Introduction

Have you ever looked at a product that has been well-designed? Do you find yourself asking questions such as, “How did the designer think of that idea?” or “What is involved in the creation of that product?” The more you study and learn about design and how designers create items, you begin to learn certain skills and knowledge that you can only acquire through experience. Design challenges provide opportunities to apply skills and knowledge in unique and creative ways.

Taking an idea you have and transferring it from a concept to a sketch, to working drawings, to models, and then to a working prototype is exciting and fun. It also entails several steps. When you are a one-person design and build team, the task of effective communication is rather simple. However, what happens when you must communicate your ideas to others, or when the responsibility for building a team’s solution falls on someone else’s shoulders? This increases the level of responsibility significantly and requires the development of a complete set of design documentation in order to communicate effectively.

This project will provide you the opportunity to exercise your creativity and develop your sketching and modeling skills, as well as your ability to use the computer as an efficient communication tool.

Equipment

- Engineering notebook
- Pencil
- 27 – ¾ in. hardwood cubes
- 27 – interlocking plastic centimeter cubes (optional)
- Paper towels
- Isometric grid paper
- Orthographic grid paper
- Markers (colored pencils or paint are optional)
- Wood glue
- Sandwich-sized Ziploc® bag for storage
- 220 abrasive paper
- Computer with 3D CAD solid modeling software
Procedure

1. The entire project procedure is included below as an overview. Your teacher will guide you as to when you will complete each step.

2. Study the Puzzle Cube Design Brief located below.

3. Brainstorm and sketch on isometric grid paper possible puzzle part cube combinations for your cube using Activity 4.1a Puzzle Cube Combinations.

4. Create two different Puzzle Cube designs from your possible parts using Activity 4.1b Graphical Modeling. Note that the design brief that follows requires that each puzzle piece contain at least four and no more than six hardwood cubes. For each design, neatly sketch and color code an isometric view of each of the five component parts and show how they fit together in the isometric view of the cube on isometric grid paper. See your teacher for an example. You will need a total of two solutions with ten unique parts.

5. Choose your best option from the two solutions.

6. Hand sketch a multi-view drawing for each of the five puzzle pieces of your solution using Activity 4.1b Graphical Modeling. Exchange your sketches with a classmate, virtually build your partner's pieces according to the activity, and provide feedback.

7. Select one of your partner's six cube puzzle pieces. Neatly fabricate the piece from the multi-view sketch. Give appropriate feedback using Activity 4.1b Graphical Modeling.

8. Complete Activity 4.1d or Activity 4.1e Software Modeling Introduction.

9. Create the five parts to your cube using 3-D modeling software. Color the parts within the CAD environment using the same color combination used in the sketching phase of your project.

10. Assemble your cube using 3-D modeling software.

11. Fabricate your five puzzle pieces. Color your pieces using markers (colored pencils or paint) to match the colors of your CAD model and assemble your cube.

12. Test the solution time of your puzzle cube. Identify at least ten test subjects. Each test subject will solve your puzzle three times. You will measure and record the time to solve the puzzle each time. Also, collect demographic information that might be important to determine how well you have addressed the needs of your target market.

13. Find statistics related to your test data (using technology as appropriate) to include the following:

 • Mean, median, mode, range, and standard deviation of the solution time for the first attempt for all test subjects.
 • The mean of the solution times for the second attempt for all test subjects.
 • The mean of the solution times for the third attempt for all test subjects.

14. Create a drawing using 3-D modeling software to display a fully dimensioned multi-view for each of the five parts and two different isometric views of the assembled puzzle. The isometric views should provide enough information so that another classmate can solve the puzzle using only those two views.

15. Exchange your drawing with a classmate and provide feedback on errors, omissions, and recommendations to improve your classmate’s drawing.

16. Consider changes to your puzzle cube that might improve your design.
Puzzle Design Challenge Brief

Client: Fine Office Furniture, Inc.
Target Consumer: Ages 3+

Designer: __

Problem Statement:
A local office furniture manufacturing company throws away tens of thousands of scrap \(\frac{3}{4} \)" hardwood cubes that result from its furniture construction processes. The material is expensive, and the scrap represents a sizeable loss of profit.

Design Statement:
Fine Office Furniture, Inc. would like to return value to its waste product by using it as the raw material for desktop novelty items that will be sold on the showroom floor. Design, build, test, document, and present a three-dimensional puzzle system that is made from the scrap hardwood cubes. The puzzle system must provide an appropriate degree of challenge to a person who is three years of age or older.

Criteria:
1. The puzzle must be fabricated from \(27 = \frac{3}{4} \)" hardwood cubes.
2. The puzzle system must contain exactly five puzzle pieces.
3. Each individual puzzle piece must consist of at least four, but no more than six hardwood cubes that are permanently attached to each other.
4. No two puzzle pieces can be the same.
5. The five puzzle pieces must assemble to form a \(2 \frac{1}{4} \)" cube.
6. Some puzzle parts should interlock.

Submittal:
Create a project portfolio to include the following:
• Design Process Description. Summarize your work during each step of the design process. Include documentation (written work, sketches, CAD drawings, images, etc.) to support your discussion. Your documentation must include the following information located in the appropriate Design Process step:
 o Title page
 o Brief autobiography and your picture
 o Puzzle Design Challenge Brief
 o Brainstorming Possible Part Combinations (Activity 4.2)
 o Isometric sketches of two possible complete Puzzle Cube designs
 o Justification of your chosen Puzzle Cube design solution
 o Multi-view sketch, fully dimensioned of each of the five puzzle pieces in your chosen design (Activity 4.3)
 o CAD drawing(s) displaying a fully dimensioned multi-view of each puzzle piece and two different isometric views of the assembled puzzle.
 o Drawing review comments from a classmate.
 o Image(s) of your building process and puzzle prototype.
 o Physical model of your puzzle.
 o Statistics related to the solution time of your puzzle as required above.
 o A written summary of your puzzle test results and a discussion of the validity of your design. Does your design meet the design criteria? Does your design “provide an appropriate degree of challenge to a person who is three years of age or older” (as stated in the design statement)?
 o A discussion of possible changes to your puzzle cube that would improve the design.