QF2D: A different way to measure Software Quality

Luigi BUGLIONE
E-mail: luigi.buglione@computer.org

Alain ABRAN
E-mail: abran.alain@uqam.ca
Agenda

- Introduction
- Quality Function Deployment (QFD)
- Quality Models and the Quality Factor (QF)
- \(QF^2D \): description and advantages
 - the procedure flow
 - the new calculation
- Conclusions and Prospects
Introduction

Product Quality is definable as “the totality of features and characteristics of a product or service that bear on its ability to satisfy stated or implied needs” (ISO 8402)
Introduction

Trend:
Growing attention towards project measurement (both of process and product) in the Software Engineering community in order to reach optimal qualitative levels

Practice: many companies consider only the Economic and/or Technical viewpoints in evaluations and in a quantitative manner

Reasons: cultural and economic motivations

Results: an incomplete product evaluation
Introduction

A comprehensive **Software Quality Assessment** should take into account multiple and distinct viewpoints:

<table>
<thead>
<tr>
<th>Actors</th>
<th>Viewpoint</th>
<th>Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managers</td>
<td>Economic (E)</td>
<td>Overall quality</td>
</tr>
<tr>
<td>Users</td>
<td>Social (S)</td>
<td>Usability</td>
</tr>
<tr>
<td>Developers</td>
<td>Technical (T)</td>
<td>Conformance to requirements</td>
</tr>
</tbody>
</table>

Actors

- **Managers**
- **Users**
- **Developers**

Viewpoints

- Economic (E)
- Social (S)
- Technical (T)
Agenda

- Introduction
- Quality Function Deployment (QFD)
- Quality Models and the Quality Factor (QF)
 - QF^2D: description and advantages
 - the procedure flow
 - the new calculation
- Conclusions and Prospects
Quality Function Deployment (QFD) studies in Japan have focused on the customers: a widely applied technique is, for instance, QFD (Quality Function Deployment).

QFD is a method for translating customer requirements (ref. “Voice of the Customer”) into appropriate technical requirements throughout the development and production of a product.
House of Quality (HoQ)

QFD includes a series of matrixes, as tools to represent data.

Most commonly used matrix: the “House of Quality” (HoQ)
Every point discussed in the HoQ must be rated. In the figure, some of the most common rating and weights used in QFD studies and applications:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>= 1</td>
</tr>
<tr>
<td></td>
<td>= 3</td>
</tr>
<tr>
<td></td>
<td>= 3</td>
</tr>
<tr>
<td></td>
<td>= 1</td>
</tr>
<tr>
<td></td>
<td>= 1</td>
</tr>
<tr>
<td></td>
<td>= 5</td>
</tr>
<tr>
<td></td>
<td>= 3</td>
</tr>
<tr>
<td></td>
<td>= 1</td>
</tr>
<tr>
<td></td>
<td>Strong positive</td>
</tr>
<tr>
<td></td>
<td>Medium positive</td>
</tr>
<tr>
<td></td>
<td>Medium negative</td>
</tr>
<tr>
<td></td>
<td>Strong negative</td>
</tr>
</tbody>
</table>
QFD in Software Engineering

- Distributed QFD (DQFD) by DEC
- Project QFD by Richard Zultner

- **Study** by Eriksson, McFadden and Tittanen: focus on the need to join process and product analysis to check whether the user requirements concerning both the product and the project issues were correctly determined and to get the customers’ acceptance of these points;

- **SPI/HoQ** model by Ita Richardson: a tool to help the implementation of SPI action plan for SMEs (using Bootstrap as the reference SPI model).

- Matrix of Change (MoC) project by the Massachusetts Institute of Technology: as useful guidelines for Change Management.
QFD and Software Engineering

Conclusion: QFD could be a useful tool for other Software Engineering applications.

To be investigated: can QFD be applied to improve the software Quality Models (QM) actually in use, and our QF technique?
Agenda

- Introduction
- Quality Function Deployment (QFD)
- Quality Models and the Quality Factor (QF)
 - QF^2 D: description and advantages
 - the procedure flow
 - the new calculation
- Conclusions and Prospects
A Quality Model (QM) is defined as:

♦ the set of characteristics and relationships between them which provide the basis for specifying quality requirements and evaluating quality

♦ a structured set of properties required for an object of a class to meet the defined purposes
Quality Models

So a QM is given by the decomposition of a valuable object (process / product / organisation) in a list of:

