban redevelopment and use of alternative travel modes, which shifts consumer decisions toward more efficient land use and transportation patterns.
Current land use and transport market distortions encourage consumers to choose more dispersed, automobile-dependent communities than they would in a more neutral market. Smart Growth helps correct these distortions, resulting in more efficient decisions that increase overall consumer benefits.

Current land use and transport patterns reflect various economic “traps,” in which individuals have incentives to act in ways that make society worse off overall. For example, many jurisdictions have exclusionary development policies, such as restrictions on secondary suites and multi-family housing, intended to minimize local costs associated with lower-income residents. But such policies simply shift such costs elsewhere, reducing housing affordability, increasing segregation and associated social problems, and increasing transportation costs. Similarly, although total congestion delays would decline if more peak-period travelers shifted from driving to ridesharing and public transit, individuals have little incentive to shift unless there are HOV facilities or congestion pricing. Where such traps exist it is wrong to assume that the resulting land use and transport patterns are economically optimal: they increase sprawl and automobile travel while making society worse off overall.

Smart Growth critics argue that sprawl provides benefits (more private space and high levels of mobility) which offset costs. Certainly such benefits exist, but the existence of such benefits does not prove that at the margin (i.e., compared with current conditions) increased sprawl provides greater benefits than Smart Growth. The benefits of sprawl must be evaluated in detail, for example, disaggregating the value of suburban living into those benefits that actually depend on large lots (such as larger gardens and workshops) and social attributes (such as perceived increased neighborhood security and prestige) that can be achieved with less land consumption. Many home buyers might choose a smaller lot home if it is well designed, and located in a safe and attractive neighborhood. Similarly, many motorists may prefer to drive somewhat less and rely more on alternatives, provided that they are convenient, safe and affordable.
Smart Growth – Consumer’s Perspective
Smart Growth changes public policies to encourage more efficient land use and transportation patterns. Critics often present these in a negative way, focusing on increased regulations and consumer prices, but such changes also provide direct consumer benefits (in addition to direct benefits from improved economic efficiency and environmental quality). For example, critics describe location-based development and utility fees as increased costs to residents (those who choose sprawled locations), but these can also be described as a new opportunity for residents to save money (by choosing more accessible locations). Similarly, critics describe priced parking, higher vehicle fees and Pay-As-You-Drive insurance as costs to consumers, although they allow consumers a new opportunity to save money when they reduce their vehicle ownership and use.

Critics assume that current practices are neutral and fair, and so Smart Growth policy changes are harmful and inequitable. But many current practices are distortions that favor sprawl and automobile dependency. Correcting these distortions increases efficiency and equity. Smart Growth reforms reward consumers and businesses that choose more efficient land use and transport patterns, making them better off overall as a result. For example, consider how the following policy changes would affect consumer decisions:

- **Parking Cash Out.** Whenever a business offers free or subsidized parking space, consumers can choose to receive the cash equivalent if they use another travel mode.
- **Users pay for parking directly rather than indirectly.** Housing and tax costs are lower, and each time a motorist uses a parking space they pay an hourly fee.
- **Vehicle user fees increase by 50-100% to cover all roadway costs and pay for property taxes on land used for roads and parking facilities, while property taxes decline by a third.**
- **Vehicle insurance is priced by the mile, so motorists save 5¢ on average each mile they drive less.**
- **Residents who choose infill housing save an average of 20% on utility fees and property taxes compared with sprawl locations.**
- **Federal and state funds that are now dedicated to highway construction become available for urban redevelopment projects that reduce automobile dependency, and mobility management programs that reduce vehicle traffic problems.**
- **Zoning codes are reformed to eliminate minimum parking requirements, building setbacks, density limits and restrictions on multi-family housing, and development policies change to favor high-quality urban infill.**
- **Transport planning and management changes improve walking conditions, in recognition that 10% or more of trips involve at least some walking on public facilities.**

Note that these reforms are revenue neutral. An average consumer who continues with current housing and transport choices pays no more overall, but those who choose less sprawl and reduce their automobile travel would save money – allowing individual consumers to capture the savings that result when they choose more efficient transportation and land use options. As a result, consumers are better off overall.

Experience with such incentives indicates these reforms would reduce automobile mileage by a third or more, and over the long run would shift a portion of development from sprawl to Smart Growth (Litman, 2002). Consumers can still choose sprawl and automobile travel, but they would have more and better alternatives and must pay the incremental costs directly.
There are many indications that in a more efficient market consumers would choose more accessible locations and drive less, and be better off overall as a result (Lewyn, 2000a and 2000b; Litman, 2002). For example, the city of Lancaster, California has development impact fees that reflect the infrastructure costs of a particular location, calculated by a civil engineering firm. A typical new house located near the city core is charged $5,500, while the same house located one mile beyond the core would be charged $10,800, reflecting the additional costs of providing more dispersed city infrastructure. Since this fee structure was implemented in 1993, no new development has occurred outside the central core. These fees only represent a portion of the total public costs that increase with more dispersed development (costs of school busing and utility maintenance are not included), so even greater land use changes would likely occur if residents could capture even greater savings from Smart Growth. This indicates that given efficient pricing, consumers actually prefer Smart Growth over sprawl.

Similarly, when commuters either pay for parking or have a Cash Out option (they can choose cash instead of a parking subsidy), 15-25% typically shift modes, indicating that many motorists prefer travel alternatives if existing market distortions are removed (“Commuter Financial Incentives,” VTPI, 2003). Many Smart Growth strategies reflect market principles that increase overall efficiency and fairness (Table 6). Smart Growth critics actually support many of these reforms (Mills, 1999; Cox, 2000; O’Toole, 2001).

Some critics claim that an equal set of distortions favor urban development and alternative modes, although the only examples they identify are urban renewal projects, subsidized urban sports facilities and rail transit projects (Gordon and Richardson, 2000). Such policies do little to reduce sprawl and automobile dependency (for example, many urban renewal projects ultimately harmed cities, many subsidized sports facilities are located in suburban areas, and Park & Ride rail transit may increase lower density urban fringe development), and their total value is small compared with various policies and subsidies that favor sprawl and automobile travel (Lewyn, 2000b).

Although it is difficult to predict exactly how much sprawl and automobile travel would decline if all market-justified reforms were implemented, their total effects are likely to be large, resulting in 30% or greater reductions in per capita vehicle travel (Litman, 2002).
Table 6 Market Principles Evaluation (“Smart Growth Reforms,” VTPI, 2003)

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Reflects Market Principles?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Establish comprehensive development plans</td>
<td>Yes, if it results in more predictable decision-making and more efficient use of public resources.</td>
</tr>
<tr>
<td>Reform zoning codes (remove restrictions on denser development, more flexible parking requirements, etc.)</td>
<td>Yes. Tends to improve consumer choice and remove market distortions.</td>
</tr>
<tr>
<td>Support planning and development that reflects Smart Growth principles</td>
<td>Depends on conditions. May be justified to correct past distortions that favor sprawl and automobile dependency.</td>
</tr>
<tr>
<td>Tax and utility pricing reforms (lower rates for locations that are cheaper to service)</td>
<td>Yes, to the degree that they improve consumer choice, result in more cost-based pricing, and remove market distortions.</td>
</tr>
<tr>
<td>Favor public expenditures that support Smart Growth (fund infrastructure that supports clustered, multi-modal development).</td>
<td>Yes, if it results in more predictable decision-making and more efficient use of public resources.</td>
</tr>
<tr>
<td>Growth control and development caps (restrictions on greenfield development)</td>
<td>No, tends to violate market principles, but may be justified as second-best until existing market distortions are corrected.</td>
</tr>
<tr>
<td>Encourage urban redevelopment and brownfield rehabilitation (support urban redevelopment and brownfield cleanup projects)</td>
<td>Mixed. May be justified to leverage more efficient use of resources such as urban land and infrastructure.</td>
</tr>
<tr>
<td>Encourage greenspace preservation (regulations and tax incentives to preserve farms and wildlife habitat)</td>
<td>Mixed. May be justified to protect valuable resources and correct existing distortions that favor greenfield development.</td>
</tr>
<tr>
<td>More neutral transportation planning and funding practices (least-cost transportation planning, more comprehensive evaluation and planning)</td>
<td>Yes. Improves consumer choice and removes existing distortions that favor sprawl and automobile dependency.</td>
</tr>
<tr>
<td>Travel reduction programs (employers and local agencies support alternative commute modes)</td>
<td>Mixed. Tends to improve consumer choice and correct existing distortions that favor automobile commuting.</td>
</tr>
<tr>
<td>Increased funding for alternative modes (walking, cycling, public transit)</td>
<td>Usually. Tends to improve consumer choice and correct existing distortions that favor automobile travel.</td>
</tr>
<tr>
<td>Transport pricing reforms (use-based road and parking pricing, pay-as-you-drive fees, etc.).</td>
<td>Yes, improves consumer choice and creates more efficient pricing.</td>
</tr>
<tr>
<td>Property tax reform (split-rate property taxes)</td>
<td>Mixed. Depends on assumptions and how it is implemented.</td>
</tr>
<tr>
<td>Educate professionals and develop better tools to evaluate land use impacts</td>
<td>Yes. Tends to improve decision-making and remove distortions.</td>
</tr>
</tbody>
</table>

Many Smart Growth reforms tend to reflect market principles.

Existing market distortions are well established and often difficult to correct. For example, in most communities it will take considerable effort and time to remove restrictions on higher-density development, and implement cost-based development and utility pricing. As a result, blunter reforms may sometimes be appropriate. For example, until pricing reforms are implemented and existing policies that favor sprawl corrected, greenfield development restrictions may be justified on “second best” grounds (they are not ideal but better than doing nothing).
Smart Growth Criticism

Specific issues of Smart Growth criticism are discussed below.

Consumer Preferences
Critics claim that past trends and market surveys prove that most people want single-family homes and convenient automobile transport, and so sprawl reflects consumer preferences. But trends and surveys also indicate that many people would like to live in more accessible communities with nearby services and more transportation options (Molinaro, 2003). Smart Growth allows land use and transport markets to better reflect these consumer preferences. There are many indications that with more efficient markets many consumers would choose Smarter Growth options.

For example, there is considerable demand for housing in older urban neighborhoods that are considered safe and prestigious, and New Urbanist communities command a price premium (Eppli and Tu, 2000; Smith, 2001; Song and Knaap, 2003). Myers and Gearin (2001) conclude that demand for such housing is likely to increase in the future. A market survey found that Calgary households are willing to shift from single-family suburban homes to urban townhouses if they save an average of CA$130 (US$90) per month (Hunt, 2001). This premium is comparable in magnitude to the higher public costs of dispersed development, indicating that many households would choose smarter growth residences if development fees and utility charges reflect location-related costs. As previously described, when the city of Lancaster implemented cost-based development fees, lower-density urban expansion stopped because consumers preferred a Smart Growth location if they can save a few hundred dollars a year in housing costs.

Figure 5 50 Largest U.S. Cities Growth Trends (U.S. Census Bureau)

City populations declined during the 1950s through the 1970s, but since then have grown significantly. This indicates that many consumers prefer urban living. City population growth is likely to continue as the portion of households without children increases.
Although most U.S. cities experienced substantial population losses from the 1950s through the 1970s, this trend has reversed in recent decades, as illustrated in Figure 5. Creative, cool television and cinema characters such as Sienfield, Friends, Fraser and Truman Burbank (of *The Truman Show*) live in Smart Growth, urban communities. Many younger adults and retirees consider New Urbanist locations attractive. The potential demand for Smart Growth housing is probably greater than what current consumer surveys indicate because many North Americans have little experience with successful, urban, multi-modal communities, and so under-appreciate the benefits they can provide. Many of the reasons consumers cite for preferring suburban housing reflects social attributes, such as personal security, higher-quality public services (particularly schools) and greater property value security, rather than the physical attributes of sprawl. Smart Growth policies allow consumers to choose urban neighborhoods that have attributes currently only available in suburbs, making consumers better off overall.

Similarly, many consumers want alternatives to driving, provided that they are convenient and safe. For the last five years, U.S. transit ridership has grown faster than automobile mileage (Figure 11). Many consumers indicate that they would like to walk or bicycle more for transportation. The most popular tourist destination in Texas is the Riverwalk in downtown San Antonio, where visitors stroll and enjoy urban activities. All of this suggests that consumers value having greater transportation diversity, and will use alternative modes more if they are available.

Consumer Preferences

Most people would probably say that they prefer dining at a gourmet restaurant over eating a sandwich, but that does not mean that sandwich shops are harmful to consumers. Consumer benefits are maximized when individuals can make tradeoffs between costs and benefits: although consumers may prefer gourmet food if somebody else pays, they are often better off overall when they can save money by choosing a cheaper option.

Similarly, many consumers say they prefer single-family, suburban homes over higher-density homes, and driving over walking and public transit, but this does not prove that consumers benefit overall from policies that favor sprawl and automobile travel. At least some consumers would choose more accessible housing and alternative travel options given better housing and travel options, and more efficient pricing.

Many Smart Growth strategies improve consumer options, result in more efficient pricing and remove market distortions that favor sprawl and automobile use. Although these practices may reduce consumption of more “desirable” goods, such as single-family homes and automobile travel, they actually make consumers better off overall, because they allow individuals to make tradeoffs between costs and benefits.

Critics sometimes claim that Smart Growth cannot respond to the needs of busy, modern families that must rely on automobile travel to accommodate their busy schedules. This objection is misplaced since many Smart Growth strategies provide time savings. For example, Smart Growth increases accessibility so travel distances are shorter, improves travel options so parents spend less time chauffeuring children, and improves walking and cycling conditions so residents can exercise while commuting or running errands.
While it may be true that most households with young children prefer single-family, suburban homes, these only represent about a third of total households. A significant portion of most people’s lives are conducive to higher-density housing.

