

Tobacco Plants as Biofactories: Rapid and Cost-Effective Production of an Anthrax Therapy

Lucas Arzola* and Karen McDonald

Department of Chemical Engineering and Materials Science, University of California, Davis The IGERT Program at UC Davis COLLABORATIVE RESEARCH & EDUCATION IN AGRICULTURAL TECHNOLOGIES & ENGINEERING Research **Ethics** Plant-Made Biofuels & **Biorefineries Products** Global Entrepreneurship Issues Environmental Sustainability Intellectual Policy Property Regulatory

Interdisciplinary teams of graduate students and faculty trainers use plants, biotechnology, and engineering to help solve societal problems, including global health, energy independence, and agricultural sustainability.

Motivation: Using Plants for Rapid Response Manufacturing of Therapeutics In Case Of Outbreaks

Problem: Current production methods for therapeutics are unable to supply the demands created by large-scale outbreaks, such as H1N1 or anthrax. **Solution:** Plants can be used as a manufacturing platform for **therapeutic**

- Speed of production large-scale production in weeks instead of months
- Cost-effectiveness manufacturing costs are 5% of the current methods
- Safety plants do not propagate human viruses or pathogens

proteins. The advantages are:

- Product quality capable of protein post-translational modifications
- Non-transgenic process is contained, regulatory hurdles are reduced

The Manufacturing Platform: Tobacco Plants

- Easily transformable gene of interest can be easily delivered
- Non-food, non-feed crop no issues about using crops that divert from the food supply
- **Economical productivity** several acres are sufficient to produce millions of vaccine doses over the course of a year

The Therapy: CMG2-Fc, A New Antibody Against Anthrax

CMG2-Fc is an engineered human antibody against anthrax. The "donut": 7 protective antigens It is composed of the fusion of: Lethal Factor or CMG2 - the anthrax cell receptor in humans Fc - the constant Low pH fragment of the Compartment human IgG antibody Toxic CMG2-Fc works as a decov. Uptake mimicking the anthrax receptor in humans. It competes with the cell

CMG2-Fc acts as a regular antibody, and causes its therapeutic effect by inhibiting the production of the lethal anthrax toxins.

to bind the anthrax antigen that causes disease.

Agroinfiltration: CMG2-Fc DNA Can Be Easily Transferred to the Tobacco Plant

Agrobacterium is nature's genetic engineer, because it naturally transfers genetic material into plants. We are able to engineer Agrobacterium to transfer the DNA of the protein of interest we want to produce.

My Research Project: Using Gene Silencing Suppressors to Increase Yield of the CMG2-Fc Antibody in Tobacco

- Gene silencing is a natural defense system of plants against viruses and pathogens. It is also activated when a foreign protein is produced in the plant.
- Gene silencing suppressors are a class of proteins obtained from plant viruses that are able to suppress the gene silencing mechanism in plants.
- Hypothesis: the use of gene silencing suppressors can lead to increased yields of the CMG2-Fc anthrax antibody in tobacco plants.

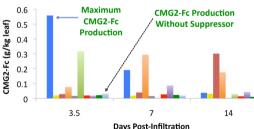
Objective

Test 9 different gene silencing suppressors to determine their impact on the amount of CMG2-Fc protein produced in tobacco plants.

Experimental Design

Three tobacco plants were agroinfiltrated with 2 strains of Agrobacterium corresponding to each of the following co-production conditions:

- CMG2-Fc and p1 suppressor CMG2-Fc and p10 suppressor
- CMG2-Fc and p19 suppressor
 CMG2-Fc and p21 suppressor
- CMG2-Fc and p24 suppressor
 CMG2-Fc and p25 suppressor
- CMG2-Fc and p38 suppressor
 CMG2-Fc and HCPro suppressor
- CMG2-Fc and p2b suppressor
 CMG2-Fc without suppressor


Methods and Results

ELISA - assay used for specific quantification of the CMG2-Fc protein

CMG2-Fc Production With Different Gene Silencing Suppressors

- CMG2-Fc:p1 CMG2-Fc:p10 CMG2-Fc:p19 CMG2-Fc:p21 CMG2-Fc:p24 CMG2-Fc:p25 CMG2-Fc:p38 CMG2-Fc:2b
- CMG2-Fc:HCPro CMG2-Fc, no co-expression

Conclusions

- Certain gene silencing suppressors p1, p19, p21, and p25 increased antibody production in tobacco, while the others seemed to have no effect on the yield, as measured by ELISA
- The highest level of CMG2-Fc was produced after just 3.5 days with the p1 gene silencing suppressor, at 0.56 g/kg of leaf, a 10 times increase when compared to absence of suppressor.
- Further optimization of the yields obtained with this platform (to levels above 1 g/kg) will be important in developing this manufacturing technology for commercial use.

Acknowledgements

Funding provided by NSF CREATE-IGERT Training Grant #DGE-0653984