♦ characteristics
♦ sub-characteristics
♦ measures

Scope: predict / assure / verify the achievement of a defined goal about the object before (+ during + after) producing it.
Quality Models

The best known QMs for software are those by:

♦ McCall et al. (1977) [called FCM - Factor/Criteria Model]
♦ Boehm et al. (1978)
♦ IEEE 1061 (1992)
♦ Dromey (1995)
Quality Models

It is possible to classify them depending on the:

♦ **number of layers (2, 3)**

<table>
<thead>
<tr>
<th>LAYER</th>
<th>BOEHM</th>
<th>McCall</th>
<th>ISO</th>
<th>IEEE</th>
<th>DromeY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H-Level Charact.</td>
<td>Factor</td>
<td>Characteristic</td>
<td>Factor</td>
<td>H-Level Attribute</td>
</tr>
<tr>
<td>2</td>
<td>Primitive Charact.</td>
<td>Criteria</td>
<td>Subcharacteristic</td>
<td>Subfactor</td>
<td>Subordinate Attribute</td>
</tr>
<tr>
<td>3</td>
<td>(Metric)</td>
<td>(Metric)</td>
<td>(Metric)</td>
<td>Metric</td>
<td></td>
</tr>
</tbody>
</table>

♦ **number of relationships between first two layers** (1:n, n:m)

p.e. McCall’s model (**FCM**) -> every sub-characteristic is linked to one or more characteristics while in **ISO/IEC 9126** every characteristic has its own set of sub-characteristics
Quality Models

General Problems in QMs:

♦ insufficient list mapping with an everyday reality more and more complex

♦ little assistance in building quality into software

♦ individual interpretations of models and of its variables
Quality Models

But: there is strength and usefulness in shared common interpretations, rather than individual interpretations of quality

Solution: use of ISO standard because they represent the largest international consensus on a software quality model
The Quality Factor (QF) technique consolidates into a single numerical value (based on ISO/IEC 9126 standard) integrating Users’ (U), Developers’ (D) and Managers’ (M) opinions about the quality of the software being measured.

QF uses an open weight scale methodology (does not force a single set of weights).
QF - the procedure flow

Users (U)
* fill the questionnaire

Management
* collects and consolidates questionnaires
* activates the QF calculation
* determinates the QF value

Developers (D)

Managers (M)

QF Calculation

QF Value
QF: Improvements required

- QF applied for ex-post evaluation purposes
- QF with ISO 9126: 1991 version only
- QF has a specific approach to match stakeholders’ viewpoints: any other one?
- QF calculation use several tables: is it possible to simplify the procedure?
Agenda

- Introduction
- Quality Function Deployment (QFD)
- Quality Models and the Quality Factor (QF)

QF2D: description and advantages
- the procedure flow
- the new calculation

- Conclusions and Prospects
QF2D: a new approach

Challenge: merging the QF technique into the QFD approach

Result: an improved technique to be referred to as: Quality Factor through QFD (QF2D)
Basic improvements to QF

- Multi-perspective evaluation (E, S, T) of software quality in the development / maintenance phases
 (not only in the assessment phase)
- Evaluation of QF on a percentage scale
 (to obtain an easier intuitive understanding of results)
- Use of ISO 9126 and 14598 series
 (for software quality attributes and evaluation)
Advantages from HoQ usage

- Simplification and rationalisation of the QF method;
- Summarisation of all data in one table;
- Use of histograms to prioritise in a visual way the most relevant sub-characteristics and target goals of products to be evaluated.
QF²D lifecycle

2 Matrices:

- **D/M** (Development / Maintenance)
- **A** (Assessment)

![Diagram showing the QF²D lifecycle with D/M and A matrices]

- **D/M Matrix**
 - Product Characteristics
 - ISO/IEC 9126:2000
 - New development
 - Maintenance

- **A Matrix**
 - Analysis, Design & Coding
 - ISO/IEC 9126:2000
 - Assessment

New needs (desiderata)
QF²D lifecycle - D/M matrix

WHAT (rows):

- expresses the targets by the three interest groups (E, S, T)
- priority fixed on a Likert scale (from 1 to 5)
- considers the three groups of stakeholders (well-known quality models like EFQM and Malcolm Baldrige also use their distinct viewpoints)

HOW (columns):

- represents the list of the new upcoming ISO/IEC 9126 standard sub-characteristics (parts 2, 3 and 4)

In the Matrix:

- relationship between user requirements to be translated into product features and quality sub-characteristics expressed on the ISO/IEC 14598-1 scale (from 0 to 3), in place of the common QFD graphic symbols used in the HoQ
WHAT (rows):