Figure 6 **US Household Types** (2000 Census, www.census.gov)

- **Family Without Children Under 18 Years**: 35%
- **Family With Children Under 18 Years**: 33%
- **Living Alone**: 26%
- **Shared Home, Not Related**: 6%

Only about a third of all households at any one time have children under 18 years of age.
“The City Is Their Playground: More And More Parents Are Moving Their Families Downtown To Give Their Children A Taste Of Toronto”

Citytv reporter Adam Vaughan is passionate about living in downtown Toronto, and it's a lifestyle he wants his 5-year-old daughter, Mimi, to experience first-hand. So a couple of years ago, after he and his partner separated, Vaughan moved into a downtown condo near the television station. Now, the entire city is his daughter's playground. And he's seeing the city with renewed vigour as he and his daughter explore the downtown and he passes on his love for the city to his child.

“I wanted a place that was close to the culture of the city, the galleries, the music and close to the politics of the city,” says the 41-year-old political reporter. “All the things that were important to me. I wanted my daughter to understand how her father related to the city and have her relate to the city. It was important to me to teach her how to access the extraordinary things of Toronto, the sights and sounds of Kensington, Little Italy, Little Portugal, Caribana. When you live downtown you can literally be there in two minutes. It’s like the whole city becomes a backyard.”

Vaughan is just one of a growing number of Toronto parents who are exchanging a house in other parts of the city and its environs for a more urban existence in a downtown condo or loft. The cachet of downtown living has become a magnet for many. And the influx of condo residents and loft owners is part of a residential regeneration of the city.

Lisa and Rob Voutt and their two daughters, 14 and 12, recently moved to a loft downtown after living in Brampton for seven years. “We moved to suburbia thinking it was the right thing to do for the children,” says Lisa Voutt, 35. “Then we realized we were part of a massive formula that just wants community members to drive around in cars and shop at Home Depots and Wal-Marts,” says Voutt, who owns a software company with her husband. “I realized this isn’t community. This isn’t life. We decided to move back.”

She first tested the idea on her daughters. The Voutts often travel to Europe and rent apartments wherever they go. During one trip to Paris, the family stayed in a building full of kids. Voutt asked her daughters if they thought the Parisian children were missing out because they didn't have a big yard or a big house. The girls said no. That clinched it: They decided to move back to the heart of Toronto and a loft near St. Lawrence Market.

“The neighbourhood we live in now feels more like a neighbourhood than the neighbourhood in Brampton,” Voutt says. “The children know the guy we buy coffee and the newspaper from. There’s a sense of community. There’s the people at the dog park and they chat about dogs and the people who work at St. Lawrence Market who are their friends.”

Living downtown gives her children “a complete and full spectrum of life in the city,” she says. Still, a lot of her friends and family in the suburbs think “we’re kind of nuts” for moving downtown, Voutt says. But she stands by her decision. As does her family. Her children have developed confidence about walking around or taking the bus in the city and they often go places alone, instead of being chauffeured by their parents. Both girls have found a plethora of activities to keep them busy – from attending drama classes at Young People’s Theatre to taking drumming lessons at the Toronto Tabla Ensemble. There is no shortage of activities for them to participate in, both as a family and individually, and they certainly don't miss the big suburban backyard.
Evaluating Criticism of Smart Growth

Infringement on Freedom

Critics argue that Smart Growth reduces personal freedom, is coercive, imposes excessive regulation and constitutes “social engineering.” They portray Smart Growth as governments, planners and bureaucrats against property owners and consumers. But many current planning practices reduce consumer development and transport options, and Smart Growth increases freedom in various ways.

At one level, these impacts are reflected in specific regulations. For example, Smart Growth may increase restrictions on large-lot, urban fringe development but reduce restrictions on building type (multi-family development, secondary suites and home offices) and land use mix (commercial activities within residential neighborhoods). In a more general way, Smart Growth increases freedom by improving overall accessibility and affordability. For example, it improves people’s ability to choose more accessible and affordable housing options, and to travel conveniently and safely without a car.

Smart Growth tends to increase overall freedom in a community by increasing transport and housing options, and the range of solutions available to address transport and land use conflicts. For example, Smart Growth parking management expands the range of responses to parking conflicts, so communities are no longer forced to accept reduced financial freedom for the sake of improving motorists’ freedom to enjoy convenient parking. Table 7 indicates that Smart Growth tends to involve more strategies that increase freedom than those that reduce it.

Table 7 Smart Growth Impacts on Personal Freedom

<table>
<thead>
<tr>
<th>Reduced Freedom</th>
<th>Increased Freedom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large-lot urban fringe development</td>
<td>Higher density, infill development.</td>
</tr>
<tr>
<td>High speed driving</td>
<td>Mixed land use.</td>
</tr>
<tr>
<td>Free parking</td>
<td>Housing options (secondary suites, small-lots, multi-family).</td>
</tr>
<tr>
<td>Design standards and review</td>
<td>Preservation of existing neighborhoods and communities.</td>
</tr>
<tr>
<td></td>
<td>More flexible parking requirements and reduced parking costs.</td>
</tr>
<tr>
<td></td>
<td>More livable communities.</td>
</tr>
<tr>
<td></td>
<td>Improved travel options, particularly for non-drivers.</td>
</tr>
<tr>
<td></td>
<td>Ability to walk and cycle.</td>
</tr>
</tbody>
</table>

Smart Growth reduces some types of freedom but increases others.

How much regulation is optimal? Regulations tend to reduce freedom but protect resources, increase safety and provide other benefits. Private, masterplan developments and neighborhood association covenants often have extremely strict regulations: many specify the types of buildings that can be constructed, the materials and colors that may be used, and how frequently garage sales may be held. Some even prohibit clotheslines. Although some residents may consider them intrusive, regulations that control undesirable activities in existing neighborhoods allow older communities to gain benefits that are otherwise only available in newer, masterplanned communities.
Evaluating Criticism of Smart Growth

Equity Impacts
Critics argue that Smart Growth is regressive and unfair to poor and minority people because they claim it prices them out of desirable housing and travel options (single-family homes and automobile transport). They justify subsidies for sprawl and automobile travel on equity grounds. These arguments tend to be incorrect for the following reasons.

- Smart Growth includes many features that directly benefit lower income people, including improved housing and transport options, and financial rewards. For example, location efficient development allows households to save money and choose more accessible locations, parking cash out provides financial benefits to non-drivers, and Carsharing and Pay-As-You-Drive insurance make automobile use more affordable.

- Transportation costs tend to be most regressive in more sprawled communities. While the highest income quintile spends just 13% of income on transportation, the lowest quintile spends 40% (STPP, 2003). McCann (2000) found that households in sprawl regions spend 54% more on transportation than households located in smart growth communities.

- Disadvantaged people tend to benefit significantly from improved land use accessibility, improved walking conditions and improved travel alternatives.

- Many disadvantaged people cannot drive or drive with difficulty due to disability or age and so benefit less from automobile-oriented subsidies than from subsidies that can be used for other modes or to choose more accessible housing locations.

- Subsidizing automobile ownership is a mixed blessing to lower-income people since there are substantial additional costs and risks, including maintenance and repairs, insurance, crash costs, fines and parking fees.

- Land use and transportation alternatives tend to experience economies of scale, so incentives to redevelop urban neighborhoods and increase walking, cycling, ridesharing and public transit can improve the quality of these options.

- Smart Growth that encourages urban redevelopment and improves urban transportation tend to benefit residents of disadvantaged communities.

- Equity impacts of pricing reforms depend on how prices are set and how revenues are used. For example, road pricing can be overall progressive if revenues are used to reduce regressive taxes or support programs that benefit lower-income people.

- Smart Growth programs can be designed with features that address equity concerns. For example, land use development policies can encourage development of more affordable housing and mixed neighborhoods, and road or parking pricing can include special exemptions, discounts or subsidies for disadvantaged populations.

- Many lower-income people value indirect benefits of Smart Growth, such as reduced crash risk, community cohesion and environmental quality.

This is not to say every Smart Growth strategy benefits every lower-income person, but when all impacts are considered, Smart Growth can provide benefits that are overall progressive, and Smart Growth programs can be designed to support equity objectives (Arigoni, 2003).
Failed Policies
Critics sometimes cite a particular underachieving project or program as evidence that Smart Growth has been tried and failed. But there are many Smart Growth successes, both when strategies are evaluated individually and when Smart Growth and sprawl communities are compared (Ewing, Pendall and Chen, 2002; “Success Stories,” VTPI, 2003; CNU; Smart Growth Network; NAHB, various years). As with any innovation, Smart Growth has had its share of problems, but for every project considered a failure there are others that meet or exceed expectations. As planners become more familiar with Smart Growth, success rates should increase and unintended consequences decline.

Some people conclude that Smart Growth is justified but futile because of social traps that motivate residents to oppose change, even if society benefits overall (Downs, 2003). Rather than being a criticism, this is a challenge to develop innovative policies that provide suitable options and incentives to address such obstacles and gain acceptance among residents (“Smart Growth Reforms,” VTPI, 2003).
New Urbanist Residents 'Walk the Walk' (www.lclark.edu/~podobnik/oranc02.pdf)

Portland's Orenco Station shows evidence of high suburban transit use, other "smart growth" goals; gets high marks from residents for livability.

HILLSBORO, OR - Will Americans be happy in walkable, transit-oriented communities as an alternative to suburban sprawl? A new study by Dr. Bruce Podobnik, a sociology professor at Lewis and Clark College in Portland, Ore., suggests the answer is “yes.”

Dr. Podobnik studied the residents of Orenco Station, a New Urbanist community on Portland’s Westside MAX light rail line. Residents were asked a variety of questions about life in the community, some five years after its founding. Ninety-four percent said that they now find the Orenco Station superior to typical suburban communities, even though its homes cost up to 30% more than comparable homes. 90% reported being “very pleased” with the design of the community.

Residents were asked to name up to three things they liked and didn’t like about the community. Residents said they liked the “overall design” (13%), greenspaces and parks (12%), Town Center (10%), garages on alleys (9%), pedestrian-friendly streets (6%), and access to light rail (5%). Features residents didn't like included “none” (20%), “dog problems” (11%), and “traffic problems outside Orenco” (8%).

As for transit use, 22% of the residents reported using light rail or the bus to commute to work or school – far higher than the 5% average for the region. Sixty-nine percent of Orenco Station residents reported that they use public transit more often than they did in their previous community. G.B. Arrington, a public transit expert with Parsons Brinckerhoff, is quick to point out that these numbers are “totally off the charts for conventional suburban development.”

Orenco Station’s tree-lined streets and public spaces also seem to facilitate social interaction among neighbors. Seventy-eight percent of residents state that there is a higher sense of community than in their previous neighborhood, and 40% reported participating in neighborhood activities. Concludes Podobnik, “this study clearly demonstrates that New Urbanist designs can play an important role in improving the quality of life and sustainability of neighborhoods in Portland and elsewhere… It stands as a promising beacon for advocates of dense rather than sprawling urban landscapes.”
Traffic Congestion and Air Pollution Impacts

Critics cite a positive relationship between density, congestion and average commute time (www.demographia.com/db-intljtwdens.htm) but as discussed earlier, city size, population density, congestion, commute distance and commute travel time all tend to increase together, so this relationship is unsurprising and is not proof that Smart Growth increases travel times compared with what would occur with sprawl. Much of the evidence that Smart Growth increases congestion is distorted or misrepresented.

Critics claim that by increasing density, Smart Growth increases traffic congestion and air pollution (Cox, 2003a). This might be a legitimate criticism if Smart Growth consisted only of increased density, and if automobile travel speed was the only factor affecting accessibility. But Smart Growth includes a variety of strategies that reduce vehicle mileage and improve overall accessibility that can offset traffic density impacts, including improved walkability and transit services, cash out free parking, provide school and employee transport management programs, implement congestion pricing, and in other ways encourage people to reduce peak-period motor vehicle trips (USEPA, 2004).

Figure 7 Traffic Volume By Density (Cox, 2003a)

This figure illustrates Cox’s estimate of the relationship between density and vehicle miles per square mile. This ignores other Smart Growth features that reduce per capita trip generation and improve accessibility by clustering activities and improving the quality of other transport modes. As a result, residents of Smart Growth communities experience less per capita congestion delay.

Although density may increase congestion intensity (i.e., a greater ratio between peak and off-peak vehicle travel speeds), sprawl tends to increase per capita congestion delay because residents drive more miles and have fewer travel alternatives. For example, it usually takes less time to perform various errands by driving on a congested urban road to a cluster of shops than it would be to perform the same errands along several miles of a commercial strip where a car trip is required between each activity. Clustered development may reduce peak-period vehicle speeds but allows more activities to be accomplished with less travel. As a result, clustering and density increase overall accessibility, people’s ability to reach goods, services and activities.
How congestion is measured has a major effect on how land use is considered to affect congestion (“Congestion Costs,” Litman, 2003c). When measured by roadway level-of-service, portion of peak-period roadways congested or delay per peak-period motorist, Smart Growth may seem to increase congestion, but when measured based on annual per capita delay, it tends to reduce congestion because this accounts for the reduction in per capita peak-period automobile travel.

For example, critics claim that Portland, Oregon’s Smart Growth policies have increased traffic congestion. Table 8 shows how Portland ranks according to various congestion indicators, some of which reflect a relatively high ranking (i.e., a low value), while other are average for its class (since it is the 25th largest city in the U.S. Portland would be expected to rank about 25th in congestion impacts, all else being equal). Critics only cite the high ranking indicators, which reflect the intensity of congestion, but ignore lower-ranking indicators, which reflect per capita impacts and therefore accessibility (i.e., people’s overall ability to reach destinations), which show that Portland is average in its class and does not experience unusually bad congestion problems.

