Measuring the functional size of real-time software

Co-authored by:

A. Abran, J.-M. Desharnais, S. Oligny
Université du Québec à Montréal -
Software Engineering Management Research Laboratory,
Centre d’Intérêt sur les Métriques (C.I.M.), CANADA

April 1999
Presenter profile

- **Serge Oligny, M.Sc.**

 - Director - Technological innovations, UQAM-Software Engineering Management Research Laboratory
 - Member of CIM Executive Committee
 - Editor of FFP measurement manual v. 2.0
 - Formerly Corporate Manager of software development in the pulp & paper industry
 - 13 years experience in the IT consulting market
Agenda...

- Introduction
- Characteristics of real-time software
- The measurement process model
- Measurement Procedures
- Overview of field tests results
- Conclusion
Introduction...

- Functional size measurement
- Characteristics of Full Function Points
- An analogy
Introduction...

Functional Size Measurement

- ISO/IEC/JTC1/SC7 Standard #14143 definition:

 “Functional Size: A size of software derived by quantifying the **functional user requirements**”
Characteristics of FFP...

- FFP is a Functional Size Measure
- Focused on the ‘User functional view’
- Applied at any time during the software development life cycle
- Derived in terms understood by users
- Derived without reference to:
 - effort
 - methods used
 - physical or technical components
Introduction...

Characteristics of FFP...

- Version 1.0 of FFP released in 1997
- Version 2.0 currently under final review
- Major improvements will be outlined using this mark: V 2.0
Introduction...

An analogy...

2000 sq. ft.

Software Functionality

500 FFP

4000 sq. ft.

Software Functionality

1000 FFP
Characteristics of real-time software

- Different types of software
- Real-time or embedded software
- Limitations of IFPUG 4.0 Function Point
Characteristics of real-time software...

Different types of software

BUSINESS

INFRASTRUCTURE

MIS

Embedded or Real-time software

Utility

Users tools

Dev. tools

SYSTEM SOFTWARE
Real-time or embedded software

Timing
- Tight constraints on the rate of execution and on the timing of tasks
- Explicit constraints on timing
- Dedicated components to manage timing
- Correctness of the result is linked to timing

Interaction with
- Engineered devices
- People
- Other software applications
Limitations of IFPUG 4.0 FP

Compared to MIS software...

USERS
- People
- Other software
- Devices

DATA
- Permanently stored (files, DB, ...)
- Not stored permanently (signals, ...)

PROCESSES
- No. of sub-processes varies a lot
- Processes role is not easily classified as input, output or inquiry
Limitations of IFPUG 4.0 FP

IFPUG Function Points (4.0), do not adequately measure the functional size of real-time software.
The measurement process model

- Overview of the model
- Notes on measurement purpose...
- Notes on measurement strategy...
- Notes on documentation to be used...
The measurement process model...

Overview of the model

Software to be measured

PHASE 1

• Identify software layers
• Identify boundary
• Identify data items
• Identify functional processes

FFP software model

PHASE 2

• Identify sub-processes
• Assign points
• Aggregate results

Software functional size
Notes on measurement purpose

- Identify the **business issue** which needs to be addressed, for instance:
 - ...estimating the size of deliverables,
 - ...allocating supported functionality in maintenance,
 - ...measuring functionality required by business activities
 - ...establishing replacement costs of software portfolio,
 - ...assisting testing strategies layout,
 - ...assessing the size of development backlog,
 - ...establishing mandatory functionality for package evaluation.
Notes on measurement purpose

Determine:

- what questions need to be answered by the size measure,
- which software applications need to be sized
- what components of the software will be included or excluded
Notes on measurement strategy

- Identify:
 - Which software is to be sized,
 - How the sizing will be performed,
 - Who will do the sizing,
 - Who will assist as the application expert,
 - Which Functional Size Measurement method will be used e.g. Full Function Points (FFP) Version 1.0 or 2.0,
 - When and where will the sizing take place,
 - Which software tools, measurement forms, will be used.
Notes on documentation to be used

