
ar
X

iv
:1

80
7.

07
68

0v
1

 [
m

at
h.

O
C

]
 2

0
Ju

l 2
01

8

Generalized Stochastic Frank-Wolfe Algorithm with Stochastic

“Substitute” Gradient for Structured Convex Optimization

Haihao Lu∗ Robert M. Freund†

Abstract

The stochastic Frank-Wolfe method has recently attracted much general interest in the
context of optimization for statistical and machine learning due to its ability to work with
a more general feasible region. However, there has been a complexity gap in the guaranteed
convergence rate for stochastic Frank-Wolfe compared to its deterministic counterpart. In this
work, we present a new stochastic Frank-Wolfe method which closes this gap by introducing
the notion of a “substitute” gradient” that is a not-necessarily unbiased sample of the gradient.
Moreover, we show that this new approach is equivalent to a randomized coordinate mirror
descent algorithm applied to the dual problem, which in turn provides a new interpretation
of dual coordinate descent method in the primal space. When the regularizer is furthermore
strongly convex, we show that the generalized stochastic Frank-Wolfe method as well as the
randomized dual coordinate descent present linear convergence. These new results are benefited
from the understanding that first-order methods can inherently minimize the primal-dual gap.

1 Introduction

1.1 Problem set-up, examples, Algorithm 1

Our problem of interest is the following optimization problem:

P : min
β

P (β) := 1
n

n
∑

j=1

lj(x
T
j β) +R(β) , (1)

where β ∈ R
p, lj(·) : R→ R, j = 1, . . . , n, is a univariate function (the jth loss function), sj = xTj β

is the “fitted value” of the model β for the data sample xj , and R(·) is some other function that
can be used to model a regularizer and/or an indicator function of a feasible reqion Q, and/or
a penalty term, coupling constraints, etc. Notice that the scalar variable sj for lj(sj) is a linear
function of β, namely sj = xTj β. We will shortly give several natural examples in statistical and
machine learning where this structure arises quite naturally. Throughout this paper we assume the
following regarding these functions:

∗MIT Department of Mathematics, 77 Massachusetts Avenue, Cambridge, MA 02139 (mailto: haihao@mit.edu).
†MIT Sloan School of Management, 77 Massachusetts Avenue, Cambridge, MA 02139 (mailto: rfreund@mit.edu).

This author’s research is supported by AFOSR Grant No. FA9550-15-1-0276.

1

http://arxiv.org/abs/1807.07680v1

Assumption 1.1. The following hold:

1. for j = 1, . . . , n, the univariate function lj(·) is strictly convex and γ-smooth, namely |l̇j(a)−
l̇j(b)| ≤ γ|a− b| for all a, b,

2. domR(·) is bounded, and the subproblem

min
β

cTβ +R(β) (2)

attains its optimum and can be easily solved for any c, and

3. 0 ∈ domR(·).

We note regarding (1.) above that the strict convexity (instead of simple convexity) of lj(·) is only
needed to guarantee that the conjugate function l∗j (·) is differentiable, and that this can be relaxed
both algorithmically as well as in the proofs herein, but at considerable notational and expositional
expense. Regarding (2.), this is a generalization of a linear optimization oracle as follows: in the
case when R(·) is the indicator function IQ(·) of a set Q ⊂ R

p (namely, IQ(β) := 0 if β ∈ Q, and
IQ(β) := +∞ otherwise), then Q is the feasible region of P, and (2.) states that the feasible region
Q is bounded and that it is easy to solve linear optimization problems on Q. Also, (3.) above is for
notational convenience, as we can always translate a given feasible point so that 0 ∈ domR(·).

Here we present several applications of our problem setup (1) in statistical and machine learning.
(For other applications particularly amenable to solution by the Frank-Wolfe method, we refer the
reader to [20].)

Example 1.1. LASSO[42], ridge regression[19], sparse logisitic regression[35]. Consider
the least-squares regression problem where a set of training samples {(xj , yj)}

n
j=1 is given. The

LASSO optimization problem (in constraint format) is:

minβ
1
2n

∑n
j=1(yj − xTj β)

2

s.t. ‖β‖1 ≤ δ ,

which is an instance of P by using the least squares loss function lj(·) =
1
2(yj − ·)

2 and using the
indicator function of an ℓ1 ball as the regularizer, namely R(β) := I{‖β‖1≤δ}(β).

The ridge regression optimization problem adds the regularizer λ
2‖β‖

2
2 to the least squares objective

function for the parameter λ > 0, and omits the ℓ1 ball constraint. Notice that because β = 0 is
a feasible solution it follows that the optimal objective value is bounded above by ‖y‖22/(2n), and
therefore we can model the regularizer using R(β) = λ

2 ‖β‖
2
2 + I{‖β‖2

2
≤‖y‖2

2
/(nλ)}(β), which ensures

that domR(·) is bounded.

The ℓ1-regularized logistic regression optimization problem seeks a solution of:

min
β

P (β) = 1
n

n
∑

j=1

ln(1 + exp(−yjx
T
j β)) + λ‖β‖1 ,

for a given set of training samples {(xj , yj)}
n
j=1 where yj ∈ {−1, 1}, and is an instance of P

using the logistic loss functions lj(·) = ln(1 + exp(−yj·)) with the ℓ1-regularizer R(β) = λ‖β‖1 +
I{‖β‖1≤ln(2)/λ}(β) where the indicator function term is structurally redundant but is added as in the
previous example to ensure that domR(·) is bounded.

2

Example 1.2. Matrix completion[10][7]. In the matrix completion problem, we seek to compute
a low-rank matrix that well-approximates a given matrix M ∈ R

n×p on the set Ω of observed entries
(i, j). The convex relaxation of this problem is the following nuclear-norm optimization problem:

minβ∈Rn×p
1

2|Ω|

∑

(i,j)∈Ω(Mi,j − βi,j)
2

s.t. ‖β‖∗ ≤ δ ,

where ‖ · ‖∗ is the nuclear norm. In order to translate the matrix completion problem to the setting
of P, we consider any index pair (i, j) ∈ Ω as a sample, and we have l(i,j)(·) =

1
2 (· −Mi,j)

2, and
R(β) = I{‖β‖∗≤δ}(β).

