Conditions:

1. Refer to D2.1 & D3.1 for additional clarity on demolition scope.
2. All windows to be removed. Expose R.O./M.O.

General Notes:

1. Refer to D2.1 & D3.1 for additional clarity on demolition scope.
2. All windows to be removed. Expose R.O./M.O.

Remove existing steel windows

Steel lintel to remain

Clean exposed rebar.

Repair spalling concrete—refer to RCP for more locations of spalling concrete.

Sawcut & remove existing paving as req'd to install new curb cuts. Ref. C-DWGs

Sawcut & remove existing paving & curbs as req'd to install new curb cut. Retain existing curb & saw cut to form sloped ends & base & new curb cut. Ref. C-DWGs

Remove existing windows

Missing slate sill

Sawcut & remove asphalt as required to replace flush with concrete. Slope new asphalt back to exist. @ 1:20 max. slope. See civil dwgs and dtl 10/A7.1 for additional info

Remove existing steel windows

Steel post to remain.

Grind off spot welds to steel windows & grind smooth; coord. with new work

Steel lintel to remain

CMU to remain

Clean exposed rebar.

Repair spalling concrete—refer to RCP for more locations of spalling concrete

Sawcut & remove existing paving as req'd.

To install new curb cuts. Ref. C-DWGs

SAWCUT & REMOVE EXISTING PAVING & CURBS AS REQ'D TO INSTALL NEW CURB CUT. RETAIN EXISTING CURB & SAW CUT TO FORM SLOPED ENDS & BASE & NEW CURB CUT. REF

Clean existing rebar.

Remove spalling concrete

See also dtl 1/D2.1

See also DTL 1/D2.1

022820

022820

022820
PARTITION TYPES

Scale: 3" = 1'-0"

1. **3 5/8" MTL STUD WALL**

2. **3 5/8" MTL STUD CHASE WALL**

3. **3 5/8" MTL STUD WALL - GWB ONE SIDE**

4A. **6" MTL STUD WALL - TYPE "X" GWB ONE SIDE**

4B. **1 5/8" MTL CHANNEL FURRING WALL**

**Acoustical Sealant, TYP. @ Head and Base Sections**

**3 5/8" MTL STUD RUNNER**

**Underside of Deck, Roof, Opening, TYP.**

**Floor, TYP.**

**5/8" GWB; 5/8" MRGWB @ Wet Locations; 5/8" GWB Type "X" @ Fire-Rated Walls**

**TILE - SEE ROOM FINISH SCHEDULE**

**Acoustical Batt Insulation, TYP.**

**Stud Brace, 2'-0" O.C. E.O. STUD**

**Variations, See Plans & Details**

**Floor, TYP.**

**Masonry Wall**

**Head Section Plan**

**Base Section Plan**

**Head and Base Section Plan**

**Notes:**
- Dimensions and materials listed are approximate and subject to final approval.
- Refer to the project specifications for detailed requirements.
- Consult the room finish schedule for tile specification and installation details.
A5.1

2

Scale: 1/8" = 1'-0"

POT RACK @ KITCHEN

TO E-DWGs, TYP. ALL LOCATIONS - V.I.F., TYP.

CONDUIT & SURFACED-MOUNTED ELEC. EQUIP. - REF.

VEST.

FOR ALL EIGHT (8) INFILL W/ BATT INSUL. AROUND SKYLIGHTS.

REMOVE WOOD TRIM

PRE-K 134

135

7'-11"

POTRACK FOR INSTALLATION SURFACED-MOUNTED ELEC. EQUIP. -

RECESSED WALL FIXTURE LINEAR FLUORESCENT SUPPLY REGISTER

FOR LOCATIONS

2X2 FIXTURE CEILING TILE LOCATIONS

SMOKE/HEAT DETECTOR

LIGHTING @ 260000 V.I.F.

KINDERGARTEN CORRIDOR 003 SKYLIGHTS IN FOR ALL TEN (10)

W/ WIRE MESH. TYP.

REMOVE WOOD TRIM

CUST. 129A

7'-11" 7'-6"

EXIST. CONDUIT & CEILING ASSEMBLY W/ V.I.F., TYP.

