Check insurance online uk universities,find history about my car 64,louisiana vehicle history report 2014 - Reviews

A 2008 survey of 4,484 physicians, published in the New England Journal of Medicine, found that less than 20% of those doctors used any sort of electronic health records.
Additionally, a study by the New York-based Commonwealth Fund found that growth in use of EHRs in the U.S. While no country (big or small) has 100% EHR implementation, a few are very close, and some are finding innovative new ways to get past the hurtles of early adoption, lost productivity for training, software flexibility (or lack thereof) and other roadblocks to integrating millions of pieces of paper into one database.
Trials of Australia’s Shared Electronic Health Record system started back in 2004, working-out the many bugs that came up in real-world testing (the company that initially developed the system went under before the second phase.) This ironing-out phase later included pilot projects in Brisbane South and a surgical patient information sharing trials at local hospitals. In 2007, a second phase of trials with a greatly-improved system began, followed by accelerated rollouts and upgrades in 2009 and 2010. Particularly notable was the ability of the electronic system to achieve an estimated 90% uptake of residents from participating remote indigenous communities. In Western Canada, Alberta Netcare is the province’s public Electronic Health Record system. In 2008, Estonia became the first country in the world to implement a nationwide “birth-to-death” electronic health record system for nearly every citizen.
Denmark has a centralized electronic database of its citizens’ medical records going back as far as 1977 for basic records and back as far as 2000 for detailed histories. Approximately 98% of primary care physicians have access to the system, including all hospital physicians and all pharmacists.
First strategized in 1996 to create a state-wide electronic health record system that centres on secure access to information for patients and meaningful access to high-quality health information for both doctors and patients, such information is now readily available to Finnish healthcare professionals and their patients.
The key to success in the Finnish example was a lengthy, well-considered plan, followed by swift conversion to bills (2006) that were passed into law (2007) with few-to-no bumps along the way.
2011 legislation now makes it mandatory for all healthcare professionals to use the system.
High-quality IT infrastructure and no-argument legal enforcement has resulted in a fully functioning e-health system from which medical professionals and patients actually benefit. Success here came in a three-step process that involved digitizing existing health records for all children in the country, data transfer, and, later, a feasibility study to understand the information exchange chain in children’s health care in the Netherlands. A little over two years ago, the Swedish Government implemented stage 1 of the Swedish National Patient Summary initiative – one of the first of its kind in the world.
After just one year spent developing the legal context, patient consent and IT infrastructure, the nationwide system has been rolled-out into a test-bed province of more than 300,000 people.
To do so, the country enlisted Helsinki, Finland-based Tieto for the development, implementation and hosting of the system, and Cambridge, Massachusetts-based InterSystems’ HealthShare as the health information exchange software program.
While it hasn’t implemented electronic health records across the UAE, Abu Dhabi is leading the way in using national electronic health record information as a “live longitudinal cohort” in the assessment of cardiovascular disease risk.
And there are many great efforts left off this list (New Zealand, for example, was full-steam-ahead on a regional electronic health record pilot until the federal government pulled the plug on funding to reboot such efforts on a national level. Hopefully, though, the above is some food for thought and a jumping-off point for useful conversations. Do you know of some local examples where electronic health records are becoming a reality in the U.S.
Doctors Online will be able to access everyone’s healthcare and information without dealing with more paperwork, lost paperwork and being unorganized.
I have been retired for a few years due to some personal problems, but would give anything to get back to work as a transcriptionist or an editor. I would like to learn more about how the new electronic medical information system as well as how it is working out for different aspects of the medical field such as hospitals, clinics, emergency rooms, etc. Soliant has earned the Joint Commission's Gold Seal of Approval for excellence in healthcare staffing.
Science, Technology and Medicine open access publisher.Publish, read and share novel research.
