
Wisej Self Hosting

Wisej Host Service

1 OVERVIEW

Wisej allows you to serve Wisej Web Applications on Windows machines without IIS and without

Cassini.

Wisej.HostService.exe is a small single executable (~380K) that can run as a process or as a service and

serve a single Wisej Application, plus unlimited sub-applications to local or external users.

2 HOW TO USE IT

Copy Wisej.HostService.exe to the root folder of your Wisej application, at the same level as web.config

and run it. That’s it, it will immediately serve the Wisej application to port 8080 by default.

Note: you may get an “Access Denied” error if you are not running on a Windows Server and don’t have

Administrator privileges because Windows blocks attempts at listening to all domains (*). In which case

add “-d:localhost” to accept local connections, or run as administration.

2.1 COMMAND LINE ARGUMENTS

Argument Description

(none) or -start Starts the host process for the current Wisej
application: where the process is located.

-stop Stops the process for the current Wisej
application.

-p:{port} or -port:{port} Changes the port. The default port is 8080.

-d:{domain name} or -domain:{domain name} Limits the domain: i.e. * = all, or localhost to
accept local connections only. The default is *.

-i or -install Installs Wisej.HostService as a Windows service
for the current Wisej application.

You can mix “-i” with “-p:” and “-n:” and “-d:”.

-u or -uninstall Uninstalls Wisej.HostService from the Windows
services.

Wisej Self Hosting

-n:{name} or -name:{} Changes the name of the service, otherwise Wisej
sets the name to “Wisej.HostService: “ + {Name
of Wisej Application Folder}

You can run several instances of Wisej.HostService to host multiple Wisej applications, as long as each

instance listens to a different port.

3 CUSTOMIZATION

We provide the full source code for the Wisej.HostService project. You can modify and customize the

host configuration however you like and create a custom service.

The place to customize the web server is in WisejHost.Start():

WebApp.Start(options, (builder) =>
{

/** TODO: Add additional middleware handlers here. */

 // ===
// FileServer middleware processes all static

 // resources: html, png, etc...
 //
 // It should run before the Wisej middleware to
 // serve known static files.
 // ---
 builder.UseFileServer(new FileServerOptions
 {
 EnableDefaultFiles = true,
 EnableDirectoryBrowsing = true,
 FileSystem = new PhysicalFileSystem(HttpRuntime.AppDomainAppPath)
 });

 // ===

 // ===
 // Wisej Middleware processes all .wx, .aspx requests
 // through the System.Web pipeline.
 //
 // It will process all files not handled by the
 // FileServer middleware using the classic
 // pipeline and any handler/module added to
 // web.config.
 // ---
 builder.UseWisej();
 // ===

 /** TODO: Add additional middleware handlers here. */
});

Wisej Self Hosting

You can add any additional OWIN middleware that you may want in your hosting service. There are

middleware modules for authentication, logging, tracing, caching, redirecting. And, course, you can add

your own middleware.

4 HOW DOES IT WORK

We didn’t recreate a new web server to replace IIS, nor we used Cassini.

Wisej Standalone and Wisej Self Hosting features use the Microsoft implementation of OWIN (Open

Web Interface for .NET), called Katana: https://www.asp.net/aspnet/overview/owin-and-katana.

Wisej added a WisejMiddleware implementation to route requests to the Wisej Handler and you can

add any OWIN middleware and recompile the project.

However, Wisej also added full support for ASP.NET/MVC applications, including all ASP.NET controls,

WebForms, etc. Basically, our implementation can fully replace IIS in a single executable.

4.1 SINGLE EXECUTABLE

We like simplicity. The Wisej.HostService projects are configured to merge all the OWIN and Katana

assemblies into a single executable using ILMerge and some code we added to let the host know where

to load its classes.

5 CONCLUSION

Wisej Self Hosting is an easy and inexpensive way to host Wisej applications on machines of any size.

Last, you can use it to host pure ASP.NET/MVC (including WebForms) applications.

https://www.asp.net/aspnet/overview/owin-and-katana

