
Ordering Search Results

Q5.1 How can we solve the system of equations in the chapter?

To simplify everything, let’s consider what each of the importance
scores represent. They are the probabilities of each node being visited
at each step of the random surfing process. And these probabilities
must sum to 1 (since at each step in the process there is 100% chance
that we are on one of the webpages):

w + x+ y + z = 1.

This equation normalizes the sum of the importance scores, and is
particularly convenient to work with. In fact, the easiest way to solve
the system is to choose one importance score as a reference, get all
other scores in terms of this one, and then plug the expressions back
into this equation.

Illustration 15: The webgraph provides a convenient way of visualizing the
equations for importance score.

Which variable should we choose as the reference? Well, from the first
of our equations, we have w in terms of z already. As a result, it will
be convenient to get everything in terms of z. We can use the second
and fourth equations (the simpler ones) to do this.

Note, however, that the choice of z here is not a necessity; we could
choose any of the others as the reference and get the same solution,



Illustration 16: The steps involved in computing the importance score of
Page Z in our example.

but it would require a bit more algebra.

From the first equation, we have that
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Now, how can we get x in terms of w? We can use this relationship
to substitute for w in the second equation:
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Now that we have x in terms of z, how can we use the fourth equation
to do the same for y? First, we re-arrange to get y on the left:

y = z � x
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Then, we can substitute for x, using our previous result that x = z/2:
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With all the importance scores now in terms of z, we can plug into
the normalization equation:

1 = w + x+ y + z
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With this, it follows that z = 12/31 = 0.387.

Now, we can backtrack and solve for the rest of the importance scores:
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For clarity, we illustrate the steps in computing z visually in Illustra-
tion 16.

Q5.2 What are dangling nodes, and what special treatment is needed in
PageRank to account for them?

There will be no solution to the problem if the webgraph has one or
more dangling nodes. A dangling node is one that does not point to
any other webpages. For instance, if we augment our example in the
book with the fifth node V as in Illustration 17, then V is a dangling
node.

Thinking about the PageRank procedure from before, what are the im-
plications of this structure on V’s importance score (call it v)? Well,
by definition, PageRank has each node spread a portion of its impor-
tance score to all of its outgoing neighbors. With a single outgoing



Illustration 17: Here, we have modified our original example to include a
dangling Node V. It has an incoming link from Node Z, but no outgoing
links, which requires its importance score to be zero. The solution to this is
to assume that V has a link to every node, rather than no nodes.

link, that link gets all the score, with two, each gets half, and so on.
As such, the sum of the importance of the outgoing links is equal to
the node’s importance. But V has no outgoing links: as a result, v
must be 0 for the equations to work out.

Now, what does v = 0 imply for the rest of the graph? Well, Page
Z spreads one-fourth of its importance score to V, and as a result
v = z/4. So if v is zero, then z must be zero too! You can verify that
this logic cascades through the rest of the graph, requiring the scores
for the rest of the nodes to be zero as well.

PageRank’s solution to this problem is to assume that each dangling
node has an outgoing link to every node (including itself), rather than
none. This is intuitive: if a random surfer lands on a page without any
hyperlinks, she would have to enter some other link into the browser
to keep on going.

Q5.3 What is a connected component, and what special treatment in PageR-
ank is needed to handle these?

Even if we apply the fix for dangling nodes, there will be many solu-
tions if the webgraph has more than one connected component. A



Illustration 18: Unconnected graphs are problematic, because they allow for
an infinite number of solutions in the PageRank algorithm. This is dealt
with by adding some randomization into the procedure, so that a surfer can
get between the di↵erent components of the graph.

connected component is simply a group of nodes in which any two can
reach each other (directly or indirectly), but none can reach any out-
side of the group. For instance, in Illustration 18, Pages A, B, and C
form one connected component, and Pages D and E form another. The
problem here is that a random surfer can’t get from one component
to the other: depending on which she starts in, she would be stuck in
that subgraph forever. As a result, we have no way of relating the
importance of nodes in one component to those in the other, which
causes the problem to be mathematically underspecified (i.e., many
potential solutions).

The solution to this is precisely what we neglected from the random
surfer concept initially: the surfer might “get bored” during the pro-
cess, and enter some random website into the browser. So for a certain
portion of the time, say 85%, she will follow the webgraph in deciding
where to go next, and for the remaining 15% of the time, she will
randomly choose from all the available webpages.