Example 1.3. Structured sparse matrix estimation with CUR factorization[29][31]. We
seek to compute an approximate factorization M ≈ CUR of a given data matrix M ∈ R

n×d such
that C contains a subset of c columns from M and R contains a subset of r rows from M . Mairal
et al. [31] proposed the following convex relaxation of this problem:

minβ
1

2nd‖M −MβM‖2F

s.t.
∑

i ‖βi,·‖∞ ≤ δ

∑

j ‖β·,j‖∞ ≤ δ ,

which is an instance of P by modeling the (i, j)th loss term in P as 1
2(Mi,j −MT

i βMj)
2 (which

is a least squares loss of a particular linear function of the matrix variable β), and R(β) =
I{

∑
i ‖βi,·‖∞≤δ,

∑
j ‖β·,j‖∞≤δ}(β).

Let X ∈ R
n×p denote the data matrix whose rows are comprised of the vectors x1, . . . , xn, i.e., the

jth row of X is the vector xj , j = 1, . . . , n. Let us define L(s) : Rn → R by L(s) :=
∑n

j=1 lj(sj)
which is the total losses associated with s ∈ R

n. One can think of s = Xβ as the “fitted values” in
the context of linear or logistic regression.

Algorithm 1 presents the main algorithmic contribution of this paper, which is a first-order method
for tackling the problem P. We call the method “Stochastic Generalized Frank-Wolfe method with
Stochastic Substitute Gradient” for reasons which we will discuss as we walk through the structure
of the method below.

We can write the first part of the objective function of P as f(β) := 1
nL(Xβ) = 1

nL(s) with s = Xβ.

We have ∇L(s) = (l̇1(s1), . . . , l̇n(sn)) and the gradient of f(·) can be written as

∇f(β) = 1
nX

T∇L(Xβ) = 1
n

n
∑

j=1

l̇j(x
T
j β)xj , (3)

which we can re-write as ∇f(β) = 1
nX

Tw where w = ∇L(s) and s = Xβ, and which can be
alternatively stated as:

∇f(β) = 1
n

n
∑

j=1

wjxj where wj = l̇j(sj) and sj = xTj β , j = 1, . . . , n . (4)

3

Algorithm 1 Stochastic Generalized Frank-Wolfe with Stochastic Substitute Gradient

Initialize. Initialize with β̄−1 = 0, s0 = 0, and substitute gradient d0 = 1
nX

T∇L(s0), with
step-size sequences {αi} ∈ (0, 1] and {ηi} ∈ (0, 1].

For iterations i = 0, 1, . . .

Solve l.o.o. subproblem: Compute β̃i ∈ argminβ

{

(

di
)T

β +R(β)
}

Choose random index: Choose ji ∈ U [1, . . . , n]
Update s value: si+1

ji
← (1− ηi)s

i
ji
+ ηi(x

T
ji
β̃i), and si+1

j ← sij for j 6= ji

Update substitute gradient: di+1 = 1
nX

T∇L(si+1) = di + 1
n

(

l̇ji(s
i+1
ji

)− l̇ji(s
i
ji
)
)

xji

Update primal variable: β̄i ← (1− αi)β̄
i−1 + αiβ̃

i.

(Optional Accounting:) wi+1 ← ∇L(si+1)

Here we emphasize that w is the vector of weights on the data values X in the composition of the
gradient, and s is the vector of fitted values Xβ.

Especially in the context of “big data” applications of statistical and machine learning where n
is huge, it can be extremely expensive to compute ∇f(·). We therefore maintain a “substitute
gradient” in Algorithm 1 that is constructed stochastically. This is accomplished as follows: let
β̄i−1 be the value of β at the start of iteration i of the method, and we have a substitute gradient di

that is the current proxy/substitute for the true gradient ∇f(β̄i−1), where di is computed by:

di = 1
n

n
∑

j=1

wi
jxj where wi

j = l̇j(s
i
j) , j = 1, . . . , n , (5)

for a given si that is the value of s at iteration i. But in contrast to (4) it will not necessarily
hold that sij = xTj β̄

i for j = 1, . . . , n (equivalently si = Xβ̄i). (In fact, di will not necessarily be

an unbiased estimate of ∇f(β̄i) as this will not be needed.) In the identical spirit as randomized
coordinate descent, si+1 will be determined by choosing a random index ji ∈ U [1, . . . , n] and
updating only the coordinate ji of s

i, so that si+1 = si+∆ieji for some specific iteration-dependent
scalar ∆i (where eℓ denotes the ℓth unit coordinate vector in R

n). This is accomplished in the
“choose random index” step and the “update s value” step in Algorithm 1.

We now walk through the structure of Algorithm 1 in complete detail. The method is initialized
with the initial decision variable β set to β̄−1 = 0 and its fitted value s0 = Xβ̄−1 = 0 and
initial substitute gradient d0 = 1

nX
T∇L(s0), which corresponds to the true fitted value and true

gradient at β̄−1 = 0. In iteration i, we use the substitute gradient di to compute β̃i, which is a
solution to the (generalized) linear optimization oracle (“l.o.o.”), where recall that this step specifies
to solving a linear optimization problem over a set Q in the specific case when the R(·) is the
indicator function of Q, namely R(·) = IQ(·). Regarding updating the current fitted values si, we
randomly choose a sample (a coordinate) ji and only update sji as a certain convex combination
of the current fitted value siji and the fitted value for the jthi sample at β̃i, namely xTji β̃

i, so

that si+1
ji
← (1 − ηi)s

i
ji
+ ηi(x

T
ji
β̃i). Then we update the substitute gradient to make sure that

di+1 = 1
nX

T∇L(si+1). The last step at iteration i is to take a Frank-Wolfe step to update β̄i ←

4

(1−αi)β̄
i−1 +αiβ̃

i by taking a convex combination of the previous primal variable value β̄i−1 and
the solution β̃i of the just-solved linear optimization oracle. Finally – and “optionally” since it
does not affect future computations – we can perform an optional accounting step to update the
dual variable wi+1 ← ∇L(si+1) in order to compute a duality gap certificate. (The nature of this
duality will be understood once we look at the dual problem of P in Section 2.)

Note that the computations in Algorithm 1 are minimally affected by the dimension n. Except for
the initial computation of the gradient d0 which is O(np) operations, si and wi are only updated
by one coefficient at each iteration, and di+1 is updated by adding a scalar multiple of xji to di,
which is O(p) operations. The updates of β̄i are O(p) operations after solving for the optimal value
β̃i in the linear optimization oracle, which is assumed to be easy to compute.