Printable Word's Templates, Resumes Templates, Certificate Templates, Rental Agreements and Legal Forms. A resignation letter will be written by an employee to show his intent of leaving the company or job. With the help of resignation letter you may found a professional way to inform your employer why you’re all set to ready to leave the company. To all appearance, the pivotal purpose of preparing a resignation letter is to inform the employer about your decision.
Letter of Transmittal Template A letter of transmittal is sent with a detailed document to introduce it. At least, that seems to be the case when launching any sort of new state-wide system: especially to replace anything that’s been running for decades or more. While the electronic medical record has many advantages, where I live many of our doctors are not happy, to say the least, with this new system. I mean, nowadays,there are lots of people who prefer not to be bothered so much that they want everything made without so much effort.
Observed time distribution between processing and delay components for each task of the dispensing process at the pharmacy. Operating characteristics of outpatient waiting lines at OAUTHC pharmacy using the simulation model8. Afolabi1 and Omoniyi Joseph Ola-Olorun1[1] Department of Clinical Pharmacy and Pharmacy Administration, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria1. It will be handed over to the boss or HR officer by the candidate well before his last day as per the policies of the organization. However, the resignation letter will not only support the employee to portrait a good image while leaving the company but it also assist the business to do some further formalities associated with the process of resignation, i.e.
In turn, the government of Alberta is getting ready to offer the province’s 4 million residents access to their own electronic health records, according to the Canadian Medical Association Journal.
The role of medical transcription is changing to editing and I believe will be necessary for a long time to come.
Introduction Operations are the processes by which people, capital, and materials (inputs) are combined to produce the services and goods consumed by the public (outputs).
Clerk receives prescription and takes prescription to the pharmacist for pricing and processing2.
To be frankly speaking, in term of job criteria it would never be appreciated by the business if some employee may leave a job without even informed the authority. Most of the physicians I have worked with are adamant about wanting a hard copy of the H&P and Discharge Summary on the chart. Like other Sample business letters, a resignation letter will include name, mailing address, phone number, email address etc of both the writer and recipient. So, as an employee it’s extremely important for you to write a sample resignation letter which cover all the matters that become a cause you’re leaving a job. Operations Management (OM) is the functional area of business primarily devoted to the creation, planning, and management of the resource capabilities used by a firm to create products or services. Statement of purpose must be included in the letter which is also known as subject of the letter. Galloway (2000) viewed operations management as all activities concerned with the deliberate transformation of appropriate range of resources to produce the organisation’s intended outputs. Since resource capabilities determine the types of products and services a firm can offer to the marketplace as well as the associated cost (price), quality attributes, and lead-times necessary to meet demand, the operations function is a critical driver of competitive advantage.
Moreover, recent forces such as technology change and increased competition in cost, time and quality have elevated the distinctive competence that can be obtained from the effective management of operations function.Healthcare operations management is considered as the quantitative management of supporting business systems and processes that transform resources (inputs) into health care services as outputs (Langerbeer II, 2008). Clerk receives prescription from the patient after payment and takes the prescription to the pharmacist for processing2. Pharmacy operations are carried out within the healthcare system and have a mix of both intangible and tangible characteristics.
Appropriate resources are transformed to create the pharmaceutical services which form intangible components of the operations.
The services accompany health commodities which are tangible products; the logistics and supply of which are major functions of operations management.
The scope of operations management in healthcare Operations management is the set of intrinsic or internal processes and decisions that help address costs, process, technology and productivity.
There are obvious lapses in how the processes and systems of healthcare are managed hence the need for a greater focus on applying management science to improve the processes and outcomes. Quantitative management implies the use of analytical tools as well as extensive use of process and quality improvement techniques to drive improved results. Similarly, using technology to further automate and streamline some processes in healthcare operations can help reduce costs and maximise efficiencies. The scope and functions of operations management include strategies to reduce costs and variability, improving logistics flow, quality of customer service and productivity and continuously improving business processes.Essentially, operations management of pharmacies is a discipline of management that integrates scientific or quantitative principles to determine the most efficient and optimal methods to support pharmaceutical services in patient care delivery.
