AAMI October 2012 Wireless Workshop, with excerpts from

FCC & FDA Public Meeting on Enabling the Convergence of Communications and Medical Systems
Washington, DC July 26, 2010

Wireless in Healthcare Issues & Lessons Learned

Elliot B. Sloane, PhD, CCE, FHIMSS
President, Founder
CHIRP- Center for Healthcare Information Research and Policy

Co-Chair, IHE International, Medical Informatics Standards
Board of Directors IHE USA
Sponsor, IEEE EMBS ISO 11073 Medical Informatics Standards
ANSI-Certified EHR Certification Auditor for ONC EHR Certification Program
Past Board of Directors, Delaware Valley HIMSS
Past Board of Directors, ANSI Healthcare Technology Standards Panel
Past Chair, HIMSS Security and Privacy Steering Committee
Elliot Sloane’s Bio Brief

About 4 decades in the medical technology and IT/HIT fields, as a technology/engineering “expert” and consumer/safety advocate
- Biomedical and Clinical Engineering core
- Information Systems and Sciences doctorate

25 years as a CIO, COO, CTO, CRO in the medical technology industry (ECRI Institute & MEDIQ, Inc)

10+ years in business schools, MIS, CS

Currently run my own independent non-profit research and educational organization CHIRP, outside Philadelphia and have faculty appointments at Drexel University and Bellevue College

© 2010 Elliot Sloane, all rights reserved.
Sources for this presentation?

- My own research, papers, and presentations for AAMI, AMCIS, Computer Society, HIMSS, IEEE and similar peer-refereed sites beginning in 2002, and

- A series of six (6) 70-150 person cross-industry “Wireless in Healthcare” meetings held between December, 2008 and June 2009 in DC, IL, NJ, NY, MD, and PA
 - Included medical device, EHR, telecom, and RFID manufacturers, telecom vendors, standards and trade associations, clinicians, hospitals, and participants from VA, FDA, & FCC

- 3-day FDA Medical Device Interoperability Workshop held at the FDA in Silver Spring in Jan ’10, and a large number of follow-on FDA and AAMI meetings

- IEEE and ANSI-HITSP Standards Workgroups

- Many other research articles and conference presentations
Lessons Learned

1. Wireless in Healthcare is pervasive and ubiquitous.

2. Convergence of Information and Computer Technologies (ICT) multiplies the rate of Convergence of Medical Devices with ICT.

3. Federal investments in Electronic Health Records are accelerating adoption of wireless medical systems.

4. What lies ahead in the adoption and deployment of wireless medical technologies.
What we learned from our Wireless in Healthcare Workshops?

Wireless has become ubiquitous and pervasive!

- Hospitals
- Physician Practices
- Free-standing clinics, surgi-centers, ER’s, etc
- Skilled nursing facilities
- Rehabilitation hospitals
- Long term care facilities
- Assisted living facilities
- Home Care services

– AND…
Where ELSE is “Wireless in Healthcare?”

- Emergency and First Responder Services
- Critical pharmaceutical and med/surg supply mgmt
- Inter- and Intra-enterprise clinical and security communications
- Social networking and internet-based research regarding healthcare
- Patient/family entertainment and hospitality services
- Electronic Patient Records (aka, EMR, EHR, PHR)
 - e.g., “Meaningful Use” requires physicians, other clinical providers, and physician practices and hospitals to use Computerized Provider Order Entry and ePrescribing regardless of location for Medicare and Medicaid…
- Self-managed personal medical care, fitness, and wellness activities in the home, at work, and “on the go”
 - And more is coming!
More wireless is arriving daily:

- **Machine to Machine (M2M) communication**
 - Includes wireless Device-to-Device, Device-to-System, and System to System communications
 - M2M began as proprietary, single-vendor solutions; now rapidly staged for open source, multi-vendor solutions

- **Robotic food, pharmacy, and supply delivery**

- **RFID for patient, product, or device location, tracking, data capture, or data transformation**

- **New iPhone, iPad, and Droid medical applications for physicians, nurses, and patients are constantly being released, and some are now FDA-approved medical devices!**
A Wireless Medical Systems Map

Medical Device Semantics and Communication Modalities Use Cases
IEEE 11073.x and IEEE 802.x Standards At Work

Topological Areas of Interest

Medical - Point of Care (PoC)
- Maternity /Ob
- CTG
- Ultrasound
- Dialysis
- NIBP
- Patient Monitors
- Patient Worn Device
- Emergency
- Transport/Inter-PoC
- Ambulatory

Clinical
- Cardiology
- PCICU Step-Down
- Cardiac Monitors
- Page+Voice
- EMR

Institutional
- Hospital
- CCU ICU
- Central Monitoring/Surveillance
- Wireless AP
- RFID AP
- Layer 3 Switch

Inter-Institutional
- Home PC
- MedEvac or Ambulance
- Telephone
- Cell phone
- PDA or Laptop

Use Cases (UC)
1) Home Monitoring
2) Hospital
- SubAcute PoC
- Acute, Intensive/Critical
- Emergency
3) Ambulatory
- Transport/Inter-PoC
4) ER/Trauma (ETU), eg Burn Unit
5) Rescue (Ambulance/MedEvac)
6) Ancillary (Renal, Echo, EKG, etc.)
7) Other eg: Nursing Home, MD Office/Suite

© 2010 Elliot Sloane, all rights reserved.