It is useful to place Algorithm 1 in the context of the Frank-Wolfe method. The Frank-Wolfe
method is designed primarily to tackle the constrained convex optimization problem: minβ∈Q f(β)
where f(·) is a smooth convex function and Q is a convex body, and it is assumed that linear
optimization over Q is easy to compute. The optimization problem can of course be re-written as
minβ f(β) +R(β) with R(·) = IQ(·). The Frank-Wolfe update is:

β̃i ∈ argminβ∈Q
{

∇f(βi)Tβ
}

and βi+1 = (1− αi)β
i + αiβ̃

i . (6)

It can be shown that with an appropriate choice of step-size sequence {αi} that the Frank-Wolfe
method computes an ε-optimal solution in O(1ε) iteratons, see [11], [14], and [12].

Due to its low iteration cost and convenient structural properties, the Frank-Wolfe method is
especially applicable in several areas of statistical and machine learning and has thus received
much renewed interest in recent years, see [20], [16], [13], [12], and the references therein. The
Frank-Wolfe method can be generalized to deal with the more general problem minβ f(β) + R(β)
where R(·) is any convex function with bounded domain and for which the “linear optimization
problem” minβ c

Tβ +R(β) is easy to compute. The generalized Frank-Wolfe update then is:

β̃i ∈ argminβ
{

∇f(βi)Tβ +R(β)
}

and βi+1 = (1− αi)β
i + αiβ̃

i , (7)

and notice that we recover the regular Frank-Wolfe update in the special case when R(·) is the
indicator function IQ(·) of a feasible region Q, see [4] and [45] for a more detailed discussion on
generalized Frank-Wolfe methods.

1.2 Related literature

Stochastic Frank-Wolfe methods. There have been several lines of research that investigate
and develop stochastic Frank-Wolfe methods. Table 1 presents a summary comparison of the com-
putational complexity of the most relevant stochastic Frank-Wolfe methods that we are aware of.
The original Frank-Wolfe (FW) method [11] is a deterministic method. With an appropriate chosen
step-size sequence, the method requires O(1ε) iterations to attain ε−optimality; furthermore each
iteration needs to make one exact gradient call and one linear optimization oracle call. A straight-
forward stochastic Frank-Wolfe (SFW) method randomly chooses an index ji at iteration i and then
computes and uses l̇ji(x

T
ji
β)xji as an unbiased estimate of the full gradient 1

n

∑n
j=1 l̇j(x

T
j β)xj and

then uses this estimate in an otherwise standard Frank-Wolfe method. Hazan and Luo [18] showed

5

Table 1: Summary comparison of computational complexity of recent stochastic Frank-Wolfe methods to
achieve an absolute ε-optimal solution.

Algorithm Number of Number of Number of
and Exact Stochastic Linear Optimization

Reference Gradient Calls Gradient Calls Oracle Calls

FW, Frank and Wolfe [11] O(1ε) 0 O(1ε)
SFW, Hazan and Luo [18] 0 O(1

ε3
) O(1ε)

Online-FW, Hazan and Kale [17] 0 O(1
ε4
) O(1

ε4
)

SCGS, Lan and Zhou [24] 0 O(1
ε2
) O(1ε)

SVRFW, Hazan and Luo [18] O(ln 1
ε) O(1

ε2
) O(1ε)

STORC, Hazan and Luo [18] O(ln 1
ε) O(1

ε1.5
) O(1ε)

GSFW, this work 1 O(1ε) O(1ε)

that this method requires O(1
ε3
) stochastic gradient calls and O(1ε) linear optimization oracle calls

to compute an ε-optimal solution. Hazan and Kale [17] proposed an online Frank-Wolfe (Online-
FW) method, which requires O(1

ε4
) stochastic gradient calls and O(1

ε4
) linear optimization oracle

calls. Lan and Zhou [24] proposed a new technique – the Stochastic Conditional Gradient Sliding
(SCGS) – which combines Nesterov’s acceleration techniques and the Frank-Wolfe method, and
requires O(1

ε2
) stochastic gradient calls and O(1ε) linear optimization oracle calls. In [18], Hazan

and Luo developed two different types of stochastic Frank-Wolfe methods by utilizing a variance-
reduction technique, namely Stochastic Variance-Reduced Frank-Wolfe (SVRFW) and STOchastic
variance-Reduced Conditional gradient sliding (STORC). Both methods require O(1ε) linear op-
timization oracle calls. While SVRF requires O(1

ε2) stochastic gradient calls, STORC requires
O(1

ε1.5
) stochastic gradient calls. In the present work, which we call GSFW in Table 1, we show

that Algorithm 1 requires O(1ε) stochastic gradient calls and O(1ε) linear optimization oracle calls,
which is the same as for deterministic Frank-Wolfe. (Just before submission, we learned of a con-
current paper of Shah [38] which also claims the same computational complexity. However, despite
reasonable efforts, we are not able to verify the proofs in that paper.)

Randomized Dual Coordinate Descent. Dual coordinate descent methods have been widely
used in statistical and machine learning applications. For example, sequence minimization opti-
mization (SMO) (a variant of dual greedy coordinate descent) is known as one of the best solvers
for kernel SVMs [21] and is implemented in LIBSVM [8]. Randomized dual coordinate descent for
solving the P was first proposed in [40]. There are many follow-up works on randomized dual coor-
dinate descent, for example, accelerated proximal randomized dual coordinate, see [41], [25], using
a non-uniform distribution to choose the coordinate [34], and a primal-dual coordinate method
[47], among others. All of these dual methods (or primal-dual methods) require the regularizer
R(·) to be a strongly convex function or require adding a dummy strongly convex regularizer to
the objective function. In the standard Frank-Wolfe set-up, R(·) is an indicator function and so is
not strongly convex. (We will further discuss the connections and differences between the above
methods and our method in Appendix A.4.) Another issue for dual coordinate methods is that
even though one can rewrite the dual coordinate method entirely in the primal space [39], there are
still explicit dual variables which lack intuition or interpretation in the primal space. In contrast,
we show here in Lemma 2.1 that Algorithm 1 can be interpreted in the optional dual variables as a
randomized coordinate mirror descent algorithm in these variables. One can also apply the analysis

6

of randomized coordinate descent algorithms in [36] [32] directly to the dual problem (8), but that
only generates a dual convergence guarantee and is insufficient if one is interested in the primal
problem. In contrast, here we will show how a primal (and/or dual) first-order method naturally
implies a primal-dual guarantee without any strong convexity assumptions. Moreover, when R(·)
is not strongly convex, the objective function in the dual problem (8) is not differentiable, which
is outside of the standard set-up for randomized coordinate descent [36] [32]. But as a byproduct
of our analysis, we will present convergence guarantees for randomized coordinate descent for a
non-differentiable function, see Appendix A.5.