There must be an adoption of operations management techniques into pharmacy practice to help drive improvements and efficiencies.
For instance, incorporating queuing theory and scheduling optimisation methods help to reduce wastes and cycle time in patient care.
The scope of operations management of the pharmacy includes all functions related to management systems and business processes underlying the delivery of pharmaceutical services.
This includes extensive focus on the process workflow, physical layout, capacity design, physical network optimisation, staffing functions, productivity management, supply chain and logistics, quality management and process engineering.3.
Technology and automation in pharmacy operationsTechnology is an increasingly important element in operations management. It may be defined as ‘‘anything that replaces routine or repetitive tasks that were previously performed by people or which extends (or enhances) the capability of people to do their work’’ (Rough, 2001).
Merriam-Webster (2009) defines technology as "the practical application of knowledge especially in a particular area" and "a capability given by the practical application of knowledge”. On the other hand, automation refers to ‘any technology, device or machine that is linked to or controlled by a computer and used to actually do work that was previously done by humans’ (Rough, 2001).
Automation is a trend in technological development, which seeks to eliminate direct manual involvement in control procedures; whereas, mechanisation is a component part of automation and it is concerned with replacement of manual labour with machine (Encyclopaedia Britannica, 2010).
The use of technology and automation is paramount in the focus of operations management on improvements of business support services. Technology as an enabling factor has an indirect impact on work and it should be considered whenever quality and efficiency is low, particularly in processes such as dispensing of medicines in a pharmacy.
The decision to substitute technology for labour in such support services is the only way to reduce processing and transactional costs over the long run. The Local Enterprise Authority (2009) identified three types of technology; these are product, process and support technologies. Product technology is embodied in the organisation’s product and it is often an important element of the product. It provides the product's innovative features, improved performance, and the very materials that goods are made from. Scientific knowledge is applied in development and production of medicines by pharmaceutical manufacturers and other healthcare researchers for the purpose of improving health and wellbeing. For this reason, medicines and other pharmaceutical products can be regarded as technology. Examples are drug delivery systems such as transdermal patches and implantable computer incorporated drug administration devices.


These are classified as product technologies covered in the area of pharmaceutical technology (Bozzette et al., 2001). Process technology is employed in the production process and refers to the actual method used to transform inputs into outputs or finished goods and services.
It concerns the equipment used, the operations performed on materials or customers in the service systems and such technology could be manual, automatic or mental.
In most cases, a range of technologies is available for defining a specific process and each one has advantages and disadvantages, which must be weighed in the light of a firm’s competitive priorities. On the other hand, support technologies are used to perform certain other activities that are not embodied in the product or production process of an organisation. The benefits of technology to support pharmacy operations include improvement in safety, efficacy and economy of medicines (Slee et al., 2002).
The compelling need for technology and automation is partly the result of innovations in creation and design of new technologies and increased labour costs which call for more cost effective production systems and operations (Garsombke and Garsombke, 1989).
Developments in technology can be seen as developments in the innovation process and technological innovation is the first commercial introduction of a new technology, which may take the form of a product, process or service (Ilori, 2006). The use of technology in pharmacy operations improves medication safety in patient care and also enhances efficiency of the medical process. Nevertheless, it is believed that the application of sophisticated technology in operations management poses its own challenge; while technology improves medication safety and processes in terms of reduced medication errors, there is little evidence to suggest that any single technology has the potential to radically reduce adverse events. However, there are incremental benefits to be derived from each and full benefits may only be realised when several technologies are used and integrated (Slee et al., 2002).
Some types of technology employed in pharmacy operationsVarious types of technology have found application in pharmacy operations. They can be grouped into mechanisation technologies, quality assessment technology, information and communications technologies (ICTs), automation technologies and the newly evolving biotechnology4.1. Mechanisation technologies Mechanisation has been described as the use of machines, either wholly or in part, to replace human or animal labour (Encyclopaedia Britannica, 2010).
