Software Measurement is Maturing to International Standards

Alain Abran,
École de technologie supérieure, Université du Québec, Montreal, Canada

Universidad Politecnica de Madrid, June 7, 2005
Objectives of the Presentation

- What do we know about measures?
- What do we know about Software Metrics?
- Software engineering and Measurements?
- Identification of the gaps where further research on software measurement is required
List of topics

- Motivations and Objectives
- Software Metrics
- Models for Designing Measures
- What is Generally Accepted?
- International Standards
- Conclusions and Future Work
Motivations

- Measurement is fundamental in:
 - In day to day life
 - In business
 - In sciences and engineering

- Measurement *instruments* are key to all

- What is the status (maturity) of measurement in software?
Why do you measure?

- To understand:
 - To know - to learn

- To plan:
 - To set targets

- To control:
 - To monitor - To compare
 - To make adjustments
Measurements

Everywhere in sciences and engineering

- Where do they come from?
- How do you know that our measures are valid?
List of topics

- Motivations and Objectives
- Software Metrics
- Models for Designing Measures
- What is Generally Accepted?
- International Standards
- Conclusions and Future Work
Software Metrics

The dominant view in software measurement = « Software Metrics »
Software Metrics

- Lines of code
- McCabe
- Function Points
- Halstead
- COCOMO
- Software quality metrics: Hundreds +
- Software complexity metrics: Hundreds +
- OO metrics: Hundred ++
- Estimates and Estimations models....
Quality of ‘metrics’

Do you get:
- Reproducible results?
- Repeatable results?
- Accurate results?
- Results that you can trust?

Who design these metrics?
- How qualified are they?
- Who verifies their metrics proposals?
Software Metrics

How are they designed?
 - Anything that can be ‘counted’

How are they defined:
 - Often labels
 - An algorithm

How do we know if they are valid?
 - Sometimes claims of validation based on measurement theory
 - Sometimes on claims of ‘usefullness’
List of topics

- Motivations and Objectives
- Software Metrics
- Models for Designing Measures
- What is Generally Accepted?
- International Standards
- Conclusions and Future Work
Analytical Tools of Measurement

- Measurement Process model
 - Abran & Jacquet

- Metrology:
 - ISO International Vocabulary in Metrology
Measurement Process Model

High-level measurement process model

Step 1: Design of the measurement method
Step 2: Application of measurement method rules
Step 3: Measurement result analysis
Step 4: Application of measurement method rules
Metrology

- The long-standing international consensus on measurement terminology
- The basis of the International System (IS) of measurements
- National Metrology Agencies
 - The legal framework for weights and measures in industrialized countries
Metrology Vocabulary

- Six categories of terms
 - + 120 terms
 - In increasing order of complexity!

- Most challenging to grasp relationships across terms, understand, and remember!
Metrology Model

Measurement foundations

- Metrology
 - Principle of Measurement
 - Method of Measurement
 - Measurement

Science of Measurement
Scientific Basis of a Measurement
Logical Sequence of Operations
Set of Operations

© 2005 Alain Abran - Laboratoire de Recherche en Génie Logiciel
Metrology Model

High-level model of the ISO Vocabulary

- Input
- Measuring instruments
- Measurements
- Measurement Results
- Quantities and units
- Etalons
- Characteristics of measuring instruments
Metrology Model

Measurement Procedure

Measurand → Measurement Signal → Transformed Value → Result of a Measurement

Operator

Measurement Method
Influence Quantity
Metrology Model

Measurement results

<table>
<thead>
<tr>
<th>Types of measurement results</th>
<th>Modes of verification of measurement results</th>
<th>Uncertainty of measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indication (of a measuring instrument)</td>
<td>Accuracy of measurement</td>
<td>Experimental standard deviation</td>
</tr>
<tr>
<td>Uncorrected result</td>
<td>Repeatability (of results of measurements)</td>
<td>Error (of measurement)</td>
</tr>
<tr>
<td>Corrected result</td>
<td>Reproducibility (of results of measurements)</td>
<td>Deviation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Relative error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Random error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Systematic error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Correction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Correction factor</td>
</tr>
</tbody>
</table>
Mapping between models

Alignment of metrology concepts with the measurement process model

<table>
<thead>
<tr>
<th>Measurement process model</th>
<th>Design of measurement methods</th>
<th>Application of measurement method rules</th>
<th>Measurement results analysis</th>
<th>Exploitation of measurement results</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO metrology model</td>
<td>Quantities and units</td>
<td>Measuring instruments</td>
<td>Measurement results</td>
<td>Characteristics of measuring instruments</td>
</tr>
</tbody>
</table>

© 2005 Alain Abran - Laboratoire de Recherche en Génie Logiciel
List of topics

- Motivations and Objectives
- Software Metrics
- Models for Designing Measures

- What is Generally Accepted?
- International Standards
- Conclusions and Future Work
SWEBOK

- Generally Accepted:
 - What applies most of the time, to most projects, and which value has been validated by the community of peers
 - Project Management Institute