EQUIP. - REF. TO E-DWGs, TYP. ALL LOCATIONS - 260000

KINDERGARTEN CLASSROOM BOYS GIRLS V.I.F.

7'-11" 7'-6"

EXIST. POT RACK TO NEW WORK & DISHWASHER - REF.

260000

CLASSROOM 8'-6" 114

260000

OVERHEAD UNIT HEATER - 230000

EF 4

REPAIR SPALLING REBAR. CLEAN EXPOSED CONCRETE, TYP.

FAN-REF. EXHAUST MOUNTED CLNG-

WORK, TYP. BY NEW EXIST. AS

EXIST. K-DWGS 092300 233813

SEMINAR 103

TEACHERS LOUNGE

BOILER

RESOURCE M-DWGs

CORRIDOR 100

STORAGE

OFFICE 105B

260000

PROJECT No.

Drawn By:

PEK

JOHNSON ROBERTS ASSOCIATES INC.

15 PROPERZI WAY

SOMERVILLE, MA

02143-3226

ELIZABETH BROOKS ELEMENTARY SCHOOL RENOVATIONS

MFP BEDFORD, MA

A5.1
### Door Schedule

<table>
<thead>
<tr>
<th>Door</th>
<th>Location</th>
<th>Type</th>
<th>Material</th>
<th>Width</th>
<th>Height</th>
<th>Swing</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vestibule</td>
<td>Interior</td>
<td>Aluminum</td>
<td>3'-0&quot;</td>
<td>7'-0&quot;</td>
<td>Left</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Classroom</td>
<td>Exterior</td>
<td>Steel</td>
<td>3'-0&quot;</td>
<td>7'-0&quot;</td>
<td>Right</td>
<td>1</td>
</tr>
</tbody>
</table>

### Room Finish Schedule

<table>
<thead>
<tr>
<th>Room</th>
<th>Wall Type</th>
<th>Finish</th>
<th>Color</th>
<th>Trim</th>
<th>Base</th>
<th>Caulk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vestibule</td>
<td>Masonry</td>
<td>Paint</td>
<td>White</td>
<td>Wood</td>
<td>Wood</td>
<td>Sealant</td>
</tr>
<tr>
<td>Classroom</td>
<td>Metal Partition</td>
<td>Carpet</td>
<td>Blue</td>
<td>Wood</td>
<td>Wood</td>
<td>Caulk</td>
</tr>
</tbody>
</table>

### Door Details

- **Interior Door Detail - Head**: Provides details for the head of an interior door, including, but not limited to, the frame, jamb, and strike plate.
- **Exterior Door Detail - Head**: Details for an exterior door, focusing on weatherproofing and durability.
- **Interior Door Detail - Sill**: Details for the sill of an interior door, ensuring proper drainage and airtight seal.
- **Exterior Door Detail - Sill**: Details for an exterior door, with emphasis on weather resistance and sealants.

### Notes

- Always verify all conditions in field.
- Patch & paint at all new, modified, and filled-in openings & walls to match existing adj.
- No work.*
- Carpet tiles on floor, loose-laid over man hole cover, reference detail 9/A7.1.
- Installed by 042000; 6" min. bearing, fill 2 in cont. sealant.
- Patch & paint at all new, modified, and filled-in openings & walls to match existing adj.
- No work.*
- Coordinate numbers by architect, typ. 061000 - vinyl letters at.

---

*No work. indicates tasks that may not be required or observed in the final construction stages.
REMOVAL KEY NOTES:

- REMOVE SMOKE OPACITY DISPLAY, DRAFT INDICATOR, AND ALL RELATED APPURTENANCES.
- REMOVE DHW HEAT EXCHANGER INCLUDING PIPING, FITTINGS, INSULATION AND ALL RELATED APPURTENANCES.
- REMOVE EXISTING FEEDWATER RECEIVER, PIPING, WIRING, CONTROLS AND ALL RELATED APPURTENANCES.
- REMOVE DUPLEX CONDENSATE RECEIVER, PIPING, INSULATION AND ALL RELATED APPURTENANCES.
- REMOVE BOILER INSULATION, CONTROLS, WIRING AND ALL RELATED APPURTENANCES.
- REMOVE EXISTING WATER HEATER FLUE IN ITS ENTIRETY.
- REMOVE EXISTING CABINET UNIT HEATER & ASSOCIATED APPURTENANCES.
- REMOVE EXISTING LPS CONVECTOR TO BE REMOVED.
- REMOVE FUEL OIL TRANSFER PUMPS, PIPING, FITTINGS, INSULATION AND ALL RELATED APPURTENANCES.
- REMOVE COMBUSTION AIR DUCTWORK, MOTORIZED DAMPER, CONTROL TUBING & ALL RELATED APPURTENANCES.
- REMOVE FUEL OIL PIPING INCLUDING HANGERS, VALVES, FITTINGS, AND ALL APPURTENANCES.
- REMOVE FUEL OIL PIPING INCLUDING HANGERS, VALVES, FITTINGS, AND ALL APPURTENANCES.
- REMOVE BREECHING INCLUDING HANGERS, VALVES, FITTINGS, AND ALL APPURTENANCES.
- REMOVE EXISTING DUCTWORK INCLUDING DUCT HANGERS, AND ALL RELATED APPURTENANCES.
- REMOVE EXISTING DUCTWORK INCLUDING DUCT HANGERS, AND ALL RELATED APPURTENANCES.
- REMOVE PIPING INCLUDING HANGERS, VALVES, INSULATION AND ALL RELATED APPURTENANCES.
- REMOVE PIPING INCLUDING HANGERS, VALVES, INSULATION AND ALL RELATED APPURTENANCES.
- REMOVE EXISTING KITCHEN EXHAUST FAN TO BE REMOVED.
- REMOVE EXISTING KITCHEN HOOD TO BE REMOVED.
- REMOVE EXISTING KITCHEN HOOD TO BE REMOVED.
- REMOVE EXISTING HOOD CONNECTION. PROVIDE NEW WORK PLAN.
- REMOVE PNEUMATIC PIPOING, WIRING, CONTROLS & RELATED APPURTENANCES.
- REMOVE PNEUMATIC CONTROLS.
- REMOVE CONTROLS WALL GRILLES, CEILING GRILLES AND ASSOCIATE APPURTENANCES.
- REMOVE SUPPORTS WALL GRILLES, CEILING GRILLES AND ASSOCIATE APPURTENANCES.
- REMOVE WATER HEATER FLUES & OUT DUCTS.
- REMOVE HVAC QUALITY DISPLAY, DRAFT INDICATOR, AND ALL RELATED APPURTENANCES.
- REMOVE PNEUMATIC CONTROLS.
- REMOVE CONTROLS WALL GRILLES, CEILING GRILLES AND ASSOCIATE APPURTENANCES.
- REMOVE SUPPORTS WALL GRILLES, CEILING GRILLES AND ASSOCIATE APPURTENANCES.
- REMOVE WATER HEATER FLUES & OUT DUCTS.

EXISTING AIR DISTRIBUTION SYSTEM IN PLACE BY THE HVAC CONTRACTOR AND REPLACED WITH NEW PIPE INSULATION BY THE HVAC CONTRACTOR. REFER TO CONTRACTOR AND REPLACED WITH NEW PIPE INSULATION TO BE REMOVED BY ABATEMENT CONTRACTOR AND REPLACED WITH NEW PIPE INSULATION BY THE HVAC CONTRACTOR. REFER TO SPECIFICATION SECTION 022820 FOR ADDITIONAL INFORMATION. EXISTING PIPE MAIN REMOVAL WITH THE CONFINES OF THE BOILER APPURTENANCES FOR A COMPLETE PIPING FITTINGS, INSULATION AND ALL RELATED APPURTENANCES.
### Specifications:

1. **FAN**
   - Supply and Status
   - DCU System S/S & Status
   - Point Name
   - Discharge Air Temp.
   - EA Damper/Make Up Air Damper

2. **FILTER STATUS**
   - Radiation
   - Outside Air %RH (From DDC)

3. **CONTROL**
   - Type VI
   - Control
   - Loop

4. **REMARKS**
   - Drawn By: 14-FEB-18
   - Cabinet Unit Heater (Wall or Ceiling Type)
   - Exhaust Fan
   - Inside Air
   - Outside Air

---

### Notes:

- **Exhaust Fan** shall be controlled from a switch in the kitchen for the kitchen hood and MAU unit.
- **Outside Air Temperature** (%RH from DDC) shall be used to control the quality of indoor air temperature based on outside conditions.
- **Temperature and Hi/low Temperature Sensor** shall refer to exhaust fan schedule for all direct drive fans with ECM (Greenheck Vari-Green or Equal) motors.

---

### Specifications Table:

<table>
<thead>
<tr>
<th>Component</th>
<th>Inside Air</th>
<th>Outside Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

### Diagram:

- **Exhaust Fan - Type V Controls**
- **Exhaust Fan - Type VI Controls**

---

### Controls:

- **DDC**
  - Controller
  - Logic
  - Zone
- **DCU**
  - Controller
  - Logic
  - Zone

---

### Special Notes:

- All condensate drain pans shall refer to exhaust fan schedule for all direct drive fans with ECM (Greenheck Vari-Green or Equal) motors.
- The fan shall run any time the aquastat senses water temperature is above 90°F (adj).
- The unit shall run according to a user definable time schedule in the DDC controller using electric actuation controls the unit operation as follows:
  - **Controlled by DCU**
  - **DDC Side Loop Control**

---

### Interconnections:

- All interconnections shall be performed in accordance with the project specifications.
The boiler plant controls are designed to ensure efficient and safe operation. Upon power up or shutdown of either boiler, the burners must be manually reset. If the lead boiler fails to start, the second boiler shall start and an alarm shall sound on the network application controller.

When both boilers are off, the combustion air damper shall close. If the lead boiler fails to start, the second boiler shall start and an alarm shall sound on the network application controller.

The network application controller shall provide a general alarm for each boiler and stack temperature after economizer. The controller shall also provide general alarms for water softener system and student water chemical cabinet.

The controller shall provide a general alarm for each economizer coil diverting valve. The controller shall also provide general alarms for each boiler plant control panel as well as send an indication to the DDC system indicating failure of the lead boiler.

If the lead boiler fails to start, the second boiler shall start and an alarm shall sound on the network application controller. The controller shall also provide general alarms for each economizer coil diverting valve.

The control sequence allows the lead boiler to stabilize and recover steam pressure. The intent of this control sequence is to prevent the boiler plant from running at its highest efficiency. The combustion air damper shall close properly during morning warm-up, as system pneumatic control valves open and system steam pressure drops.

The controller shall also provide general alarms for each economizer coil diverting valve. The controller shall also provide general alarms for each boiler plant control panel as well as send an indication to the DDC system indicating failure of the lead boiler.

The control sequence allows the lead boiler to stabilize and recover steam pressure. The intent of this control sequence is to prevent the boiler plant from running at its highest efficiency. The combustion air damper shall close properly during morning warm-up, as system pneumatic control valves open and system steam pressure drops.

The controller shall also provide general alarms for each economizer coil diverting valve. The controller shall also provide general alarms for each boiler plant control panel as well as send an indication to the DDC system indicating failure of the lead boiler.

The control sequence allows the lead boiler to stabilize and recover steam pressure. The intent of this control sequence is to prevent the boiler plant from running at its highest efficiency. The combustion air damper shall close properly during morning warm-up, as system pneumatic control valves open and system steam pressure drops.

The controller shall also provide general alarms for each economizer coil diverting valve. The controller shall also provide general alarms for each boiler plant control panel as well as send an indication to the DDC system indicating failure of the lead boiler.

The control sequence allows the lead boiler to stabilize and recover steam pressure. The intent of this control sequence is to prevent the boiler plant from running at its highest efficiency. The combustion air damper shall close properly during morning warm-up, as system pneumatic control valves open and system steam pressure drops.

The controller shall also provide general alarms for each economizer coil diverting valve. The controller shall also provide general alarms for each boiler plant control panel as well as send an indication to the DDC system indicating failure of the lead boiler.

The control sequence allows the lead boiler to stabilize and recover steam pressure. The intent of this control sequence is to prevent the boiler plant from running at its highest efficiency. The combustion air damper shall close properly during morning warm-up, as system pneumatic control valves open and system steam pressure drops.

The controller shall also provide general alarms for each economizer coil diverting valve. The controller shall also provide general alarms for each boiler plant control panel as well as send an indication to the DDC system indicating failure of the lead boiler.

The control sequence allows the lead boiler to stabilize and recover steam pressure. The intent of this control sequence is to prevent the boiler plant from running at its highest efficiency. The combustion air damper shall close properly during morning warm-up, as system pneumatic control valves open and system steam pressure drops.

The controller shall also provide general alarms for each economizer coil diverting valve. The controller shall also provide general alarms for each boiler plant control panel as well as send an indication to the DDC system indicating failure of the lead boiler.

The control sequence allows the lead boiler to stabilize and recover steam pressure. The intent of this control sequence is to prevent the boiler plant from running at its highest efficiency. The combustion air damper shall close properly during morning warm-up, as system pneumatic control valves open and system steam pressure drops.

The controller shall also provide general alarms for each economizer coil diverting valve. The controller shall also provide general alarms for each boiler plant control panel as well as send an indication to the DDC system indicating failure of the lead boiler.

The control sequence allows the lead boiler to stabilize and recover steam pressure. The intent of this control sequence is to prevent the boiler plant from running at its highest efficiency. The combustion air damper shall close properly during morning warm-up, as system pneumatic control valves open and system steam pressure drops.

The controller shall also provide general alarms for each economizer coil diverting valve. The controller shall also provide general alarms for each boiler plant control panel as well as send an indication to the DDC system indicating failure of the lead boiler.

The control sequence allows the lead boiler to stabilize and recover steam pressure. The intent of this control sequence is to prevent the boiler plant from running at its highest efficiency. The combustion air damper shall close properly during morning warm-up, as system pneumatic control valves open and system steam pressure drops.

The controller shall also provide general alarms for each economizer coil diverting valve. The controller shall also provide general alarms for each boiler plant control panel as well as send an indication to the DDC system indicating failure of the lead boiler.

The control sequence allows the lead boiler to stabilize and recover steam pressure. The intent of this control sequence is to prevent the boiler plant from running at its highest efficiency. The combustion air damper shall close properly during morning warm-up, as system pneumatic control valves open and system steam pressure drops.

The controller shall also provide general alarms for each economizer coil diverting valve. The controller shall also provide general alarms for each boiler plant control panel as well as send an indication to the DDC system indicating failure of the lead boiler.

The control sequence allows the lead boiler to stabilize and recover steam pressure. The intent of this control sequence is to prevent the boiler plant from running at its highest efficiency. The combustion air damper shall close properly during morning warm-up, as system pneumatic control valves open and system steam pressure drops.

The controller shall also provide general alarms for each economizer coil diverting valve. The controller shall also provide general alarms for each boiler plant control panel as well as send an indication to the DDC system indicating failure of the lead boiler.

The control sequence allows the lead boiler to stabilize and recover steam pressure. The intent of this control sequence is to prevent the boiler plant from running at its highest efficiency. The combustion air damper shall close properly during morning warm-up, as system pneumatic control valves open and system steam pressure drops.

The controller shall also provide general alarms for each economizer coil diverting valve. The controller shall also provide general alarms for each boiler plant control panel as well as send an indication to the DDC system indicating failure of the lead boiler.

The control sequence allows the lead boiler to stabilize and recover steam pressure. The intent of this control sequence is to prevent the boiler plant from running at its highest efficiency. The combustion air damper shall close properly during morning warm-up, as system pneumatic control valves open and system steam pressure drops.

The controller shall also provide general alarms for each economizer coil diverting valve. The controller shall also provide general alarms for each boiler plant control panel as well as send an indication to the DDC system indicating failure of the lead boiler.

The control sequence allows the lead boiler to stabilize and recover steam pressure. The intent of this control sequence is to prevent the boiler plant from running at its highest efficiency. The combustion air damper shall close properly during morning warm-up, as system pneumatic control valves open and system steam pressure drops.

The controller shall also provide general alarms for each economizer coil diverting valve. The controller shall also provide general alarms for each boiler plant control panel as well as send an indication to the DDC system indicating failure of the lead boiler.

The control sequence allows the lead boiler to stabilize and recover steam pressure. The intent of this control sequence is to prevent the boiler plant from running at its highest efficiency. The combustion air damper shall close properly during morning warm-up, as system pneumatic control valves open and system steam pressure drops.

The controller shall also provide general alarms for each economizer coil diverting valve. The controller shall also provide general alarms for each boiler plant control panel as well as send an indication to the DDC system indicating failure of the lead boiler.

The control sequence allows the lead boiler to stabilize and recover steam pressure. The intent of this control sequence is to prevent the boiler plant from running at its highest efficiency. The combustion air damper shall close properly during morning warm-up, as system pneumatic control valves open and system steam pressure drops.

The controller shall also provide general alarms for each economizer coil diverting valve. The controller shall also provide general alarms for each boiler plant control panel as well as send an indication to the DDC system indicating failure of the lead boiler.

The control sequence allows the lead boiler to stabilize and recover steam pressure. The intent of this control sequence is to prevent the boiler plant from running at its highest efficiency. The combustion air damper shall close properly during morning warm-up, as system pneumatic control valves open and system steam pressure drops.

The controller shall also provide general alarms for each economizer coil diverting valve. The controller shall also provide general alarms for each boiler plant control panel as well as send an indication to the DDC system indicating failure of the lead boiler.

The control sequence allows the lead boiler to stabilize and recover steam pressure. The intent of this control sequence is to prevent the boiler plant from running at its highest efficiency. The combustion air damper shall close properly during morning warm-up, as system pneumatic control valves open and system steam pressure drops.

The controller shall also provide general alarms for each economizer coil diverting valve. The controller shall also provide general alarms for each boiler plant control panel as well as send an indication to the DDC system indicating failure of the lead boiler.

The control sequence allows the lead boiler to stabilize and recover steam pressure. The intent of this control sequence is to prevent the boiler plant from running at its highest efficiency. The combustion air damper shall close properly during morning warm-up, as system pneumatic control valves open and system steam pressure drops.

The controller shall also provide general alarms for each economizer coil diverting valve. The controller shall also provide general alarms for each boiler plant control panel as well as send an indication to the DDC system indicating failure of the lead boiler.

The control sequence allows the lead boiler to stabilize and recover steam pressure. The intent of this control sequence is to prevent the boiler plant from running at its highest efficiency. The combustion air damper shall close properly during morning warm-up, as system pneumatic control valves open and system steam pressure drops.

The controller shall also provide general alarms for each economizer coil diverting valve. The controller shall also provide general alarms for each boiler plant control panel as well as send an indication to the DDC system indicating failure of the lead boiler.
### Electrical General Notes:

1. **Wiring and Raceway**:
   - All branch circuit conductors shall be copper minimum #12 AWG size unless otherwise indicated.
   - Wire and conduit sizes indicated on homeruns shall be continuous throughout circuit.

2. **Electrical Work**:
   - Electrical work shall be recessed into walls or installed above hung ceilings unless otherwise indicated.
   - If exact mounting or raceway routings are not indicated (location or height), request clarification.
   - All mounting heights are to centerline unless otherwise indicated.

3. **Electrical Symbol List**:
   - Refer to the electrical symbol list for correct identification and usage.

4. **Electrical Schedule**:
   - The electrical schedule is included as a separate document.

5. **Mechanical Equipment**:
   - Plumbing equipment is included as a separate document.

6. **Lighting Fixtures**:
   - The lighting fixture schedule is included as a separate document.

7. **Addressable Speaker/Visual “ADA” Compliant Signal Boxes**:
   - Signal boxes on exterior walls and interior walls between conditioned and non-conditioned spaces.

8. **Emergency Signaling**:
   - All emergency signs shall be single-faced LED edge-lit exit signs with battery backup.
   - Signs shall be installed 15 inches above the floor, unless otherwise noted.

9. **Wiring and Raceway**:
   - The wiring and raceway system is designed to meet all local and national codes.

10. **IEEE-163**:
    - All IEEE-163 compliance shall be verified by the electrical contractor.

11. **Intercom System**:
    - All intercom systems shall comply with local and national codes.

12. **Voice Communication**:
    - All voice communication systems shall comply with local and national codes.

13. **Telephone Service**:
    - All telephone service shall comply with local and national codes.

14. **Fire Alarm System**:
    - All fire alarm systems shall comply with local and national codes.

15. **Sprinkler System**:
    - All sprinkler systems shall comply with local and national codes.

16. **Security System**:
    - All security systems shall comply with local and national codes.

17. **Lighting System**:
    - All lighting systems shall comply with local and national codes.

18. **Automated Lighting Control System**:
    - All automated lighting control systems shall comply with local and national codes.

19. **Wiring and Raceway**:
    - All wiring and raceway system shall comply with local and national codes.

20. **Electrical General Notes**:
    - All electrical general notes shall comply with local and national codes.

### Electrical Schedule of Mechanical & Plumbing Equipment:

<table>
<thead>
<tr>
<th>Item</th>
<th>Location</th>
<th>Description</th>
<th>Quantity</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Mechanical Schedule General Notes:

- All mechanical equipment shall comply with local and national codes.
- Plumbing schedule notes include:
  - Copper pipe: 1/2" - 1-1/2"
  - PEX pipe: 3/4" - 1-1/2"

### Plumbing Schedule Key Notes:

- Copper pipe is used for supply and return lines.
- PEX pipe is used for branch lines and drain lines.
- All fixtures are installed at the proper heights.

### Electrical Symbol List and Details:

- Refer to the electrical symbol list and details for proper identification and usage.

### Electrical Design:

- Johnson Roberts Associates Inc.
- New Bedford, MA
- 18 Propertiz Way
- 01243-3528
GENERAL DEMOLITION NOTES:

1. REMOVE EXISTING FIRE-LITE ALARM CONTROL AS NOTED.
2. REMOVE EXISTING LIGHT SWITCH IN SAME AREA.
3. REMOVE AND RECONNECT (2) 3/4"C AND THEIR BRANCH CIRCUIT WIRING.
4. REMOVE AND RECONNECT (2) CIRCUIT AND EXTEND WIRING AS REQUIRED.
5. DISCONNECT EXISTING BELL SYSTEM, EXISTING BOILER RELATED CONTROLS AND WIRING.
6. DISCONNECT EXISTING CEILING MOUNTED SECURITY CAMERA 12" LOWER.
7. DISCONNECT AND RECONNECT EXISTING CEILING MOUNTED SECURITY DEVICE OR EQUIPMENT WILL BE RE-USED UNLESS MARKED "ABANDONED".
8. DISCONNECT AND CUT-OFF ABANDONED ELEMENTS BUILT INTO WALLS SHALL BE REMOVED, AND ENDS OF LIVE SERVICES TO BE TYPICAL PROVIDE STAINLESS STEEL COVERPLATES FOR ALL OPENINGS. DUPLICATION, CARE SHALL BE TAKEN TO AVOID CREATING EQUIPMENT TO BE DISCONNECTED AND/OR REMOVED. IT IS NOT THE INTENT OF THESE DRAWINGS TO SHOW ALL EQUIPMENT TO BE REMOVED. IT SHALL BE DONE IN A NEAT AND WORKMANLIKE MANNER. WHERE DOWNSTREAM DEVICES ARE AFFECTED BY THE DEMOLITION WORK THIS CONTRACTOR SHALL PROVIDE ADDITIONAL REQUIREMENTS.
9. REMOVE ALL ABANDONED CONDUCTORS AND EQUIPMENT FROM THE SITE.
10. REFER TO MECHANICAL DEMOLITION PLAN FOR SPECIFICALLY NOTED AS SUCH. TURN OVER ALL LIGHT FIXTURE TO BE REMOVED AND NEW LIGHT TYPE "LS4" TO BE INSTALLED IN SAME LOCATION (TYPICAL OF 4). CONNECT TO EXISTING LIGHT FIXTURE TO BE REMOVED AND NEW TIMECLOCK AND DOUBLE DUPLEX RECEPTACLE BE RELOCATED AND RECONNECTED EXISTING PANEL "B" 41"H x 20"W TO BE REPLACED WITH NEW ONES IN SAME LOCATION.
11. REMOVE AND RECONNECT (1) MC CABLE.
12. DISCONNECT EXISTING BOILER B-1 & B-2 AND REMOVE ALL BOILER RELATED CONTROLS AND WIRING.
13. DISCONNECT EXISTING CIRCUIT AND EXTEND WIRING AS REQUIRED.
14. REFER TO DEMOLITION SECTION OF SPECIFICATION FOR GENERAL DEMOLITION NOTES.

ED-0 GROUND FLOOR PLAN ELECTRICAL DEMOLITION WORK

ED-1 ELEVATION OF EXISTING PANELS "MDP & B" LOCATED IN BOILER ROOM
PROVIDE NEW RECESSED LIGHT FIXTURE TYPE "LR22" AND CONNECT TO EXISTING LIGHT CIRCUIT SERVING THIS AREA. (TYPICAL.)

IMS DOOR INTERCOM MASTER STATION, PROVIDED BY E.C. SINGLE GANG BOX, 3/4" CONDUIT & PULL STRING TO NEAREST ACCESSIBLE CEILING SPACE BY E.C.

EXTERIOR DOOR AUDIO ONLY INTERCOM STATION BY E.C. COORDINATE AS REQUIRED WITH SUPPLIER. CUSTOM BACK BOX FURNISHED BY E.C., AND INSTALLED BY E.C., 3/4" CONDUIT & PULL STRING TO NEAREST ACCESSIBLE CEILING SPACE BY E.C.

ADJUST SETTING

TRANSFER

MONITOR

OFF

LIST

WIDE

ZOOM

IS-IPMV

IX-DA DOOR STATION (TYP.)

IP DOOR INTERCOM SYSTEM SCALE: N.T.S.

PARTIAL SECURITY RISER DIAGRAM SCALE: N.T.S.

WIRING AND CONDUIT SHALL BE REQUIRED BETWEEN ALL OUTLETS INDICATED WITH CIRCUIT NUMBERS AND PANEL DESIGNATIONS. REFER TO SPEC FOR MC CABLE USE.

ALTHOUGH ALL BRANCH CIRCUIT WIRE AND CONDUIT IS NOT SHOWN, IT IS THE INTENT OF THESE DOCUMENTS THAT A COMPLETE BRANCH CIRCUIT WIRING SYSTEM BE INSTALLED. ALL BRANCH CIRCUIT CONDUCTORS SHALL BE 98% CONDUCTIVITY, COPPER MINIMUM #12 AWG SIZE, THWN/THHN INSULATION, 600 VOLTS RATED UNLESS OTHERWISE NOTED. ALL RECEPTACLE BRANCH CIRCUITS SHALL HAVE DEDICATED NEUTRALS. EMERGENCY BATTERY UNITS TO BE AHEAD OF ANY SWITCHING & CONNECTED INTO SAME LIGHTING CIRCUIT SERVING AREA OF COVERAGE.

COORDINATE EXACT LOCATION OF ALL DEVICES AND EQUIPMENT W/ARCHITECT PRIOR TO INSTALLATION. REFER TO MECHANICAL PLANS FOR ANY CHANGES AND FOR EXACT LOCATION OF ALL HVAC EQUIPMENT. WIRING IS SHOWN ON DRAWINGS ONLY FOR SPECIFIC ROUTES OR SPECIAL CONDITIONS.

IF WIRE CAN NOT BE CONCEALED PROVIDE A SYSTEM OF SURFACE METAL RACEWAYS AND BOXES IN ACCORDANCE WITH ARTICLE 386, EQUAL TO WIREMOLD FOR ALL FINISH SPACES WHERE PUBLIC HAS ACCESS, INCLUDING CORRIDORS, OFFICES, ETC. ALL WIRING SHALL BE CONCEALED.
BRANCH CIRCUIT NOTES:
1. Coordinate exact location of all devices and equipment with architect prior to installation.
2. Coordinate with architect for new circuit locations and for exact location of all raceway work.
3. All branch circuit work shall be done in accordance with the National Electrical Code and applicable local codes.
4. All branch circuit work shall be done with new or existing raceways as noted.
5. All branch circuit work shall be done with new or existing raceways as noted.
6. All branch circuit work shall be done with new or existing raceways as noted.
7. All branch circuit work shall be done with new or existing raceways as noted.
8. All branch circuit work shall be done with new or existing raceways as noted.

GROUND FLOOR POWER PLAN - NEW ELECTRICAL WORK
SCALE: 1/8" = 1'-0"

E-2