Nurses and Respiratory Therapists – Working Together for Safe Alarm Systems Management

May 11, 2015
AAMI Foundation

• **Vision:** *To drive the safe adoption and use of healthcare technology*

• Visit our website to learn more about the program:
 • Get involved and consider making a donation to this important national effort!
 • www.aami.org/htsi
 • Contact Sarah Lombardi at slombardi@aami.org
Thank You to Our Industry Partners

This Patient Safety Seminar is offered at no charge thanks to commercial grants from the companies shown here. The AAMI Foundation and its co-convening organizations appreciate their generosity. The AAMI Foundation is managing all costs for the series. The companies had no role in content development, and the seminars do not contain commercial content. Seminar presenters were selected based on topic expertise without regard to industry affiliation by a multi-disciplinary AAMI Foundation volunteer planning committee.
LinkedIn Questions

Please post questions about alarms on the AAMI Foundation’s LinkedIn page:
http://www.linkedin.com/groups/Healthcare-Technology-Safety-Institute-HTSI-4284508
Speaker Introductions

• **Shawna Strickland**, PhD, RT-NPS, RRT-ACS, AE-C, FAARC, Associate Executive Director Education, American Association for Respiratory Care

• **Jenifer L. Burke**, RN, MSN, CPNP, Pediatric Pulmonary & Cystic Fibrosis, Rush University Medical Center
Disclosures

Jenifer Burke
• Employee, Rush University Medical Center
• Adjunct Faculty, College of Nursing, Graduate College, Rush University

Shawna Strickland
• Employee, American Association for Respiratory Care
• Contract, Centers for Disease Control and Prevention, SNS workshop
• Adjunct Faculty, College of Health Sciences and Graduate College, Rush University
Objectives

- Describe the basics of ventilator alarms
- Rank the importance of ventilator alarms based on the physiologic responses the ventilator alarms represent
- Develop a strategy to respond appropriately to various ventilator alarms
- Identify the daily nursing activities that trigger ventilator alarms
Alarm Safety and Fatigue

The Problem
- Visual/audible alarms when the patient’s condition changes or machine error
- Drastically increased number of devices with audible alarms at the bedside.
- Overwhelmed bedside practitioners exposed to different levels of audible alarms

The Effects
- Alarm fatigue
- “False alarms” versus non-clinically actionable alarms
- Nuisance alarms
- Adverse patient outcomes
- #1 on ECRI Institute Top 10 Health Technology Hazards in 2015
- TJC National Patient Safety Goals
- AAMI Foundation National Coalition for Alarm Management Safety
Mechanical Ventilation 101

Indications

• Apnea
• Acute respiratory failure
• Impending respiratory failure
• Refractory hypoxemia

Types

• Invasive
 • Requires artificial airway (endotracheal tube or tracheostomy tube)
 • Provides airway for patient who cannot protect his/her own airway

• Non-invasive
 • Delivered via face mask, nasal mask/pillows
 • Does not provide a protected airway
 • Patient must be able to protect his/her own airway
Mechanical Ventilation 101

Pressure v Volume
- **Pressure:**
 - Breath terminates when pre-set pressure is reached
 - Volume is variable depending on patient compliance and resistance
- **Volume**
 - Breath terminates when pre-set volume is reached
 - Pressure is variable depending on patient compliance and resistance

Modes
- **Pressure**
 - PC-CMV, PC-SIMV, PSV, AVAPS
- **Volume**
 - VC-CMV, VC-SMIV
- **Dual modes**
 - Pressure limited, volume targeted (VS, PRVC)
 - Pressure limited, volume guaranteed
Mechanical Ventilation 101

Breath Types
- Spontaneous
 - Patient initiates, patient determines depth and length
- Supported
 - Patient initiates, machine supports depth
- Mandatory
 - Machine initiates, machine determines depth and length

Trigger Types
- Pressure
 - Preset pressure detected
- Flow
 - Preset flow detected
- Volume
 - Preset volume detected
- Time
 - Preset time interval has elapsed
Patient effort; patient triggers machine with negative pressure

No patient effort; no negative deflection below pressure baseline
Pressure Support Ventilation

A. Patient effort
B. Support from machine (PS)
 B1-Over-shoot
 B2-Under-shoot
C. Plateau
D. Termination of support
Mechanical Ventilation 101

Pressure Settings
- Respiratory rate \((f)\)
- Peak pressure \((\text{PIP})\)
- Inspiratory time \((T_I)\)
- Positive expiratory pressure \((\text{PEEP})\)
- Fraction of inspired oxygen \((\text{FiO}_2)\)

Volume Settings
- Respiratory Rate \((f)\)
- Tidal volume \((V_T)\)
- Inspiratory flow \((V)\)
- Positive expiratory pressure \((\text{PEEP})\)
- Fraction of inspired oxygen \((\text{FiO}_2)\)
Mechanical Ventilation 101