Variance Reduction Techniques for Stochastic Optimization. There have been many recent
algorithmic developments designed to directly tackle the optimization problem P. In order to obtain
improved convergence guarantees over the standard Stochastic Gradient Descent (SGD) method,
variance reduction techniques have been proposed and extensively studied in recent years. SAG
[37] is the first variance reduction method in the literature that we are aware of. In contrast to the
sublinear convergence rate of SGD, SAG and several concurrent and/or subsequent works – such
as SVRG [22], MISO [30], and SAGA [9] – obtain linear convergence when the objective function
is both smooth and strongly convex. Variance reduction techniques can also be applied to non-
strongly convex optimization [37], [30], [9], [2], which leads to improved convergence guarantees
as well. More recently, Allen-Zhu [1] has proposed an accelerated stochastic method for directly
solving P. We recommend [1] for a more detailed discussion on variance reduction techniques overall.
It is also worth mentioning that the dual coordinate method [40] also corresponds to a variant of
a variance reduction technique in the primal space [39].

1.3 Contributions

Algorithm 1, which we call the Generalized Stochastic Frank-Wolfe (GSFW) method, and its anal-
ysis in Lemma 2.1, Theorems 3.1 and 3.2, makes the following contributions to the research on
first-order methods for solving loss minimization problems in statistical and machine learning:

1. GSFW is a new primal stochastic Frank-Wolfe method that improves on the computational
complexity of stochastic Frank-Wolfe methods – including the new variance reduction meth-
ods; and indeed its complexity is on par with that of deterministic Frank-Wolfe. GSFW
requires O(1ε) stochastic gradient oracle calls and O(1ε) linear optimization oracle calls to
compute an absolute ε-optimal solution of P (Theorem 3.1); and in the case when R(·) is
strongly convex GSFW requires O(ln(1ε)) stochastic gradient oracle calls and O(ln(1ε)) linear
optimization oracle calls to compute an absolute ε-optimal solution of P (Theorem 3.2).

2. We show that GSFW is equivalent to a randomized coordinate mirror descent algorithm
applied to the dual problem (Algorithm 2), which in turn provides a natural interpretation
of a dual coordinate descent method in the primal space. This is discussed in Section 2.

3. We show that first-order methods inherently minimize the primal-dual gap with no need
for extra conditions. In particular, we show that randomized coordinate mirror descent for
the dual problem does not require R(·) to be strongly convex, in contrast with the current
literature in this context.

4. As a byproduct, we present a convergence bound for randomized coordinate mirror descent

7

for minimizing non-smooth functions. This is shown in Section A.5.

1.4 Notation

We use ej to denote the jth unit coordinate vector in R
p. The ℓp norm is denoted ‖ · ‖p. We

use l̇j(·) to denote the first derivative of lj(·). The Bregman distance function associated with
a convex function h(·) is defined as Dh(y, x) := h(y) − h(x) − ∇h(x)T (y − x). We use E to
denote expectation and Eji to denote expectation conditional on the randomly chosen index ji. For
indicator functions, we use IQ(·) to denote the indicator function for the set Q, namely IQ(β) :=
0 if β ∈ Q, and IQ(β) := +∞ otherwise; and we use I{constraint}(β) to denote the indicator
function of a particular constraint (or condition), namely I{constraint}(β) := 0 if the constraint
is true at β, and I{constraint}(β) := +∞ otherwise. In a slight abuse of terminology we refer
to the “subgradient” of a concave function when it is perhaps more technically accurate to refer
to this as a sup-gradient. A differentiable function f(·) is µ-strongly convex with respect to a
norm ‖ · ‖ if it holds that f(y) ≥ f(x) + ∇f(x)T (y − x) + µ

2‖y − x‖2 for all x, y ∈ domf(·). A
differentiable function f(·) is µ-strongly convex with respect to a reference function h(·) if it holds
that f(y) ≥ f(x) +∇f(x)T (y − x) + µDh(y, x) for all x, y ∈ domf(·).

2 Dual problem, and equivalence of Algorithm 1 in the dual with

Randomized Coordinate Mirror Descent

Recall the definition of the conjugate of a function f(·):

f∗(y) := sup
x∈domf(·)

{yTx− f(x)} .

We will also be interested in the following dual problem of (1) that is constructed using the conjugate
functions of the component functions of (1):

D : max
w

D(w) := −R∗
(

− 1
nX

Tw
)

− 1
n

n
∑

j=1

l∗j (wj) . (8)

Notice that we can write:

R∗
(

− 1
nX

Tw
)

= −min
β

{

1
nw

TXβ +R(β)
}

. (9)

Also, defining the convex/concave saddle-function φ(·, ·):

φ(β,w) := 1
nw

TXβ − 1
n

n
∑

i=1

l∗i (wi) +R(β) , (10)

we can write P and D in saddlepoint minimax format as:

P : min
β

max
w

φ(β,w) and D : max
w

min
β

φ(β,w) . (11)

8

Another standard first-order method for convex optimization is the mirror descent algorithm (also
called primal gradient method with Bregman distance) [43], [27], [26], [6], which we now briefly
review in the context of solving the dual problem D in (8), which is a concave maximization problem.
The Bregman distance of a differentiable “prox” function h(·) is defined to be:

Dh(w1, w2) := h(w1)− h(w2)− 〈∇h(w2), w1 − w2〉 .

The (deterministic) mirror descent algorithm for solving D has the following update:

wi+1 ← argmin
w
{−g(wi)T (w − wi) + ηiDh(w,w

i)} ,

where g(·) is a subgradient of the objective function D(·) at w (which we call a subgradient even
though D(·) is concave), and {ηi} is the step-size sequence. It is shown in Bach [4] that the
generalized Frank-Wolfe method for the primal (1) is equivalent to mirror descent algorithm for
the dual (8).

Algorithm 2 presents a Randomized Coordinate Mirror Descent method applied to solve the dual
problem D. The algorithm uses the average of the conjugate functions l∗i (·) as the prox function,
namely h(·) = 1

n

∑n
i=1 l

∗
i (wi), and it initializes the dual variable w0 to be the prox-center (which is

the point that minimizes the prox function). At the start of the ith iteration, the algorithm randomly
chooses a coordinate ji and computes the jthi coordinate of a subgradient of the dual objective
function D(w) at w = wi, since indeed it is straightforward to verify that 1

n(Xβ̃i −∇L∗(wi)) is a
subgradient of D(w) at w = wi. The algorithm then performs a coordinate mirror descent step to
update the dual variable wi. Last of all – and optionally since it does not affect future computations
– the algorithm updates the primal variable β̄i in order to compute a primal-dual optimality gap
certificate.

