Chapter 19
Respiratory System

FYI
- 480,000 deaths annually from cigarette smoke
- On average, smokers die 10 years earlier than non-smokers
- 53,000 deaths per year from secondhand smoke exposure
- Secondhand smoke is responsible for increased respiratory infections (pneumonia & bronchitis), asthma, ear infections and lower birth rates in children

Introduction
- Respiration is the process of exchanging gases between the atmosphere & body cells
- Respiratory system consists of passages that filter incoming air & transport it into the lungs, then to the air sacs where gases are exchanged
- It consists of the following events:
 - Ventilation (breathing) - moving air in/out of lungs
 - External respiration - exchange of gases between lungs & blood
 - Transport of gases - from lungs into blood & into body cells
 - Internal respiration - exchange of gases between blood & cells
 - Cellular respiration - process where cells use O₂ to produce energy (ATP) & release CO₂. Occurs in mitochondria
Functions of Respiratory System
- Provides O\(_2\) for cellular respiration
- Enables cells to access the energy in the chemical bonds of nutrients
- Expels CO\(_2\) from the body
- Maintains pH of the blood

Organs of the Respiratory System
- The organs of the respiratory system fall into 2 groups:
 - Upper respiratory tract:
 - Nose
 - Nasal cavity
 - Sinuses
 - Pharynx
 - Lower respiratory tract:
 - Larynx
 - Trachea
 - Bronchial tree
 - Lungs

Nose
- Provides opening for air to enter & leave
- Hairs trap large particles from being carried forward
- Nostrils - also known as nares are the openings where air enters & leaves
Nasal Cavity
- Hollow space behind nose
- Divided by nasal septum
- Separated from cranial cavity by the cribiform plate
- Separated from oral cavity by the hard palate
- Nasal conchae curl out from lateral walls to increase surface area
- Mucus captures dust & debris
- Olfactory receptor provides smell

Nasal Cavity
- Network of blood vessels warm air as it enters
- The mucus membrane lining the cavity has pseudostratified epithelial tissues
- Has goblet cells & cilia

Sinuses
- The sinuses are air-filled spaces in the maxillary, frontal, ethmoid, & sphenoid bones of the skull
- Reduces wt. of head
- Resonating chambers
Pharynx
- Pharynx is posterior to the oral cavity & between the nasal cavity & the larynx
- Passageway for food & air
 - Nasopharynx
 - Oropharynx
 - Laryngopharynx

Larynx
- Enlargement in the airway superior to the trachea & inferior to the pharynx
- Houses the vocal cords
- Composed of muscles & cartilages bound by elastic tissue
- Epiglottis stands up to allow air to enter larynx & folds down to prevents food from entering trachea

Trachea
- The trachea (windpipe) is a flexible cylindrical tube about 2.5 cm in diameter
- Held open by hyaline cartilage C-shaped rings
- Anterior to the esophagus
- Splits into right & left primary bronchi
- Tracheostomy – cut opening just above sternal notch; allows air to get to lungs when an obstruction occurs
Bronchial Tree

- The bronchial tree consists of branched airways leading from the trachea to the air sacs in the lungs.

Branches of Bronchial Tree

- Divisions of the branches from the trachea to the alveoli are:
 - Right & left primary bronchi
 - Secondary or lobar bronchi - branches from R. primary & L. primary
 - Tertiary or segmental bronchi - smaller divisions of lobar
 - Intralobular bronchioles - enter lobules of lungs
 - Terminal bronchioles - smaller of intralobular bronchioles; occupy lobe of lung
 - Respiratory bronchioles - 2 or more of terminal bronchioles
 - Alveolar ducts - branches from respiratory bronchioles
 - Alveolar sacs - thin sacs forming from alveolar ducts
 - Alveoli - microscopic sacs that open to alveolar sacs.

SITE OF GAS EXCHANGE
Lungs
- Right & left lungs are soft, spongy, cone-shaped organs in the thoracic cavity
- Separated by heart & enclosed by diaphragm
- Right lung has 3 lobes & the left lung 2 lobes

Breathing Mechanism
- Breathing or ventilation is the movement of air from outside of the body into the bronchial tree & the alveoli
- The actions responsible for these air movements are inspiration, or inhalation, and expiration, or exhalation

Inspiration
- Atmospheric pressure due to the wt. of the air is the force that moves air into the lungs
- Atmospheric pressure is 760 mm Hg
- When diaphragm moves down, air moves into lungs
- EX. Moving the plunger of a syringe down causes air to move in
Intra-alveolar pressure decreases to about 758 mm Hg as the thoracic cavity enlarges due to diaphragm downward movement caused by impulses carried by the phrenic nerves.

Atmospheric pressure then forces air into the airways.

