
1

An Analysis of the Mc Cabe
Cyclomatic Complexity Number
Miguel Lopez
Alain Abran
Naji Habra

2

Agenda

• Problem Statement
• Cyclomatic Number in Graph Theory
• Application of the Cyclomatic Number in

Software
• Analysis of McCabe’s Number
• Conclusion

3

Problem Statement

• Some measurement methods used in the
software industry are still not well
understood.

• Although these measurement methods are
correctly applied by practitioners, there
remain ambiguities in their design and
corresponding interpretation.

4

Problem Statement

• McCabe Cyclomatic Number is one of these
misunderstood measure.

• McCabe Cyclomatic Number is often applied in
the industry, but it remains some
misconception in the design measurement
itself.

5

Cyclomatic Number in Graph Theory

• Some definitions of Graph theory are
necessary to explain the McCabe Cyclomatic
Number.

• Indeed, McCabe attempts to apply some
concepts of Graph theory into Software
Measurement.

• We propose to better analyze the McCabe
Cyclomatic Number.

6

Cyclomatic Number in Graph Theory

• A Simple Graph is a (usually finite) set of
vertices V (or nodes) and a set of unordered
pairs of distinct elements of V called
edges.

• A Cycle Graph is a path that begins and ends
with the same vertex.

7

Cyclomatic Number in Graph Theory

• A Directed Graph (also called a digraph or
quiver) is a (usually finite) set of vertices V and set of ordered
pairs (a,b) (where a, b are in V) called edges. The vertex a is the
initial vertex of the edge and b the terminal vertex.

• A graph in which the edges are directed.

8

Cyclomatic Number in Graph Theory

• A Strongly Connected Graph is a directed
graph that has a path from each vertex to
every other vertex.

9

Cyclomatic Number in Graph Theory

• The Cyclomatic Number of a strongly
connected directed graph is equal to the
maximum number of linearly independent
cycles. Equation 1 gives the Cyclomatic
Number, v(G):

where there are e edges, n vertices and p
separate components.

v(G) = e − n + p(1)

10

Application of the Cyclomatic Number
in Software

• McCabe suggests to consider the program as a
directed graph.

• The program is modeled as a control flow
graph.

• Each vertex in the graph represents a basic
block. Directed edges are used to represent
jumps in the control flow.

11

Application of the Cyclomatic Number
in Software

• There are two specially designated blocks:
– the entry block, through which control enters the

flow graph
– the exit block, through which all control flow

leaves.

• But, program control flow graphs are not
strongly connected, but they become so when
a virtual edge is added connecting the exit
node to the entry node.

12

Application of the Cyclomatic Number
in Software

• So, Equation 1 becomes:

• The 1 added is the virtual edge.

v(G) = e − n + p +1(2)

13

Application of the Cyclomatic Number
in Software

• Furthermore, in a McCabe transposition, only
individual modules are taken into account,
instead of the whole software.

• So, Equation 2 becomes:

• There is always one disconnected components.
So, p equals 1.

v(G) = e − n + 2(3)

14

Analysis Framework

• Analysis framework is made up of 5 steps:
– Definition of measured Concept
– Complexity Attribute
– Units Problem
– Definition of the measured Entity
– Interpretation in the Industry

15

Analysis: Measured Concept

• Finally, based on Equation 3, McCabe
suggested a measure of a program complexity,
i.e. cyclomatic complexity, which he
interpreted as the amount of decision logic
in a single software module.

• Moreover, the Cyclomatic Number of a control
flow graph is considered as a Cyclomatic
Complexity Number.

16

Analysis: Measured Concept

• Now, while using the term ‘complexity’, a
definition of it, of the attribute itself,
or of his direct characterization is not
provided.

• This approach is basically a mapping of the
concepts selected from graph theory into a
certain view of software as a control flow
graph.

17

Analysis: Complexity Attribute

• By adding the label ‘complexity’ to the
expression ‘Cyclomatic Number’, McCabe leads
the reader to believe that the attribute he
considered is the complexity of a source
code program, but does not explicitly
document this claim by association.