Algorithm 2 Randomized Coordinate Mirror Descent applied to the dual problem (8)

Initialize. Define the prox function h(w) := 1
n

∑n
i=1 l

∗
i (wi). Initialize with w0 =

argminw
1
n

∑n
i=1 l

∗
i (wi) and step-size sequences {αi} ∈ (0, 1] and {ηi} ∈ (0, 1]. (Optional: set

β̄−1 = 0.)

For iterations i = 0, 1, . . .
Compute Randomized Coordinate of Subgradient of D(·) at wi

Compute β̃i ∈ argminβ
{(

1
n(w

i)TXβ +R(β)
)}

Choose random index. Choose ji ∈ U [1, . . . , n]

Compute subgradient coordinate vector: g̃i ← 1
n

(

xTji β̃
i − l̇∗ji(w

i
ji
)
)

eji

Update dual variable: Compute wi+1 = argminw
{〈

−ηig̃
i), w − wi

〉

+Dh(w,w
i)
}

(Optional Accounting:) β̄i ← (1− αi)β̄
i−1 + αiβ̃

i.

The main result of this section is the following lemma concerning the equivalence of Algorithm 1
and Algorithm 2.

Lemma 2.1. (Equivalence Lemma) Algorithm 1 and Algorithm 2 are equivalent as follows: the
iterate sequence of either algorithm exactly corresponds to an iterate sequences of the other.

9

As a means to proving the lemma, we first reinterpret the update of wji at iteration i of Algorithm
2 in the following proposition:

Proposition 2.1. At iteration i of Algorithm 2 it holds that:

(1.) l̇∗ji(w
i+1
ji

) = (1− ηi)l̇
∗
ji
(wi

ji
) + ηix

T
ji
β̃i, and

(2.) wi+1
ji

= l̇ji

(

(1− ηi)l̇
∗
ji
(wi

ji
) + ηix

T
ji
β̃i
)

.

Proof: Because h(w) is a coordinate-wise separable function, we can rewrite the update for wi+1
ji

as
wi+1
ji

= argminwji

〈

−ηi
n

(

xTji β̃
i − l̇∗ji(w

i
ji
)
)

, wji

〉

+D 1

n
l∗ji
(wji , w

i
ji
)

= argminwji

〈

−ηi

(

xTji β̃
i − l̇∗ji(w

i
ji
)
)

, wji

〉

+Dl∗ji
(wji , w

i
ji
)

= argminwji

〈

−ηix
T
ji
β̃i − (1− ηi)l̇

∗
ji
(wi

ji
), wji

〉

+ l∗ji(wji) .

From the first-order optimality condition of the above 1-dimensional problem we have l̇∗ji(w
i+1
ji

) =

ηix
T
ji
β̃i + (1− ηi)l̇

∗
ji
(wi

ji
), which shows (1.); and (2.) follows directly from (1.) by the properties of

the conjugate function in Proposition A.1.

Proof of Lemma 2.1 We show that the iterate sequence of Algorithm 2 corresponds exactly to
an iterate sequence of Algorithm 1. The {si} sequence is not formally defined in Algorithm 2, so
let us define si := ∇L∗(wi) for all i = 0, 1, . . ., which is consistent through conjugacy with the
relationship wi = ∇L(si) in the Optional Accounting step of Algorithm 1 (see Proposition A.1).
In order to show the correspondence we proceed by induction on the iteration counter i. For i = 0
we have from conjugacy that s0 := ∇L∗(w0) = 0 from the definition w0 in the initialization of
Algorithm 2. We also need to show that β̃0 is a solution to the linear optimization oracle problem
in Algorithm 1. We have for all i = 0, . . ., that:

β̃i ∈ argminβ

{

1
n

(

wi
)T

Xβ +R(β)
}

= argminβ

{

1
n

(

∇L(si)
)T

Xβ +R(β)
}

= argminβ

{

(

di
)T

β +R(β)
}

,

thus showing that βi corresponds to a linear optimization oracle solution at iteration i in Algorithm
1 for all i = 0, Now suppose that the correspondence holds for some iteration counter i, and
let us examine si+1 := ∇L∗(wi+1). We have from Proposition 2.1 that:

wi+1
ji

= l̇ji

(

(1− ηi)l̇
∗
ji(w

i
ji) + ηix

T
ji β̃

i
)

= l̇ji

(

(1− ηi)s
i
ji + ηix

T
ji β̃

i
)

, (12)

where the first equality is from Proposition 2.1 and the second equality uses induction. This then
implies that

(1− ηi)s
i
ji + ηix

T
ji β̃

i = l̇(wi+1
ji

) = si+1 .

And for all coefficient indices j 6= i we have

si+1
j = l̇∗(wi+1

j) = l̇(wi
j) = si ,

10

where the second equality follows from conjugacy, whereby si+1 satisfies the update rule as stated
in Algorithm 1, thus demonstrating that the iterate sequence of Algorithm 2 corresponds exactly
to an iterate sequence of Algorithm 1. The same type of analysis as above can be used to prove
that the iterate sequence of Algorithm 1 corresponds exactly to an iterate sequence of Algorithm
2.

3 Convergence Guarantees

In this section we develop computational guarantees for Algorithm 2, which automatically provide
computational guarantees for Algorithm 1 due to the equivalence shown in Theorem 2.1. Our first
– and main – result is Theorem 3.1, which is an expected O(1/k) guaranteed decrease in the duality
gap between P and D. Secondly, in the case when R(·) is a strongly convex function, we present a
linear convergence result on the duality gap in Theorem 3.2. We start by defining two measures –
M and Dmax – associated with P and whose values will enter our computational bounds.

Let M := maxβ∈domR(·)maxj=1,...,n{|x
T
j β|}, and note that M < +∞ since domR(·) is bounded by

Assumption 1.1.

Let W ⊂ R
n be the set of “optimal w responses” to values β ∈ domR(·) in the saddle-function

φ(β,w), namely:

W := {ŵ ∈ R
n : ŵ ∈ argmax

w
φ(β̂, w) for some β̂ ∈ domR(·)} ,

and let Dmax be any upper bound on Dh(ŵ, w
0) as ŵ ranges over all values in W, so that

Dh(ŵ, w
0) ≤ Dmax for all ŵ ∈ W .

Note at the moment that there is no guarantee that Dmax < +∞, but this will be remedied below
in Proposition 3.4.

Remark 3.1. A suitable value of Dmax can often be easily derived based on the structure of lj(·).
For example, in logistic regression where the loss function is lj(sj) := log(1 + exp(−yjsj)) for
the given label yj ∈ {−1, 1}, we have l∗j (wj) = −yjwj ln(−yjwj) + (1 + yjwj) ln(1 + yjwj) with
doml∗j (·) = {wj : 0 ≤ −yjwj ≤ 1} (where a ln(a) := 0 for a = 0). Therefore for all ŵ ∈ W it holds
that

Dh(ŵ, w
0) ≤ max

0≤−Y w≤e
Dh(w,w

0) = 1
n

(

max
0≤−Y w≤e

L∗(w)− L∗(w0)

)

= ln(2) ,

where Y is the diagonal matrix whose diagonal coefficients correspond to y and e = [1, . . . , 1]T , so
we may set Dmax = ln(2).

Notice in Algorithm 1 and Algorithm 2 that ji is a random variable; and that si, di, wi, etc., are
random variables that depend on all previous random variable values j0, j1, . . . , ji−1, and we denote
this string of random variables by

ξi = {j0, j1, . . . , ji−1} .

11

We now state our main computational guarantee for Algorithm 2 (and hence for Algorithm 1 as
well).

Theorem 3.1. Consider the Stochastic Generalized Frank-Wolfe method (Algorithm 1) or the
Randomized Dual Coordinate Mirror Descent method (Algorithm 2), with step-size sequences αi =

2(2n+i)
(i+1)(4n+i) and ηi =

2n
2n+i+1 for i = 0, 1, Denote

w̄k =
2

(4n + k)(k + 1)

k
∑

i=0

(2n + i)wi .

Under Assumption 1.1, it holds for all k ≥ 0 that

Eξk

[

P (β̄k)−D(w̄k)
]

≤
8nγM2

(4n+ k)
+

2n(2n− 1)Dmax

(4n + k)(k + 1)
≤

8nγM2

(4n + k)
+

2n(2n − 1)γM2

(4n + k)(k + 1)
.

Remark 3.2. Algorithm 1 and Algorithm 2 as well as their analysis can be directly extended to the
mini-batch setting. The only difference would be that each index ji in the statement of Algorithm
1 and Algorithm 2 would be replaced by a random subset of the indices; and in the analysis one
analyzes a mini-batch of samples instead of a single sample. Moreover, the updates of the two
Algorithms in the mini-batch setting can be implemented in parallel as a result of the separability
of samples in Algorithm 1 and of coordinates in Algorithm 2.

The following string of propositions will be needed for the proof of Theorem 3.1.

Proposition 3.1. For all iterates i and any j ∈ {1, . . . , n} it holds that
∣

∣

∣l̇∗j (w
i
j)
∣

∣

∣ ≤M .

Proof. We prove this by induction on i. The proposition is true for i = 0 because l̇∗j (w
0
j) = 0 for all j

by the definition of w0. Next suppose that
∣

∣

∣l̇∗j (w
i
j)
∣

∣

∣ ≤M for a given iterate i and for all j = 1, . . . , n.

Then at iteration i + 1 and any j 6= ji we have wi+1
j = wi

j , whereby
∣

∣

∣
l̇∗j (w

i+1
j)

∣

∣

∣
=
∣

∣

∣
l̇∗j (w

i
j)
∣

∣

∣
≤ M .

And it follows from Proposition 2.1 that
∣

∣

∣
l̇∗ji(w

i+1
ji

)
∣

∣

∣
=
∣

∣

∣
(1− ηi) l̇

∗
ji(w

i
ji) + ηix

T
ji β̃

i
∣

∣

∣
≤ (1− ηi)M + ηiM = M ,

and therefore for any j = 1, . . . , n, we have
∣

∣

∣l̇∗j (w
i+1
j)

∣

∣

∣ ≤M , which completes the proof by induction.

As a simple corollary we obtain an upper bound on ‖g̃i‖2 as follows:

Corollary 3.1. ‖g̃i‖2 =
1
n

∣

∣

∣xTji β̃
i − l̇∗ji(w

i
ji
)
∣

∣

∣ ≤ 2M
n .

Proposition 3.2. h(·) is 1
nγ -strongly convex with respect to the norm ‖ · ‖2.

Proof. Recall that h(w) = 1
n

∑n
j=1 l

∗
j (wj). It follows from Assumption 1.1 and Proposition A.1

that l̇∗j (·) is
1
γ -strongly convex. Therefore for any w1, w2 ∈ domh(·) it holds that:

h(w1) = 1
n

∑n
j=1 l

∗
j (w

1
j)

≥ 1
n

∑n
j=1

(

l∗j (w
2
j) + l̇∗j (w

2
j)(w

1
j − w2

j) +
1
2γ |w

2
j − w1

j |
2
)

= h(w2) + 〈∇h(w2), w1 − w2〉+ 1
2nγ ‖w

2 − w1‖22 .

12

Proposition 3.3. φ(β̃i, w) = D(wi) +
〈

∇wφ(β̃
i, wi), w − wi

〉

−Dh(w,w
i).

Proof. The proof follows from straightforward substitution using φ(β̃i, w) = 1
n

(

wTXβ̃i −
∑n

j=1 l
∗
j (wj)

)

+

R(β̃i) and noticing from the construction of β̃i that D(wi) = φ(β̃i, wi).

We have the following proposition which establishes an upper bound on Dmax:

Proposition 3.4. Under Assumption 1.1 it holds that Dmax ≤ γM2.

Before proving this proposition, we first show that there is a natural boundedness constraint for
the dual problem:

Proposition 3.5. Let T :=
{

w ∈ R
n : |‖w − w0‖∞ ≤ γM

}

. Then:

1. for any β̂ ∈ domR(·) it holds that argmaxw φ(β̂, w) ∈ T , and

2. for all wi generated in Algorithm 2, it holds that wi ∈ T .

Proof. We first prove (1.). Notice that w0 = ∇L(0) and argmaxw φ(β̂, w) = ∇L(Xβ̂) (from
conjugacy via Proposition A.1) , whereby the γ-smoothness of lj(·) implies that

∥

∥

∥
argmax

w
φ(β̂, w) − w0

∥

∥

∥

∞
=
∥

∥

∥
∇L(Xβ̂)−∇L(0)

∥

∥

∥

∞
= max

j

∣

∣

∣
l̇j(x

T
j β̂)− l̇j(0)

∣

∣

∣
≤ γmax

j
|xTj β̂| ≤ γM ,

which proves (1.). It follows from Proposition 3.1 that for any coordinate j and iterate i it holds

that
∣

∣

∣l̇∗j (w
i
j)
∣

∣

∣ ≤M . Together with l̇∗j (w
0
j) = 0, we have

1
γ

∣

∣wi
j − w0

j

∣

∣ ≤
∣

∣

∣
l̇∗j (w

i
j)− l̇∗j (w

0
j)
∣

∣

∣
≤M ,

(where the first inequality is from the 1
γ -strong convexity of l∗j (wj)), from which it follows that

‖wi − w0‖∞ ≤ γM , which proves (2.).

Proof of Proposition 3.4: Let L(s) :=
∑n

j=1 lj(sj) and L∗(w) :=
∑n

j=1 l
∗
j (wj), and note that

L(·) and L∗(·) are a conjugate pair. Let ŵ ∈ W and let β̂ be such that ŵ ∈ argmaxw φ(β̂, w).
Then

13

Dh(ŵ, w
0) = 1

n

(

L∗(ŵ)− L∗(w0)
)

= 1
n

(

(ŵ)T Xβ̂ − L(Xβ̂)− L∗(w0)
)

≤ 1
n

(

maxw∈T,β∈domR(·)

{

wTXβ − L(Xβ)
}

− L∗(w0)
)

= 1
n

(

maxw∈T,β∈domR(·)

{

(w − w0)TXβ +
(

w0
)T

Xβ − L(Xβ)
}

− L∗(w0)
)

≤ 1
n

(

maxw∈T,β∈domR(·)

{

(w − w0)TXβ
}

+maxβ∈domR(·)

{

(

w0
)T

Xβ − L(Xβ)
}

− L∗(w0)
)

≤ 1
n

(

nmaxw∈T,β∈domR(·) ‖w − w0‖∞‖Xβ‖∞ + L∗(w0)− L∗(w0)
)

≤ γM2 ,

where the second equality follows from Proposition A.1, the first inequality uses β̂ ∈ domR(·) and
ŵ ∈ T (from Proposition 3.5), and the last inequality uses maxβ∈domR(·) ‖Xβ‖∞ ≤M .

Proposition 3.6. Consider the series {αi} defined by αi =
2(2n+i)

(4n+i)(i+1) for i ≥ 0 and define the

series {β̄i} by β̄−1 = 0 and β̄i = (1 − αi)β̄
i−1 + αiβ̃

i for i ≥ 0. Also define γi = 2n + i for i ≥ 0.
Then

β̄k =

∑k
i=0 γi

∑k
i=0 γi

for all k ≥ 0 .

Proof: The proof follows easily by induction and using
∑k

i=0 γi =
(4n+k)(k+1)

2 .

Proof of Theorem 3.1. Denote gi := 1
n

(

Xβ̃i −∇L∗(wi)
)

, whereby gi is a subgradient of D(w)

at wi, and g̃i is an unbiased estimator of gi up to the scalar n, namely Eji[g̃
i] = 1

ng
i. Therefore we

have for any i and any w ∈ W that:

〈

−gi, w − wi
〉

= nEji

[〈

−g̃i, w − wi
〉]

≥ nEji

[

〈

−g̃i, wi+1 −wi
〉

+ 1
ηi
Dh(w

i+1, wi) + 1
ηi
Dh(w,w

i+1)− 1
ηi
Dh(w,w

i)
]

≥ nEji

[

〈

−g̃i, wi+1 −wi
〉

+ 1
2nγηi

‖wi+1 − wi‖22 +
1
ηi
Dh(w,w

i+1)− 1
ηi
Dh(w,w

i)
]

≥ nEji

[

−1
2nγηi‖g̃

i‖22 +
1
ηi
Dh(w,w

i+1)− 1
ηi
Dh(w,w

i)
]

≥ −2γM2ηi +
n
ηi
Eji [Dh(w,w

i+1)]− n
ηi
Dh(w,w

i) ,

(13)
where the first inequality is from the “three point property” of Tseng (Lemma A.1 in the Appendix),
the second inequality is due to the fact that h(w) is 1

nγ -strongly convex with respect to the norm

14

‖·‖2 (Proposition 3.2), and the third inequality is an application of the Cauchy-Schwarz inequality,
and the last inequality uses Corollary 3.1.

On the other hand, we have from Proposition 3.3 that

〈

−gi, w − wi
〉

=
〈

−∇wφ(β̃
i, wi), w − wi

〉

= D(wi)− φ(β̃i, w) −Dh(w,w
i) . (14)

Combining (13) and (14) and rearranging yields

−(φ(β̃i, w)−D(wi)) ≥ −2γM2ηi +
n
ηi
Eji[Dh(w,w

i+1)]−
(

n
ηi
− 1
)

Dh(w,w
i).

Substituting ηi =
2n

2n+i+1 and multiplying by 2n + i results, we arrive at the following inequality
after rearranging terms:

(2n+ i)(φ(β̃i, w)−D(wi))

≤ 4nγM2
(

2n+i
2n+i+1

)

+ 1
2

(

(2n+ i)(2n + i− 1)Dh(w,w
i)− (2n + i)(2n + i+ 1)Eji [Dh(w,w

i+1)]
)

.

Summing the above inequality for i = 0, . . . , k and recalling from Proposition 3.6 that β̄k :=
2

(4n+k)(k+1)

∑k
i=0(2n + i)β̃i, and taking the unconditional expectation, we arrive at:

(4n+k)(k+1)
2 Eξk [φ(β̄

k, w)−D(w̄k)] =
(

∑k
i=0 2n + i

)

Eξk [φ(β̄
k, w)−D(w̄k)]

≤ Eξk

[

∑k
i=0(2n + i)(φ(β̃i, w) −D(wi))

]

≤ 4(k + 1)nγM2 + 1
2(2n)(2n − 1)Dh(w,w

0)

≤ 4(k + 1)nγM2 + n(2n− 1)Dmax ,

where the first inequality uses the convexity of φ(β,w) over β and the concavity of D(w), the
second inequality follows from the summation and canceling terms in the telescoping series, and
the third inequality uses w ∈ W. Choosing ŵ = argmaxw φ(β̄k, w), we have P (β̄k) = φ(β̄k, ŵ),
which yields:

Eξk [P (β̄k)−D(w̄k)] ≤
8nγM2

(4n+ k)
+

2n(2n− 1)Dmax

(4n + k)(k + 1)
,

thus showing the first inequality in the statement of the theorem. The second inequality in the
statement of the theorem then follows as a simple application of Proposition 3.4.

3.1 Linear Convergence when R(·) is Strongly Convex

In this section, we further assume R(·) is a µ-strongly convex function, and we develop a linear
convergence guarantee for Algorithms 1 and 2 . We first formally define a separable function.

