Investigations on the Properties of
Object-Oriented Software Metrics

Thomas Fetcke

Abstract

This paper presents basic methods to analyze the properties of object-
oriented software metrics. The metrics are characterized with several
concatenation operations on different levels of abstraction. Metrics can
thereby be interpreted above the ordinal scale level. The result of this
investigation is that a large set of object-oriented metrics have properties
that are completely different from properties of metrics for procedural
languages. This set of metrics follows the Dempster-Shafer measure of
belief.

1 Introduction

Software metrics were introduced in order to analyze the complexity of pro-
grams and to predict the effort for development. To determine the properties of
software metrics, we use measurement theory as a tool that allows us to relate
numerical properties of the metrics back to the underlying empirical objects.
A metric constitutes a mapping from the empirical domain, i. e. the software
objects, into a numerical domain, normally the real numbers £. Under the as-
sumption that the metric can be used as an ordinal scale, this mapping gives a
preference relation on the empirical objects.

If we add concatenation operations on the empirical objects to our model,
we can obtain information above the ordinal level. Zuse showed in [8] that many
metrics in the procedural domain assume the extensive structure, which makes
it possible to use these metrics as a ratio scale. In the object-oriented domain,
the properties of a large set of metrics are completely different from those of
metrics for procedural software.

Section 2 describes the empirical software objects in the object-oriented do-
main and introduces concatenation operations on them. Section 3 discusses
the OO metrics in conjunction with the concatenation operations, that can be
described with the Dempster-Shafer measure of belief.

2 Empirical Software Objects

In order to discuss the properties of object-oriented software metrics, we first
have to specify the target of the measurement. The object-oriented model allows
measurement on different levels of abstraction. The following four levels will be
considered.

e Classes: A class describes the properties of objects with attributes (often
called instance variables) and methods. A class has a set of attributes and
a set of methods defined in it. A large set of metrics apply to classes.

e Methods: Methods characterize the behaviour of an object. In many
object-oriented models, methods are constructed as subroutines. Metrics
from the procedural domain that are defined on the control flow can be
applied to these methods.

e Inheritance Hierarchies: Classes inherit the properties of superclasses
along the inheritance relationship. The inheritance relationship forms a
graph on classes. An OO system can contain a couple of unconnected
subgraphs of the inheritance relationship. For the measurement theoretic
analysis we consider only the subset of all connected graphs with a single
root class, multiple inheritance is allowed.

o Uses Hierarchies: The uses relationship forms similarly to the inheri-
tance relationship possibly unconnected subgraphs on the set of classes.
Again, we consider the subset of those graphs constituted by the uses re-
lationship, that have a single main class, i. €. a class that is not used by
another class, and that are acyclic and connected.

The restrictions for the last two levels are necessary for the completeness of
the concatenation operations defined below. These restrictions do not limit the
expressiveness of the properties found. In real OO systems, we can find several
of these hierarchies. The application of metrics on these hierarchies can still be
useful.

2.1 Concatenation Operations
2.1.1 Concatenation on Class Level

Chidamber and Kemerer [1] introduce a concatenation operation for classes in
order to study the properties of their measures. However, the authors base
their investigation not on the extensive structure. They consider the Weyuker
{6] properties. It should be mentioned here, that the Weyuker properties are
not compatible (see [8, chapter 6}).

We will use the operation defined by Chidamber et. al. for our studies,
naming it CUNI to distinguish it from the additional concatenation operations
defined below.

CUNI: Class Unification The unification of two classes is no means of ex-
pression in object-oriented models. The result of combining two classes is a
single new class. This new class combines all the properties of the two single
classes, 1. e. all attributes and methods of either class, where properties both
classcs have in common only appear once in the combined class (see fig. 1).
Many metrics proposed in literature also use the inheritance and uses rela-
tionships to characterize a class. Therefore, the definition of the concatenation
operation is extended to these relationships. The new class inherits all the prop-
erties that the separate classes inherited and all classes inheriting from one of
the separate classes inherit form the combination. All the classes used by either

one or both of the classes combined will be used by the unified class. This lies
already in the unification of the properties defined in the class. Analogously,
we define all classes that used any single or both separate classes to use the
combined class.

a_] LM, a_| 1M a_| M
A M @ bl g M - b{A@B __% 2
3

Figure 1: Concatenation of classes with CUNI

The properties of CUNT are very similar to the properties of a unification of
sets, as CUNI is defined upon those unifications. CUNI is commutative and it
is also associative. CUNI is also idempotent, i. e. for a class A

CUNI(A,A) = A

holds, which is an interesting property. In consequence, no measure can assume
an extensive structure and we cannot construct a ratio scale this way.

Of course, this property of CUNI is not by an accident. CUNI has been
defined as an unification and unification of sets is idempotent. This can be
seen as an argument for the unification of similar classes, so that the effort for
maintenance can be reduced.

Chidamber et. al. check, whether their measures agree with the Weyuker
properties. If we keep in mind that CUNI is idempotent, it is not surprising that
none of their six metrics agree with Weyuker’s property of wholeness, which is
defined as

u(A o B) > u(A) + u(B).