- **Planned Applications** (New development)
 - requirements specification
 - logical design specification
 - report layouts
 - screen layouts
 - logical data model

- **Existing Applications** (Enhancements)
 - all of the above plus
 - user manual
 - access to application online
Measurement Procedures

○ **PHASE 1 - MAPPING**
 a) Software layers, boundary and measurement scope
 b) Identifying data items
 c) Identifying functional processes

○ **PHASE 2 - MEASURING**
 a) Identifying sub-processes
 b) Assigning points
 c) Aggregating results
Measurement Procedures

PHASE 1 - MAPPING

SOFTWARE LAYERS, BOUNDARY and MEASUREMENT SCOPE
1a) MAPPING...

Concept of **LAYER**:

- **Functional requirements**
- **Allocation**
- **Principal software item**
- **Modification to the operating system**
- **New device driver**
- **Hardware**
- **Users**
- **Applications**
- **O.S.**
- **Device drivers**

(1): Human, engineered devices or other software.
SOFTWARE BOUNDARY

‘The boundary of a piece of software is the conceptual frontier between this piece and the environment into which it operates, as it is perceived externally from the perspective of its users.

The boundary allows the measurer to distinguish, without ambiguity, what is included inside the measured software from what is part of the measured software’s operating environment.’

By convention, a boundary exists between adjacent layers.
Definition of USER:

‘Human beings, software or engineered devices which interact with the measured application.’
Boundary is:

- a conceptual ‘membrane’ through which data passes into and out of the software,
- external limits of the software,
- point where the software stops and the “external” users world starts.
1a) MAPPING...

Software boundary

External “users world”

Internal “software world”
1a) MAPPING...

Software boundary

- Boundary may be illustrated on an application boundary diagram similar to a ‘context diagram’

- Identify all major groups of data movements between the boundary of the measured software and:
 - its human user operators,
 - the boundaries of other software
 - or engineered devices
1a) MAPPING...

Software boundary

Operators

Application ‘A’

Software

Application ‘B’

Engineered Devices
1a) MAPPING...

Software boundary

Application Boundary

Equipment Control System

- Configuration Parameters
- Status
- Control
- Actuators

Other Software Applications

- Incoming Calls
- Sensors
- Alarms
- Status Parameters

Engineered Devices

- Lights
- Buzzers
- Usage Data
- Reports
- Alarms
- Buttons Parameters
- Threshold Values
- Responses

© 1998 UQAM-SEML, CIC
1 a) MAPPING...

Measurement scope

Definition of SCOPE:

“The set of functional features, inside the application boundary, for which the size is to be measured”

Measurement SCOPE is dictated by the PURPOSE of the measurement exercise.
SCOPE defines a sub-set of the software to be sized
Measurement Procedures

- PHASE 1 - MAPPING

IDENTIFYING DATA ITEMS
Identifying data items

- Key concepts
- Identification
- Summary
Identifying data items

Key concepts

- **Data selection**
 Which ones are mapped to the software model?

- **Data occurrences**
 How are they organized?

- **Data activity**
 How are data handled by the measured application?
Identifying data items

Key concepts - Data selection

훈 If a piece of data is processed but not saved or reused, it is not permanent and it is not measured.

훈 If a piece of data is saved or reused, it is measured.

훈 A piece of data must exist for more than one transaction\(^1\) to be measured.

\(^1\) Note: A transaction correspond to ONE operation cycle of a functional process (more on this later)
Identifying data items

Key concepts - Data occurrence

- **Multiple occurrences** are groups of data which can have more than one instance of the same type of record. In real-time, multiple occurrences have the same structure than the one found in MIS System.

 - Example: Flight record (black box)
1 b) MAPPING...

Identifying data items

Key concepts - Data occurrence

- **Single occurrence** are groups of data which have one and only one instance of the record.

 - Example: Data related to a time clock for a specific time.
Identifying data items

Key concepts - Data activity

- **Updated data (UCG)**
 e.g.: add, change, delete, populate, revise, update, assign, create ...

 A data may be updated by more than one software application.

- **Read only data (RCG)**
 The data is consulted by the software being mapped without being updated.

