The Emerging Consensus on the Software Engineering Body of Knowledge

P. Bourque,
R. Dupuis, Alain Abran J. W. Moore, L. Tripp

Ottawa SPIN
October 18, 2001
Presentation Plan

- **Project background**
 - Project scope, objectives, audience and plan
 - Contents of the Guide
 - How you can leverage the Guide within your organization
 - Conclusions
What is Software Engineering?

IEEE 610.12:

“(1) The application of a systematic, disciplined, quantifiable approach to the development, operation, and maintenance of software; that is, the application of engineering to software.

(2) The study of approaches as in (1).”
Recognized Profession?

- Starr*:
 - Knowledge and competence validated by the community of peers
 - Consensually validated knowledge rests on rational, scientific grounds
 - Judgment and advice oriented toward a set of substantive values

Professional Development

- Initial professional education
 - Skills Development
 - One or both: Certification, Licensing
- Accreditation
- Professional societies
 - Professional development
 - Code of ethics

Adapted from Steve McConnell, *After the Gold Rush*, Microsoft Press, 1999, p. 93
Presentation Plan

- Project background

- Project scope, objectives, audience and plan
 - Contents of the Guide
 - How you can leverage the Guide within your organization
 - Conclusion
Project Objectives

- Characterize the contents of the Software Engineering Body of Knowledge
- Provide a topical access to the Software Engineering Body of Knowledge
- Promote a consistent view of software engineering worldwide
Project Objectives

- Clarify the place of, and set the boundary of, software engineering with respect to other disciplines (computer science, project management, computer engineering, mathematics, etc.)

- Provide a foundation for curriculum development and individual certification and licensing material
Intended Audience

- Public and private organizations
- Practicing software engineers
- Makers of public policy
- Professional societies
- Software engineering students
- Educators and trainers
What Are we Not Trying to Accomplish?

- Not a curriculum development effort!
- Not an all-inclusive description of the sum of knowledge in the field
- Not all categories of knowledge
Categories of Knowledge in the SWEBOK

<table>
<thead>
<tr>
<th>Specialized</th>
<th>Generally Accepted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Advanced and Research</td>
</tr>
</tbody>
</table>

Focus of the SWEBOK Guide
Knowledge of a Software Engineer

- C.S.
- Specialized SE Knowledge
- Application domain knowledge
- Advanced SE Knowledge
- Guide to the SWEBOK Stoneman
- Maths
- ...

Applying domain knowledge
Three Underlying Principles of the Project

- **Transparency**: the development process is itself published and fully documented.

- **Consensus-building**: the development process is designed to build, over time, consensus in industry, among professional societies and standards-setting bodies and in academia.

- Available **free** on the web.
Project Team

- Editorial team
- Industrial Advisory Board
- Knowledge Area Specialists
- Reviewers
Editorial Team

- Project “Champion”:
 - Leonard Tripp, 1999 President, IEEE Computer Society
 - President, Professional Practices Committee
- Executive Editors:
 - Alain Abran, ETS
 - James W. Moore, The MITRE Corp.
- Editors:
 - Pierre Bourque, ETS
 - Robert Dupuis, UQAM
Roles of the Industrial Advisory Board

- Provide input to ensure relevance to various audiences
- Review and approve strategy and deliverables
- Oversee development process
- Assist in promoting the Guide to the Software Engineering Body of Knowledge
- Lend credibility to the project
A Three-Phase Approach for Developing the Guide to the SWEBOK

- Straw Man Version
- Stone Man Phase (Trial Version)
- Iron Man Version (Sub-phase 1)
A Three-Phase Approach for Developing the Guide to the SWEBOK

- Straw Man Version
- Stone Man Phase (Trial Version)
- Iron Man Version (Sub-phase 1)
Knowledge Area Specialists

- Bertolino, Istituto Elaborazione Informazione, CNR, Italy
- Bollinger, MITRE, USA, Martin & Gabrini, UQAM
- Carrington, Queensland University, Australia
- El Emam, National Research Council, Canada
- MacDonell, University of Otago, New-Zealand
- Sawyer & Kotonya, Lancaster University, UK
- Scott, Lawrence Livermore National Lab., USA
- Tremblay, UQAM, Canada
- Pigoski, USA
- Wallace & Reeker, NIST, USA
Phase 2: Stone Man Review Process

- Version 0.1
 - Limited number of domain experts
 - Review Cycle 1
- Version 0.5
 - Selected users
 - Review cycle 2
- Version 0.7
 - Community
 - Review Cycle 3
- Version 0.9
Stone Man Review Process

- Transparency and consensus-building

 - All intermediate versions of documents are published and archived on www.swebok.org
 - All comments are made public as well as the identity of the reviewers
 - Detailed comment disposition reports are produced for Review Cycle 2 and 3
Data on reviewers