If A= B, we get
HCUNT(A, A)) = p(A) ¥ 2u(A).

As mentioned above, this is due to CUNI being a kind of unification. The sug-
gestion is to define a second concatenation operation similar to the intersection
of sets.

CINT: Class Intersection The result of an intersection of two classes is
that only those properties common to both classes are reduced to one property
in the resulting class (see fig. 2). As for CUNI, we have to consider both inher-
itance and uses relationships for CINT. The new class inherits the intersection
of properties that both classes inherit. That requires the new class to inherit
from all classes that are direct or indirect superclasses of both classes, possibly
leaving out intermediate classes. And any subclass common to both classes will
be a subclass of the new class.

a_] M, a_| LM, a_| M,
A M @ b p M - AGB

Figure 2: Class intersection with CINT

The new class will use all classes used by both classes and shall be used by
classes using both separate classes. Unlike inheritance, classes using indirectly
do not use the new class.

It is important to say that CINT is not intended to be used to build new
stand alone classes, but it can be used as a tool to express properties of classes
and metrics.

The Empty Class We define the empty class @ to be a class with no proper-
ties, 1. e. empty sets of attributes and methods. Furthermore, the empty class
may not inherit any property and no class inherits from it. It is not used by
any class and of course does not use any class.

We now can say that two classes A and B are disjunct, iff

CINT(A,B) =9.

2.1.2 Concatenation of Methods

As stated above, methods can be seen as subprograms in most QO systems.
This allows us to use traditional procedural metrics. Under these conditions,
concatenation operations for methods can be found similar to the concatenation
of procedural subroutines, using e. g. the Dijkstra-Structures sequence and
alternative.

It comes up that McCabe’s cyclomatic complexity and the metric Lines
of Code (LOC) together with sequential concatenation assume the extensive
structure. The same applies for these metrics with the concatenation of methods
via alternative. At this level of the OO model, the properties of metrics are
similar to the procedural model.

2.1.3 HAGG: Hierarchical Aggregation

This concatenation operation is defined on the uses hierarchies defined above.
Two such independent hierarchies are combined to form a new hierarchy. As
defined, both hierarchies have a single main class. Both these classes will be
used by the new main class that is added to the hierarchy. Therefore, the new
object is again a hierarchy as defined.

a_ |
b ¢
o] M e | Ms | | 4 \} M
A M g [M d| s (M g [M

PalbalValal

Figure 3: Concatenation of uses hierarchies with HAGG

HAGG is commutative as the order of uses is irrelevant, but HAGG is not
associative. It is possible to find metrics that agree with the axioms of the
extensive structure together with HAGG, e. g. the association complexity
metrics defined in [3].

2.1.4 HGEN: Hierarchy Generalization

Two independent inheritance hierarchies as defined above are combined to form
a new inheritance hierarchy. As defined, these hierarchies have a single root
class being a superclass of all classes in the hierarchy. Let A and B be these
root classes, HGEN builds a new class G by generalization of the classes A and
B. This new class becomes the new root of the resulting hierarchy.

a_J M, a_| LMy b M, ‘ M3
b— A —M2 7] 8 —MS H

Figure 4: Concatenation of inheritance hierarchies with HGEN

Here, we meet CINT again. The new root comprises all properties that the
classes A and B have in common. It holds

G =CINT(A, B).

The classes A and B need no more define the properties contained in G as they
inherit those. Therefore, the properties defined in classes A and B respectively
are those lying outside the intersection. We denote this case by creating two new
subclasses of G named A’ and B’ instead of A and B. This denotes the change
in properties defined in the class itself, although the actual sets of properties
remain unchanged under consideration of inheritance.

With CUNT and CINT, we can describe these classes

A=CUNI(G, A'), B =CUNI(G, B') and
CINT(G,A") = CINT(G, B') = 8.

HGEN is commutative and not associative. It is possible to construct metrics
that assume the extensive structure with HGEN, although this is normally not
the case for metrics proposed in literature.

3 Properties of Metrics on Class Level

Together with the two operations CUNI and CINT, a couple of metrics on class
level hold the following equation. Let u be a metric and A, B some classes, then

p(CUNI(A, B)) = p(A) + p(B) — u(CINT(A, B)).

HAGG is commutative as the order of uses is irrelevant, but HAGG is not
associative. It is possible to find metrics that agree with the axioms of the
extensive structure together with HAGG, e. g. the association complexity
metrics defined in [3].

2.1.4 HGEN: Hierarchy Generalization

Two independent inheritance hierarchies as defined above are combined to form
a new inheritance hierarchy. As defined, these hierarchies have a single root
class being a superclass of all classes in the hierarchy. Let A and B be these
root classes, HGEN builds a new class G by generalization of the classes 4 and
B. This new class becomes the new root of the resulting hierarchy.

a_J M, a_| L My b M, M;
b— A —M2 7] 8 —MS n

Figure 4: Concatenation of inheritance hierarchies with HGEN

Here, we meet CINT again. The new root comprises all properties that the
classes A and B have in common. It holds

G =CINT(A, B).

The classes A and B need no more define the properties contained in G as they
inherit those. Therefore, the properties defined in classes A and B respectively
are those lying outside the intersection. We denote this case by creating two new
subclasses of G named A’ and B’ instead of A and B. This denotes the change
in properties defined in the class itself, although the actual sets of properties
remain unchanged under consideration of inheritance.

With CUNT and CINT, we can describe these classes

A=CUNI(G, A"), B =CUNI(G, B') and
CINT(G,A'") = CINT(G, B') = 8.

HGEN is commutative and not associative. It is possible to construct metrics
that assume the extensive structure with HGEN, although this is normally not
the case for metrics proposed in literature.

3 Properties of Metrics on Class Level

Together with the two operations CUNI and CINT, a couple of metrics on class
level hold the following equation. Let u be a metric and A, B some classes, then

u(CUNI(A, B)) = p(A) + u(B) — p(CINT(A, B)).

El

These metrics can be described with the theory of belief functions[4, 5, 7], which
is an extension of probability theory. It is important to say that software metrics
are not meant to be uncertain or probabilistic measures. The theory of belief
functions is treated here as a representation theorem. Given a function of belief,
a corresponding qualitative belief relation can be constructed, that totally agrees
with that belief function. This belief relation can be interpreted as a preference
relation in the area of software metrics. The axioms for the relation of belief
give certain properties that give more information than the ordinal scale. We
thus have additional characteristics of these metrics. We also know that these
metrics cannot assume an extensive structure.

The theory of belief functions is thus used as a tool to derive properties of the
qualitative relation on software objects (here: classes). Tn fact, the axioms for
belief functions and belief relations have been modified to the unlimited range
R of software metrics, as shown 1n definition 1 and 2.

Definition 1 (Modified Function of Belief) Let X be a countable Set and
T the set of all finite subsets of X. A measure p : T' = R s a modified function
of belief iff

u@=0
VAET: p(A) >0 @)
u(A1UAU...UA,) > Z G " nAi) ®)
IC{1...n} el
T#8

The set X stands for the set of all possible properties (attributes and meth-
ods) of a class. Finite subsets of X are classes, T' is therefore the set of all
classes. The unification operator U stands for CUNI and N represents CINT.

Definition 2 (Modified Relation of Belief) Let > be a relation onT. - s
a modified relation of behef, ¢ff

VA, BET:A>BVBX> A (4)
VA,B,CET:A>BAB>C=A>C (5)
VADB=A>B (6)

V(ADB,ANC=0)=—= (A> B= AUC » BUC))
VAET:A>0 (8)

Given these definitions, the following theorem holds.
Theorem 1 It erists a modified function of belief which fulfills (1-3), such that
Ax B < p(A) > p(B),
tff > fulfills arioms ({-8).

The proof for theorem 1 can be found in [2]

4 Conclusion

Object-oriented software metrics have other properties than procedural metrics.
Many object-oriented metrics do not assume an extensive structure. We have
seen that a set of metrics can be described with unification and intersection
operations and the function of belief. These investigations should be seen as a
first foundation for the analysis of properties of object-oriented metrics.

References

[1] Chidamber, Shyam R.; Kemerer, Chris F.: A Metrics Suite for Object Ori-
ented Design, IEEE Transactions on Software Engineering, Vol. 20, No. 6,
1994, pp. 476-793

[2] Fetcke, Thomas: Softwaremetriken bei objcktorientierter Programmierung,
Diploma thesis, Gesellschaft fair Mathematik und Datenverarbeitung
(GMD), St. Augustin and TU Berlin, 1995

[3] Kolewe, Ralph: Metrics in Object-Oriented Design and Programming, Soft-
ware Development, October 1993, pp. 53-62

[4] Shafer, Glenn: A Mathematical Theory of Evidence, Princeton University
Press, 1976

[5] Shafer, Glenn: Belicf Functions and Possibility Measures, In Analysis of
Fuzzy Information, Vol. 1, Mathcmatics and Logic, CRC Press, 1987, pp.
51-84

[6] Weyuker, Elaine J.: Evaluating Software Complerity Measures, IEEE Trans-
actions of Software Engineering, Vol. 14, No. 9, 1988

[7] Wong, S. K. M; Yao, Y. Y.; Bollmann, P.; Biirger, H. C.: Aziomatization
of Qualitative Belief Structure, IEEE Transactions on Systems, Man and
Cybernetics, Vol. 21, No. 4, 1991

{8] Zuse, Horst: Software Complexity; Measures and Mecthods, DeGruyter,
Berlin, New York, 1991

[9] Zuse, Horst; Fetcke, Thomas: Properties of Object-Oriented Software Mea-
sures, Proc. Tth Annual Oregon Workshop on Software Metrics, 1995

About the Author

Thomas Fetcke was from August to December 1994 as a graduate student with
the Gesellschaft fiir Mathematik und Datenverarbeitung in St. Augustin. There
he wrote his diploma thesis on object-oriented software metrics. In May 1995,
he received his diploma degree in computer science from the Technical Uni-
versity Berlin. Address: Thomas Fetcke, Innsbrucker Str. 33, D-10825 Berlin;
e-mail: fetcke@cs.tu-berlin.de.