 The data may be updated by other software.
Identifying data items

Identification

1- Select all logically related groups of data that exists for more than one transaction.

✓ From a normalization point of view our practice suggests that a logically related group of data could be in second or third normal form.

2- Group data according to their structure

✓ Each multiple occurrences group is identified
✓ Merge all single occurrence together into one group
Identifying data items

Identification

3- Determine the nature of data activity for each identified group

✓ A **UCG** is a group of data updated by the application being measured.

✓ An **RCG** is a group of data used, but not updated, by the application being measured.
1 b) MAPPING...

Identifying data items

Identification

4- Verify that Updated Control Group (UCG) and Read-only Control Group (RCG) ARE

✓ Files maintained by the users

BUT ARE NOT

✓ Sorting files
✓ Index files or secondary index
✓ Generated files sent to another application
1 b) MAPPING...

Identifying data items

Summary

- Single Occurrence
- Exists for more than 1 TXN
- Multiple Occurrence

1 UCG
1 RCG
UCGs
RCGs
Measurement Procedures

○ PHASE 1 - MAPPI NG

IDENTIFYING FUNCTIONAL PROCESSES
Identifying functional processes

- Key concepts
- Identification
- Summary
Identifying functional processes

Key concepts

- Trigger
- Functional process
- Transaction
Identifying functional processes

Key concepts - Triggers

- An event **initiating** a functional process from the perspective of the software users,

- An event occurring outside the software boundary,

- When an event occurs, data usually enters the software boundary,

- Clocks and timing events can be triggers.
Identifying functional processes

Key concepts - Functional process

“A set of operations or activities which acts on input data to produce a result.”
Identifying functional processes

Key concepts - Transactions

- A transaction is an instance of a functional process,

- A transaction includes all processing associated with the occurrence of an external trigger.

Example: in a watch, each tick of the timing crystal is a trigger. All processing associated with each new tick is a separate transaction.
Exercise

Using the Case Study document:

- What is the purpose of the measurement exercise?
- Identify the boundary of the application
- Identify the data items
- Identify the functional processes
Exercise

- PURPOSE: Practice FFP measurement
- BOUNDARY:
Exercise

<table>
<thead>
<tr>
<th>Trigger Functional Processes</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode Switch Pressed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode Selection Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start Switch Pressed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elapsed Time Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 sec. Clock Signal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target Temperature Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 sec. Clock Signal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooking Temperature Control</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Multiple occurrence RCG
(2) Single occurrence UCG
(3) Single occurrence RCG
Measurement Procedures

○ PHASE 2 - MEASURING

IDENTIFYING SUB-PROCESSES
Identifying sub-processes

Key concepts - Sub-processes

- An FFP sub-process is a functional elementary data movement occurring during the execution of a functional process.

- There are four types of FFP sub-process: entry, exit, read and write.

- The object of an elementary data movement is either a multiple occurrence data group or a single occurrence data attribute.

- An FFP sub-process is equivalent to ISO Basic Functional Component types (BFC).
Identifying sub-processes

Key concepts - Sub-processes

- Identified from a functional perspective,
- Single sub-processes; duplicates removed,
- A sub-process moves only one group of data.
2 a) MEASURING...

Identifying sub-processes

Key concepts - 4 classes of sub-processes

Software boundary

Functional process

ENTRY
Sub-process

READ Sub-process

WRITE Sub-process

EXIT
Sub-process

Transaction
2 a) MEASURING...

Identifying sub-processes

Key concepts - 4 classes of sub-processes

Users:
Persons,
Other Software,
Engineered Devices

Software Boundary

Functional process

Entry («E»)

Exit («X»)

Users:
Persons,
Other Software,
Engineered Devices
Identifying sub-processes

Key concepts - 4 classes of sub-processes

Users:
Persons, Other Software, Engineered Devices

Read («R»)

Data item read

Functional process

Software Boundary

Write («W»)

Data item written

Entry

Exit

Persons, Other Software, Engineered Devices
Identifying sub-processes

Identification rules: Entry

- The sub-process **receives** a data item from outside the software boundary,
- The sub-process is associated with **only one** data item,
- The sub-process does not **exit, read, or write** data items,
- The sub-process is unique: processing and data items identified are different from other Entries within the same functional process.
Identifying sub-processes

Identification rules: Exit

- The sub-process sends data outside of the software boundary.
- The sub-process sends only one data item.
- The sub-process does not receive, read, or write data item.
- The sub-process is unique: processing and data items identified are different from other Exits in the same functional process.
2 a) MEASURING...