Table 8 Portland Congestion Rating (TTI, 2002)

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Portland Ranking</th>
<th>Atlanta Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>City Size</td>
<td>25th</td>
<td>11th</td>
</tr>
<tr>
<td>Travel time index</td>
<td>11th</td>
<td>17th</td>
</tr>
<tr>
<td>Percent peak-period travel in congestion</td>
<td>8th</td>
<td>4th</td>
</tr>
<tr>
<td>Percent lane-miles in congestion</td>
<td>15th</td>
<td>3rd</td>
</tr>
<tr>
<td>Annual hours of delay</td>
<td>25th</td>
<td>9th</td>
</tr>
<tr>
<td>Annual delay per capita</td>
<td>21st</td>
<td>8th</td>
</tr>
<tr>
<td>Excess fuel consumption</td>
<td>25th</td>
<td>8th</td>
</tr>
<tr>
<td>Annual congestion costs per road user</td>
<td>23rd</td>
<td>9th</td>
</tr>
<tr>
<td>Congestion cost per capita</td>
<td>22nd</td>
<td>8th</td>
</tr>
</tbody>
</table>

This table shows how Portland and Atlanta rank by various congestion indicators. Portland ranks relatively high (bad) according to indicators that reflect congestion intensity, but relatively low according to per-capita impacts because of less per capita vehicle travel.

On the other hand, the city of Atlanta, which has sprawled land use, rates relatively well in terms of traffic intensity indicators but poorly in terms of per capita congestion delays and costs (it ranks 8th in both), indicating unusually bad congestion for its size. This indicates that congestion is more intense in Portland than in Atlanta, but Portland residents spend less time delayed by congestion and bear lower congestion costs because they drive fewer peak-period miles and use alternative modes more frequently. U.S. Census data (McGuckin and Srinivasan, 2003) show similar patterns.

Automobile commute travel times are lowest in communities with moderate to high densities (11-16 residents per acre), while transit commute times decrease with density (Levinson and Kumar, 1997). Residents of sprawled areas such as San Bernardino County tend to experience more per capita congestion delay than residents of cities such as New York and Chicago (STPP, 1999). Ewing, Pendall and Chen (2002) find that average commute times are the same for the most sprawled and least sprawled cities.
Evaluating Criticism of Smart Growth

Critics are wrong to claim that Smart Growth increases air pollution or that highway widening is an effective way to reduce emissions. Such claims confuse per-acre, per-mile, per-trip and total emission rates. Although density may increase emissions per acre, most vehicle air pollutants are harmful regardless of where within a region they are released, and so total regional emissions must be reduced to improve air quality. To the degree that Smart Growth reduces per capita vehicle trips and mileage it reduces total emissions. Ewing, Pendall and Chen (2003) found that ozone pollution increases significantly with sprawl due to increased vehicle trips and mileage.

Critics claim incorrectly that highway widening would reduce vehicle emissions by reducing traffic congestion. Although shifting from free-flow to extreme congestion (i.e., from LOS A to F) increases per-mile emissions, a moderate degree of congestion (i.e., from LOS A to C) can reduce per-mile emissions by reducing traffic to a more efficient speed and reducing hard accelerations. Highway widening induces additional vehicle travel which increases emissions. Modeling indicates that at best, roadway capacity expansion can provide short-term emission reductions, but these tend to be offset over the long-run due to induced travel (TRB, 1995; Stathopoulos and Noland, 2003).

The evidence presented by critics is actually a justification for implementing more comprehensive Smart Growth programs in urban and suburban areas that experience growth, in order to prevent traffic congestion and air pollution problems that would otherwise occur. It implies that Smart Growth programs should include a full range of strategies to improve land use accessibility, roadway connectivity, travel options and incentives to reduce urban-peak automobile travel, rather than simply increasing development density.
Density And Social Problems

On the face of it, increasing urban density often seems harmful. Density is associated with social problems such as poverty, crime and conflict. To analyze this issue it is important to distinguish between density (people per acre) and crowding (people per room). For example, high-priced high-rise apartments have density but not crowding, while homes in impoverished rural communities have crowding but not density. Poverty and social problems are associated with poverty and crowding, but not with density (Newman and Kenworthy, 1999, p. 133). There is no evidence that shifting residents to higher-density housing increases social problems (1000 Friends, 1999).

As mentioned earlier, many urban problems reflect economic traps, that is, situations in which individuals have incentives to act in ways that are overall harmful to society. For example, suburbs tend to exclude disadvantaged people (for example, by requiring large lots that increase development costs, by prohibiting multi-family housing, and by creating automobile-dependent transportation systems that do not accommodate low-income non-drivers), which concentrates poverty and social problems in urban neighborhoods, making cities less desirable places to live. Although it may seem that urban communities create poverty and social problems, the truth is just the opposite, suburbs create urban poverty and social problems by offloading such problems onto cities. There is no physical reason that urban neighborhoods cannot be as safe and prosperous as suburbs. Smart Growth includes strategies that address such problems directly (such as programs to improve security and public service quality in urban neighborhoods), and it can reduce social problems overall by increasing social interactions and economic opportunities for disadvantaged urban residents.

Increased density and clustering, and the increased accessibility that results, can provide a variety of economic and social benefits, called agglomeration benefits. Activities that involve interaction among numerous people, such as education, finance and creative industries, are particularly affected by agglomeration. Although these benefits are difficult to measure, they appear to be large (Anas, Arnott and Small, 1997). One published study found that doubling a county-level density index is associated with a 6% increase in state-level productivity (Haughwout, 2000).

Although many people consider cities dangerous, and so move to suburban areas for the sake of personal security, density tends to increase safety overall, because it reduces per capita vehicle travel and traffic speeds, and traffic crashes are the greatest risk most people face. As discussed later, sprawl tends to increase traffic deaths and health problems associated with sedentary lifestyles. All told, residents of denser city neighborhoods are much safer, even taking into account other risks that increase with urban living, such as pedestrian traffic injuries and homicide (Durning, 1996; Lucy, 2002).

Smart Growth can create development patterns that offer the best of all worlds: improved accessibility, cost savings, security, quality public services, durable property values and increased economic productivity.
Evaluating Criticism of Smart Growth

Economic Development
Critics sometimes assume that since home size and motor vehicle travel tend to increase with income, sprawl contributes to economic growth and Smart Growth must be economically harmful, but this confuses cause and effect (“Economic Development,” VTPI, 2003). Many countries experience their greatest economic growth when per capita automobile use is relatively low, and economic growth rates decline as households become wealthy enough to afford more consumer goods such as private cars. Regions with balanced transport systems appear to be most economically productive. Cities that are considered “most drivable” have relatively low incomes, as indicated in Table 9.

Table 9 Most and Least Drivable Cities (MSN, 2003; BEA, 2003)

<table>
<thead>
<tr>
<th>Most Drivable Cities</th>
<th>AAPCI</th>
<th>Least Drivable Cities</th>
<th>AAPCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Corpus Christi, TX</td>
<td>24,280</td>
<td>1. Los Angeles, CA</td>
<td>30,611</td>
</tr>
<tr>
<td>2. Brownsville, TX</td>
<td>15,334</td>
<td>2. San Francisco, CA</td>
<td>57,714</td>
</tr>
<tr>
<td>3. Beaumont-Port Arthur, TX</td>
<td>24,296</td>
<td>3. Chicago, IL</td>
<td>36,624</td>
</tr>
<tr>
<td>4. Pensacola, FL</td>
<td>24,140</td>
<td>4. Denver, CO</td>
<td>38,513</td>
</tr>
<tr>
<td>5. Fort Myers-Cape Coral, FL</td>
<td>29,540</td>
<td>5. Boston, MA</td>
<td>39,873</td>
</tr>
<tr>
<td>6. Oklahoma City, OK</td>
<td>26,970</td>
<td>6. Oakland, CA</td>
<td>39,963</td>
</tr>
<tr>
<td>7. Birmingham, AL</td>
<td>30,620</td>
<td>7. Detroit, MI</td>
<td>34,035</td>
</tr>
<tr>
<td>8. El Paso, TX</td>
<td>19,186</td>
<td>8. New York, NY</td>
<td>40,450</td>
</tr>
<tr>
<td>Average</td>
<td>25,558</td>
<td>Average</td>
<td>40,077</td>
</tr>
</tbody>
</table>

This shows US cities rated most and least drivable based on road surface quality, traffic flow, gas prices and climate. The most drivable cities have average incomes far lower than the least drivable cities. (AAPCI = Average Annual Per Capita Income, from www.bea.gov.)

Under some circumstances, highway investments provide significant productivity benefits by reducing transportation costs. But highway improvements are only likely to increase economic development if other conditions are ripe and transport costs are a significant economic constraint. Building the first highway to a region can significantly increase economic activity, but once a region has a basic paved road system, additional roadway capacity provides declining benefits (SACTRA, 1999). In urban areas, proximity to transit tends to increase adjacent property values (Smith, 2001).

Smart Growth can provide cost savings and economic development benefits, including road and parking facility cost savings, vehicle and fuel cost savings, and support for various industries including tourism and agriculture (Muro and Puentes, 2004). Many Smart Growth reforms reflect market principles and so increase economic efficiency and productivity. To the degree that Smart Growth reduces costs, increases productivity, shifts expenditures to more locally-produced goods or supports local industries it tends to increase local employment and business activity. International studies indicate that automobile dependency reduces regional economic development (Newman and Kenworthy, 1999). Beyond an optimal level (about 7,500 kilometers of per capita annual motor vehicle travel overall, although this varies depending on geographic and economic factors), the economic costs of increased vehicle travel outweigh the marginal benefits.
Evaluating Criticism of Smart Growth

Housing Affordability
Critics claim that Smart Growth reduces housing affordability by reducing urban fringe land supply (QuantEcon, 2002; Cox, 2003b). However, urban fringe land supply is just one of many factors affecting housing affordability. Smart Growth can increase housing affordability by allowing smaller lots, making underutilized urban buildings and land available for redevelopment, allowing subdivision of existing parcels, allowing more diverse housing types (smaller lots, secondary suites, lofts, etc.), reducing parking requirements, reducing development costs, and providing financial discounts for infill development (Jia and Wachs, 1998; Litman, 1998; Arigoni, 2001; Goldberg, 2003). It also provides transportation cost savings that offset housing costs (McCann, 2000). More Smart Growth strategies reduce rather than increase household costs, as illustrated in Table 10. This suggests that Smart Growth can increase overall affordability, or at least cannot be blamed for reduced housing affordability.

<table>
<thead>
<tr>
<th>Reduces Affordability</th>
<th>Increases Affordability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban growth boundaries (reduces developable land supply).</td>
<td>Higher density development (reduces land requirements, increases land supply for housing.)</td>
</tr>
<tr>
<td>Increases building design requirements (curbs, sidewalks, sound barriers, etc.).</td>
<td>Reduces parking and setback requirements (reduces land requirements per housing unit).</td>
</tr>
<tr>
<td></td>
<td>More diverse, affordable housing options (secondary suites, apartments over shops, loft apartments).</td>
</tr>
<tr>
<td></td>
<td>Reduces fees and taxes for clustered and infill housing (if Smart Growth includes pricing reforms).</td>
</tr>
<tr>
<td></td>
<td>More accessible housing reduces transport costs.</td>
</tr>
</tbody>
</table>

Many Smart Growth strategies can increase housing affordability.

To illustrate Smart Growth impacts on land requirements, compare the five types of housing summarized in Table 11. Large, Medium and City lots all have the same interior space and deck size, but the City Lot uses just 23% of the land used by the Large Lot house due to its smaller footprint, shorter driveway, less parking and smaller lawn.

<table>
<thead>
<tr>
<th>Comparing Land Requirements for Five Housing Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Interior space (sq. ft.)</td>
</tr>
<tr>
<td>Porch/Deck footprint (sq. ft.)</td>
</tr>
<tr>
<td>House footprint (sq. ft.)</td>
</tr>
<tr>
<td>Driveway footprint (sq. ft.)</td>
</tr>
<tr>
<td>Parking footprint (sq. ft.)</td>
</tr>
<tr>
<td>Total Footprint (sq. ft.)</td>
</tr>
<tr>
<td>Lawn/Openspace</td>
</tr>
<tr>
<td>Total Land Per Unit</td>
</tr>
</tbody>
</table>

Land requirements vary significantly for different housing types.
Evaluating Criticism of Smart Growth

Smart Growth tends to be implemented when communities experience rapid population and economic growth, and so they also tend to experience rising housing prices. But this does not mean that Smart Growth causes such price increases. Many home buyers prefer Smart Growth communities, which may raise prices in such areas, but the best response is to build more Smart Growth communities to meet this demand and reduce prices. Critics claim that Smart Growth reduces home ownership (www.demographia.com/db-e2000.htm), but this reflects the higher rental rates in larger cities. It does not prove that Smart Growth causes more residents to rent rather than own homes.

Several studies have investigated Smart Growth impacts on housing affordability. The results are mixed, depending on which areas are studied and the analysis methods used (Nelson, 2000; Nelson et al, 2002; Fregonese and Peterson, 2003). Critics often cite housing cost trends in Portland, Oregon during the 1990s as evidence that Smart Growth reduces housing affordability. But Portland began this time period with relatively low housing prices and experienced a major economic boom and population growth. Not surprisingly, housing prices increased significantly. In 1992 Portland ranked 112th in housing inaffordability, in 1997 it ranked 2nd, and in 2001 it ranked 23rd, with housing costs currently average among Western U.S. cities, with lower prices than San Francisco, San Diego, Seattle or Salt Lake City. Critics often cite Portland’s 1997 data as evidence that Smart Growth reduced housing affordability, while ignoring more favorable data.