It serves as a means of providing human operators with machinery to assist them with the physical requirements of work.
Example of mechanisation in pharmacy operations within the hospital is the use of electrical mixing vessel in compounding medicines.
Sometimes the needs of a patient cannot be met by a licensed medicine as in the case of a child for whom a particular medicine is not commercially available as a liquid. In such circumstances, suitable products that are required to meet the same high standard as those of pharmaceutical industry can be prepared in the hospital pharmacy.
The tools and equipment used for compounding are simple laboratory equipments such as mortar and pestle, glassware and simple machines. Similarly, tablet counting for pre-packaging, repackaging and dispensing is one of the routine tasks in the hospital pharmacy. Quality assessment technology Quality assessment technology is used for the task of assessing product quality.
The technology used to assess the quality of drug products spans a wide spectrum of technological artifacts, some of which are chemical reagents, chemical and biochemical equipment and instruments as well as high precision instruments for pharmaceutical analysis.
However the main thrust of quality assessment of drug products is chemical analysis.Counterfeiting of pharmaceutical products has assumed a global concern and one of the measures for checking this menace is the use of low cost mobile quality assessment technology. The equipment is a portable, tropics-compatible and easy-to-use mini laboratory, developed mainly for use in developing countries, which are particularly affected by counterfeit drugs.The GPHF-Minilab® is designed so that all the devices necessary for testing the drugs can be accommodated in two portable units, each about the size of a suitcase and the GPHF-Minilab® can be used without an external energy source. The mini-laboratory contains, in addition to the reference substances for the targeted active ingredients, all the necessary laboratory appliances such as test tubes, pipettes, pre-coated TLC plates and developing chambers as well as battery-powered UV lamps set to different wavelengths and the instructions and necessary solvents and reagents for the tests. Information and communications technologies (ICTs) Information and communications technology (ICT) has been described as consisting basically of information handling tools which include a varied set of goods, application and services that are used to produce, store, process, distribute and exchange information (Hamelink, 1997). It is an umbrella term that includes all technologies for the manipulation and communication of information such as radio, television, cellular phones, computer network and satellite systems as well as the various services and applications associated with them. Hamelink (1997) described ICTs as those technologies that enable the handling of information and facilitate different forms of communication which include capturing technologies (e.g.
The overall ICT infrastructure comprises the computer and communication technologies and the shareable technical platforms and databases (Ross et al., 1996).
It is not a technology but a method which employs technology whereas e-Pharmacy is an innovative concept associated with electronic transactions, e-prescription systems, decision-support systems, among others, in the delivery of pharmaceutical services. Computer applications in pharmacyThe computer is an electronic device that is capable of accepting data in a prescribed form, and processing and supplying the results in a specified format as information or signal to control automatically some machine or process (Graf, 1999).
In the contemporary world, the adoption of computers is integral to technological advances in any operational system. The versatility of the computer for processing and communication of data has made it useful in pharmacy operations. The computer software is the adaptable part of the computer system but the proficiency of a user in handling the computer is a major factor in its usefulness.
There is a minimum level of capability required for the successful use of a computer and this can influence the acceptance or otherwise by a potential user (Dixon and Dixon, 1994). The application could be home-developed or enterprise package and it could be stand-alone or integrated with other applications or technologies. According to Kling (1996), the relevant factors in the effect of technology, particularly computerisation at the workplace, pertain to gender equity, control, support systems, social design and new ways of organising work; but no Single logic has been applied towards changing the work system with computerisation. Computerisation has found immense application in pharmacy operations because of the benefits of enhanced efficiency and effectiveness of the work system. Such available time may then be spent on patient counselling and other clinical functions to reduce potential medication errors for better health outcome.