Identifying sub-processes

Identification rules: Read

- The sub-process reads a data item.
- The sub-process reads only one data item.
- The sub-process does not receive, exit, or write data items.
- The sub-process is unique: processing and data items identified are different from other Reads in the same functional process.
Identifying sub-processes

Identification rules: Write

- The sub-process *writes* to a data item.
- The sub-process writes to *only one* data item.
- The sub-process does not *receive, exit, or read* data items.
- The sub-process is unique: processing and data items identified are different from other Writes in the same functional process.
Identifying sub-processes

Summary

Each arrow is a sub-process.

* Entry 1 is the trigger
Identifying sub-processes

Summary

- Trigger 1
 - Functional process 1
 - Sub process 1.1
 - Sub process 1.2
 - ...
 - Functional process 2
 - Sub process 2.1
 - Sub process 2.2

- Trigger 2
 - Functional process 1
 - Sub process 1.1
 - ...

2 a) MEASURING...
Exercise

Using the Case Study document:

- Identify the sub-processes
Exercise

<table>
<thead>
<tr>
<th>Trigger</th>
<th>Functional Processes</th>
<th>Temperature data</th>
<th>Selected cooking mode</th>
<th>Elapsed time</th>
<th>Target temperature</th>
<th>Indicator lamp (ON/OFF)</th>
<th>Heater (ON/OFF)</th>
<th>Mode switch</th>
<th>Start switch</th>
<th>Target sensor</th>
<th>30 sec. clock signal</th>
<th>5 sec. clock signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode switch pressed</td>
<td>Mode selection control</td>
<td></td>
<td>W</td>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start switch pressed</td>
<td>Elapsed time control</td>
<td>R</td>
<td>R</td>
<td>W</td>
<td></td>
<td>E</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 sec. clock signal</td>
<td>Target temperature control</td>
<td>R</td>
<td>R</td>
<td>W</td>
<td>X</td>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 sec. clock signal</td>
<td>Cooking temperature control</td>
<td></td>
<td>R</td>
<td>X</td>
<td></td>
<td>E</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Multiple occurrence RCG
(2) Single occurrence UCG
(3) Single occurrence RCG
Measurement Procedures

- PHASE 2 - MEASURING

ASSIGNING POINTS
Assigning points

V. 1.0

Data items: Yes

Functional processes: Yes

V 2.0

To be determined
Assigning points

- **Data items (v. 1.0 only):**
 - key concepts
 - measurement functions
 - Quick validation tips

- **Functional processes:**
 - measurement functions
 - Quick validation tips
Points are assigned to data as a function of two characteristics:

DET: The number of data elements

RET: The number of user recognizable subgroup of data elements
2 b) MEASURING...

Data items: key concepts

- Single Occurrence
 - 1 UCG
 - 1 RCG
- Multiple Occurrence
 - UCGs
 - RCGs

- DET only
- DET & RET
Measurement function

Single occurrence Updated data (UCG):

- Point assignment is based on the number of data element types (DET)

- Points = (number of DET / 5) + 5

Note: There is only one single occurrence UCG within a piece of software. It includes all the single occurrence updated values within the software being measured.
Measurement function

Single occurrence Read-Only Data (RCG):

- Point assignment is based on the number of data element types (DET)
- Points = number of DET / 5

Note: There is only one single occurrence RCG within a piece of software. It includes all the single occurrence read-only values within the software being measured.
2 b) MEASURING...