• Measured values
 • Peak inspiratory pressure (PIP)
 • Plateau pressure (P_{PLAT})
 • Minute ventilation (V_E)
 • Auto-PEEP
 • Total respiratory rate
 • Exhaled tidal volume (V_T)
Anatomy of a Waveform
Influencing Factors

Oxygen

Carbon Dioxide
Patient in Distress

- Heightened sternomastoid activity is evidence of increased patient effort.
- Recession may be seen in the suprasternal and supraclavicular spaces.
- Intercostal space recession also indicates increased patient effort.
- Tachycardia is an indicator of severe cardiopulmonary distress.
- Diaphoresis and nasal flaring indicate increased patient effort.
- Cyanosis is not a reliable physical sign.
- Tachypnea determined over the course of a full minute is a sensitive sign of failure.
- Paradoxical motion of the abdomen is also evidence of increased patient effort.

Potential Ventilator Alarms

- High pressure
 - Achieved PIP is too high
- Low pressure
 - Achieved PIP is too low
- High PEEP
 - Measured PEEP is too high
- Low PEEP
 - Measured PEEP is too low
- Apnea
 - RR falls below set threshold
- Inverse I:E ratio
 - Inspiration is longer than exhalation

- High tidal volume
 - Exhaled V_T is too high
- Low tidal volume
 - Exhaled V_T is too low
- High minute volume
 - Exhaled V_E is too high
- Low minute volume
 - Exhaled V_E is too low
- High/low respiratory rate
 - Patient total RR too high/low
 - Includes spontaneous rates
What did I do?

$\uparrow V_T, V_E$ or RR alarm

- Air hungry
- Sigh
- Pain
- Agitation
- Under sedation
- Procedures
- Water in tube
What do I do?

V_T, V_E or RR alarm

Always check the patient first!

Is patient demand V_E increased?

No

Is the ventilator auto-triggering?

No

Is a nebulizer in use?

No

Call RT

Yes

Check the cause of the V_E demand & determine if change is needed

Yes

Check sensitivity

Yes

Collaborate with RT to adjust settings until treatment is complete
What did I do?

↓ pressure, PEEP, VT, V_E alarm

• Disconnected the vent
• Didn’t inflate cuff
• Suctioning
• Over sedation (spontaneous modes)
• Leak in circuit
What do I do? ↓ pressure, PEEP, VT, V_E alarm

- Always check the patient first!
- Is patient disconnected? NO: Reconnect
- Is there a leak in the circuit? NO: Eliminate circuit leak
- Is there a leak in the ETT cuff? NO: Reinflate cuff, check pressure. If cuffless ETT, reposition patient
- Is there a chest tube leak? YES: Determine cause, contact physician and RT, monitor patient
- NO: Call RT
↓ pressure, PEEP, VT, V_E alarm: Air Leaks

Volume-Time Scalar Pressure-Volume Loop
What did I do?

 Kota pressure or PEEP alarm

- Patency of tube (blocked/clamped/bent)
- Secretions
- Cough
- Resistance
- Poor positioning
What do I do?

→ pressure or PEEP alarm

Always check the patient first!

- Is ETT/trach tube obstructed?
 - Yes: Change the ETT or trach tube
 - No: Is patient coughing?
 - Yes: Suction or relieve irritation
 - No: Are there secretions in the airway?
 - Yes: Suction the patient
 - No:
What do I do?

↑ pressure or PEEP alarm

Always check the patient first!

- Is the patient biting the ETT?
 - Yes: Insert a bite block
 - No:
 - Is the ETT/trach tube position incorrect?
 - Yes: Reposition artificial airway
 - No:
 - ↑ R_{AW} or ↓ C_L?
 - Yes: Potential causes:
 - Secretions
 - Bronchospasm
 - Mucosal edema
 - Pneumonia
 - Pulmonary edema
 - Pneumothorax
 - Pleural effusion
 - No:
 - No
↑ pressure or PEEP alarm worsening C_L

Pressure Ventilation

Volume Ventilation
↑ pressure or PEEP alarm worsening R_{AW}

Much longer expiratory time; increased R_{AW} = takes longer to exhale

Reduced expiratory flow (speed of exhalation)

Area within the loop (hysteresis) is much larger

(From Pilbeam SP: Mechanical ventilation: physiological and clinical applications, ed 3, St Louis, 1998, Mosby.)

Copyright © 2004, 1999, Mosby, Inc. All Rights Reserved.
What do I do?

↑ pressure or PEEP alarm

Always check the patient first!

Asynchrony?

1. Check gas flow
2. Check sensitivity
3. Check ventilator settings
4. Check mode
5. Consider sedation

Auto-PEEP?

