Unified Software Method (USM) :
Towards a Method of Measurement of the Necessary Changes to Software in Maintenance

Stéphane Mercier, A. Abran M. Lavoie, R. Champagne
International Workshop Software Measurement (IWSM 2006)
November 2-3, 2006 Potsdam, Germany
Agenda

- Introduction
- What is the USM about?
- The proposed measurement method
- A case study
- Conclusion
Introduction

- Back annotation problem
 - Almost impossible to achieve backward traceability
 - Creates undesired artificial software aging

- Software aging
 - Natural
 - Can be predicted and anticipated
 - Technical obsolescence, incompatibility with new technology, etc.
 - Artificial
 - Undesired and induced by human
 - Progressive degradation of synchronization, caused by successive modifications without appropriate updating of documentation
 - When reaching critical condition, rewriting the application becomes more productive than maintaining it
What is the USM about?

- A solution to the back annotation problem
- Organizing information of software project in form of a graph
 - To offer complete traceability of the software project information
 - Without being constrained by a methodology or a particular process
 - To maintain the synchronization of the information
- USM information structure must be adapted to humans
 - Be able to master complexity
 - Applying the Keep It Simple (KIS) principle
 - 7 +/- 2 elements
 - Up to 4 parameters (relational complexity)
 - Max info in min time using min space with min printed element
What is the USM about?

- The USM graph
 - Node: Address of the project information
 - Link: Traceability between the information
What is the USM about?

- Decomposition link
 - Managing the information complexity
 - Divide to conquer
What is the USM about?

- Multiple-view link
 - To have a better understanding of the information
 - Different representation gives different perspective
Some maintenance measurement methods

- Measure that give useful information is about
 - Go, do the maintenance or
 - Stop, rewrite the application
 - But if you have people working on the project, they can answer more accurately to this Go/Stop question

- Beware of methods that are mathematically unacceptable

\[
MI = 171 - 5.2 \ln(aveV) - 0.23aveV(g')- 16.2 \ln(aveLOC) + 50 \sin(\sqrt{2.4 \text{perCM}})
\]

\[
MI = (\text{HalsteadVolume}) - (\text{CyclomaticComplexity}) - (\text{LineOfCode}) + \{\%\text{Comment}\}
\]
The proposed measurement method

- Measurement process [Jacquet & Abran 1997]
 - Step 1: Design of the measurement method
 - Step 2: Application of the rules of the measurement method
 - Step 3: Analysis of the measurement results
 - Step 4: Exploitation of the measurement results
Step 1: Design of the measurement method

- Definition of the objectives
 - To identify information nodes requiring an update as a result of a modification or removal maintenance activity
Step 1: Design of the measurement method

- Characterization of the concept to be measured
 - Because keeping synchronization is mandatory in the USM
 - All nodes which are either directly or indirectly influenced by a maintenance context considered must be identified
 - Associated to this measurement result we can also obtain
 - The node count related to the maintenance context
 - The Node proportion related to the maintenance context
Step 1 : Design of the measurement method

- Selection of the meta-model
 - Using a USM graph where
 - Nodes that represent project information is the concept to be measured
 - Links are essential to the measurement mechanism but are not considered in the measurement result
Step 1: Design of the measurement method

- Definition of the numerical assignment rules

 - Which ones?
 - The red ones

 - How many?
 - 3

 - How much?
 - 30%
A case study

- Some statistics
 - 10 features
 - 22 use cases
 - 2 functional requirements
 - 3 non-functional requirements
 - 1 architectural diagram
 - 64 classes (design)
 - 18 .jsp files
 - 71 .java files
Another way to represent statistics

- Elements of information
 - 20 nodes associated to user requirement
 - 50 nodes associated to software specification
 - 3 nodes associated to architectural design
 - 136 nodes associated to detailed design
 - 120 nodes associated to code
 - 4 nodes associated to other information

- 333 nodes
Application of the numerical assignment rules

- How many? 12
- How much? 3.6%
- Which ones? red ones
Conclusion

- Knowing exactly which elements are influenced directly or indirectly by the maintenance activity under investigation may enable this measurement to extend the life expectancy of the software.
 - by allowing the software engineer to do clean maintenance that does not leave behind unused code, one of the main causes of artificial software aging.

- Nodes represent information that is not of the same nature and the same size.
 - If we join COSMIC-FFP, LOC, etc. value to nodes.
 - The obtained measurement value is more accurate.
 - A good estimated figure will be easier to achieve.
 - Better maintenance management.
Thank you!

stephane.mercier.5@ens.etsmtl.ca
aabran@ele.etsmtl.ca
mavoie@ele.etsmtl.ca
rchampagne@ele.etsmtl.ca
http://www.etsmtl.ca