The system can operate at the departmental level, at the hospital level or even networked with the world wide web. Information support applicationsClinical informations systems are those that are integrated through the whole hospital system as hospital information system such as electronic health record or its variant, the electronic medical record, designed to capture the all clinical and administrative information about a patient and has come to be the main tool of any clinical information system. The record contains patient demographics, medical history, previous admission information, previous surgery information, and obstetric history. Computerized provider order entry (CPOE) refers to any system in which clinicians directly enter medication orders (and, increasingly, tests and procedures) into a computer system, which then transmits the order directly to the pharmacy (Grizzle et al., 2007).
Electronic prescribing or e-prescribing involves a process of using a computer to enter, modify, review and output or communicate prescriptions electronically to a patient’s pharmacy (ASHP, 2007). It is used for sending an accurate, error-free and understandable prescription directly to a pharmacy from the point-of-care and further enhances the quality of care and patient safety by integrating medication order into the overall process of medical care delivery (Thompson and Brailer, 2006).The pharmacy information system could operate within the hospital for managing inpatients or linked with other healthcare facilities such as community pharmacies for outpatients.
An example is the Pharmacy Care Plan which is a computer based form used for keeping patients record for the purpose of pharmaceutical care (Winslade et al., 1996). Decision support applications in pharmacy operationsDecision support applications can be classified into clinical decision support systems (CDSS) and Clinical Pharmacokinetics Computer Programs (CPCP).Clinical decision support systems (CDSS or CDS) are interactive computer programs, which are designed to assist physicians and other health professionals with decision making tasks. They provide clinicians with patient-specific assessments or recommendations to aid clinical decision making (Kawamoto et al., 2005). The methodology of using CDSS forces the clinician to interact with the CDSS utilising both the clinician’s knowledge and the CDSS to make a better analysis of the patient’s data than either human or CDSS could make on their own.Clinical pharmacokinetics computer programs are computer software for use by pharmacists in analysing serum concentration data. They are employed for patients to individualise dosage regimens of highly toxic medicines and those with narrow therapeutic windows. Bar-code technologiesA bar-code is an optical machine-readable representation of data (Okon, 2005).
The bars and spaces represent digitally encoded information which is designated by the width of each bar and space. The height of a bar code is irrelevant although it must be sufficient in size to allow an operator to easily read each bar with a scanning device (Okon, 2005). Since the codes are digitally made they can only be read and interpreted by means of electronic machines designed for this purpose hence bar-codes are normally read by optical scanners called bar-code readers, or scanned from an image by special software (Okon, 2005).Bar-code technologies are applied in two ways either as Bar-code-assisted dispensing (Bar-D) or bar-code at the point of medication administration system (BCMA). They work with hardware that consists of a handheld scanning device connected to a wireless mobile computer.
This mobile hardware communicates with other information equipment in the system through a server to record transactions.
Personal Digital Assistants (PDAs) and other hand-held devicesThese are small mobile computers such as the blackberry, apple iPhone and “smart phones” (Anderson et al., 2010). Their ability to handle vast amount of information and instantaneous speed of operation including switching on and off makes them vital for medicine information services.
Adherence is the degree to which patients conform to a given treatment plan or the extent to which patients take their medications as prescribed by healthcare providers. A review of published studies reported that up to 10% of hospital admissions are related to non-adherence.
One of the important aspects of pharmaceutical care is the provision of medicine information service (MIS) to patients. Automation technologies in pharmacy operationsA number of technologies have been used to automate various aspects of pharmacy operations. In-patient pharmacy automation technologiesThe available inpatient pharmacy automation technologies include the automated checking device, smart infusion pumps, automated dispensing cabinets (ADCs) and robots (Anderson et al., 2010).
It has a computer “brain” with a database of standard intravenous (IV) preparations from which the required item can be selected.
It can trigger alert when any of the limits set for it concerning dosage or other data has been exceeded.