- Version 0.1: 33
- Version 0.5: 195
- Version 0.7: 378
 - + ISO reviews from 5 countries
Geographic Distribution of Reviewers

- USA: 55%
- Europe: 18%
 - 90 reviewers from 25 countries
- Canada: 10%
- Australia: 5%
- Asia: 5%
- Latin America: 4%
Project Overview
Presentation Plan

- Project background
- Project scope, objectives, audience and plan

Contents of the Guide
- How you can leverage the Guide within your organization
- Conclusion
Stone Man Deliverables:

- **Consensus** on a list of Knowledge Areas
- **Consensus** on a list of topics and relevant reference materials for each Knowledge Area
- **Consensus** on a list of Related Disciplines
List of Knowledge Areas

- Software Requirements
- Software Design
- Software Construction
- Software Testing
- Software Maintenance
- Software Configuration Management
- Software Eng. Management
- Software Eng. Tools & Methods
- Software Engineering Process
- Software Quality

Related Disciplines
- Computer Science (CC2001)
- Mathematics (CC2001)
- Project Management (PMBOK)
- Computer Engineering
- Cognitive Sciences and Human Factors
- Systems Engineering
- Management and Management Science
Knowledge Area Description

Classification of Topics

Matrix of Topics & References

References to Related Disciplines

Topic Descriptions

Classification by Vincenti’s Taxonomy

Classification by Bloom’s Taxonomy

Not implemented in Stoneman

© IEEE
www.swebok.org
Software Requirements

- Requirements Engineering Process
 - Process Models
 - Process Actors
 - Process Support and Management
 - Process Quality and Improvement
- Requirements Elicitation
 - Requirements Sources
 - Elicitation Techniques
- Requirements Analysis
 - Requirements Classification
 - Conceptual Modeling
 - Architectural Design and Requirements Allocation
 - Requirements Negotiation
- Requirement Specification
 - Requirements Definition Document
 - Software Requirements Specification (SRS)
 - Document Structure and Standards
 - Document Quality
- Requirements Validation
 - Conduct of Requirements Reviews
 - Prototyping
 - Model Validation
 - Acceptance tests
- Requirements Management
 - Change Management
 - Requirements Attributes
 - Requirements Tracing
I. Software Design
 Basic Concepts
 - General design concepts
 - The context of software design
 - The software design process
 - Enabling techniques for software design

II. Key Issues in Software Design
 - Concurrency
 - Control and handling of events
 - Distribution
 - Exception handling
 - Interactive systems
 - Persistence

III. Software Structure and Architecture
 - Architectural structures and viewpoints
 - Architectural styles and patterns (macro-architecture)
 - Design patterns (micro-architecture)
 - Design of families of programs and frameworks

IV. Software Design Quality Analysis and Evaluation
 - Quality attributes
 - Quality analysis and evaluation tools
 - Software design reviews
 - Static analysis
 - Simulation and prototyping
 - Measures
 - Function-oriented (structured) design measures
 - Object-oriented design measures

V. Design Notations
 - Structural descriptions (static view)
 - Behavior descriptions (dynamic view)

VI. Software Design Strategies and Methods
 - General Strategies
 - Function-oriented design
 - Object-oriented design
 - Data-structure centered design
 - Other methods
Software Construction

- Reduction in Complexity
 - Linguistic Construction Methods
 - Formal Construction Methods
 - Visual Construction Methods

- Anticipation of Diversity
 - Linguistic Construction Methods
 - Formal Construction Methods
 - Visual Construction Methods

- Structuring for Validation
 - Linguistic Construction Methods
 - Formal Construction Methods
 - Visual Construction Methods

- Use of External Standards
 - Linguistic Construction Methods
 - Formal Construction Methods
 - Visual Construction Methods
Software Testing

A. Testing Basic Concepts and Definitions
 A1. Testing-Related Terminology
 A2. Theoretical Foundations
 A3. Relationships of Testing to Other Activities

B. Test Levels
 B1. The Target of the Test
 B2. Objectives of Testing

C. Test Techniques
 C1. Based on Tester's intuition and experience
 C1.1 Based on Tester's intuition and experience
 C1.2 Specification-based
 C1.3 Code-Based
 C1.4 Fault-Based
 C1.5 Usage-Based
 C1.6 Based on Nature of Application
 C2. White-Box Techniques
 C2.1 Black-Box Techniques
 C2. White-Box Techniques
 C3. Selecting and Combining Techniques