Some specific strategies can help ensure that Smart Growth increases housing affordability and provides other consumer cost savings (SPUR, 1998; Arigoni, 2001; Russo 2001). These include reforms to allow higher density, more diverse housing types, more flexible parking requirements, price reforms that provide savings for infill development, location efficient development, and improvements to affordable transport options.

True Housing Affordability – by Jim Lazar

An “affordable” home is one that:

1. Is located close to transit, shopping, schools and employment, so households can reduce the number of vehicles they must own, and the miles they must drive. This can save $2,000 - $5,000 per year in vehicle ownership and operating costs.

2. Has a high level of energy efficiency built into it. This may cost more up front, but can save $500 - $1,000 per year.

3. Is built with quality materials. This may cost more up front, but will save in annual maintenance and replacement costs.

4. Is built with non-toxic materials. This may cost a bit extra up front, but will prevent respiratory illnesses, saving 2-10 sick days a year every year that the family lives in the home. The economic value of good health is extremely high, if difficult to measure.

5. Is surrounded by neighbors who you know and share. For example, trading child-care can save $500 - $1,000 per year during early childhood years.

It’s the sum of the mortgage payments, maintenance costs, transportation costs, health care costs and child care costs that determines affordability, not just the seller’s asking price for a home.
Evaluating Criticism of Smart Growth

Cost of Living
As mentioned earlier, Smart Growth tends to reduce consumer transportation costs (McCann, 2000; STPP, 2003; Dunphy, 2003). Critics claim that such savings are small and offset by higher housing and food costs. To demonstrate this, Cox groups U.S. cities into four categories based on population density, and finds that total transport, housing and food costs are higher in the highest density cities, as indicated in Table 12.

<table>
<thead>
<tr>
<th>Table 12</th>
<th>Household Expenditures by Density</th>
<th>www.demographia.com/db-ce2000.htm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Density</td>
</tr>
<tr>
<td>Least Sprawl</td>
<td>2</td>
<td>4,500 & Over</td>
</tr>
<tr>
<td>Less Sprawl</td>
<td>5</td>
<td>3,500-4,499</td>
</tr>
<tr>
<td>More Sprawl</td>
<td>12</td>
<td>2,500-3,499</td>
</tr>
<tr>
<td>Most Sprawl</td>
<td>7</td>
<td>1,500-2,499</td>
</tr>
</tbody>
</table>

According to this analysis, Smart Growth increases household costs. The least sprawled cities have 30% higher combined transport, housing and food costs than the most sprawled cities.

This analysis contains two major errors. First, incomes tend to increase with city size and density, so much of the increase in household expenditures in higher density cities is explained by increased wealth. The results of Cox’s analysis change significantly if the analysis is based on portion of income rather than total dollars. Second, as discussed earlier, gross population density is an inaccurate indicator of sprawl and Smart Growth. Using the Sprawl Index developed by Ewing, Pendall and Chen (2003), residents of the Smart Growth cities are shown to devote 6% less to combined transport, housing and food than residents of the most sprawled cities, as indicated in Table 13.

<table>
<thead>
<tr>
<th>Table 13</th>
<th>Percent Income Devoted to Transport, Housing and Food</th>
<th>(Analysis Spreadsheet Available From The Author On Request)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>By Density</td>
<td>By Sprawl Index</td>
</tr>
<tr>
<td></td>
<td>Percent Income</td>
<td>Relative to Sprawl</td>
</tr>
<tr>
<td>Least Sprawl</td>
<td>78%</td>
<td>16%</td>
</tr>
<tr>
<td>Less Sprawl</td>
<td>76%</td>
<td>13%</td>
</tr>
<tr>
<td>More Sprawl</td>
<td>73%</td>
<td>9%</td>
</tr>
<tr>
<td>Most Sprawl</td>
<td>67%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Residents of higher density cities spend a higher portion of income on transport, housing and food than residents of lower-density cities, but the differences are much smaller than indicated by simple dollar values, as in Table 12. Residents of Smart Growth cities spend a smaller portion of income on transport, housing and food than residents of sprawled cities.

O’Toole (2003) argues that Smart Growth reduces consumer affordability by eliminating the economies of scale from bulk retailing along commercial strip development. Although Smart Growth may reduce strip development it need not eliminate these consumer benefits. Many bulk retailers are successful in urban locations, and as discussed earlier, Smart Growth does not eliminate automobile travel. To the degree that bulk retailers provide sufficient efficiency gains (lower prices and increased convenience), they can attract customers and provide consumer benefits in Smart Growth communities.
Smart Growth Forces People To Give Up Single-Family Homes and Driving

Critics claim that Smart Growth forces people to give up single-family homes and private vehicle travel, and therefore makes consumers worse off (Orski, 2003). This is untrue. Smart Growth involves moderate shifts in housing and travel patterns, most of which results from positive incentives that benefit consumers directly.

Relatively small changes can often provide large benefits. In the example illustrated in Table 14, residential land consumption is reduced by 40% if the portion of households choosing larger lots (greater than ½ acre) declines from 50% to 25%, and the portion of households choosing small-lot or multi-family housing increases from 25% to 50%. In this example, only 15% of households are required to shift from single-family to multi-family housing, resulting in three quarters of households in the Smart Growth option living in single-family homes.

<table>
<thead>
<tr>
<th>Table 14</th>
<th>Housing Mix Impacts On Land Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Large Lot (1 acre)</td>
</tr>
<tr>
<td>Sprawl</td>
<td>Percent</td>
</tr>
<tr>
<td>Number</td>
<td></td>
</tr>
<tr>
<td>Total Footprint (acres)</td>
<td>22,957</td>
</tr>
<tr>
<td>Total Land Use (acres)</td>
<td>250,000</td>
</tr>
<tr>
<td>Standard</td>
<td>Percent</td>
</tr>
<tr>
<td>Number</td>
<td></td>
</tr>
<tr>
<td>Total Footprint (acres)</td>
<td>18,365</td>
</tr>
<tr>
<td>Total Land Use (acres)</td>
<td>200,000</td>
</tr>
<tr>
<td>Smart Growth</td>
<td>Percent</td>
</tr>
<tr>
<td>Number</td>
<td></td>
</tr>
<tr>
<td>Total Footprint (acres)</td>
<td>9,183</td>
</tr>
<tr>
<td>Total Land Use (acres)</td>
<td>100,000</td>
</tr>
</tbody>
</table>

Shifting to smaller lot can significantly reduce land consumption. With the Smart Growth option, 3/4 of households continue to have single-family homes. Land area per unit are from Table 11.

Similarly, relatively small changes in travel patterns can significantly reduce traffic problems. Only about 15% of vehicle travel occurs under congested urban-peak conditions. These are the trips with the greatest external costs and which tend to be the most suitable for shifting to other modes (walking, cycling, ridesharing, transit and telework). As a result, a Smart Growth program that shifts just 5-10% of automobile travel to other modes may provide large benefits.
Public Service Costs

Smart Growth can reduce development and public service costs by reducing the length of roads and utility lines, parking requirements, and travel costs to provide public services such as garbage, policing and school access (“Land Use Evaluation,” VTPI, 2003). More than a dozen studies, many by leading research organizations, indicate that Smart Growth can provide such savings (Frank, 1989; Burchell, et al, 1998; Blais, 1995; Muro and Puentes, 2004).

Critics claim that Smart Growth increases public service costs (Gordon and Richardson, 1999; Cox, 2003). They cite research by Ladd (1992) showing that per capita public service expenditures increase in higher-density counties. Similarly, Cox found that per capita government expenditures increased at a faster rate in Oregon than in Georgia, and so concludes that Portland’s Smart Growth policies have failed to reduce public service costs (www.gppf.org/pubs/analyses/2001/american_dream_boundaries.htm). But these studies do not really prove that Smart Growth increases public service costs because:

- Smart Growth affects density and design at a much finer geographic scale than Ladd or Cox analyzed. County- and state-level analysis indicates little about Smart Growth impacts.
- These studies only consider government expenditures. Total per capita expenditures are actually about 30% higher in lower-density areas because residents provide more of their own water, sewage and garbage services privately (SC, 1999).
- Higher government expenditures in more urbanized areas are partly explained by higher wages (so urban-rural differences are smaller when measured as a portion of income) and higher quality services (more public parks, libraries, etc. in urbanized areas).
- Cities incur additional costs because they contain a disproportionate share of residents with special needs that impose additional public service costs. In 1990, large U.S. cities comprised 12% of the nation’s population but 17% of its poor, and as a result spent an average of $364 per capita on health, hospitals, and public welfare, or 30% of local tax revenues, while smaller cities and suburbs spent only $40 per capita on those poverty-related categories, or 9% of local taxes (Gyourko and Summers, 1997). This partly results from suburban fiscal zoning and automobile-dependency that excludes residents who require affordable housing or cannot drive, offloading public service costs onto cities.

Smart Growth sometimes increases short-term costs but reduces long-term costs. For example, it may add costs for cleaning up brownfields and installing new infrastructure within urban areas, but provides transportation cost savings and reduces future public service and utility maintenance costs because activities are less dispersed.

Smart Growth can impose some additional development costs, including special design requirements (such as additional pedestrian and structured parking facilities, and aesthetic features), higher costs for retrofitting infrastructure in high-density developed areas, and additional costs that may be needed to improve public services in urban neighborhoods in order to attract middle-class residents (Ewing, 1997). As a result, actual cost savings will vary depending on the particular situation.
Health Impacts

Transportation and land use patterns impact human safety, health and fitness ("Health and Fitness," VTPI, 2003; Litman, 2003b; AJPH, 2003, AJHP, 2003). Ewing, Schieber and Zegeer (2003) find higher per capita traffic deaths in sprawled communities (Figure 8). They estimate that each one percent increase in their sprawl/Smart Growth index reduces the area’s traffic fatality rate by 1.5%. Ewing, Pendall and Chen (2003) find that sprawl communities have about 50% higher maximum ozone levels. Durning (1996) and (Lucy, 2002) found that the higher crash rates of sprawled communities overwhelm other personal risks, such as higher murder death rates in urban communities, making urban residents safer overall.

![Figure 8](image)

Annual Traffic Death Rate (Ewing, Schieber and Zegeer, 2003)

The ten U.S. communities ranked least sprawled have much lower annual traffic fatality rates than the ten communities that are ranked most sprawled.

Several studies also show higher rates of active transportation (walking and cycling) in Smart Growth communities (APA, 2003; Killingsworth, De Nazelle and Bell, 2003; Ewing, et al, 2003), indicating that Smart Growth can reduce risks associated with sedentary lifestyles such as cardiovascular diseases and diabetes. Smart Growth critics have dismissed these claims (Schwartz, 2002; Utt, 2003). They argue that these health impacts are unproven, that individuals rather than communities are responsible for such risks, and that health objectives are outside of the scope of land use and transport planning. However, the evidence is increasing that community design factors affect these risks and many consumers value living in safer and healthier communities (AJPH, 2003; AJHP, 2003). Although there is still research to be done, it would be as foolish to ignore these potential benefits of Smart Growth as to ignore a potentially helpful new medical treatment or traffic safety strategy that provides similar benefits.
Cox (2003c) and Utt (2003) dismiss research by Ewing, et al. (2003) showing that sprawl is associated with obesity by arguing that the association between sprawl and excessive weight is insignificant and spurious. Their arguments miss several important points:

- Weight differences are only one indicator of health risk. A much more important factor is the effects of sedentary lifestyle, that is, a lack of regular physical activity.

- Other studies show that residents of Smart Growth communities (i.e., areas with more clustered land use, multi-modal transportation systems and walkable neighborhoods) tend to walk and cycle more than residents of sprawled areas, even when demographic and income are taken into account. For example, the 1995 National Personal Transportation Survey indicates that urban residents average 0.59 walking/cycling trips per day as opposed to 0.21 made by suburban residents. Figure 9 also indicates the much higher levels of walking that occur in traditional neighborhoods. For more studies of the relationships between community design and public health see AJPH, 2003 and AJHP, 2003, and the Active Living By Design (www.activelivingbydesign.com) website.

Figure 9 Household Travel by Neighborhood Type (Friedman, Gordon and Peers, 1995, cited in “Land Use Impacts on Transportation,” VTPI, 2003)

Residents of traditional-style neighborhoods walk about twice as much as residents of suburban neighborhoods.

- Ewing, et al. analysis was performed at a county level. Much greater differences in health factors are likely to occur at a more disaggregate level, such as when Smart Growth and sprawled neighborhoods (rather than counties) are compared, or when communities which have made concerted efforts to improve walking and cycling conditions are compared with automobile-dependent communities.

- Critics claim that Smart Growth health impacts can be explained by income: residents of sprawled communities tend to be poorer, and poverty is associated with health risks such as obesity and inadequate physical activity. If this is true, then it further demonstrates economic benefits of Smart Growth: either Smart Growth raises residents’ incomes or it attracts wealthier people, indicating that consumers prefer Smart Growth over sprawl.
Greenspace Preservation Benefits
Smart Growth helps preserve greenspace (farmland, wildlife habitat, wetlands, parks and other forms of environmentally beneficial land uses), which provides a variety of economic, social and environmental benefits. Critics claim that efforts to preserve greenspace are unjustified, since they claim that only a tiny portion (3-5%) of America’s total land area is developed. This reflects a misunderstanding of greenspace and its value to society (“Land Use Evaluation,” VTPI, 2003).