Measurement function

Multiple occurrence RCG and UCG:

<table>
<thead>
<tr>
<th>DETs</th>
<th>RETs 1 - 19</th>
<th>RETs 20 - 50</th>
<th>RETs 51 +</th>
</tr>
</thead>
<tbody>
<tr>
<td>RETs</td>
<td>L</td>
<td>L</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 - 5</td>
<td></td>
<td>A</td>
<td>H</td>
</tr>
<tr>
<td>6 +</td>
<td></td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>
2 b) **MEASURING...**

Measurement function

Multiple occurrence UCG and RCG:

<table>
<thead>
<tr>
<th></th>
<th>UCG</th>
<th>RCG</th>
</tr>
</thead>
<tbody>
<tr>
<td>L = Low</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>A = Average</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>H = High</td>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>
Quick validation tips

Check if:

- All data exist for more than one transaction,
- Repeated fields have been measured only once,
- Data updated in more than one software has been measured in each software
V. 1.0

- Based on the number of DET moved by the sub-process:
 - 1 to 19 DET moved: 1 point,
 - 20 to 50 DET moved: 2 points,
 - 51 DET + moved: 3 points.

V. 2.0

- Yardstick: 1 FFP = 1 elementary data movement,
- Therefore all identified sub-process received 1 point.
Quick validation tips

- Check that each *functional process*:
 - has at least one Entry (E),
 - has at least one Exit (X) or one Write (W),
 - does not have duplicate sub-processes.
Measurement Procedures

○ PHASE 2 - MEASURING

AGGREGATING RESULTS
Aggregating results

- FFP results can be aggregated at the desired level of detail by arithmetically adding the points assigned to sub-processes.
- There is no upper limit to the functional size of a functional process.
- The aggregation function is fully scalable when using V2.0.
Exercise

Using the Case Study document:

- Calculate the functional size of the Rice Cooker
Functional processes

<table>
<thead>
<tr>
<th>TRIGGER FUNCTIONAL PROCESSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODE SWITCH PRESSED</td>
</tr>
<tr>
<td>MODE SELECTION CONTROL</td>
</tr>
<tr>
<td>START SWITCH PRESSED</td>
</tr>
<tr>
<td>ELAPSED TIME CONTROL</td>
</tr>
<tr>
<td>30 sec. CLOCK SIGNAL</td>
</tr>
<tr>
<td>TARGET TEMPERATURE CONTROL</td>
</tr>
<tr>
<td>5 sec. CLOCK SIGNAL</td>
</tr>
<tr>
<td>COOKING TEMPERATURE CONTROL</td>
</tr>
</tbody>
</table>

(1) Multiple occurrence RCG
(2) Single occurrence UCG
(3) Single occurrence RCG

17 FFP
Exercise

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature data</td>
<td>Selected cooking mode</td>
<td>Mode switch</td>
</tr>
<tr>
<td></td>
<td>Elapsed time</td>
<td>Start switch</td>
</tr>
<tr>
<td></td>
<td>Target temperature</td>
<td>Temperature sensor</td>
</tr>
<tr>
<td></td>
<td>Indicator lamp (ON/OFF)</td>
<td>30 sec. clock signal</td>
</tr>
<tr>
<td></td>
<td>Heater (ON/OFF)</td>
<td>5 sec. clock signal</td>
</tr>
</tbody>
</table>

1. Multiple occurrence RCG
2. Single occurrence UCG
3. Single occurrence RCG

Data & TOTAL

- **Functional processes**: 17 points
- **Functional processes**
- **Data & TOTAL**: 5.6 points
- **Complexity «LOW»**: 5 points

Functional size: 27.6 FFP (v 1.0)
Overview of field tests results
Overview of field tests results

- Sources of data
- First set: comparing FPA and FFP
- Second set: relevance and usability
- Third set: further comparisons FPA/FFP
Overview of field tests results

First set

- Conducted by the research team in 1997,
- 3 RT or embedded products measured,
- 2 industrial partners participated,
- GOAL: Compare FFP with FPA (IFPUG 4.0)
Overview of field tests results

First set

Results...