Courtesy of J. Wittenber, Philips Medical
General Medical Device Wireless Communication Architecture

Personal Devices:
- Thermometer
- Pulse Oximeter
- Pulse / Blood Pressure
- Weight Scale
- Glucose Meter
- Cardio / Strength
- Independent Living Activity
- Peak Flow
- Adherence Monitor
- Physical Activity
- Insulin Pump

Aggregation Manager

Health Records

Telehealth Service Center

ISO, IEEE, ZigBee, Local Area Network (LAN) Interface

W3C, Wide Area Network (WAN) Interface

IHE, Health Record Network (HRN) Interface

EHR, PHR

Courtesy: Continua Alliance
Wireless medical system networks
- Body Area Network (ZigBee)
- Personal Area Network (Bluetooth)
- Wide Area Network (Wi-Fi)
- Metropolitan Area Network
 - Cellular
 - Wi-Max (4G)
 - 3G
These IEEE standards are posted for free access 6-months after publication at
http://standards.ieee.org/getieee802/

- IEEE 802: Overview & Architecture
- IEEE 802.1™: Bridging & Management
- IEEE 802.2™: Logical Link Control
- IEEE 802.3™: CSMA/CD (Ethernet) Access Method
- IEEE 802.11™: Wireless (WAN - “Wi-Fi”, PAN – “Bluetooth”)
- IEEE 802.15™: Wireless Personal Area Networks (BAN/PAN, “ZigBee”)
- IEEE 802.16™: Broadband Wireless Metropolitan Area Networks (MAN – “Wi-Max”)
- IEEE 802.17™: Resilient Packet Rings
- IEEE 802.20™: Overview and Architecture
- IEEE 802.21™: Media Independent Handover Services
Lessons Learned

1. Wireless in Healthcare is pervasive and ubiquitous.

2. Convergence of Information and Computer Technologies (ICT) multiplies the rate of Convergence of Medical Devices with ICT.

3. Federal investments in Electronic Health Records are accelerating adoption of wireless medical systems.

4. What lies ahead in the adoption and deployment of wireless medical technologies.
Beginning in 2010, a single data interface architecture can be used by all Continua Personal Health Devices, all IHE-PCD Medical Devices, and all IHE EHRs!

Home health – Key connection Standardized

IHE and CONTINUA have agreed to support the *single common IHE DEC profile* for feeding *home device* data and clinical device data into health records.

With permission, Continua Alliance
This Continua-IHE interoperability standard alignment is an example of medical system and ICT convergence that was precipitated by the federal ANSI – HITSP EHR project.

- Will allow almost any brand of personal health device and/or any brand of clinical device to be used in any appropriate setting

- Can finally assure automatic and accurate data capture and eliminate error-prone manual entry

- Can provide near real-time update of Electronic Health Record/Personal Health Record as long as the wireless networks work properly
“Acute” is taking on new, more intense meaning in hospitals...

Fla. preemie gets OK to leave hospital

MIAMI (AP) — Parents of one of the world’s smallest premature babies got to take her home Wednesday for the first time since she was delivered last fall.

Amillia Sonja Taylor has known only an incubator for a bed at Baptist Children’s Hospital since she was delivered in October after less than 22 weeks in the womb.

“The baby is healthy and thriving and left Baptist Children’s Hospital today after four months in our neonatal intensive care unit,” hospital spokeswoman Liz Latta said.

Amillia, who was just 9 1/2 inches at birth and weighed less than 10 ounces, will still require oxygen at home and a developmental specialist will follow up with her and her parents to track her neurological development.

The infant now weighs about 4 1/2 pounds and is just over 15 1/2 inches.

Amillia Taylor Turns 2!

Amillia’s parents declined to feature. The world’s most premature baby ever is celebrating a very special birthday.

Amillia Taylor, born at just 21 weeks and weighing only 10 ounces, turned 2 years old yesterday.

Her proud parents told Local 10’s Laurie Jennings that Baby Amillia now weighs a healthy 26 pounds and is 26 1/2 inches tall.
Acute care medical devices started moving to home care over 12 yrs ago!

A cell phone may be the ONLY link to caregivers.

From 8/14/2009 PBS NOW episode – “Gambling with Healthcare” Rafael Comes Home segment, 8.2 minutes from episode start
Another ICT-Medical System Convergence “Multiplier” Example

The CIMIT-ASTM-ICE (Integrated Control Environment) standard which will allow safe, real-time M2M control and connection, including Operating Room device interlocks and controls, closed-loop medical devices, and other innovations

We are simply on the verge of being able to do medical care we only dreamed of…
Our 2008 and 2009 Wireless in Healthcare workshops revealed that

“Convergence of Communications and Medical Systems” has broad impact!

