On the applicability of COSMIC-FFP for measuring software throughout its life cycle

R. Meli, A. Abran, V.T. Ho, S. Oligny

Presented at

ESCOM-SCOPE 2000, Munich, Germany

April 18-20, 2000
Agenda

- **Context**
- **Early size estimation**
- **Designing Early & Quick COSMIC C-FFP**
- **Further research**
- **Conclusion**
Software size is a key variable in software engineering economic models

Technical size (SLOC) is available too late in the development process

Functional size (COSMIC C-FFP), although available earlier, is not yet “early enough”

Goal: Explore how COSMIC C-FFP could be used “early on” in the development process?
Early size estimation

Software development “size paradox”

“Early” sizing is therefore the result of a compromise between usefulness and precision

From the perspective of managing the development of new software
Early size estimation

Early
Size value is obtained before a significant amount of resources have been committed.

Quick
Size value is obtained under constraints, such as time or cost, preventing precise measurement.

Size Measurement
Size value is obtained by rigorous application of the rules and procedures of the COSMIC-FFP measurement manual.

Size Estimate
Size value is obtained by techniques producing a forecast of the measured size.
Early size estimation

- Early Function Point (EFPA) is a technique to forecast the functional size of software

- The usefulness of EFPA has already been demonstrated\(^1\)

- How could it be applied to COSMIC-FFP?

Note 1: See references 5, 6, 8, 10 and 11 in the proceedings paper
Designing Early & Quick COSMIC C-FFP

- Structure of IFPUG FPA
- Structure of EFPA
- Structure of COSMIC C-FFP
- Preliminary model of E&Q COSMIC C-FFP
- Similarities and differences
Designing Early & Quick COSMIC C-FFP

Structure of IFPUG FPA

IFPUG Software model (flat)

© 2000, R. Meli, A. Abran, V.T. Ho, S. Oligny
Software Engineering Management Research Laboratory
Designing Early & Quick COSMIC C-FFP

Structure of EFPA

EFPA Software model (hierarchical)
Designing Early & Quick COSMI C-FFP

Structure of COSMI C-FFP

COSMI C-FFP Software model (hierarchical)
Designing Early & Quick COSMIC C-FFP

A preliminary model

- “Proto-function” structure
- Quantifying “proto-function”
Designing Early & Quick COSMIC C-FFP

A preliminary model - “Proto-function” structure

- Standardize taxonomy around “process”
- Functional processes not classified as I,O,Q
- Three size qualification (small, medium, large)
- Equal contribution of FP size hypothesized
- No contribution from data groups
Designing Early & Quick COSMIC C-FFP

A preliminary model - “Proto-function” structure

- Functional users requirements
 - Macro-process type
 - General process type
 - Typical process type
 - Functional process type
 - Sub-process
 - Data movement type
 - Data manipulation type
Designing Early & Quick COSMIC FFP

A preliminary model - Quantifying “Proto-function”

<table>
<thead>
<tr>
<th>Macro process</th>
<th>General process</th>
<th>Functional process</th>
<th>No. Gen. process</th>
<th>No. Func. process</th>
<th>No. of BFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>small</td>
<td>small</td>
<td>small</td>
<td>2 to 3</td>
<td>6 to 12</td>
<td>20 to 25</td>
</tr>
<tr>
<td>medium</td>
<td>medium</td>
<td>medium</td>
<td>4 to 7</td>
<td>13 to 19</td>
<td>6 to 12</td>
</tr>
<tr>
<td>large</td>
<td>large</td>
<td>large</td>
<td>8 to 12</td>
<td>20 to 25</td>
<td>to be determined empirically</td>
</tr>
</tbody>
</table>

© 2000, R. Meli, A. Abran, V.T. Ho, S. Oligny
Software Engineering Management Research Laboratory
Both approaches propose a hierarchical view

Size units can be assigned at any level within these hierarchies

Both approaches use analogies to identify functional components
Designing Early & Quick COSMIC C-FFP

A preliminary model - EFPA/ E&Q CFFP differences

- Base functional components (BFC) lies at a different functional level
- Size units are defined differently
- Data groups contribution differs
Further research

- Validate basic hypotheses and principles
- Determine empirical values for functional processes
- Quantify relationship between BFC
- Study structure of “processes mix” across software domains
Conclusion

- Preliminary work indicates feasibility of obtaining “quick and early” CFFP,
- Empirical calibration required at the functional process level,
- Further results to be published within the CFFP Measurement Manual
Acknowledgments

- The Software Engineering Management Research Laboratory of the Université du Québec à Montréal is supported through a partnership with Bell Canada.

- Additional funding is provided by the Government of Canada.