Automated dispensing cabinets Automated dispensing cabinets (ADCs) are computerised packaging equipment in which a consignment of medicines in unit dose packaging (as in a ward stock) are contained in locked drawers. The machine is able to dispense medications electronically in a controlled fashion and track medication use.
The storing and picking of products and the labelling stage of the dispensing process are automated (Slee et al., 2007). ADCs dispense the required medicines and record the identity of the user, the patient and the medicines dispensed.RobotsThe pharmacy robots add kinetic components that mimic human activity to the capability of the ADCs by way of preparing, dispensing, and distributing medicines to various locations in the hospital. Automated kiosksAutomated kiosks are devices that operate like Automated Teller Machines holding the medication that has been filled by the pharmacist and delivering the medicines to patients at their convenient time (Anderson et al., 2010). The DNA is the means by which genetic traits are transferred and the structure of each organism’s DNA sequence determines the genotype and hence the characteristics of the organism. This knowledge has a great potential for applications in producing medicines that are tailored to each person’s unique organic characteristics as well as to selectively target pathogens in disease management. The full benefit of biotechnology in pharmacy practice is still potential although its magnitude probably cannot be imagined for now.5. Human resource issues, technology and automation of work The workforce of an organisation, though viewed as part of the resources, actually forms the interface between the customers and the organisation and is significant in the management of operations.
In fact, the workforce represents the organisation to the customer and is responsible for the system to be functional. It is necessary therefore to temper the technical focus of traditional operations management with the reality of human behaviour and employee satisfaction (New, 1998). Automation as a trend in technological development is an enabling factor in the work system and should be considered in quality improvement strategies of operations management. The direct impact of automation could be felt at the micro level of a work system as this technological change can alter the nature of the tasks, work cycles, skill requirements, and worker interactions.
With increasing automation, jobs tend to become more demanding, varied, interesting and challenging for many workers; although in some cases, such changes may be of a temporary nature. Technical know-how tends to become more important and workers may expect increased job content together with increased demands on skills, knowledge and training.


Automated systems may result in greater complexity and responsibility, and therefore greater intrinsic rewards, but often at the expense of worker inactivity. The greater distance between workers caused by automated systems may result in reduced social relationship, and also, there is an increased separation of workers from both operations and their outputs. On the other hand, in automation there could be an increased contact between workers and their supervisors leading to improved worker - supervisor relations. Similarly, increased training needs are often associated with the wider responsibilities of automated jobs. Occasionally, increased stress may be experienced in work situations approaching full automation. The importance of minimising process disruption, the consequences of breakdowns and comparative inactivity of workers also contribute to stress conditions in automation.
One reason for the automation of work is the desire to remove workers from unsatisfactory working environments. Such criteria for automation include risk of accident, monotony of work, excessive physical stress and bad working conditions (Wild, 1999).
It may be necessary, therefore, to have some means to check the acceptability or appropriateness of working conditions. This will enable existing work systems to be appraised in order to establish whether there is the need for a change and similarly a new work system design can be checked for acceptability or appropriateness by the workers before implementation. Although automated systems can contribute to an organisation's complexity, they can also help the organisation to cope with such complexity.
The speed and accuracy of the computer, as an automated technique, seem attractive for decentralised decision making while top management has time for planning and innovation. Computer - based information could improve the managers’ capabilities making them better employees and more important to the success of the organisation. Some routine, clerical activities are easily adaptable to computerisation, and procedures may be developed to handle structured repetitive tasks.
For instance, in a pharmacy, such repetitive tasks as prescription billing, documentation, and stock control functions may be taken over by the computer (Slee et al., 2002). In these situations, the work is repetitive and can be described in a clear procedure for routine transaction processing.