Although only 3-5% of America’s total land area is officially designated as “urban,” a much larger portion is affected by development. For example, agricultural areas such as California’s Central Valley and unique habitat such as the Florida Everglades are threatened by low-density development but are classified as “non-urban.” The impacts of development often extend beyond the site borders, an impact called the “urban shadow.” For example, residents of new suburban developments often complain about common farming practices such as noise, dust, pesticide use and driving farm equipment on roadways, leading to constraints on farming activities. As a result, sprawl threatens local and regional agricultural economies. Similarly, human activity, including noise, roadway corridors and various pollution emissions can disturb wildlife habitat over a wide area.

Urban development tends to occur in particularly valuable agricultural and environmental areas because many growing cities are located in fertile valleys or along coastlines. As a result, urban fringe development threatens prime farmlands, wetlands and unique wildlife habitat, each of which can provide unique economic, social and environmental values. An acre of Iowa farmland or Vermont forest does not substitute for an acre of land in California’s Central Valley or Florida Everglades lost to development.

Greenspace provides a variety of economic, social, cultural, environmental and aesthetic values. Greenspace preservation helps improve water quality and groundwater recharge, reduce stormwater management costs, and reduce heat island effects. Many people value having traditional farm activities in their communities, and value being able to purchase locally produced food. Many people value the preservation of historic sites, unique natural features and attractive views, and these are important to the economy of many communities (for example, as tourist attractions). Many geographic areas have unique ecological features and habitats that are threatened by sprawl. Urban sprawl and excessive vehicle traffic can threaten the attributes that make a place special and attractive, and therefore increase land values and economic activity. These are all additional values from greenspace that Smart Growth can help preserve, which are not recognized by critics.

For more discussion of these values and methods for quantifying them see European Union’s Environmental Economics Website (europa.eu.int/comm/environment/enveco), the International Society for Ecological Economics (www.ecoeco.org), and “Quantification Techniques,” Chapter 4 of Litman, 2003c.
Transit Cost Efficiency
Critics argue that transit projects, particularly new urban rail, are ineffective and wasteful. They cite examples of transit projects that exceed projected costs or failed to meet ridership goals, but ignore other examples of projects that exceeded goals and are considered successful (Ridlington and Kellet, 2003). Critics tend to focus on just one or two transit objectives such as congestion or emissions reductions, and ignore other benefits, and so undervalue transit. The table below lists the full range of benefits that should be considered when evaluating public transit investments.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobility Benefits</td>
<td>Benefits from increased travel that would not otherwise occur.</td>
</tr>
<tr>
<td>Direct User Benefits</td>
<td>Direct benefits to users from increased mobility.</td>
</tr>
<tr>
<td>Government Benefits</td>
<td>Direct benefits to government agencies from increased mobility.</td>
</tr>
<tr>
<td>Productivity</td>
<td>Increased productivity from improved access to education and jobs.</td>
</tr>
<tr>
<td>Equity</td>
<td>Improved mobility that makes people who are also economically, socially or physically disadvantaged relatively better off.</td>
</tr>
<tr>
<td>Option Value</td>
<td>Benefits of having mobility options available, in case they are ever needed.</td>
</tr>
<tr>
<td>Efficiency Benefits</td>
<td>Benefits from reduced motor vehicle traffic.</td>
</tr>
<tr>
<td>Vehicle Costs</td>
<td>Changes in vehicle ownership, operating and residential parking costs.</td>
</tr>
<tr>
<td>Chauffeuring</td>
<td>Reduced chauffeuring responsibilities by drivers for non-drivers.</td>
</tr>
<tr>
<td>Vehicle Congestion</td>
<td>Reduced motor vehicle traffic congestion.</td>
</tr>
<tr>
<td>Barrier Effect</td>
<td>Reduced traffic delay to pedestrians.</td>
</tr>
<tr>
<td>Parking Costs</td>
<td>Reduced parking problems and non-residential parking facility costs.</td>
</tr>
<tr>
<td>Safety, Security and Health</td>
<td>Changes in crash costs, personal security and improved health and fitness.</td>
</tr>
<tr>
<td>Roadway Costs</td>
<td>Changes in roadway construction, maintenance and traffic service costs.</td>
</tr>
<tr>
<td>Energy and Emissions</td>
<td>Changes in energy consumption, air, noise and water pollution.</td>
</tr>
<tr>
<td>Travel Time Impacts</td>
<td>Changes in transit users’ travel time costs.</td>
</tr>
<tr>
<td>Land Use</td>
<td>Benefits from changes in land use patterns.</td>
</tr>
<tr>
<td>Transportation Land</td>
<td>Changes in the amount of land needed for roads and parking facilities.</td>
</tr>
<tr>
<td>Land Use Objectives</td>
<td>Supports infill, efficient public services, clustering, accessibility, land use mix, and preservation of ecological and social resources.</td>
</tr>
<tr>
<td>Economic Development</td>
<td>Benefits from increased economic productivity and employment.</td>
</tr>
<tr>
<td>Direct</td>
<td>Jobs and business activity created by transit expenditures or attracted to a particular area.</td>
</tr>
<tr>
<td>Shifted Expenditures</td>
<td>Increased regional economic activity due to shifts in consumer expenditures to goods with greater regional employment multipliers.</td>
</tr>
<tr>
<td>Agglomeration Economies</td>
<td>Productivity gains due to more clustered, accessible land use patterns that increase efficiency.</td>
</tr>
<tr>
<td>Transportation Efficiencies</td>
<td>More efficient transport system due to economies of scale in transit service, more accessible land use patterns, and reduced automobile dependency.</td>
</tr>
<tr>
<td>Land Value Impacts</td>
<td>Higher property values in areas served by public transit.</td>
</tr>
</tbody>
</table>

This table summarizes potential transit benefits. All of these should be considered when evaluating a particular transit policy or project.
Critics argue that transit improvements are a luxury which cannot be justified if resources are limited for essential roadway maintenance, such as fixing potholes and replacing deteriorating bridges. But transit projects are a substitute for roadway capacity expansion, not for basic road maintenance, and transit is a necessity for some people. If society wants to improve economic opportunity for people who for any reason cannot drive, basic transit service is essential. Once transit service is provided, additional riders can usually be accommodated with a relatively low marginal cost.

Figure 10 Urbanization Impacts on Transit Use

As an area becomes more urban a greater portion of trips are made by public transit.

As an area becomes more urbanized (denser, more mixed land use, higher land prices, and less unpriced parking), transportation diversity tends to increase, with a greater portion of trips by walking, cycling and public transit. Where service quality is good, transit carries 10-20% of peak-period commuters on major urban corridors and 20-60% to central business districts (Figure 10). Critics argue that transit is declining in importance, citing long-term travel trends, but in recent years transit has become more important for several reasons:

- During the 1990s many cities experienced redevelopment and population growth, and some trends (smaller households, more elderly people, increased popularity of urban loft apartments, increased value placed on walkability, etc.) support increased urbanization.
- Many cities that previously relied on automobile transport have reached a size and a level of travel demand that makes transit the most cost-efficient way to improve mobility.
- Many areas previously classified as suburban are becoming more urbanized due to population growth and infill, and so experience increased congestion, commercial clustering, land values and parking problems that make transit cost effective.
- Many suburban areas have commercial centers, malls, campuses and industrial parks with sufficient trip generation to justify public transit service.
- Various combinations of aging populations, traffic and parking problems, and environmental concerns are motivating suburban, semi-rural and resort communities to use transit services.
Transit tends to be most efficient on corridors with the worst traffic problems, because demand is concentrated, and expanding road and parking capacity is costly. Transit improvements are often the most cost effective way to improve mobility on these corridors, providing benefits to transit users and motorists, who gain from reduced traffic and parking problems, chauffeuring demands and pollution (Weyrich and Lind, 2001).

Incremental Costs of Urban-Peak Automobile Travel

Adding urban highway capacity typically costs $2-4 million per lane-mile, and more if land costs are high or intersection reconstruction is needed. This represents an annualized cost of $100,000-250,000 or more per lane-mile. Divided by 2,000 to 4,000 additional peak-period vehicles per lane for 250 annual commute days indicates costs of 10-50¢ per vehicle-mile of travel, plus 5-10¢ per vehicle-mile for maintenance and traffic services, indicating roadway costs of $3-10 for a 10-mile highway trip. Urban parking typically costs $2-10 per day, so total facility costs to government and businesses average $5-20 per day for an urban-peak automobile commute.

Critics argue that individual transit improvements do little to reduce regional congestion (Charles and Barton, 2003), but the same could be said of individual roadway projects: impacts are small compared with total regional traffic problems. Transit does help reduce roadway congestion. When transit is faster than driving a portion of motorists shift to transit. On a congested highway, even a small reduction in traffic volumes can provide a large reduction in congestion delays. As a result, the faster the transit service, the faster the traffic speeds on parallel highways (Mogridge, 1990; Lewis and Williams, 1999). Comparisons between cities, and experiences when urban transit service is disrupted, indicate that good transit service reduces traffic congestion (STPP, 2001). The Texas Transportation Institute estimates that U.S. urban traffic congestion delays would increase about 30% if public transit service were not available (TTI, 2003).

Critics claim that transit has excessive costs and public subsidies. They often cite figures indicating that 40-50% of transport expenditures are devoted to transit, but this is inevitably a single funding category (such as regional capital investments), not total expenditures. Total transit costs and subsidies are small compared with those of automobile travel. For example, U.S. transit expenditures total about $30 billion annually, of which two-thirds are subsidies, compared with $120 billion spent on roads of which $50 billion are subsidies (from general taxes), plus $30 billion in general taxes spent on traffic services, $270 billion in parking subsidies and $600 billion spent on private motor vehicles (“Transport Costs,” VTPI, 2003). Transit expenditures represent about 3% of total motor vehicle expenditures, and transit subsidies represent about 10% of automobile financial subsidies (money spent on roads, traffic services and parking not charged directly to users), not counting other external costs such as uncompensated crash damages and environmental impacts.

Even this does not tell the whole story because about half of transit service is *equity justified* (intended to provide basic mobility for non-drivers) rather than *efficiency justified* (intended to reduce traffic congestion or pollution). Thus, efficiency-justified transit subsidies total about $10 billion annually, or about 5% of automobile subsidies, approximately equal transit’s share of urban trips. Transit users travel less on average than motorists, so their per capita annual subsidy is lower than what motorists receive.
Evaluating Criticism of Smart Growth

Critics often use average values when calculating cost per passenger-mile, but if some transit service is provided to insure basic mobility for non-drivers, the incremental costs of accommodating additional riders is often quite low (“Transit Evaluation,” VTPI, 2003). Critics often use a relatively short time period for evaluation, which exaggerates highway benefits and understates transit benefits. Highway congestion and air emission reductions tend to be greatest right after capacity is added, but decline in a few years due to increased vehicle traffic and induced travel, while transit projects tend to provide relatively small benefits during their first few years, but these increase over time as ridership grows and land use patterns change.

Critics claim that extreme population densities (e.g., 50,000 residents per square mile or 78 per acre) are needed for public transit to be cost effective. But Smart Growth includes many features that increase transit efficiency and ridership, such as clustered commercial centers, increased rider comfort, affordable fares, improved user information and marketing, improved walkability, parking cash out, road tolls, and Park & Ride facilities. A particular land use density may be inadequate to support transit service by itself, but becomes adequate if implemented with suitable Smart Growth programs, increasing cost efficiency and total benefits.

Cox claims that density increases transit costs (www.demographia.com/db-ptcitysub.htm), measured as operating costs per transit-vehicle hour. This is not surprising since larger cities have more congestion delays and higher wages. However, larger cities also have higher transit load factors, reducing per passenger-mile costs and subsidies, so transit system efficiency tends to increase with density.

There is evidence that many consumers would prefer to use transit more and drive less. U.S. transit use has increased faster than automobile travel in recent years (Figure 11), although this period coincided with a growing economy and declining real fuel costs, both of which should favor driving over transit travel. This suggests that public transit ridership could increase more with suitable Smart Growth strategies.

Figure 11 Annual Growth in Automobile and Transit (APTA & FHWA Data)

![Annual Growth in Automobile and Transit](chart.png)

Between 1997 and 2000, transit use grew faster than automobile use.
Induced Traffic Impacts
Because Smart Growth critics support roadway projects to address traffic problems, they have challenged claims that increased roadway capacity causes generated and induced vehicle travel which reduces congestion reduction benefits.

Many specific claims made by critics concerning induced travel misrepresent the issue. For example, they claim that the existence of induced travel is unproven or too small to be significant (Cox, 2003b). But induced travel impacts are well documented (Litman, 2001; Cervero and Hanson, 2000). A significant portion (40-60%) of added roadway capacity tends to be filled by induced travel over the long-run, and even more under highly congested condition. Induced travel does not mean that road capacity projects provide no benefits and should never be implemented. However, current planning practices that ignore these impacts tend to overstate the benefits of highway capacity expansion and understate the relative benefits of alternative solutions to congestion problems. Road projects considered cost effective by conventional models may actually provide little long-term benefit to motorists and make society worse off overall, while other strategies would provide greater net benefits when all impacts are considered.

Jobs/Housing Balance
Jobs/Housing Balance refers to the ratio between employment and residents in a community. Smart Growth proponents support efforts to balance jobs and housing, referred to as creating “more complete communities,” in order to reduce transportation problems and improve employment opportunities. Smart Growth critics argue that this is unnecessary and harmful, since housing and employment are now so dispersed through an urban area, workers frequently change jobs and home locations, most households contain multiple workers, many jobs are highly specialized so workers cannot simply accept a nearby job, and most people want to live in resident-only communities away from major industries (Giuliano, 1991). Critics point to surveys indicating that “only” 20% of home buyers rank proximity to employment as their most important factor in choosing home location (Cox, 2003b).