- represents the list of the new upcoming ISO/IEC 9126 standard sub-characteristics (parts 2, 3 and 4)
- priority fixed on a Likert scale (from 1 to 5)

HOW (columns):

- expresses the product features of the assessed product
- consider the three groups of stakeholders, as in well-known quality models like EFQM and Malcolm Baldrige

In the Matrix:

- relationship between product features and quality sub-characteristics expressed on the ISO/IEC 14598-1 scale (from 0 to 3), in place of the common QFD graphic symbols used in the HoQ
QF2D symbols

- **Foundation**: use of the ISO standards for SwEng
- **Application**: ISO/IEC 14598-1 rating scale applied to QFD-like symbols

<table>
<thead>
<tr>
<th>Mark</th>
<th>QF2D Symbol</th>
<th>Rating</th>
<th>Global Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>●</td>
<td>Excellent</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>○</td>
<td>Good</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>1</td>
<td>○</td>
<td>Fair</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Blank</td>
<td>Poor / Absent</td>
<td>Unsatisfactory</td>
</tr>
</tbody>
</table>
QF^2D matrices structure - D/M matrix example

<table>
<thead>
<tr>
<th>PRIORITY (1-5)</th>
<th>ISO/IEC 9126-2 SUBCHARACTERISTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Char 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>M1</th>
<th>DES1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Mn</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S</th>
<th>U1</th>
<th>DES2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Un</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>D1</th>
<th>DES3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Dn</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sum</th>
<th>TCV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ms</td>
<td></td>
</tr>
</tbody>
</table>

INTERNAL & EXTERNAL COMPARISONS

VALUES

D/MD/M matrix example
QF2D - the calculation

The instrument needed for the QF2D calculation is:

- HoQ-like table: **D/M** (Development / Maintenance) or **A** (assessment) matrix

QF²D - the calculation (D/M matrix)

6 Steps:
1. Listing of the most relevant desiderata on the matrix
2. Determination for each desiderata of:
 - level of priority (1-5)
 - which sub-characteristic(s) is (are) correlated it to the target
 - which rating (0-3) of the sub-char is linked to the target (circle symbols)
3. Calculation of the sub-characteristics values (**SSV**)
4. Calculation of the whole characteristics values (**CV**)
5. Calculation of the Total Characteristics Value (**TCV**)
6. Determination of the final **QF²D** value (**TCV / TCVmax**)

Note: using a spreadsheet solution, you can automatically calculate priorities (histograms) and delta values in the “Internal-external comparisons” zone of the matrix.
QF2D: main advantages

- Use of new ISO 9126:2000 standard series;
- Not only an assessment of product but also of development/maintenance \(\text{(with feedback loop)}\);
- Use of ISO 14589-1 evaluation scale to express relationships in the HoQ table;
- Greater granularity in the whole product evaluation \(\text{(at the sub-characteristic level)}\);
- Use of a single table to collect data and visualise results \(\text{(for all participants from the three interest groups: E, S, T)}\)
Example

Assumptions:

• 5 respondents to the questionnaire (1 manager, 2 users, 2 developers)
• 31 quality sub-characteristics used
Example

Thus, it derives the following formulas for:

- **SCV**
- **CV**
- **TCV** (value, min, max)
- **QF^2D**

SCV

\[
\text{SCV} = \sum_{j=1}^{x} PR_j \times SCV_{j,z}
\]

Where

- \(X\): no. Of desired features (D/M matrix) or the no. Of people choosing certain product features (A matrix)
- \(Z\): the sub-characteristic to evaluate

CV

\[
\text{CV} = \sum_{i=f}^{l} \sum_{j=1}^{x} PR_j \times SCV_{j,i}
\]

Where

- \(X\): no. Of desired features (D/M matrix) or the no. Of people choosing certain product features (A matrix)
- \(F\): ordinal number of the first sub-char for that characteristic
- \(L\): ordinal number of the last sub-char for that characteristic

TCV

\[
\text{TCV} = \sum_{i=1}^{3l} \sum_{j=1}^{x} PR_j \times SCV_{j,i}
\]

Where

- \(X\): no. Of desired features (D/M matrix) or the no. Of people choosing certain product features (A matrix)

TCVmin

\[
\text{TCVmin} = X \times 0
\]

Where

- \(X\): no. Of desired features (D/M matrix) or the no. Of people choosing certain product features (A matrix)

TCVmax

\[
\text{TCVmax} = X \times 465
\]