• Is this claim by association relevant, and
valid?

18

Analysis: Complexity Attribute

• It is necessary to explain the assumption
related to the applicability of graph theory
concepts, such as cyclomatic complexity, in
the software measurement.

• It could be of interest to ensure that this
assumption does not imply some risks when
the measurement results are used in the
context of planning a testing effort or of
estimating error rate.

19

Analysis: Units Problem

• A proper rewriting of (2) taking the units
into consideration would lead to (4) instead
of (3), that is:

becomes:
v(G)independentcycle = eedge − nnodes + pconnectedcomponents + 1virtualedge(2)

v(G)independentcycle = (e +1)edge+virtualedge − nnodes + pconnectedcomponents(4)

20

Analysis: Units Problem

• Which is the common concept between the
items of Equation (4) that allows to add
them each others?

• Of course, adequate interpretation of units
in equation (4) remains an issue.

21

Analysis: Definition of the measured
Entity

• The entity measured by the Cyclomatic
Complexity Number is a control flow graph.

• According to McCabe, the measured entity is
the source code of a given module, which
corresponds to a function or a subroutine.

22

Analysis: Definition of the measured
Entity

• But, do graphs correctly represent the
source code entity in order to measure its
Cyclomatic Number?

• In other words, is the assumption concerning
the one-to-one relation of a given module
source code and its corresponding graph
verified?

23

Analysis: Definition of the measured
Entity

• One source code of one module is related to
one and only one graph. But the contrary is
not necessarily true; that is, one graph can
be related to one or many source codes.

• So, it is not obvious that the final source
code corresponds to the measured graph.

• Moreover, McCabe suggests to use this
Cyclomatic Number in order to plan the
testing effort.

24

Analysis: Definition of the measured
Entity

• Another point discussed is the ‘virtual
edge’ added to the control flow graph in
order to obtain a strongly connected graph.

• But doesn’t adding a virtual edge modify the
nature of the entity considered, i.e. the
source program ?

25

Analysis: Definition of the measured
Entity

• The justification of this virtual edge is as
follows:
– It is not just a numerical convenience.

Intuitively, it represents the control flow through
the rest of the programming in which the module is
used [WAT96].

26

Industry Interpretation

• Complexity can be used directly to allocate
testing effort by leveraging the connection
between complexity and error to concentrate
testing effort on the most error-prone
software [WAT96].

• This assertion by McCabe has led to
generalizations such as: ‘The higher the
Cyclomatic Complexity Number, the higher the
error rate’ derived from the McCabe assertion
that a relation exists between the Cyclomatic
Number, relabeled ‘complexity’, and the testing
effort. Of course, the expressions ‘the higher
the error rate’ and ‘the most error prone’ are
clearly not placed on a ratio scale, but at best
on an ordinal scale.

27

Industry Interpretation

• A complexity measure correlates with errors
in software modules [WAT96].

• Again, this statement has led users of
McCabe’s Number to associate a small number
of errors with a low Cyclomatic Number.
– However, a coefficient of correlation (r) between two given

variables X & Y does not measure any causality relation
between those variables. A coefficient close to 1 does not
mean that one variable implies the other, it simply
expresses the fact that the two variables vary in the same
direction.

28

Industry Interpretation

• Maintainers can keep maintenance changes
from degrading the maintainability of
software by limiting the Cyclomatic
Complexity Number during a modification
[WAT96].

• The same comments as those above apply.

29

Conclusion

• Artificially labeling the Cyclomatic Number
as a ‘complexity’ concept has led to
considerable ambiguity on the use of this
Number as a measurement number rather than
as a qualitative empirical model which
varies according to the empirical contexts.

• This paper highlighted a key problem of
measurement units:
– Related concepts have not been either adequately

explored or adequately explained. Without such
knowledge and insights, it is difficult to improve
such a design.

30

Questions

• ?