But there are a number of justifications for Jobs/Housing Balance not recognized by critics. A number of studies indicate that average commute distance and time is lower for residents of communities with a more balanced jobs/housing ratio, and this may be particularly important for lower-income workers (Levinson, 1998). In addition, Job/Housing Balance can increase the number and diversity of services in a community, improving access to services and reducing non-work travel. Even if “only” 20% of house buyers consider proximity to work as a primary priority, this is a significant portion of the market, and implies that a far larger portion of homebuyers consider proximity to employment a high to moderate priority.
Considering Alternatives

Critics sometimes attack Smart Growth programs without providing specific alternatives for comparison. For example, critics argue that public transit projects have excessive costs per additional rider, although highway projects would have even higher costs per additional trip when road construction, parking and vehicle expenses are all considered. Similarly, critics sometimes oppose infill development on the grounds that this is unpopular with residents, without acknowledging that the alternatives (prohibiting development or increasing low-density sprawl development on existing greenspace) are also unpopular, and so Smart Growth may be the most popular of available options.

Cox (2000) proposed a transportation plan for the Atlanta, Georgia area consisting of a grid of high-volume arterials spaced every mile through the urban region, converting existing arterials to “surface expressways,” limited access commercial bypasses, automobile tunnels, double-decking freeways, truck-only freeways, more extensive use of reversible lanes, and high occupancy toll lanes. But the proposal includes no cost estimates, nor modeling to quantify impacts on congestion, pollution emissions or safety.

Table 16 provides an estimate of such a program’s costs, assuming that 1,000 miles of state highways and 1,600 miles of arterials in the fifteen-county Atlanta area are expanded by one lane in each direction. Additional operating and maintenance costs for these lanes are calculated based on 5% of capital costs. This probably underestimates the proposed program’s actual costs because many highways would need more than one additional lane over the next 20 years to significantly reduce traffic congestion, and because the proposed roadway projects (tunnels, double-decking highways with new intersections and urban arterial widening) tend to be particularly costly.

<table>
<thead>
<tr>
<th>Miles</th>
<th>Cost Per Lane-Mile</th>
<th>Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>State Highways 1,000</td>
<td>$4,000,000</td>
<td>$8,000,000,000</td>
</tr>
<tr>
<td>Arterials 1,600</td>
<td>$2,000,000</td>
<td>$6,400,000,000</td>
</tr>
<tr>
<td>Totals 2,600</td>
<td></td>
<td>$14,400,000,000</td>
</tr>
<tr>
<td>Annualized (7% Interest over 20 years)</td>
<td></td>
<td>$1,359,258,131</td>
</tr>
<tr>
<td>Operations and Maintenance (5% of capital costs)</td>
<td></td>
<td>$720,000,000</td>
</tr>
<tr>
<td>Total Annualized Cost</td>
<td></td>
<td>$2,079,258,131</td>
</tr>
<tr>
<td>Annual Per Capita</td>
<td></td>
<td>$590</td>
</tr>
</tbody>
</table>

This table shows the estimated costs of Wendell Cox’s proposed highway capacity expansion projects if implemented over 20 years. Actual costs would probably be higher.

This estimate further understates the total potential costs for Cox’s program because it includes just 1,600 miles of additional arterial capacity, enough to approximately cover currently urbanized Atlanta but not the larger area of potential suburban expansion. If the arterial network is expanded to an 80-mile grid, reflecting Cox’s idea that sprawl is good, the program’s total costs more than double. If Cox recommends limiting the grid, on the grounds that public subsidy of low-density urban expansion is wasteful and suburban growth should be constrained, he is endorsing Smart Growth.
Cox ignores the negative impacts that wider roads, double-decked highways, increased traffic volumes and higher traffic speeds have on the city environment, including reduced walkability, aesthetic and noise impacts, and the loss of greenspace as the urban fringe expands with low-density development.

Cox’s proposal would cost the average Atlanta area household $1,475 annually. A fuel tax increase of approximately $1.00 per gallon or a vehicle fee of about 5¢ per mile would be needed to provide this revenue. However, such charges may reduce vehicle traffic sufficiently that the need for this proposed highway project would be eliminated. In other words, the need for Cox’s proposed highway capacity expansion only exists if the roadway projects are subsidized and driving is underpriced. This is evidence that such projects are economically inefficient, and that mobility management and Smart Growth strategies are justified based on free market principles.

Recognizing that roadway capacity expansion cannot really solve transportation problems, Cox’s plan actually contains many Smart Growth strategies, including electronic road pricing, high occupancy toll (HOT) roads, improved transit services, financial incentives to encourage ridesharing and public transit ridership, telecommuting and acceptance that traffic congestion is inevitable. However, many of these are presented as afterthoughts, with little detail as to how they will be implemented, and little appreciation that they can be part of an integrated mobility management program which, because it tends to be more cost effective than highway capacity expansion, should be implemented first.
Responding To Specific Critics

This section examines specific claims by various Smart Growth critics.

Wendell Cox

Wendell Cox is a leading critic of Smart Growth (www.demographia.com and www.publicpurpose.com). He makes many of the errors examined in this paper:

- He misrepresents Smart Growth, assuming that it relies primarily on new regulations, ignoring other Smart Growth strategies. For example, he claims that Smart Growth reduces consumer freedom, without acknowledging that many Smart Growth strategies increase consumer freedom to choose housing options such as secondary suites and lofts, to avoid excessive parking requirements, or to use alternative forms of transport.

- He evaluates Smart Growth based simply on regional density. He either does not understand or intentionally ignores more accurate indices of sprawl and Smart Growth. Much of his criticism of Smart Growth disappears when these more accurate indices are applied to his analysis. For example, his claims that Smart Growth increases congestion and pollution, public service costs and household costs do not apply if other Smart Growth strategies besides increased regional density are considered.

- He ignores confounding factors between city size, density, congestion, income, etc., and so reaches spurious and inaccurate conclusions. For example, he claims that Smart Growth increases housing and food costs, although this actually reflects the higher incomes in larger cities. Much of his criticism of Smart Growth disappears when these factors are incorporated into his analysis. For example, his claims that Smart Growth increases congestion and pollution, public service costs and household costs do not apply if confounding factors are considered.

- He criticizes transit investments on the grounds that they are not the most cost effective way to reduce traffic congestion, ignoring other benefits of public transit. For example, his criticism ignores parking cost savings, consumer cost savings, safety benefits, improved mobility for non-drivers, and support for strategic land use objectives.

Below is one of Coxes’ articles criticizing Smart Growth. Responses to his claims are in italics.

Debunking Friday the 13th: 13 Myths of Urban Sprawl
by Wendell Cox, The Heartland Institute (www.heartland.org) 06/12/2003

Simply described as the geographical spreading out of urban areas, “urban sprawl” has become the stuff of public policy hysteria. A well-financed movement blames sprawl for everything from a lack of community spirit to obesity. The movement has labeled itself “smart growth,” but more descriptive--and more accurate--would be “anti-opportunity.” It would force housing prices up, depriving millions of households, disproportionately minority, of home ownership. It would increase commuter travel times and reduce the number of jobs accessible, to the disproportionate harm of lower-income households, especially minorities. The “smart growth” movement is a serious threat to the American Dream of home ownership, employment, and prosperity. Far more dangerous than black cats, ladders, and Friday the 13th, it jeopardizes the lives of millions of Americans. The 13 myths debunked below explain why.
Evaluating Criticism of Smart Growth

Myth #1: Smart Growth Does Not Reduce Housing Affordability. Rationing raises prices. Smart growth measures ration land by forcing higher densities through urban growth boundaries, excessive impact fees, down-zoning and other restrictions on development. This drives prices higher, making housing less affordable.

While Smart Growth may reduce the supply of urban-fringe land it has many features that can increase consumer affordability, including reduced land requirements per housing unit, reduced parking costs, more diverse housing types (secondary suits, multi-family, loft apartments), more cost effective utility and public services, and reduced household transportation costs. Much of the cost premium for New Urbanist neighborhoods reflects consumer preferences and scarcity, and so is best addressed by expanding Smart Growth to increase the supply of such housing.

Myth #2: Higher Densities Mean Less Traffic Congestion. National and international evidence clearly shows higher densities increase traffic congestion. Per-capita travel by automobile may decline a bit as densities rise, but not enough to keep traffic from getting a lot worse. Adding more of anything to a constricted space--putting more people into smaller urban areas--increases crowding.

As described above, Smart Growth includes many features that can help reduce per-capita vehicle trip generation besides just increased density. Smart Growth emphasizes accessibility rather than mobility, so trip distances are shorter, and Smart Growth gives people more travel options, so they are able to avoid congestion, for example by walking for local errands and taking grade-separated transit. As a result, people spend less time in congestion delay, even if the degree of local congestion (measured as roadway level of service) increases. It is untrue that increased density (population per acre) increases crowding (population per room) if Smart Growth results in more efficient use of land through smaller lots, multi-story buildings, less land devoted to parking and other design strategies.

Myth #3: Lower Densities Mean Higher Costs of Government. The smart-growth folks say we can no longer afford our low-density life style, claiming higher taxes and fees are caused by lower densities. But the data show lower-density cities have lower expenditure levels than higher- density cities. Moreover, cities with newer housing stock (second- and third-ring suburbs) have lower public expenditures than central cities and first-ring suburbs.

More than a dozen studies by leading researchers show higher public service costs for dispersed development. The study Cox cites is not relevant, because it measures county-level density and ignores additional private costs for services such as water, sewage, garbage, and differences in wages and service quality between urban and rural areas.

Myth #4: Higher Densities Mean Less Air Pollution. EPA research concludes air pollution emissions are higher where traffic speeds are slower, and emissions are higher where there is more stop-and-go traffic. Higher densities mean more traffic congestion, which in turn means slower traffic speeds and more stop-and-go travel. More tail pipes do not emit less pollution. Air emission impacts vary depending on circumstances. Although increased development density may increase per-mile vehicle emissions, this is offset by reduced per-capita mileage.

Myth #5: Central Cities Are the Victims of Suburban Growth. America’s central cities have lost population, while suburbs have gained. It does not, however, follow that city losses occurred because of suburban growth. Over the past half-century, America has become increasingly urban, as rural residents have moved to urban areas, where they have accounted for much of suburban growth. And cities have driven away many who would have stayed. Cities are hardly the victims here. City residents are: residents who felt they had no choice but to leave, and even more so those who have no choice but to stay, captive to governments qualifying as third world by their performance.

Many studies by urban economists indicate that a variety of public policies favor suburbanization (such as redlining, housing policies that favored new construction over redevelopment, and transportation and infrastructure investments that favor suburban residents) and contribute to urban degradation.
Myth #6: Rail Transit Reduces Traffic Congestion. There is no evidence--none--that new rail transit has materially reduced traffic congestion in any urban area. Building rail is justified principally by an irresistible urge to spend taxpayers’ money. The higher the cost, railvangelists claim, the greater the benefit. Of course, the historic rail systems serving the pre-automobile cores of New York, Chicago, Paris, London, Tokyo, or Hong Kong are essential. But Sioux City, Iowa is not Hong Kong. Neither, for that matter, is Portland.

There is considerable evidence that high-quality grade-separated transit services reduce traffic congestion. Corridors with grade separated transit tend to have higher traffic speeds than corridors that lack such service, and cities with large, well-established rail transit systems have 20-50% lower per capita traffic congestion costs than comparable size cities that lack such systems (Litman, 2004).

Myth #7: Rail Transit Is Needed for Transportation Choice. From Cincinnati to Austin, transit spending advocates quickly abandon their baseless traffic congestion claims when challenged. They shift to what they call “transportation choice”--the idea that building rail transit provides choices for people. But choices for whom? At most, rail transit serves the small percentage of people who work downtown--the only destination to which transit provides what can be considered automobile-competitive service. To provide genuine transit choice for all would require annual expenditures that rival the gross income of any urban area.

Rail transit is not appropriate everywhere, but in some areas it can provide benefits to consumers by improving travel options and providing a catalyst for accessible transit villages, which provide a number of benefits to people who live and work there, and to other regional residents who experience less traffic congestion and pollution emissions (Litman, 2004). Voters tend to be more willing to support rail transit funding and middle-class travelers tend to be more willing to ride rail than bus transit, suggesting that rail reflects consumer preferences.

Myth #8: We Can’t Built Our Way Out of Congestion. This proceeds from the belief that new roadway capacity creates new traffic (the “induced traffic” effect)--suggesting a corollary that building more maternity wards would increase the birth rate. This leads to a further conclusion that, given enough road capacity, Americans will eventually spend 36 to 72 hours per day behind the wheel. More rational minds at the Federal Highway Administration found little induced traffic effect, and even that withers away when travel time (rather than distance) is considered.

Mr. Cox misunderstands the concept of generated and induced vehicle travel. It does not mean that increased roadway capacity increases the amount of time people spend traveling; on the contrary it reflects the tendency of constant travel time budgets, that is, people tend to devote a constant portion of their day to travel and so drive more miles when travel speeds increase. A variety of studies by leading researchers show that a significant portion (40-60%) of added roadway capacity tends to be filled by induced travel over the long-run. This does not mean that roadway capacity expansion provides no congestion reduction benefits, but such benefits decline while the increased vehicle mileage may impose additional costs on society, such as downstream congestion, increased accidents and pollution.