- Software Engineering Body of Knowledge - SWEBOK
Measurement within SWEBOK

<table>
<thead>
<tr>
<th>SWEBOK KA</th>
<th>Topics</th>
<th>Step 1 Design</th>
<th>Step 2 Measuring</th>
<th>Step 3 Results</th>
<th>Step 4 Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software engineering requirements</td>
<td>Process support and management</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>Requirements negotiation</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>Document quality</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>Acceptance tests</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>Requirements tracing</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Software engineering design</td>
<td>Measures</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Software engineering testing</td>
<td>Evaluation of the program under test</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>Evaluation of the tests performed</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Software engineering maintenance</td>
<td>Software Maintenance Measurement</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
</tr>
</tbody>
</table>
Measurement within SWEBOK

<table>
<thead>
<tr>
<th>SWEBOK KA</th>
<th>Topics</th>
<th>Step 1</th>
<th>Step 2</th>
<th>Step 3</th>
<th>Step 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software configuration management</td>
<td>Surveillance of software configuration management</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Software engineering management</td>
<td>Goals</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>Measurement selection</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>Measuring software and its development</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>Collection of data</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>Software Measurement Models</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Software engineering process</td>
<td>Methodology in process measurement</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>Process Measurement Paradigms</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
</tr>
</tbody>
</table>
Measurement within SWEBOK

<table>
<thead>
<tr>
<th>SWEBOK KA</th>
<th>Topics</th>
<th>Step 1</th>
<th>Step 2</th>
<th>Step 3</th>
<th>Step 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software engineering quality</td>
<td>Measuring the value of quality</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>Fundamentals of Measurement</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Measures</td>
<td></td>
<td></td>
<td>×</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Measurement analysis techniques</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>Defect characterization</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>Additional Uses of SQA and V&V data</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
</tr>
</tbody>
</table>
Generally accepted knowledge about software measurement?

Strong recognition of benefits:
- to understand, plan, monitor and control
- Foundations = ??
- And little metrology strengths
List of topics

- Motivations and Objectives
- Software Metrics
- Models for Designing Measures
- What is Generally Accepted?
- International Standards in Software Measurement
- Conclusions and Future Work
International Standards

Currently, only for:

- Software Products Quality
- Software Functional Size
How to Measure Software Quality?

ISO 9126 on Software **Products** Quality

- Part 1: Quality Models and Definitions
- Parts 2 to 4: **Technical Reports**
- Over + 120 Metrics!
- with little about:
 - measurement method for each (labels & algorithms)
 - Validity & Quality of these ‘metrics’ ??

- Then (if used in a non consistent manner), how do figure out how measurement results compare across contexts, across time, and across measurers?
Software Functional Size

How do you measure software size?

- The technical size = ?

- The functional size = ?
Functional Size

A unique set of measures in software engineering:

- Designed in the late 1970’s:
 - By Albrecht, from IBM, using 24 MIS projects

- Published in the early 1980’s

- User group in the mid 1980’s
 - Measurement Manual
 - Training & Certification
Functional Size

Does it withstand the test of time?

- Still in use and referenced

But
- The basic method has not evolved significantly since the early 90’s
- Software has changed considerably
- Outside of MIS domain = ?
- In the early 90’s: + 30 variations to tackle weaknesses
Functional Size

Innovation in software measurement:
Standardization through ISO

First a meta-standard to layout the ground rules about functional size measurement: ISO 14143

- Part 1 = Definitions of Key Concepts
- Part 2 = Conformity Assessment
- Part 3 = Verification Guide
- Part 4 = Set of References
- Part 5 = Functional Domains
Functional Size

Four specific methods approved by ISO

- ISO 19761: COSMIC-FFP
- ISO 20926: IFPUG
- ISO 20968: MKII
- ISO 24570: NESMA

Will they withstand the test of time as measurement methods?
Will a consensus emerge?
Do they meet ‘metrology’ criteria?
Metrology Model

High-level model of the ISO Vocabulary

- Input
- Measuring instruments
- Measurements
- Measurement Results
- Quantities and units
- Etalons
- Characteristics of measuring instruments

© 2005 Alain Abran - Laboratoire de Recherche en Génie Logiciel
Metrology Model

Measurement results

<table>
<thead>
<tr>
<th>Types of measurement results</th>
<th>Modes of verification of measurement results</th>
<th>Uncertainty of measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indication (of a measuring instrument)</td>
<td>Accuracy of measurement</td>
<td>Experimental standard deviation</td>
</tr>
<tr>
<td>Uncorrected result</td>
<td>Repeatability (of results of measurements)</td>
<td>Error (of measurement)</td>
</tr>
<tr>
<td>Corrected result</td>
<td>Reproducibility (of results of measurements)</td>
<td>Deviation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Relative error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Random error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Systematic error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Correction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Correction factor</td>
</tr>
</tbody>
</table>
List of topics

- Motivations and Objectives
- Software Metrics
- Models for Analytical Tools of Software Measurement
- What is Generally Accepted?
- International Standards

Conclusions and Future Work
Summary & Conclusion

Generally accepted knowledge about Measurement in software:

- Extensive set of references on the use of measurement results in assessment and predictive models.

- Little discussion on:
 - Quality of measurement results
 - Quality of measuring instruments

- Limited knowledge on the design of measurement methods
Conclusions - Next

- Where is the field of « software metrics » going after 30 years of research?
 - Why not learn from the masters in measurement?

- Most majors R & D contributions still waiting for you!

- Standardization is critical for measurement!

© 2005 Alain Abran - Laboratoire de Recherche en Génie Logiciel
Conclusions

Metrics or Measures?

- Which one would you trust better?
Questions