Where

- \(X\): no. Of desired features (D/M matrix) or the no. Of people choosing certain product features (A matrix)

465 = 31 (no of sub-char) * 3 (max rating) * 5 (max priority)

Final Quality Value

\[
QF^2D = \frac{TCV_{\text{max}}}{TCV_{\text{max}}}
\]

Thus, it derives the following formulas for:

- **SCV**
- **CV**
- **TCV** (value, min, max)
- **QF^2D**
Example

After filling the QF²D table, this is the result:

<table>
<thead>
<tr>
<th>E</th>
<th>M1</th>
<th>REQ1</th>
<th>PRIORITY (1-5)</th>
<th>SubChar 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>U1</td>
<td>REQ2</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>U2</td>
<td>REQ3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td>D1</td>
<td>REQ4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>D2</td>
<td>REQ5</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Sum: 23
Mx: 4,600

<table>
<thead>
<tr>
<th>SubChar 30</th>
<th>SubChar 31</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

\[
\text{TCV} = 32 \\
\text{TCVmax} = 6,400 \\
\text{QF²D} = 0.3385
\]
Example

And this is the analytic result, in order to evaluate it with more attention:

<table>
<thead>
<tr>
<th>CV</th>
<th>Criteria</th>
<th>Tot value</th>
<th>%</th>
<th>%</th>
<th>Tot %</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV1</td>
<td>Functionality</td>
<td>117</td>
<td>14,87</td>
<td>2,92</td>
<td>14,87</td>
</tr>
<tr>
<td></td>
<td>1 Suitability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 Accuracy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 Interoperability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 Compliance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 Security</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV2</td>
<td>Reliability</td>
<td>122</td>
<td>15,50</td>
<td>4,07</td>
<td>15,50</td>
</tr>
<tr>
<td></td>
<td>6 Maturity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7 Fault tolerance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 Recoverability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9 Compliance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV3</td>
<td>Usability</td>
<td>112</td>
<td>14,23</td>
<td>2,29</td>
<td>14,23</td>
</tr>
<tr>
<td></td>
<td>10 Understandability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11 Learnability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 Operability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13 Attractiveness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14 Compliance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV4</td>
<td>Efficiency</td>
<td>78</td>
<td>9,91</td>
<td>2,92</td>
<td>9,91</td>
</tr>
<tr>
<td></td>
<td>15 Time behaviour</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16 Resource utilization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17 Compliance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV5</td>
<td>Maintainability</td>
<td>123</td>
<td>15,63</td>
<td>3,56</td>
<td>15,63</td>
</tr>
<tr>
<td></td>
<td>18 Analyzability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19 Changeability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 Stability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21 Testability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22 Compliance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV6</td>
<td>Portability</td>
<td>116</td>
<td>14,74</td>
<td>3,05</td>
<td>14,74</td>
</tr>
<tr>
<td></td>
<td>23 Adaptability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24 Installability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25 Replaceability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26 Co-existence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27 Compliance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV7</td>
<td>Quality in Use</td>
<td>119</td>
<td>15,12</td>
<td>3,05</td>
<td>15,12</td>
</tr>
<tr>
<td></td>
<td>TCV</td>
<td></td>
<td>787</td>
<td>100,00</td>
<td></td>
</tr>
</tbody>
</table>
Two levels of comparison are possible after filling the A matrix:

- **higher level**: between the 2 QF^2D values
- **lower level**: among the sub-char evaluation from the D/M to the A matrix

The results from this analysis will represent the input for the next D/M step.
Conclusions & Prospects

- QF2D calculation: for a more objective software quality measurement including a multi-perspective viewpoint (E, S, T) and it leverages the QFD (Quality Function Deployment) technique.
- QF2D procedural flow is much simpler.
- This technique is aligned with the upcoming version of ISO/IEC 9126:2000.
Conclusions & Prospects

- QF2D is very flexible: it can incorporate a variable number of target/product characteristics (to derive the final quality value)

- QF2D can be used separately or jointly with the QEST/LIME models
 - focusing either on a qualitative assessment only or as the qualitative assessment within a full multidimensional performance assessment
Question Time

Thank you for your attention!
QF2D: A different way to measure Software Quality

Luigi BUGLIONE

E-mail: luigi.buglione@computer.org

UNIVERSITÉ DU QUÉBEC À MONTRÉAL
Laboratoire de Recherche en Gestion de Logiciel
Montréal, Québec - CANADA

Alain ABRAN

E-mail: abran.alain@uqam.ca