Inspiration

- Phrenic nerve causes diaphragm to contract; ↑ thoracic cavity space
- Sternum and ribs raise; thoracic cavity expands
- Intra-alveolar pressure ↓
- Drop in pressure forces air into respiratory tracts
- Lungs fill with air

Expiration

- The forces responsible for normal resting expiration come from elastic recoil of lung tissues
- These factors ↑ the intra-alveolar pressure about 1 mm Hg above atmospheric pressure forcing air out of the lungs
Expiration

- **Steps of Expiration**
 - Diaphragm and chest muscles relax; ↓ space of thoracic cavity
 - Elastic tissues of lungs that were stretched during inspiration, now recoil
 - The intra-alveolar pressure ↑ (greater than outside pressure) and air is squeezed out of the lungs

Spirometry

- A test used to assess how well your lungs work by measuring how much air you inhale, how much you exhale and how quickly you exhale.
- Test is used to diagnose asthma, chronic obstructive pulmonary disease (COPD) and other conditions that affect breathing.
- Respiratory cycle – 1 inspiration and expiration. The volume of air that moves in or out of the lung in 1 cycle is **TIDAL VOLUME** (TV)

Table 194

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tidal volume (TV)</td>
<td>500 mL</td>
<td>Volume of air that moves in or out of lungs during a respiratory cycle</td>
</tr>
<tr>
<td>Inspiratory reserve volume</td>
<td>300 mL</td>
<td>Maximum volume of air that can be inhaled in addition to normal tidal volume</td>
</tr>
<tr>
<td>Inspiratory reserve volume</td>
<td>150 mL</td>
<td>Maximum volume of air that can be inhaled in addition to normal tidal volume</td>
</tr>
<tr>
<td>Residual volume (RV)</td>
<td>1,200 mL</td>
<td>Volume of air that remains in the lungs at end of normal expiration</td>
</tr>
<tr>
<td>Inspiratory capacity (IC)</td>
<td>2,000 mL</td>
<td>Maximum volume of air that can be inhaled following expiration of normal tidal volume (IC = TV + RV)</td>
</tr>
<tr>
<td>Functional residual capacity (FRC)</td>
<td>2,000 mL</td>
<td>Volume of air that remains in the lungs following expiration of normal tidal volume (FRC = RV + IC)</td>
</tr>
<tr>
<td>Vital capacity (VC)</td>
<td>4,000 mL</td>
<td>Maximum volume of air that can be expired after taking the deepest breath possible (VC = TV + RV + IC)</td>
</tr>
<tr>
<td>Total lung capacity (TLC)</td>
<td>5,000 mL</td>
<td>Total volume of air that can be expired after taking the deepest breath possible (TLC = VC + RV + IC)</td>
</tr>
</tbody>
</table>
Air Volumes & Capacities

- Inspiratory reserve volume (IRV) – maximum air inhaled
- Expiratory reserve volume (ERV) – maximum air exhaled
- Residual volume (RV) – air that remains in the lungs at all time
- Vital capacity (VC) – maximum volume of air that can to exhaled after taking the deepest breath possible
- Total lung capacity (TLC) – total volume of air that lungs can hold \(\text{TLC} = \text{VC} + \text{RV} \)

Control of Breathing

- Normal breathing is a rhythmic, involuntary act that continues when a person is unconscious
- Respiratory muscles can also be voluntarily
- Respiratory centers of the brain include the medulla oblongata & pons

Alveolar Gas Exchanges

- The alveoli are air sacs are the end of the alveolar ducts
- Sites of gas exchange between air & blood
- Tissues made of simple squamous
- Alveolar pores in walls allow air to pass from 1 alveolus to another; alternate passageway if part of lung is obstructed
Alveolus and Pores

Respiratory Membrane

- Molecules diffuse through simple squamous tissues; from lungs to blood and from blood to lungs
- Always move from High conc. to Low conc.
- Reason breath analysis reveals alcohol & other chemicals

Gas Transport

- Blood transports O_2 and CO_2 between the lungs and the body cells
- As the gases enter the blood, they dissolve in the plasma or chemically combine with other molecules
- High levels of CO_2 regulates respiration rates
Oxygen Transport

- Almost all O$_2$ carried in the blood is bound to Fe in hemoglobin in the form of oxyhemoglobin (red blood)
- Oxyhemoglobin releases O$_2$ into the body cells

Carbon Dioxide Transport

- Blood flowing through capillaries gains CO$_2$ because the tissues have a high PCO_2
- The CO$_2$ is transported to the lungs in 1 of 3 forms:
 - As CO$_2$ dissolved in plasma
 - As part of a compound with hemoglobin
 - As part of a bicarbonate ion which can affect the pH of the blood