<table>
<thead>
<tr>
<th></th>
<th>PRODUCT 1</th>
<th></th>
<th>PRODUCT 2</th>
<th></th>
<th>PRODUCT 3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TXN(^3)</td>
<td>Points</td>
<td>TXN(^3)</td>
<td>Points</td>
<td>TXN(^3)</td>
<td>Points</td>
</tr>
<tr>
<td>FPA(^1)</td>
<td>54</td>
<td>256</td>
<td>9</td>
<td>38</td>
<td>32</td>
<td>123</td>
</tr>
<tr>
<td>FFP (^2)</td>
<td>753</td>
<td>777</td>
<td>40</td>
<td>46</td>
<td>468</td>
<td>479</td>
</tr>
</tbody>
</table>

Note 1: Using IFPUG 4.0 CPM, processes only
Note 2: Using FFP 1.0 CPM, processes only
Note 3: Number of processing transactions for which points are assigned
Overview of field tests results

First set

Observations:

- FFP results close to FPA when processes contain small number of sub processes,
- FFP yield larger size measures when processes contain large number of sub processes,
- Both methods require similar measurement effort
Overview of field tests results

Second set

- Conducted without assistance from the research team in 1997,
- Operational real-time products measured,
- 1 industrial partner,
- GOAL: Evaluate FFP for relevance and usability
Overview of field tests results

Second set

Observations:

- Functional coverage established at 97%, based on expected number of functions to be measured.

- Concepts and procedures are:
 - Clear,
 - Easy to understand,
 - Usable without assistance of specialists
Overview of field tests results

Third set

- 4 industrial partners in North-America and Australia participated,

- 10 software products measured:
 - 8 products related to the telecom business
 - 1 product related to power utility
 - 1 product related to the military sector

- All products measured by the same individual (CFPS, 12 years exp. in FSM)
Overview of field tests results

Third set

1st GOAL: Compare IFPUG 4.0 and FFP

RESULTS

<table>
<thead>
<tr>
<th>Product</th>
<th>Type</th>
<th>FPA size</th>
<th>FFP size</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Real-Time</td>
<td>210</td>
<td>794</td>
</tr>
<tr>
<td>B</td>
<td>Real-Time</td>
<td>115</td>
<td>183</td>
</tr>
<tr>
<td>C</td>
<td>Real-Time</td>
<td>N / A</td>
<td>2 604</td>
</tr>
<tr>
<td>D</td>
<td>Real-Time</td>
<td>43</td>
<td>318</td>
</tr>
<tr>
<td>E</td>
<td>Mostly MIS</td>
<td>764</td>
<td>791</td>
</tr>
<tr>
<td>F</td>
<td>MIS (batch)</td>
<td>272</td>
<td>676</td>
</tr>
<tr>
<td>G</td>
<td>MIS</td>
<td>878</td>
<td>896</td>
</tr>
</tbody>
</table>

Size is similar when measuring typical MIS software products
1st GOAL: Compare IFPUG 4.0 and FFP

RESULTS

<table>
<thead>
<tr>
<th>Product</th>
<th>Type</th>
<th>FPA size</th>
<th>FFP size</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Real-Time</td>
<td>210</td>
<td>794</td>
</tr>
<tr>
<td>B</td>
<td>Real-Time</td>
<td>115</td>
<td>183</td>
</tr>
<tr>
<td>C</td>
<td>Real-Time</td>
<td>N/A</td>
<td>2,604</td>
</tr>
<tr>
<td>D</td>
<td>Real-Time</td>
<td>43</td>
<td>318</td>
</tr>
<tr>
<td>E</td>
<td>Mostly MIS</td>
<td>764</td>
<td>791</td>
</tr>
<tr>
<td>F</td>
<td>MIS (batch)</td>
<td>272</td>
<td>676</td>
</tr>
<tr>
<td>G</td>
<td>MIS</td>
<td>878</td>
<td>896</td>
</tr>
</tbody>
</table>

One real-time software could only be sized with FFP
Overview of field tests results