Myth #9: The Jobs-Housing Balance. Planners, the smart growth movement claim, should design transportation and land use so as to minimize the distance between work and home. This may be the most bankrupt, and surely the most arrogant, of the smart growth myths. Herding cats would have at least as high a probability of success. According to Census data, barely 20 percent of households consider proximity to work as the principal reason for selecting their home neighborhood. A jobs-housing balance requires other balances as well--jobs-housing-education, jobs-housing-leisure, etc. Are planners really in the best position to decide?

Jobs-housing balance is a general indicator of increased accessibility and land use mix, which can provide a variety of consumer, economic, social and environmental benefits. Current land use policies discourage land use mix – Smart Growth removes restrictions, allowing development of more complete
Evaluating Criticism of Smart Growth

communities. Whether households rank proximity to work first, second or third when choosing a home, there are still many benefits from reducing travel distances to work and services. People shouldn’t be prevented from living and working closer together if they choose, since this provides benefits to both individuals and society, yet is currently prohibited by public policies in many communities.

 Myth #10: Higher Densities Mean A Lower Cost of Living. Periodically, smart-growth studies emerge claiming household transportation expenditures are higher where densities are lower. But there is more to life than transportation. Housing and food expenditures are so much lower where densities are lower, that any transportation cost advantage for higher density areas is more than erased. Smart Growth increases housing, transportation and commercial options, letting individual households choose the combination that best meets their needs. Current land use and transportation policies tend to restrict consumer choice and affordability.

 Myth #11: Europe Doesn’t Sprawl. American urban planners by the thousands have made overseas pilgrimages, frequenting sidewalk cafes across the street from the Louvre in Paris, wondering why Phoenix or Boston looks so different. What they fail to realize is that not even Paris is like Paris. The few square miles of central Paris in which the myopic rail-bound pilgrims sit is in the middle of 1,000 square miles of urban sprawl. The situation is similar throughout Western Europe, where virtually all growth in urban areas has been suburban growth, and where virtually all major cities have experienced population losses. Urban population densities have fallen faster in Europe and Canada than in the United States. None of Cox’s claim indicate that there is anything wrong with Smart Growth. Experience in Europe, and other parts of the world, is highly diverse, with many different patterns. Many regions are applying Smart Growth principles to both urban and suburban development, many are experiencing downtown redevelopment, population growth and reduced automobile dependency, and those that succeed are enjoying significant economic, social and environmental benefits as a result.

 Myth #12: Urbanization is Consuming Agricultural Land. Until the Clinton Agriculture Department set them straight, this was one of the principal tenets of the smart-growth movement. In fact, some 400 years after Jamestown, as The Heritage Foundation’s Ron Utt always reminds us, only 3 percent of the nation is urbanized: 97 percent of it is rural. There is less agricultural land in the United States than there used to be, but not because it has been consumed by urbanization. Agriculture has become more productive. Since 1950, agricultural production has doubled, and more farmland than the area of Texas and Oklahoma combined has been returned to emptiness: open space. Many growing cities are located near prime agricultural land, shorelines and other unique greenspace. These areas are threatened by urban development. Even if this is not considered a national threat, many people value having local greenspace and the economic, social and ecological services provided.

 Myth #13: Things are Going Our Way. Anti-sprawl types often project their personal experiences into universal truths. Transit ridership increases on a minuscule base are reported as if they represented a major switch in travel behavior; going from 10 riders to 20 represents a touted 100 percent increase. Friends move into chic new urban developments, leading some to claim people are forsaking suburbs for the city. There are indications that many people prefer Smart Growth communities and society benefits overall from Smart Growth. Many professional organizations, such as the Institute of Transportation Engineers, the National Governor’s Association, and the American Planning Association support Smart Growth. Only time will tell how much Smart Growth is implemented.

Cox’s Summary
Someone should teach these people to use simple reference books, like The World Almanac, which can be easily obtained at the nearest big box store.
Evaluating Criticism of Smart Growth

Edward Glaeser and Matthew Kahn

Glaeser and Kahn (2003) use neoclassic urban economic analysis to argue that sprawl is economically efficient and beneficial, resulting from increased private wealth and associated increases in automobile travel. To support this argument they provide statistical evidence that sprawl is ubiquitous, that it reflects the technical superiority (increased travel speed) of automobile transport, and that the external costs of sprawl are minor compared with its social welfare benefits. They conclude that sprawl should be increased to allow more lower-income people to enjoy the benefits of dispersed land use and automobile dependency.

Although Glaeser and Kahn acknowledge that market distortions increase sprawl and automobile use, they assume that these impacts are minor overall, and so current land use and transport patterns are overall optimal. For example, they acknowledge that about a third of highway expenditures are subsidies (i.e., not user fees), but counter that this is small compared with the total automobile costs (they do not mention the much greater subsidy of driving from unpriced parking), and offset by transit subsidies. They ignore more general social traps, such as the economic and social problems that result when individual communities attempt to exclude “undesirable” residents.

Like other critics they use highly aggregate data to claim that there is plenty of land available for development (“Ninety-five percent of the land in this country remains undeveloped”) and so conclude urban expansion imposes no significant social or environmental costs. They acknowledge that sprawl may impose some externalities, including increased traffic congestion, excessive pollution and inefficient land use patterns (due to exclusionary zoning imposed by individual jurisdictions), and in response advocate various Smart Growth strategies such as road pricing and development policy reforms.

Glaeser and Kahn accept travel time benefits of automobile travel at face value and fail to consider the associated economic traps, that is, that the benefits of increased travel speeds may be offset by more dispersed destinations, higher travel times for non-drivers, and increases in other social costs such as pollution and accidents.

Although Glaeser and Kahn provide convincing evidence that some amount of automobile transport and urban expansion may be economically justified, they fail to prove that current land use and transport patterns are optimal or that Smart Growth is harmful. In fact, they support many Smart Growth strategies, such as road pricing (and assumedly parking pricing), more efficient pricing of public services, and reductions in exclusionary zoning. They do not examine the degree to which sprawl and automobile use would decline if these strategies were implemented, but as discussed earlier in this paper, available experience indicates that such strategies significantly change consumer behaviour (Litman, 2002). Thus, their research suggests that Smart Growth is justified on economic efficiency grounds, and that the resulting land use patterns would be significantly less sprawled and less automobile dependent than what currently exists.
Peter Gordon and Harry Richardson

Gordon and Richardson (1997 and 2000) raise a number of objections to Smart Growth, including that it reflects a socialist/collectivist ideology which contradicts private property rights, reduces consumer benefits and increases inequity, is harmful to the economy, is unjustified, and is based on failed regulatory techniques.

Gordon and Richardson argue that current land use and transportation markets are efficient because “developers already offer a wide range of community and housing choices,” and because there are a large number of independent contractors in the residential market. They ignore most categories of market distortions and claim that the impacts of any distortions and subsidies are exaggerated, citing one paper published in 1985 (“The Economics of Zoning Laws: A Property Rights Approach to American Land Use Controls” by William Fischel) to prove that “Urban economists have found that the alleged subsidies – to the extent that they exist – are minor and have little effect at the margin.” Similarly, they interpret a 1999 GAO study on the impacts of federal policies on land use development as proof that “not all government interventions that influence land development have had a suburban bias,” certainly not proof that land use markets are efficient.

They assume that Smart Growth consists primarily of urban growth boundaries to increase density and rail transit projects, and that this significantly raises housing costs and reduces consumer housing and transportation options. They do not consider other Smart Growth strategies, and dismiss the idea that a significant portion of consumers may valuing having alternative housing or transportation options.
Evaluating Criticism of Smart Growth

Edwin S. Mills

Edwin S. Mills (1999) evaluates sprawl and Smart Growth using a conventional urban economics perspective. He concludes that sprawl is a rational response to increased wealth and improved travel options, which optimizes social welfare and equity, and any attempt to reduce sprawl is harmful to individuals and society. His analysis includes a number of errors and omissions described earlier in this paper:

- He assumes that suburbanization equals sprawl, and that Smart Growth consists simply of regulatory controls on suburban expansion which force people to live in central cities.
- He makes no attempt to understand the full costs of sprawl or potential benefits of Smart Growth. He is either unfamiliar with, or intentionally ignores the extensive academic literature on these subjects (e.g., Ewing, 1997; Burchell, et al, 1998).
- He does not recognize any Smart Growth strategies besides suburban growth controls.
- He accepts without question that Smart Growth reduces housing affordability, ignoring ways that Smart Growth reduces housing and transportation costs.
- His analysis includes some clearly incorrect “facts,” such as a claim that the city of Vancouver is “surrounded by unlimited amounts of cheap land,” that all mobility management programs have failed, and that growth controls lead governments to jailing property owners for land use speculation.

Mills acknowledges that lower-density, suburban development may be economically excessive due to market distortions such as underpriced driving, externalities and failed government policies, but considers only a few distortions and evaluates them based on a biased review of evidence. For example, he cites a 1985 study to conclude that motorists fees cover roadway costs, and claims that new cars produce no significant pollution. He supports higher fuel taxes to internalize vehicle costs, which he estimates would reduce vehicle mileage a significant 15-25%, but makes no other effort to quantify other market distortions.

Mills main conclusion is that urban growth controls are harmful because they increase housing costs, based on evidence from cities such as Delhi and Bombay, although these examples have little to do with North American Smart Growth policies. His analysis overlooks the full potential benefits of Smart Growth (improved housing and transportation options, economic savings to governments and consumers, increased housing affordability, increased land use accessibility and related productivity gains, and environmental benefits from greenspace preservation).

As an urban economist concerned with social welfare it is disappointing that Mills makes so little effort to investigate the economic costs of sprawl (for example, he could evaluate research indicating that sprawl increases public service costs, transport costs, crash risk, or environmental impacts) or the impacts that market-justified land use and transport policy reforms would have on development and travel patterns, whether some consumers might prefer Smart Growth development patterns, and whether Smart Growth strategies might achieve housing affordability and equity objectives.
Evaluating Criticism of Smart Growth

Randal O’Toole

Randal O’Toole (2001) criticizes and ridicules Portland area planning, particularly urban growth boundaries, transit subsidies and any regulation-based planning, and supports “incentive based” with neighborhood level planning. He recognizes many Smart Growth objectives (greenspace preservation, improved consumer options, efficient transport), and recommends market-based Smart Growth strategies such as development fees, road pricing and tax reforms, but ignores the political difficulties of implementing such reforms, and does not discuss whether other Smart Growth strategies may be justified on second-best grounds if market-based reforms are not implemented. He assumes that neighborhood-level planning is efficient, ignoring problems such as the tendency of neighborhoods to compete for tax revenue or exclude disadvantaged people.

O’Toole presents many of the arguments against Smart Growth used by other critics, focusing on the Portland region. He claims that since only 5-10% of residents use alternative modes, and 90-95% rely on driving, it is absurd for the region to spend “two-thirds of its transportation budget on a rail-transit system that will never carry more than 2 percent of the region’s trips.” This is incorrect on several grounds. First, rail transit spending is far less than two-thirds of the region’s total transportation budget, even if only capital investments are considered. In 1992-2005 budget years, transit expenditures account for 35% of total transportation spending. Of the 25% of total transportation expenditures devoted to capital investments only 26% are devoted to transit (Park, 2003).

Second, alternative modes are far more important than this indicates. Although conventional travel surveys indicate that only 5-10% of trips only involve an alternative mode (walking, cycling or transit), a much larger portion involve an alternative mode link, particularly walking. Even people who normally drive will sometimes walk, bike or ride transit, and the portion of trips by alternative mode increases substantially if Smart Growth strategies are implemented. Third, transit trips tend to occur on congested urban corridors where traffic problems are greatest, so shifts from driving to transit that appear small as a portion of total travel can provide significant benefits to both those who use transit and people who travel by automobile. Transit provides 27% of peak-period trips along the Banfield Freeway and 26% along the Sunset Highway.

O’Toole argues that most North Americans would prefer to live in traditional suburban conditions (low-cost, large-lot housing surrounded by greenspace, with minimal traffic congestion) than a New Urbanist community, but even if true this is unrealistic in a fast-growing region such as Portland where unregulated development will lead to reduced greenspace, increased congestion and higher government and consumer costs. There is empirical evidence that many Portland residents are happy to live in New Urbanist communities.

Many examples he cites are misrepresentations or exaggerations. For example, he claims that Smart Growth requires extreme population densities to support rail transit service and insure that every resident has a supermarket within walking distance.
Critics Perspectives

Critics tend to fall into different categories representing different motivations and perspectives.

Self Interest

Some critics object to Smart Growth because they (or an organization they represent) benefit from existing development practices that are threatened by Smart Growth. For example, residents of lower-density suburban communities may believe that they benefit from policies that exclude low income people or other disadvantaged populations. Industries that benefit from current development and transport practices sometimes oppose Smart Growth. For example, some developers have optimized their business based on large-scale, single-use, greenfield projects. Bigbox retailers favor suburban locations. Automobile-related industries (vehicle manufacturing and maintenance, petroleum and road building) tend to benefit from growing automobile use.

Critics with this perspectives support sprawl rationally, out of their own self interest, but may overlook indirect impacts and broader social issues. An appropriate response is to find creative ways to address specific concerns and make Smart Growth programs attractive to these groups. For example, federal and state policies can use positive incentives to reward communities that implement Smart Growth policies, and governments can work with industries to insure that Smart Growth development can be as profitable as sprawl. Some concerns are misplaced (for example, the economic and security risks of increasing the amount of affordable housing in a community are often exaggerated), and so can be addressed by providing accurate information.