1. Check and correct for increased R_{AW}
2. Decrease T_1

Call RT
↑ pressure or PEEP alarm

Asynchrony

Auto-PEEP
What did I do?
Inverse I:E Ratio alarm

- Anything that would cause a change in the RR
- Patient has an increased drive to breathe
 - Pain
 - Need for sedation
What do I do?
Inverse I:E Ratio alarm

Always check the patient first!

Do you want an inverse I:E?
- Yes: Activate the function to allow inverse I:E ratio
- No

Is the RR too high?
- Yes: Decrease RR
- No

Is volume ventilation being used and VT too up or down?
- Yes
 1. If VT too high, decrease volume
 2. If VT too low, increase flow
- No: Call RT
What did I do? Apnea alarm

• Over sedated
• Disconnected
• Patency of tube
What did I do?

Apnea alarm

Always check the patient first!

Is the patient actually apneic?
No
Can the ventilator sense patient effort?
No
Is there a leak?
No
Call RT

Yes
Ensure appropriate ventilatory support or manually ventilate

Yes
Adjust the sensitivity until the ventilator senses patient effort

Yes
Eliminate source of leak
Apnea alarm

Sensitivity
Pressure drops below baseline because patient has to pull to trigger breath

Air Leaks
Exhaled volume does not reach baseline

(From Pilbeam SP: Mechanical ventilation: physiological and clinical applications ed 3, St Louis, 1999, Mosby.)

Copyright © 2004, 1999, Mosby, Inc. All Rights Reserved.
Case Study

- 23 year old male
- Acute asthma exacerbation secondary to viral infection
- Intubated in ED with 7.5 ETT
- Currently receiving:
 - Midazolam
 - Fentanyl
 - Albuterol via nebulizer

- Ventilator settings:
 - VT = 600 mL (6ml/kg PBW)
 - RR = 10 breaths/min
 - FiO2 = 1.0 (100%)
 - PEEP = 0
 - Flow = 90 L/min
Case Study: After Initiation of Mechanical Ventilation

- **Blood gases:**
 - \(\text{pH} = 7.35 \)
 - \(\text{PaCO}_2 = 47 \text{ mm Hg} \)
 - \(\text{PaO}_2 = 186 \text{ mm Hg} \)
 - \(\text{HCO}_3^- = 25 \text{ mEq/L} \)
 - \(\text{SaO}_2 = 91\% \)

- **Measured Ventilator Parameters:**
 - \(\text{PIP} = 65 \text{ cm H}_2\text{O} \)
 - \(\text{Plateau} = 25 \text{ cm H}_2\text{O} \)
 - \(\text{AutoPEEP} = 8 \text{ cm H}_2\text{O} \)
Take-Home Points

• Always look at the patient first
• Don’t fall victim to alarm fatigue
 • Know your ventilators (capabilities, sounds, etc.)
 • Know your established protocols
 • Confirm ventilator settings and alarm settings at the
 when you first accept the patient for your shift
• When in doubt and the patient is in distress,
 manually ventilate the patient and call for help
References

References

- Papadakos PJ. Electronic distractions of the respiratory therapist and their impact on patient safety. Respir Care 2014;59(8):1306-1309.
Free Alarm Resources

• **Safety Innovations Series**
 • White Papers
 • Patient Safety Seminar Recordings

• **Alarms Management Patient Safety Seminars**
 • Webinar Recordings
 • Webinar Slides
 • Key Points Checklists
Mark Your Calendars!

• 2015 AAMI Annual Conference and Expo
 • June 5-8, 2015; Denver, CO

• Next Patient Safety Seminar: June 15, 2015
 • *Clinical Alarms: Do You Know Your Number?*
 • To register: https://attendee.gotowebinar.com/register/3188749012882322690
Questions?

Please visit the AAMI Foundation’s LinkedIn page to post a question:
http://www.linkedin.com/groups/Healthcare-Technology-Safety-Institute-HTSI-4284508

Or you can email your question to slombardi@aami.org.
Thank You to Our Industry Partners

This Patient Safety Seminar is offered at no charge thanks to commercial grants from the companies shown here. The AAMI Foundation and its co-convening organizations appreciate their generosity. The AAMI Foundation is managing all costs for the series. The companies had no role in content development, and the seminars do not contain commercial content. Seminar presenters were selected based on topic expertise without regard to industry affiliation by a multi-disciplinary AAMI Foundation volunteer planning committee.
Thank you for attending!

Jenifer Burke RN, MSN, CPNP
Pediatric Nurse Practitioner
Rush University Medical Center
Jennifer_Burke@rush.edu

Shawna Strickland PhD RRT-NPS RRT-ACCS AE-C FAARC
Associate Executive Director-Education
American Association for Respiratory Care
Adjunct Faculty, College of Health Sciences and Graduate College
Rush University
shawna.strickland@aarc.org

Slides & Recording: