
Experiments with adding to the experience that can be acquired
from software courses

Robert Dupuis
Université du Québec

à Montréal
C.P. 8888,

Succ. Centre-Ville
Montréal, Québec H3C 3P8

514-987-3000 ext. 3479
dupuis.robert@uqam.ca

Roger Champagne
École de technologie

Supérieure
1100 rue Notre-Dame Ouest
Montréal, Québec H3C 1K3

514-396-8825

roger.champagne@etsmtl.ca

Alain April
École de Technologie

Supérieure
1100 rue Notre-Dame Ouest
Montréal, Québec H3C 1K3

514 396-8682

alain.april@etsmtl.ca

Normand Séguin
Université du Québec à

Montréal
C.P. 8888, Succ. Centre-

Ville
Montréal, Québec H3C 3P8

514-987-3000 ext. 4345
seguin.normand@uqam.ca

ABSTRACT: This paper describes approaches used in two
different software engineering courses, where the goal is to give
students some experience in the major aspects of real world
software projects. The first course is a capstone project course,
part of an undergraduate short program in software engineering.
The second course is a course on software maintenance and
testing, part of a full undergraduate program on software
engineering. Each course's content, general organization and
student workflow is described. In the case of the capstone project
course, graduate students are used as experts/clients in the context
of a course in their own program. For the software maintenance
and testing course, the emphasis is put on laboratory work. Both
courses are considered to have succeeded with respect to the
stated objectives. The positive aspects and major challenges with
each course are also summarized.

1. INTRODUCTION
This paper revisits the theme of the capstone project and other
experience-oriented software courses. We first describe a series of
experiments performed on a project course given in the context of
a short undergraduate program in software engineering at the
University of Quebec in Montreal (UQAM), the primary objective
of which is to help students gain experience in the fields of
maintenance and quality. The original aspect of these experiments
is that graduate students in software engineering were appointed
as experts in either software quality or software project
management to the class actually working on projects in these
fields. The secondary objectives of the project course are to
familiarize the students with the constraints and requirements of
maintenance, i.e. working on a project that was started before their
course began, and leaving an adequate product and its
documentation to the groups that would follow theirs. We also
describe another undergraduate course, offered at a different
school, with the same objective of helping the students gain
experience in the fields of maintenance and quality. This one was
offered in a software engineering program at the École de

technologie supérieure, an engineering school in Montreal.

The problems and limitations of trying to reproduce the
professional context in a class are well known.

• The experience is limited to one or two semesters.
• It is difficult to teach quality skills. For instance, in

programming courses, students practice unit testing and
program testing, and not much more (Wikstrand, 2006)

• Students gain virtually no maintenance experience in regular
courses.

• Most students have not had to be concerned with following
a formal process in previous courses.

• Students have not had to suffer the consequences of
insufficient testing of their software.

2. THE PARTNERSHIP EXPERIMENTS
The characteristics of the project course are the following. The
undergraduate class is composed of students with little or no
practical experience. Of those who have held computing jobs,
virtually none has group software development experience. On
average, they have taken between five and ten courses in
computing, covering programming, databases, networks, and
some basic software engineering.

The graduate groups came from a Master’s degree program in
software engineering. The students all had at least two years of
professional experience in software engineering, most having
closer to 10-15 years of experience. Although they had been
involved in software projects, few had project management
experience. Some also had quality assurance experience to some
degree, but only a few had leadership experience in the field.
Many more had only low-level experience in quality.

Consequently, the objectives of our experiments were to give
undergraduate students some experience in the major aspects of
real world software projects, and the graduate students an
opportunity to play the roles of expert and staff member. The
undergraduate students would learn to cope with:

• teammates they did not choose;
• fuzzy requirements to identify and select;
• a project already under way and deciding what parts to work

on;
• preparation of adequate documentation at the end of their

semester to help whoever would continue the project;
• a “boss” and business context to respect;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

2010 Seventh International Conference on the Quality of Information and Communications Technology

978-0-7695-4241-6/10 $26.00 © 2010 IEEE

DOI 10.1109/QUATIC.2010.11

1

• expert staff members to deal with;
• some process to apply.

The projects have a real client (i.e. a person not related to the
course), with whom the students had to discuss the mandate, and
to whom they would try to deliver a useful product. Projects are
submitted either by outside organizations or from within the
university (labs, research projects, student bodies, etc.).

Some teams chose a new project. In that case, the students had to
establish the needs of the client, general expectations of the
software, and a first series of requirements. Other teams chose a
project already started in a previous semester. In that case, the
challenge was to understand what had already been done and what
remained to be done. The students tended to realize quickly that
documentation in this situation is very important.

Both categories had to properly document, at the end of the
project, what they had done, and, more importantly, what they had
not done. This included work that was started but only partially
finished (the most difficult to explain on paper), or work that they
had planned, but could not do at all.

The students had a “boss”. The professor played the role of the
owner of a small software firm. In that role, he could more easily
explain the constraints of real-life contracts, and the requirements.
This proved very useful in that it helped make the students aware
of the importance artifacts such as time sheets. By explaining that
they would not be paid without them, they accepted this chore,
even though they were not going to be paid anyway! Before that
aspect was added to the course, it was nearly impossible to get
time sheets from the students.

The development process that is imposed is certainly a light one.
We would qualify it as “opportunistic”, since it varies according
to the type of project: maintenance, new development, website,
etc. Those who take on a project that is already under way are, in
fact, conducting maintenance. Either they have to simply continue
development or they are asked to make corrections to an existing
system. In both cases, they are asked to list and analyze the
requirements and order them according to importance and
feasibility. Both those taking on a new development project and
those building websites had to consider other issues, such as
technological infrastructure, before looking at the ordering of
work on the requirements themselves. Usually, we had to impress
on them the need to allow sufficient time for these essential
decisions to be made, because most are inclined to develop
functionality above anything else.

In all cases, we had them develop a mandate and a project plan,
and take all the time necessary to prepare documentation for the
team that would follow them.

In terms of project control, we had them prepare a project
schedule, regardless of the fact that their lack of experience made
this very difficult, and control the evolution of their time budget
and of the product itself. We consider this part of the exercise the
most important experience for most of the students to acquire,
both at the undergraduate and graduate levels.

We then add the standard objectives of such a course. The first of
these is, of course, having students work on a team project! We
don’t let the students organize the teams themselves (Tilley et al.,
2006). We identify as many people with experience as there will
be teams, and ask them to choose among the projects. As we have

mentioned, the students enrolled in this course typically have very
little software project experience. At best, some have industry
experience, but usually not of working on software teams.
Consequently, any work experience that involved group activities,
whether in software or not, was considered for this assignment.
Also, of course, students have various skills and skill levels, and
teams have to quickly organize themselves around those
differences.

Then, the other students are asked to join the project of their
choice, which usually requires some negotiation. We work this
way to ensure that there is some experience in each team, which
will be necessary if the mandate is not be completely fulfilled and
the students have to work with new teammates, a more realistic
experience.

The teams are made up of 3-4 people. We think this is the ideal
number. With fewer than three, there is no communication
problem to solve, and with more than four, it becomes more
difficult to organize the participants, and the risk of having
someone not doing his or her share increases.

By working on projects with real clients, the students have to
determine the requirements and choose those they will try to
implement. In entry-level programming courses, the professor
usually establishes the specifications.

Among other contextual factors is the necessity for the students to
combine addressing quality requirements and meeting demanding
deadlines. Thus, they have to make realistic trade-offs. They also
have to experiment with asynchronous communication with their
teammates, their boss, the client, and expert/group, given that
most of them are enrolled part-time, and in-person meetings
which take place at most once or twice a week. We consider this
realistic, since, in real organizations, not all the stakeholders
(including teammates) are available at all times. In this context, 44
projects were conducted over a period of 8 semesters, some with
staff appointed from graduate courses, some without.

The evaluation of the students includes the opinion of the client,
the level at which the students respect the process imposed (two
reports and presentations in class, time sheets, respect for the time
budget, etc.), evaluation of the product, and an intra-team
evaluation to determine which students, if any, did more or less
than their share.

2.2 Roles of the graduate students
The first type of matching was with graduate students from a
software project management course. Two roles were tried: PCO
(Project Control Officer), and project planner and controller. As
PCOs, the students would only audit and control the process
followed by the groups. They had no authority whatsoever over
the groups. Nevertheless, the developers knew that the PCOs
reported to the same professor, and that their comments were
important. One measure of success is that, in one term, we had
one less PCO than teams, and that the orphan group complained at
the end of the project that they could see the value the PCO had
brought to the other teams.

As project managers, the graduate students did not have line
authority over the teams, but were responsible for project planning
and monitoring activities on top of their PCO activities. This was
of greater interest, since these students were much more involved
in the project than those who had only been PCOs, and
consequently had much more to contribute to the success of the

2

project. In fact, the graduate students became members of the
teams. In the first semester, where these project managers were
used, we even had a prototype of a software project management
tool to test. The tool proved to be too complex for the context,
however, and the students considered it only as a burden and of
very little benefit to them. We think that tuning such a tool for the
context could, on the contrary, be a valuable addition to the course
which could help students better control the time budget, for
instance, and some other monitoring tasks.

Another major role assigned to the graduate students was that of
quality assurance experts in a course on software quality. As such,
they had to write a quality plan and a quality control procedure.
During the term, they intervened to explain their plan and
procedure to the developers. They were also in charge of helping
the teams following the plans and procedures.

2.3 Major limitations
The projects themselves are very limited in scope. The time
budget is 135 hours per student in the workbench class, and is
variable for the graduate students, usually around 50 hours. This
means that only relatively small projects can be tackled. Despite
this limitation, we believe that the students at least have a taste of
the most important difficulties they could encounter in a project.

Another major limitation is the fact that most of these students had
day jobs, which means that it was challenging for them to
organize meetings and engage in general communication. This is
especially true for communication between undergraduate and
graduate students, as they do not share a common class schedule.
This difficulty was recognized both on a practical level and in
terms of the consequences it had on the process and product. The
students at least realized that, even in industry, communication is
essential to the well-being of a project.

2.4 Lessons learned for the graduate students
The major lessons learned from the experiment by the Master’s
degree students are listed below:

First, they all agreed that this was a valuable experience. They felt
that the difficulties they had to deal with were realistic.

The project control procedure described is, in fact, the result of
lessons learned over the years. It became obvious that a somewhat
formal process to track the progress of the product and of the
budget was necessary, especially in this asynchronous context. It
also was necessary to adjust the evaluation of the projects to give
as many points to the process as to the product.

Another excellent suggestion, and practice, is to have groups share
the templates they are using. Over the years, there has been a
tendency to agree on relatively simple templates for all major
documents: mandate, timesheets, etc., even though we always ask
the groups to design part of the documents themselves. We
believe this remains the best way for students to identify and deal
with the major issues associated with each document. At the end
of the terms, we would distribute the documents prepared by other
teams and discuss the pros and cons of the various solutions
proposed.

2.5 Conclusions
The answer to the most basic question, Did the projects succeed?
is yes, on most grounds. The projects did deliver software that was
considered useful by the clients. All of them agreed to continue

development during the following semesters, and they now
compete to have teams work for them.

On the teaching level, the experiments are considered a success as
well. The students, both project and staff, did, in fact, accomplish
some of the activities prescribed in project management and
quality assurance. So, they must have gained some additional
experience.

However, success is not automatic. The lessons learned from these
experiments are the following:

• Insist on having the students continue with a project already
under way, and not declare that the documentation and/or
code is so bad that they have to start over from the
beginning. The latter seems to be an easy solution and a way
to go back to what they think they know best: develop from
scratch;

• Insist on documentation quality, since, at the beginning of
the semester, the teams have to understand the purpose of
the project and the state in which it was left. So, towards the
end of the semester, the teams must save some time for
improving the documentation that was handed to them. It is
a good idea to have them identify its shortcomings when
they encounter them at the start. Also, try to limit
deficiencies when their turn comes to prepare
documentation for the following team.

• Another factor is the availability of the client, just as in real
life. In fact, when students have difficulty reaching the
client, it can be considered a plus in terms of their learning
experience.

• Insist that the team become organized, and have them
prepare a plan as soon as possible.

• We believe a major key to teaching success is strict
enforcement of the time budget. The students each have 135
hours available, which means that they have to make
choices and not simply keep working until the mandate is
complete. They also have to make trade-offs with respect to
documentation and quality activities.

• One of the best lessons they learn comes from the obligation
to record all their hours and also to associate all work to an
activity. At the end of the term, the students are amazed at
the small number of hours actually available for coding. The
amount of time devoted to communication and
documentation always surprise s them.

• In fact, this scenario is very similar to most open source
contributions: take a project on the fly, add something to it,
and hope to leave it in a more advanced state in the end. It
would even be a good idea to have some open source
projects available to use in such courses. Consider having
clear, high-quality guidelines or standards, and, ideally,
groups to enforce them. In that case, students would have all
the expected real-world conditions: real, useful projects, and
quality requirements, both on results and process.

In conclusion, everybody involved becomes more excited than in
any programming course.

3. THE MAINTENANCE AND TESTING
COURSE

The other, comparable experiment was performed at an
engineering school in an undergraduate software engineering
program. The Software Maintenance and Testing course consists

3

of 13 weekly three-hour lectures and 12 weekly two-hour lab
periods. The students gain their practical experience mainly from
the lab periods, which is the focus of the rest of this section.

3.1 Maintenance portion of the course
After reading about teaching software maintenance and hands-on
labs in work by Austin (2005), Postema et al. (2001),
Slimick(1997), Andrews and Lufiyya(2000), and Allen et al.
(2003), the course designers decided to use the same approach as
Allen, who suggested that maintenance can be learned by having
the students work on a program that is used by real clients. The
students would work on maintenance for the first half of the
course, and perform testing on modifications and corrections they
had made to existing software in the second half of the course.

In the maintenance section of the course, there are 6 three-hour
theory classes based on April’s book on software maintenance
management (April, 2008). This is complemented by 6 two-hour
lab periods dedicated to experimenting with real-life maintenance
situations. Each lab is divided in 3 two-week exercises. The
overall objective of this portion of the course is to expose students
to real-world conditions by having them to work on existing
software that is poorly designed and undocumented. We would
point out that the original developers are no longer available, and
that defects must be corrected and new functionality added.
Before this maintenance work can be undertaken, the software
engineer must set up a suitable maintenance environment. Below,
details of the content of each software maintenance lab exercise
are presented.

In the first lab exercise (installation and program understanding),
the students are told by their supervisor that a new client has some
software and would like our maintenance section (composed of
four students) to carry out the maintenance work. Unfortunately,
the previous maintainer, A. Gile, has left the company and did not
document the software, so only the source code is available. The
students are given a copy of the source code of FinanceJ
(http://sourceforge.net/projects/financej/), which we have
modified so that it does not work properly. In addition, we provide
a partially configured virtual machine containing helpful software,
which will be used throughout the term, consisting of three
individual tools: 1) a change request management system
(http://trac.edgewall.org/); 2) a version control system
(http://subversion.tigris.org/); and 3) a source code quality
analyzer (http://qalab.sourceforge.net/). The students are told that
they have to familiarize themselves with the maintenance
environment and the software before they start any programming.
Within the two-week assignment, they are asked to:

• make sure that the virtual machine provided by the client
works and that the ticket tracking system (Trac) is
functional;

• place the source code of FinanceJ under configuration
management (version control in this instance) using
Subversion;

• configure and test Trac:
- define roles for a maintenance manager and

maintainers;
- configure permissions for each member of the

maintenance team;
- raise one ticket for each lab describing the work that

has to be done;
- configure milestones according to the 10-step

maintenance workflow (see Appendix 1)
• configure and test QALab so that the client can extract

knowledge from the source code. First assess the
maintainability of FinanceJ with QALab. Place the resulting
QALab reports in the Trac wiki to start documenting the
source code. Identify the key maintainability problems of
FinanceJ and raise perfective-type tickets in Trac;

• try to compile the software and identify the errors to be
fixed. Raise as many corrective tickets as needed in the Trac
system.

Finally, we tell the students that a quality assurance specialist
(who is, in fact, the teaching assistant leading the lab sessions)
will assess their work at the end of the two-week period.

In the second maintenance lab exercise (reverse engineering),
students must reverse engineer the likely design (class and
sequence diagram), as well as the use cases from the existing
source code. For this we suggest that they install and use the
Omondo tool (http://www.ejb3.org/). We also ask them to use the
‘refactoring’ option in Eclipse (www.eclipse.org) to improve any
maintainability issues identified in the perfective maintenance
tickets raised earlier. Their third task is to start fixing the defects
and making improvements from the list of issues they identified
during the previous lab exercise. Defect correction and perfective
maintenance activities must be documented through Trac tickets
and the maintenance workflow followed (see Appendix 1), and all
artifacts must be placed under version control. Students are also
asked to discuss how they have improved the maintainability of
the code through refactoring.

In the third and last lab exercise on maintenance, new
functionality must be added to FinanceJ. Students receive a
number of change requests via e-mail from the client (who is in
reality the teaching assistant) and are required to interact with the
client solely via a Trac ticket. They must estimate the effort
required to perform the change, and have the proposed solution
and planned effort approved by the client. They must implement
the change (on a separate SVN branch), update the project's
documentation, perform a peer review within the team using a
plug-in we added to the Trac configuration (http://trac-
hacks.org/wiki/PeerReviewPlugin), and perform some ad hoc
testing.

This approach enabled students to use the knowledge learned in
class by:

• Experiencing the maintenance reality of large corporations,
where the handover process is weak and maintainers are
often left with only the source code of existing systems;

• Raising their awareness to the fact that a great deal of effort
is required in setting up a suitable software maintenance
environment and workflow before considering addressing
any management or client requests;

• Experimenting with many types of maintenance requests
(Corrective, Perfective, Adaptive) and understanding first-

4

hand their particular features in terms of workflow and
toolset;

• Experimenting with redocumentation and refactoring
techniques on an existing system, starting only with source
code;

• Interesting them in the process maturity topics specific to
software maintenance and how to gradually implement best
practices in an unstructured and reactive environment.

3.2 Testing portion of the course
Following the maintenance part of the course, the focus switches
to software testing. The first seven chapters of Burstein's book
(2003) are covered in class. This book was chosen because it
offers a good blend of basic testing concepts, rationale,
techniques, and process, which is ideal for an engineering course.
Interactive exercises are also performed in class on small
examples from the main text and other sources, to ensure that
students are taught the basic concepts and understand the various
techniques enough to apply them on their own, which they will be
asked to do in the lab exercises described below.

There are also 6 two-hour lab periods dedicated to the testing
portion of the course, which is divided into 2 three-week
exercises. The overall objective of this portion of the lab is for
students to acquire minimal experience with basic black- and
white-box testing techniques, by designing, implementing,
executing, and reporting test results, and with the various levels of
testing (unit, integration, system). They work on a different
application for this portion of the course, because the one used for
the maintenance portion did not allow us to highlight all the
white-box testing criteria that we were aiming for (decision,
condition, multiple condition, etc.). The same environment is used
as for the maintenance portion of the course, the only notable
additions to the toolset being the JUnit (http://www.junit.org/)
testing framework and the Code Cover plug-in
(http://codecover.org/) for Eclipse.

In the first testing lab exercise (black-box testing), students are
initially handed a specification, screen capture, and public API of
the application to be tested (a Gregorian calendar), and are asked
to incrementally design unit, integration, and system black-box
test cases. They have deliverables each week on which they
receive feedback at the beginning of the following lab period.
They are also provided with new information each week: the
complete class diagram in the second week for the design of
integration and system test cases, and the running application in
the third week. They are only able to execute their tests in the last
week. We work this way to ensure that they concentrate their
efforts on test design (at the expected level, e.g. unit, integration,
and system) and documentation for the first two weeks, and are
not "distracted" by test coding and execution during this time. For
each part, they must design the tests cases using the techniques
shown in class, and document a test procedure (integration and
system tests − unit testing is fully automated). They must report
on any defects found, and their overall experience with the whole
exercise.

In the second testing lab exercise (white-box testing), students are
provided with the source code for the same calendar application,
and a sample JUnit test class that contains sample tests, methods,
and instructions on the expected format of their own test cases.
For two methods in the main application class, they are required
to draw the control flow graph (CFG), calculate McCabe's

cyclomatic complexity (by hand − practical in this case because
the application is small), identify the basis paths from the CFG,
and, finally, design, code, and execute white-box unit tests that
meet the following coverage criteria: 100% basis baths, 100%
decisions and conditions, and 100% multiple conditions. They are
required to meet each criterion with the smallest possible number
of test cases, and to add test cases if they deem it necessary
(justification required). Finally, they are asked to report on their
general experience and, of course, report any defects found.

We conclude this section by summarizing the challenges for the
testing part of the course. The course is given relatively early in
the program (at the beginning of the second year), at which point
the average student hasn't suffered the consequences of a lack of
testing enough to fully appreciate its value (although the better
students or those with more experience do). This could be
remedied by offering the course later in the program, although that
would require some non-trivial rearranging. The course also
combines two related topics, each of which deserves its own
dedicated full course. To make this change would require us to
remove an existing course, which is not feasible at this time for
practical reasons. The application used in this part of the course is
different from that used in the maintenance part of the course.
This is because the application chosen (first) for the maintenance
part of the course does not allow us to expose the students to all
the black- and white-box testing concepts and coverage criteria we
aim to cover. Ideally, the same application would be used
throughout the course. As is often the case, the application used is
of academic size and scope. Given the short time allowed for the
labs and the course positioning relatively early in the program,
this is hard to avoid. Finally, as of this writing, testing concepts do
not receive much attention in other courses in the program.

4. CONCLUSION
The two experiments prove that there are ways to provide students
with some realistic experience. Lessons learned here seem to be
that limited and well-defined projects, objectives, and process are
probably keys to achieving some success in this regard.

Looking back at the limitations we mentioned in the introduction,
we can say that these experiments, although still limited to one
semester, help give students more realistic experience of working
in a team and for a real client. They also show that it is possible,
either in the project course or in the Maintenance and Testing
course, to give students some realistic experience of maintenance.
In both cases, we believe that open source software would be an
appropriate source of software on which to work.

What remains is to find the time and the process to have students
measure work beyond their time budget. We believe that the
addition of quality measurement would be the next logical
improvement to make to these courses.

Another improvement for the project courses would be to track
risks. Students do prepare a risk assessment document at the
beginning of the term, just after the mandate is received, but the
tracking of risk has yet to be included. Moreover, since the
students have so little experience, the risk assessment document is
quite rudimentary. In our opinion, having them assess risk on an
ongoing basis would be a very good addition to these courses.

In the Software Maintenance and Testing course experiment at the
ÉTS, the focus was on familiarizing students with a realistic
maintenance environment and process involving multiple

5

stakeholder roles, and introducing them to basic software testing
techniques. We emphasize the "introduction" aspect, because one
of the challenges of this particular course is that it is given
relatively early in the Software Engineering program. Our
experience thus far leads us to believe that students might
assimilate the proposed concepts better if the course were given
later in the program, especially considering that this is a coop
program, and one or two coop terms might expose the students to
a little more challenge, in the form of the absence of proper
maintenance and/or testing activities in their work environment,
and hence they would better appreciate the concepts taught in this
course.

5. REFERENCES
[1] Allen, E., Cartwright, R., and Reis, C. 2003. Production

Programming in the Classroom. In Proceedings of the 34th
SIGCSE Technical Symposium on Computer Science
Education, Reno, NV, 9−93.

[2] Andrews, J. H. and Lutfiyya, H. L. 2000. Experiences with a
software maintenance project course. IEEE Transactions on
Educations, 43, 4, 383−388.

[3] April, A. and Abran, A. 2008. Software Maintenance
Management: Evaluation and Continuous Improvement.
Wiley-IEEE Computer Society, 314.

[4] Austin, M. A., III and Samadzadeh, M. H. 2005. Software
comprehension/maintenance: An introductory course. 18th
International Conference on Systems Engineering (ICSEng
2005), 414−419.

[5] Burnstein, I. 2003. Practical Software Testing, Springer,
400.

[6] De Koenigsberg, G. 2008. How Successful Open Source
Projects Work, and How and Why to Introduce Students to
the Open Source World. In Proceedings of the 21th
Conference on Software Engineering Education & Training
(CSEE&T ’08).

[7] Fornaro, R. J., Heil, M. R., and Tharp, A. L. 2006. What
Clients Want – What Students Do: Reflections on Ten Years

of Sponsored Senior Design Projects. In Proceedings of the
19th Conference on Software Engineering Education &
Training (CSEE&T ’06).

[8] Padua, W. 2009. Using Quality Audits to Assess Software
Course Projects. In Proceedings of the 22th Conference on
Software Engineering Education & Training (CSEE&T
’09).

[9] Postema, M., Miller, J., and Dick, M. 2001. Including
Practical Software Evolution in Software Engineering
Education. In Proceedings of the 14th Conference on
Software Engineering Education and Training, Charlotte,
SC, 127−135.

[10] Slimick, J. 1997. An undergraduate course in software
maintenance and enhancement. Tenth Conference on
Software Engineering Education & Training, 61−73.

[11] Tilley, S., Huang, S., Wong, K., and Smith, S. 2006. Report
from the 2nd International Workshop on Software
Engineering Course Projects (SWECP 2005). In
Proceedings of the 19th Conference on Software Engineering
Education & Training (CSEE&T ’06).

[12] Wikstrand, G. and Börstler, J. 2006. Success Factors for
Team Project Courses. In Proceedings of the 19th
Conference on Software Engineering Education & Training
(CSEE&T ’06).

6