D. Test Related Measures
 D1. Evaluation of the Program Under Test
 D2. Evaluation of the Tests Performed

E. Managing the Test Process
 E1. Management Concerns
 E2. Test Activities
Software Maintenance

- Basic Concepts
 - Definitions and Terminology
 - Majority of Maintenance Costs
 - The Nature of Maintenance
 - Evolution of Software
 - Need for Maintenance
 - Categories of Maintenance

- Maintenance Process
 - Process Models
 - Maintenance Activities

- Key Issues in Software Maintenance
 - Technical
 - Management
 - Cost and Estimation
 - Measures

- Techniques for Maintenance
 - Program comprehension
 - Re-engineering
 - Reverse Engineering
 - Impact Analysis
Software Configuration Management

Management of the SCM Process
 Organizational Context for SCM
 Constraints and Guidance for SCM
 Planning for SCM
 Software Configuration Management Plan

Software Configuration Identification
 Identifying Items to be Controlled
 Software Configuration Items
 Software Configuration Items Relationships
 Software Versions
 Baseline
 Acquiring Software Configuration Items
 Software Library

Software Configuration Control
 Requesting, Evaluating and Approving Software Changes
 Implementing Software Changes
 Deviations and Waivers

Software Configuration Status Accounting
 Software Configuration Status Information
 Software Configuration Status Reporting

Software Configuration Auditing
 Software Functional Configuration Audit
 Software Physical Configuration Audit
 In-Process Audits of a Software Baseline

Software Release Management and Delivery
 Software Building
 Software Release Management
Software Engineering Management

- Organizational Management
 - Policy Management
 - Personnel Management
 - Communication Management
 - Portfolio Management
 - Procurement Management

- Process/Project Management
 - Initiation and scope definition
 - Planning
 - Enactment
 - Review and Evaluation
 - Closure

- Software Engineering Measurement
 - Goals
 - Measurement Selection
 - Measuring Software and its Development
 - Collection of data
 - Software Measurement Models
Software Engineering Tools and Methods

I. Software Tools
- Software Requirements Tools
- Software Design Tools
- Software Construction Tools
- Software Testing Tools
- Software Maintenance Tools
- Software Engineering Process Tools
- Software Quality Tools
 - Software Configuration Management Tools
- Software Engineering Management Tools
- Infrastructure Support Tools
- Miscellaneous Tools Issues

II. Software Methods
- Heuristic Methods
 - Structured methods
 - Data-oriented methods
 - Object-oriented methods
 - Domain specific methods
- Formal Methods
 - Specification languages
 - Refinement
 - Verification
- Prototyping Methods
 - Styles
 - Prototyping target
 - Evaluation techniques
- Miscellaneous Method Issues
 - Method evaluation
Software Quality

- **Software Quality Concepts**
 - Measuring the Value of Quality
 - ISO 9126 Quality Description
 - Dependability
 - Special Types of Systems and Quality Needs

- **Purpose and Planning of SQA and V&V**
 - Common Planning Activities
 - The SQA Plan
 - The V&V Plan

- **Activities and Techniques for SQA and V&V**
 - Static Techniques
 - Dynamic Techniques
 - Other SQA and V&V Testing

- **Measurement Applied to SQA and V&V**
 - Fundamentals of Measurement
 - Measures
 - Measurement Analysis Techniques
 - Defect Characterization
 - Additional Uses of SQA and V&V data
Project Overview
Presentation Plan

- Project background
- Project scope, objectives, audience and plan
- Contents of the Guide

How you can leverage the Guide within your organization

- Conclusion
A Three-Phase Approach for Developing the Guide to the SWEBOK

- **Straw Man Version**
- **Stone Man Version**
- **Iron Man Version (Sub-phase 1)**
- **Iron Man Version (Sub-phase 2)**

Applications of the Guide

- Industry & Government
 - job description
 - hiring
 - staffing of projects
 - career planning
 - contracting
Applications of the Guide

- Professional development
 - internal training, corporate universities
 - course design
 - self-assessment
 - individual training
Applications of the Guide

- Licensing & Certification
 - licensing exam questions
 - study material
 - in software engineering and other IT fields
 - could be on subsets of Knowledge Areas
Applications of the Guide

- Education:
 - Curriculum design/evaluation
 - Program accreditation:
 - Course design/evaluation
Identifying Opportunities in Your Organization

- How could the Guide be used in your organization?
- What other applications do you see in your organization?
Project Overview
Presentation Plan

- Project background
- Project scope, objectives, audience and plan
- Contents of the Guide
- How you can leverage the Guide within your organization

- Conclusion
A Three-Phase Approach for Developing the Guide to the SWEBOK

- Straw Man Version
- Stone Man Version
- Iron Man Version (Sub-phase 1)
- Iron Man Version (Sub-phase 2)
Concluding Remarks

- Consensus on the core body of knowledge is key in all disciplines and pivotal for the evolution toward a professional status