– e.g., “Medical Systems” wireless touches:

- Medical Devices/Systems, and
- The hardware and software components of Health IT Systems, and
- Many other non-chemical or non-biological technologies inside and far away from hospitals that affect the safety and accuracy of patient diagnosis or therapy
The pieces that make up the whole may be less and less separable!

- Just as the modern ICT environment defies clear distinction, testing, or provisioning of computing, memory, and communications hardware and software,

- The Wireless Medical System enterprise is defying distinction and testing of any single component or subsystem for full testing, provisioning, protection, or validation

- CLEAR System of Systems Engineering (SoSE) environment and challenge!
Lessons Learned

1. Wireless in Healthcare is pervasive and ubiquitous.

2. Convergence of Information and Computer Technologies (ICT) multiplies the rate of Convergence of Medical Devices with ICT.

3. Federal investments in Electronic Health Records are accelerating adoption of wireless medical systems.

4. What lies ahead, including adoption and deployment of wireless medical systems that outpace standards, regulations, and accreditation programs.
Sometimes the lines blur!
Accountable Care Organizations can score high with CMS using mobile medical devices!

>33% of ACO metrics can be supported with available & emerging medical & personal health devices

Inexpensive mobile devices can support an ACO’s clinical focus & help patients live safe, independent & higher quality lives

- Diabetes
 - Blood pressure, glucometer, medication compliance monitor,
 - scale & body composition monitor
- Coronary Artery Disease (CAD)
 - Blood pressure, ECG monitor, heart rate monitor, medication compliance monitor
- Congestive Heart Failure (CHF)
 - Blood pressure, pulse oximeter, heart rate monitor, scale, medication compliance monitor
- Chronic Obstructive Pulmonary Disease (COPD)
 - ECG monitor, heart rate monitor, pulse oximeter, spirometer, medication compliance monitor
- Falls (often hypotension, hypoxia, ventricular fibrillation, or meds)
 - fall/gait/activity monitor, blood pressure monitor, ECG monitor, heart rate monitor, pulse oximeter, medication compliance monitor

(c) 2012, Elliot B. Sloane, All rights reserved.
New, wearable, implantable, micro (MEMS) and nano-sensors with RF capabilities

Different than RFID, too

Inexpensive mobile devices can support an ACO’s clinical focus & help patients live safe, independent & higher quality lives

– Implantable nano-sensors that can detect/track diseases, injuries, treatments, etc, possibly w/in 3-5 years

Think of the deafening sound of crickets, frogs, and other insects in a tropical jungle, but “chirping” in the RF band!

A form of “personalized medicine quite different than genetic engineering, but possibly on a very similar scale….

(c) 2012, Elliot B. Sloane, All rights reserved.
“Wireless in Medical Systems” standards, regulations and accreditation programs?

Contemporary Wireless Medical Systems are very difficult to dissect and test piecewise, and

The behavior of each component is interdependent on other components and subsystem in its environment – plus operator behaviors.

e.g., A single defective floor mat, and possibly a gas pedal and hinge design appears to have caused the massive recall and product failure for Toyota.
Five Quick Conclusions

1. Our 2008 and 2009 Workshops suggested several activities, because the attendees’ felt cross-industry efforts to really understand and manage Wireless Medical Systems can help reduce our vulnerability to innovation delays and safety and performance risks.

It appeared to some attendees that failure to pay enough attention now may significantly slow the pace of medical advances, and our goals of safety, quality, and cost improvements.
2. My suspicion and hope: CIA+S could become a framework for “HIPAA 2.0” and other discussions

- Confidentiality
- Integrity
- Availability
- Safety

This is also somewhat embodied in the emerging IEC 80001 medical network risk management framework.
3. Some of our Wireless Workshop attendees found value in discussing cross-industry “Medical Grade Wireless” standards, like current Medical Grade Oxygen and Hospital Grade Electrical Outlets.
4. Generalization of the above:

- Discussion, collaboration, standardization and coordination of orderly and safe “co-existence” among the many wireless healthcare modalities and applications would help immensely (and probably cannot be ignored for much longer.)

 - Frequency allocations
 - Quality of Service
 - Priority management
 - Bandwidth management
 - Security and access management
5. Facilities for Wireless Medical System and Interoperability Testing were requested by our Workshop Attendees

We need testing and development “sandboxes” so that everyone can learn together quickly.

Foundation and Government funding would be very, very helpful, possibly critical.

Need to engage the broadband providers, too!
Thank you!

Elliot B. Sloane, PhD, CCE, FHIMSS

www.ebsloane.org
ebsloane@chirp.us.org, ebsloane@gmail.com, and ebsloane@ any of: ieee.org, ebsloane.org, yahoo.com, hotmail.com, aol.com etc.

or just Google me!!
Some Resources

www.CEITCollaboration.org
www.ContinuaAlliance.org
www.ebsloane.org
www.HITSP.org
www.IHE.net
www.IHE.net/PCD
http://MDPnP.org/
http://standards.ieee.org/getieee802/