With this development much of the mundane, tedious routine jobs of prescription processing may be automated while the unstructured, non routine and more skilled decisions can then be handled by the pharmacists. In clinical functions, creativity, insight and professional judgment are needed on the part of the pharmacist who has to advice on choice of medication in a patient's therapeutic plan. Much of the problem solving activities in these areas require knowledge of the medicines and their therapeutic efficacy. Assistance from computer - based information systems helps management decision making and this could improve a pharmacist’s advisory skill in patient care. Thus, rather than replace or displace pharmacists’ ranks, introduction of automated techniques, such as automated medicine information systems, should create a demand for more highly qualified and better-trained pharmacists.
Computer training and enhanced clinical skills should therefore be an integral part of pharmacy education and retraining programs. The workers in an organisation should be treated as a major long term investment with enhanced skills in order that the company may realise its full potentials and in such a way that these employees may feel appreciated (Scaborough and Zimmerer, 2000). Much as technology is desirable to enhance operational effectiveness, the implementation of new technology will benefit from due attention to factors connected to employee perceptions and acceptance of the change. Genus and Kaplani (2000) examined the need to consider the behaviour of employees in connection with operations and changes in the design of the work system brought about by technology.
He concluded that shared values between an organisation and the work force would facilitate the implementation of operational innovations. Similarly, Savery and Choy (1999) opined that a strategic choice of technology should include due attention to human resource management issues and a consideration of the assets and appropriate facilities for operational effectiveness. Therefore, for an organization to realise its full potentials, the workforce should be motivated with a conducive and friendly work environment. It has been shown that content and design of the work system can also be a source of motivation or otherwise for workers (Scaborough and Zimmerer, 2000). A lack of employee motivation and the absence of shared values could pose as barriers to employee involvement in and commitment to continuous improvement objectives in an organisation (Afolabi and Oyebisi, 2007a).
Appropriate staff training and a high degree of motivation may achieve the harmony of staff perception and organisational intention in the adoption of technology to enhance performance.
The pharmacy unit is a service operating system and it is expected to provide relevant and adequate infrastructure and tools required to satisfy client needs in terms of appropriate medicine supply and information services as well as facilitate social and appropriate professional interactions in the health system. Operations management and patient flow in hospital pharmacies Patient flow optimisation opportunities occur in many healthcare settings especially at the pharmacy units of hospitals in resource limited countries; where patients wait in lines to fill their prescriptions. There could be many causes of poor patient flow in such circumstances but the major cause is variability of scheduled demand. Variability is the inconsistency or dispersion of inputs and outputs and this threatens processes because it results in uncertainty. For instance, if there are 50 patients typically seeking care at the outpatient pharmacy unit within a certain time period and 100 appear the following period, it becomes difficult for staff to control waiting times and to manage patient flows. Improving flow means seeking higher throughput or yields for the same level of resource input. If patient volumes double but a hospital maintains the same historical inventory levels of pharmaceutical supplies, this represents significant improvements in material flow, because assets have higher utilisation and turns. Managing this variability allows a change in staffing mix and scheduling to accommodate the changes in demand.
Staffing at the peaks will cause excessive costs while staffing for the valleys or low points will cause long lines periodically due to limited resources and therefore service quality issues; on the other hand, staffing for the average demand is the most common but suboptimal approach.
Managing patient flow is an operating issue in a healthcare organisation but effective and timely management provides an opportunity for desired outcome.
Significant opportunities exist to improve capacity and reduce costs by improving patient flow using the formal methods of process improvement. Process improvement approaches to optimise patient flow in a hospital pharmacyFilling of prescriptions forms the core of pharmacists’ activities in the hospitals in Nigeria.
However, considerable delays were observed in dispensing operations in the pharmacies and these delays result in long patient queues, particularly at peak periods. A process improvement project was carried out to examine dispensing procedure at the pharmacy unit of OAUTHC, and to identify aspects of the process design (task elements) that contributed to patient delays. Data were collected by direct observation of dispensing workflow and a time study of the procedural elements.