Ideological

Some critics object to Smart Growth on ideological grounds. They assume Smart Growth consists of government interventions in the free market (O’Toole, 2000). They tend to accept the following neoclassic economics assumptions with little questions:

- People are self-interested consumers whose only goal is to maximize consumption of goods.
- Consumers always consider more, bigger and newer to be better.
- Goods and services are only of value when traded in a commercial market.
- Existing markets are essentially efficient and fair, so current consumption patterns reflect consumer preferences.

In fact, most economists realize that these assumptions are unrealistic. Economic Man (i.e., the model of human behavior assumed in neoclassic economics) does not really exist. For example, most people place a high value on things other than consumption of goods and services, including community, generosity, beauty and dignity. There is an optimal level of consumption of most goods (e.g., house size, annual vehicle mileage, tourist travel) beyond which additional consumption is harmful to consumers. Many non-market goods have great value. And existing markets have many distortions, so current consumption patterns do not necessarily reflect consumer preferences. As described earlier, even most market corrections that rely on positive incentives, such as Parking Cash Out, can result in significant changes in behavior.
Evaluating Criticism of Smart Growth

Ideologically-based critics often support some Smart Growth strategies. For example, Cox (2000) advocates road pricing, commute trip reduction programs and transit fare reductions. Mills (1999) advocates road pricing or a significant fuel tax increase to internalize costs. These critics might be persuaded to support additional market-based Smart Growth strategies, as described in the box below. A key issue of debate with critics with this perspective is the degree to which blunter Smart Growth strategies may be justified on second-best grounds until market-reforms are implemented. For example, both Smart Growth supporters and critics agree that road and parking pricing are justified to improve transport system efficiency, but supporters may advocate transit subsidies, land use regulations and other mobility management strategies until market reforms are implemented, while critics may oppose such strategies.

Market-Based Smart Growth Strategies

The following strategies reflect market principles and deserve support by free-market advocates.

- More flexible parking requirements.
- Fewer restrictions on building type, minimum lot size, setback, density, etc.
- Road and parking pricing, and other pricing reforms (Pay-As-You-Drive insurance, mileage-based lease fees and weight-distance fees) provided they more accurately reflect costs.
- Cost-based pricing of public services (development, utility and tax rates that reflect the relative cost of providing services for different development patterns and locations).
- Least-cost transportation planning (allowing transport funds to be spent on the most cost effective option).
- Limit public subsidy of new infrastructure (utility services, roads, new schools) in greenfield areas if excess capacity exists within urban areas.
- Commute trip reduction programs (provided that participation is mainly voluntary and relies mainly on positive incentives).
- Vehicle travel reduction strategies such as Parking Cash Out, which give consumers a positive incentive to use more efficient transport options.
- Support for telecommuting, flextime and compressed workweeks.
- Busways, HOV priority systems and rideshare programs.
- Improved transit services, reduced transit fares and more convenient payment systems.
- Institutional reforms that encourage transportation market diversity and innovation (such as more flexible motor carrier regulations).
- Context sensitive roadway design, so facilities reflect local needs (as opposed to rigid federal and state standards).
- More neutral tax policies that provide equal benefits to non-drivers as well as drivers, and renters compared with home owners.
- Better tools for evaluating the full impacts of land use and transportation decisions.
- Improved training of land use and transportation professionals concerning comprehensive analysis of impacts and application of innovative solutions to transportation problems.
Evaluating Criticism of Smart Growth

Legitimate Criticisms

Some concerns raised by critics are legitimate, at least to some degree, and may justify adjustments to Smart Growth programs. Table 17 summarizes these criticisms and their appropriate responses. Most of these concerns are already recognized by Smart Growth proponents and are being addressed. None appear to be fatal flaws that justify a significant reduction in Smart Growth efforts, and many justify more integrated Smart Growth programs to ensure that potential problems are offset.

Table 17 Legitimate Criticisms And Appropriate Responses

<table>
<thead>
<tr>
<th>Legitimate Criticism</th>
<th>Appropriate Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proponents sometimes exaggerate the benefits of Smart Growth and the costs of sprawl.</td>
<td>Support research to identify true benefits and costs, and policies that reflect legitimate arguments.</td>
</tr>
<tr>
<td>There is uncertainty about the full costs of sprawl.</td>
<td>Continue research, and implement strategies that reflect market principles or help achieve strategic community goals.</td>
</tr>
<tr>
<td>Smart Growth can have unintended consequences.</td>
<td>Support research to better understand impacts, and develop responsive Smart Growth policies and plans.</td>
</tr>
<tr>
<td>By itself, increased development density can increase traffic congestion and local air pollution emissions.</td>
<td>Smart Growth programs should include additional strategies besides increased development density to improve accessibility, encourage modal shifts and reduce urban automobile travel.</td>
</tr>
<tr>
<td>Regulation-based strategies reduce consumer options and can have unintended consequences.</td>
<td>As much as possible, apply Smart Growth strategies that reduce regulations and rely on market-based incentives and positive rewards to increase density, preserve greenspace, reduce vehicle travel, etc.</td>
</tr>
<tr>
<td>Many consumers value lower-density suburban homes and automobile-dependent lifestyles.</td>
<td>Allow consumers to choose by providing better land use and transport options and reducing subsidies that favor sprawl.</td>
</tr>
<tr>
<td>Transit investments are not a cost effective way to reduce traffic congestion and air pollution.</td>
<td>Transit becomes more cost effective if supported by other Smart Growth strategies that increase ridership and operating efficiency, and if evaluated using a more comprehensive framework that considers additional benefits.</td>
</tr>
<tr>
<td>Automobiles are the most efficient modes for many trips.</td>
<td>Develop accessible communities and balanced transport systems that allow consumers to choose the best travel option for each type of trip. Recognize that real efficiency accounts for all social impacts, not just from a single traveler’s perspective.</td>
</tr>
<tr>
<td>Strategies that reduce land supply available for development can increase housing costs.</td>
<td>Implement Smart Growth strategies that increase housing and transportation affordability.</td>
</tr>
<tr>
<td>The economic costs of reduced national farmland is not by itself a justification for restricting urban expansion.</td>
<td>Preservation of farmland and other forms of greenspace may be important for a variety of economic, social and environmental reasons.</td>
</tr>
</tbody>
</table>

This table identifies legitimate criticisms with Smart Growth and their possible responses.
Conclusions

Smart Growth includes various strategies that increase land use and transport system efficiency. It is an alternative to sprawl. An effective Smart Growth program includes a variety of integrated strategies, many of which reflect market principles and offer positive rewards for choosing more efficient land use and transportation patterns. Such programs can help address many problems and provide many benefits.

Critics argue that Smart Growth is unfair, ineffective and unjustified. To make their points critics often misunderstand and misrepresent Smart Growth issues. They tend to consider just a few Smart Growth strategies and recognize just a few potential benefits of Smart Growth. They select data and measurement units that support their arguments, while ignoring other data and perspectives. In many cases their data is wrong or out of context. For example, they often measure Smart Growth only in terms of jurisdiction population density, overlooking other geographic scales and other factors that affect land use and transport efficiency.

Critics assume that current markets are fair and efficient, ignoring existing distortions that encourage sprawl, and ways that many Smart Growth strategies correct these distortions, increasing consumer options, economic efficiency and equity. They argue that consumers want large single-family homes in automobile-dependent communities, although there is abundant evidence that many people will choose other housing and transport options if given suitable options and incentives. Critics do not seem to understand the concept of accessibility, and so evaluate transport system quality simply in terms of vehicle traffic congestion, ignoring other factors such as the geographic distribution of destinations, roadway connectivity and transportation system diversity.

Although it is currently difficult to quantify many social benefits of Smart Growth, such as the value to communities of greenspace preservation and improved transportation options for non-drivers, there is little doubt that such benefits exist. Put another way, there is little doubt that society benefits overall if public policies do a better job of accommodating people who want to live in more clustered, mixed-use, multi-modal neighborhoods and reduce their automobile travel, but who currently face barriers due to inadequate consumer options or market distortions that favor sprawl.

Many objections raised by critics are actually justifications for more comprehensive Smart Growth. For example, critics argue that increased development density increases traffic congestion, which is a justification for implementing additional Smart Growth strategies to improve accessibility and encourage use of non-automobile modes in urban and suburban areas experiencing growth in order to reduce the traffic congestion problems that will otherwise occur. Although critics deride Smart Growth in general, they often endorse individual Smart Growth strategies in recognition that they address problems and increase market efficiency.

Legitimate skepticism is helpful. Critics identify concerns that should be addressed to optimize Smart Growth. However, the criticisms evaluated in this paper do not diminish the overall justification for Smart Growth.
Acknowledgements
A sincere thanks to the people who helped produce this paper, particularly Jon Cecil, Reid Ewing, Jay Hoekstra, Peter Jacobsen, Mason Gaffney, Nathan Landau, JoAnn Woodhall and Jeffery Smith. Any errors are my own.

References and Resources
A spreadsheet containing the calculations used in this report is available on request from the author [litman@vtpi.org].

Alex Anas, Richard Arnott and Kenneth Small, Urban Spatial Structure, University of California Transportation Center (Berkeley; www.uctc.net), No. 357, 1997.

Danielle Arigoni, Affordable Housing and Smart Growth: Making the Connections, Subgroup on Affordable Housing, Smart Growth Network (www.smartgrowth.org) and National Neighborhood Coalition (www.neighborhoodcoalition.org), 2001.

Pamela Blais, The Economics of Urban Form, in Appendix E of Greater Toronto, Greater Toronto Area Task Force (Toronto), December 1995.
Evaluating Criticism of Smart Growth

Cascade Policy Foundation [www.cascadepolicy.org] is an independent advocacy organization that opposes Smart Growth.

CCAP, State and Local Leadership On Transportation And Climate Change, Center for Clean Air Policy [www.ccap.org], 2003.

CFTE, Responding To Critics, Center For Transportation Excellence [www.cfte.org], 2003.

Congress of New Urbanism [www.cnu.org] is an organization of architects, developers, planners, and others involved in the creation of cities and towns to promote the application of New Urbanist principles.

Wendell Cox, A Common Sense Approach to Transportation In the Atlanta Region, Georgia Public Policy Foundation [www.gppf.org], 2000.

Wendell Cox, *Debunking Friday the 13th: 13 Myths of Urban Sprawl*, Heartland Institute (www.heartland.org), 13 June 2003b.

Evaluating Criticism of Smart Growth

Heartland Institute (www.heartland.org) is an independent advocacy organization that opposes Smart Growth.
Evaluating Criticism of Smart Growth

Joel S. Hirschhorn, *Growing Pains; Quality of Life in the New Economy*, National Governor’s Association [www.nga.org], 2000.

City of Lancaster, *Development Fees* (Chapter 15.64), City of Lancaster [www.cityoflancasterca.org], New Rules [www.newrules.org/environment/lancaster.html], 2002.

Evaluating Criticism of Smart Growth

Todd Litman, Transportation Cost And Benefit Analysis Guidebook, VTPI (www.vtpi.org), 2003c.

Barbara McCann, Driven to Spend; The Impact of Sprawl on Household Transportation Expenses, STPP (www.transact.org), 2000.

Frank R. Moretti, Smart Growth; A Wolf in Sheep’s Clothing?, The Road Information Program (www.tripnet.org/smartgrowth.htm), March 1999.
Evaluating Criticism of Smart Growth

NAHB, Smart Growth Case Studies, National Association of Home Builders (www.nahb.org), various years.

The Public Purpose (www.publicpurpose.com) and Demographia (www.demographia.com), are two websites by Wendell Cox that contain a variety of explicit and implied Smart Growth criticisms.

Evaluating Criticism of Smart Growth

RailRoading America (www.railroadingamerica.com) is a website dedicated to criticizing urban rail systems.

Reason Public Policy Institute (www.reason.org) is an independent advocacy organization that opposes Smart Growth.

Elizabeth Ridlington and Gigi Kellet, Rail Transit Works: Light Rail Success Stories from Across the Country, MaryPIRG Foundation (www.marypirg.org), 9 June 2003.

Joel Schwartz, CDC Hates the Suburbs, American Council on Science and Health (www.healthfactsandfears.com), July 2002.

Secret Worldwide Transit Cabal (www.transitcabal.org) provides information on commentary and analysis on urban transportation topics, including critiques of transit criticism.

SGN, Getting To Smart Growth: 100 Policies for Implementation, Smart Growth Network (www.smartgrowth.org) and International City/County Management Association (www.icma.org), 2002.

Smart Growth Network (www.smartgrowth.org) works to encourage development that serves the economy, community and the environment.

Yan Song and Gerrit-Jan Knaap, The Effects of New Urbanism on Housing Values: A Quantitative Assessment, National Center for Smart Growth Research and Education, University of Maryland (www.smartgrowth.umd.edu/research/POSTSongKnaap2.htm), 2003.

Evaluating Criticism of Smart Growth

The Thoreau Institute (www.ti.org), is an independent advocacy organization that opposes Smart Growth.

Richard Untermann and Anne Vernez Moudon, Street Design: Reassessing the Safety, Sociability, and Economics of Streets, University of Washington (Seattle), 1989.

USEPA, Improving Air Quality Through Land Use Activities, EPA420-R-01-001, Transportation and Air Quality Center, Office of Transportation and Air Quality Programs, USEPA (www.epa.gov/otaq/traq), 2001.

USEPA, Smart Growth Index (SGI) Model, US Environmental Protection Agency (www.epa.gov/smartgrowth/sgipilot.htm), 2003. This computer model predicts the impacts that various land use factors such as density, mix, roadway design, transit service and regional accessibility have on personal travel.

Ronald Utt, Obesity and Life Styles: Is it the Hamburger or your House?, Heritage Foundation (www.heritage.org/Research/SmartGrowth/wm343.cfm), 2003.

Evaluating Criticism of Smart Growth