1st GOAL: Compare IFPUG 4.0 FPA and FFP

RESULTS

<table>
<thead>
<tr>
<th>Product</th>
<th>Type</th>
<th>FPA size</th>
<th>FFP size</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Real-Time</td>
<td>210</td>
<td>794</td>
</tr>
<tr>
<td>B</td>
<td>Real-Time</td>
<td>115</td>
<td>183</td>
</tr>
<tr>
<td>C</td>
<td>Real-Time</td>
<td>N/A</td>
<td>2,604</td>
</tr>
<tr>
<td>D</td>
<td>Real-Time</td>
<td>43</td>
<td>318</td>
</tr>
<tr>
<td>E</td>
<td>Mostly MIS</td>
<td>764</td>
<td>791</td>
</tr>
<tr>
<td>F</td>
<td>MIS (batch)</td>
<td>272</td>
<td>676</td>
</tr>
<tr>
<td>G</td>
<td>MIS</td>
<td>878</td>
<td>896</td>
</tr>
</tbody>
</table>

Larger functional size for software products with numerous R-T processes (A, B and D); even for MIS with fewer direct user interactions (F).
Third set

1st **GOAL**: Compare IFPUG 4.0 and FFP

What does it mean?

<table>
<thead>
<tr>
<th>MIS product</th>
<th>RT product</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPA</td>
<td>200</td>
</tr>
<tr>
<td>FFP</td>
<td>~ 200</td>
</tr>
<tr>
<td></td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>>> 200</td>
</tr>
</tbody>
</table>

Obviously, when considering RT products, FFP is measuring functionality that is not measured by IFPUG 4.0.
2nd GOAL: Explore key economic ratios

RESULTs

<table>
<thead>
<tr>
<th>Product</th>
<th>Size (FFP)</th>
<th>Effort (ph)</th>
<th>Duration (mth)</th>
<th>Unit effort (ph/ FFP)</th>
<th>Sched. del. Rate (FFP/ mth)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>205</td>
<td>3913</td>
<td>26</td>
<td>19</td>
<td>8</td>
</tr>
<tr>
<td>I</td>
<td>138</td>
<td>6580</td>
<td>16</td>
<td>48</td>
<td>9</td>
</tr>
<tr>
<td>J</td>
<td>198</td>
<td>7448</td>
<td>14</td>
<td>38</td>
<td>14</td>
</tr>
</tbody>
</table>

Until further data is available to allow statistically significant analysis, these should be interpreted as “order of magnitude” figures.
Conclusion
Conclusion

- International recognition
- Benchmarking your results
- The future of Full Function Points
- Available resources
- Final remarks
- Acknowledgements
International recognition

In the Spring of 1998, FFP was accepted as a valid functional size measure by ISBSG*, an international benchmarking organization.

ISBSG: International Software Benchmarking Standards Group
Benchmarks your results

Complete project

Download Venturi

Enter project data

Send data to ISBSG

Receive project benchmarking report (Designed for future estimating)

Discount on ISBSG products
The future of Full Function Points

- Looking for more industrial partners for field testing,
- Looking for more industrial partners for data collection,
- International Measurement Standards Committee,
- ISO 14143 certification to start in 1999.
Available resources

- Complete documentation on the Web
 - Concepts and definitions,
 - Measurement Manual,
 - Publications,
 - http://www.lrgl.uqam.ca/ffp.html

- Support available
 - Case Study
 - On site custom training
 - Consulting support
Final remarks...

- FFP addresses a problem identified since 1986,
- FFP was designed for ISO compliance,
- FFP has been designed FOR the industry, WITH the industry,
- FFP is an open and transparent initiative, fully documented and easily available,
- FFP is already helping organizations manage their non-MIS software.
Overview of field tests results

Sources of Funding

Developing FOR the industry, WITH the industry, FFP industrial partners...

Bell
Bell Canada, CANADA

Northern Telecom
Northern Telecom, Canada & USA

JSR
J ECS Systems Research, JAPAN

Hydro-Québec
Hydro-Québec, CANADA
Acknowledgements...

- The Software Engineering Management Research Laboratory of the Université du Québec à Montréal is supported through a partnership with Bell Canada.

- Additional funding is provided by the National Science and Engineering Research Council of Canada.