A checklist was used for a systematic recording of the various activities and queuing models were used to characterise the waiting line structures at the pharmacies with a view to simulating optimal utilisation factors (Pw) for the service channels. Time elements of dispensing operations revealed extensive delay components which contributed to excessive patient waiting time. The operational problems identified in the work process were due to tortuous procedure for prescription filling and the volume of transactions at the cashier stand.
The operating characteristics of the paying systems were not optimal with only one service channel. The delays observed were substantially due to existing work procedure in the pharmacy and the volume of manual transactions which are amenable to newer technologies.
Some of the dispensing task components were not essential and these elements could be removed or merged in order to reduce patient waiting time (Table 2). Process mapsExtended waiting time to fill prescriptions in hospital pharmacies can be addressed by using some process, improvement tools. A process map or flowchart is a graphic depiction of a process showing inputs, outputs and steps in the process. Figure 2 shows a process map that illustrates the activities involved in prescription filling at the pharmacy unit of a university teaching hospital in Nigeria. Figures 3a and 3b present the staff process chart, indicating the tasks and delay components of the operating system.
Typically, process maps are used to understand and optimise a process and the process may be charted from the viewpoint of the material, information, the worker carrying out the work or the customer being processed. In Figure 2, the customer being processed is the prescription-carrying patient within the healthcare. Process mapping is a basic quality tool and an integral part of most improvement initiatives. The steps for creating the process map include an observation of the process and a description to ensure the real activities are captured.
Boundaries are determined for the activities and the process tasks and subtasks are listed and arranged in order as a written procedure or protocol (Table 1). This is then checked for accuracy and additional data on process performance may be added depending on the purpose of the flowchart. Service blueprinting is another quality improvement tool and a special form of process mapping as shown in figure 4. The process is mapped from the point of view of the customer.Basically, the purpose of a service blueprint is to identify points where the service might fail to satisfy the customer and then redesign or add controls to the system to reduce or eliminate the possibility of failure. Three distinct actions are delineated in serve blueprinting and these are the customer actions which show the nature of customer involvement in the process and the interactions, onstage actions which are visible to the customer, the backstage and support processes which are not visible to the customer. A service blue print specifies the line of interaction, where the customer and service provider come together, and the line of visibility, that is, what the customer sees or experiences, the tangible evidence that influences perceptions of the quality of service. Process maps provide a visual representation of the process and this offers an opportunity for improvement through inspection. The maps allow for branching in a process and provide the ability to assign and measure the resources in each task. Process mapping are the basis for modelling the process via computer simulation software or using other process technology. Simulation is a modelling technique that may be used to evaluate the effects of possible changes on an operating system.
The process of simulation consists of model development, model validation and an analysis of the output to optimise a process or manage risk.
Discrete event simulation using the queuing theory may be used to model system flows as an improvement strategy. Operations management project : The case of OAUTHC pharmacyIn order to demonstrate possible application of the process improvement tools described previously, a patient- flow process improvement project at the pharmacy unit of a teaching hospital was examined. It was observed that outpatients experience considerable delays to fill prescriptions at the pharmacy unit of a university teaching hospital ( OAUTHC) and this was identified as an important area on which to focus improvement efforts.
The goal of the project was to reduce patient waiting time while optimising capacity utilisation of the pharmacy resources in the hospital.
The first step for the project team was to identify the need to facilitate patient flow with improved dispensing operations at the pharmacy.



Car insurance groups vauxhall astra
Report cards for teachers
Mazda vin wiki
18.04.2015 admin



Comments to «Check insurance online uk universities»

  1. BELOV writes:
    Perils protection protects your car only quantity is unusually excessive, you would.
  2. EFIR_QAQASH writes:
    Past report could make the distinction in buying a reliable used complete your Car Insurance quote and.
  3. Krasavcik writes:
    Insurance policy are car history report can.
  4. Ayten writes:
    That generate 25 to 30 percent extra form leads who it is belonged.