15

Definition 3.1. The function h : Rn → R is separable if

h (x) =

n
∑

i=1

hi (xi) ,

where xi is the ith coordinate of x and hi is a univariate function.

Next we introduce the notation of relative smoothness and relative strong convexity developed
recently in [27],[26],[5],[15]. We adapt a simplified version of the coordinate-wise relative smoothness
condition as in [15].

Definition 3.2. f(·) is coordinate-wise σ-smooth relative to a separable reference function h(·) if
for any x, scalar t and coordinate j it holds that:

f(x+ tej) ≤ f(x) + 〈∇f(x), tej〉+ σDh(x+ tej , x) . (15)

We also adapt the notion of relative strong convexity developed in [27].

Definition 3.3. f(·) is µ-strongly convex relative to h(·) if for any x, y, it holds that

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ µDh(y, x) . (16)

The next proposition states that the dual function D(w) is both coordinate-wise smooth and
strongly concave relative to the reference function h(w) := 1

n

∑n
j=1 l

∗
j (wj). In the proposition,

recall that xj is the jth row of the matrix X.

Proposition 3.7.

(1.) Suppose R(·) is a µ-strongly convex function with respect to ‖ · ‖2, then −D(·) is coordinate−

wise
(

γmaxj ‖xj‖22
nµ + 1

)

-smooth relative to h(·), and

(2.) −D(·) is 1−strongly convex relative to h(·).

Proof. (1.) Consider w1 and w2 such that w2 = w1+ tej for some coordinate j, namely w1 and w2

only differ in one coordinate. It follows from Proposition A.1 that R∗(·) is 1
µ -smooth with respect

to ‖ · ‖2, thus we have

R∗
(

− 1
nX

Tw2

)

≤ R∗
(

− 1
nX

Tw1

)

+
〈

∇R∗
(

− 1
nX

Tw1

)

,− 1
nX

T (w2 − w1)
〉

+ 1
2µ

∥

∥

1
nX

T (w2 − w1)
∥

∥

2

2

= R∗
(

− 1
nX

Tw1

)

+
〈

− 1
nX∇R

∗
(

− 1
nX

Tw1

)

, w2 −w1

〉

+ t2

2n2µ
‖xj‖

2
2

≤ R∗
(

− 1
nX

Tw1

)

+
〈

− 1
nX∇R

∗
(

− 1
nX

Tw1

)

, w2 −w1

〉

+
γ‖xj‖

2

2

nµ Dh(w2, w1) ,

where the first inequality follows from smoothness, the equality is from w2 = w1 + tej , and the
last inequality utilizes the fact that h(·) is (1

nγ)-strongly convexity with respect to ‖ · ‖2. Therefore

it holds that f̂(w) := R∗
(

− 1
nX

Tw
)

is coordinate-wise (
γmaxj ‖xj‖22

nµ)-smooth relative to h(·). The

proof is completed by noticing that −D(w) = R∗
(

− 1
nX

Tw
)

+ h(w).

16

(2.) This follows from the additivity property of relative strong convexity (Proposition 1.2 in [27]),
whereby D(·) is 1-strongly concave relative to h(w).

The following theorem states a linear convergence guarantee in the case when R(·) is strongly
convex.

Theorem 3.2. Suppose D(·) is coordinate-wise σ-smooth relative to h(·). Consider the Stochastic
Generalized Frank-Wolfe method (Algorithm 1) or the Randomized Dual Coordinate Mirror Descent

method (Algorithm 2), with step-size sequences ηi =
1
σ and αi =

n−1σi

σi+1−(σ−1/n)i+1 . Under Assumption

1.1 it holds for all k ≥ 1 that

Eξk

[

P (β̄k−1)−D(wk)
]

≤
Dmax

(

1 + 1
nσ−1

)k
− 1

≤
γM2

(

1 + 1
nσ−1

)k
− 1

. (17)

Notice that the first inequality in (17) shows linear convergence; indeed, in this case it holds
that

1
(

1 + 1
nσ−1

)k
− 1

≤ nσ
(

1− 1
nσ

)k
. (18)

(This inequality holds trivially for k = 1, and induction on k establishes the result for k ≥ 2.)
Furthermore, when k is large the −1 term in the denominator of the left-hand side can be ignored

which yields the asymptotic bound
(

1− 1
nσ

)k
Dmax. The next corollary states the implication of

this linear convergence bound in terms of the values γ and µ of the γ-smoothness of l1(·), . . . , ln(·)
and the µ-strong convexity of R(·).

Corollary 3.2. Choose σ =
γ maxj ‖xj‖22

nµ + 1 as per Proposition 3.7. Then Theorem 3.2 and (18)
imply

Eξk

[

P (β̄k−1)−D(wk)
]

≤
Dmax

(

1 + 1
γ maxj ‖xj‖

2
2

µ
+n−1

)k

− 1

≤ Dmax

(

γmaxj ‖xj‖
2
2

µ
+ n

)



1−
1

n+
γmaxj ‖xj‖22

µ





k

.

Before proving Theorem 3.2, we first present an elementary proposition for a separable reference
function h(·), whose proof is given in Appendix A.3.

Proposition 3.8. Suppose h(·) : R
n → R is a separable function. Let j ∼ U [1, . . . , n]. For given

x, a, y ∈ R
n, define the random variable b ∈ Rn such that bj = aj , and bi = xi for all i 6= j. Then:

Dh (y, a)−Dh (y, x) = nEj (Dh (y, b)−Dh (y, x)) .

We also will use the following proposition whose proof follows easily by induction on k.

17

Proposition 3.9. Consider the series {αi} defined by αi =
n−1σi

σi+1−(σ−1/n)i+1 for i ≥ 0, and define

the series {β̄i} by β̄−1 = 0 and β̄i = (1 − αi)β̄
i−1 + αiβ̃

i for i ≥ 0. Also define γi =
(

nσ
nσ−1

)i
for

i ≥ 0. Then

β̄k =

∑k
i=0 γiβ̃

i

∑k
i=0 γi

for all k ≥ 0 .

Proof of Theorem 3.2.

Notice that g̃i = ∇jiD(wi)eji , and wi+1 is a coordinate update from wi, whereby we have

−D(wi+1) ≤ −D(wi)−
〈

g̃i, wi+1 − wi
〉

+ σDh(w
i+1, wi) ≤ −D(wi) ,

and hence the dual function value sequence
{

D(wi)
}

is non-decreasing.

Define ri+1 := argminw
{〈

−∇D(wi), w − wi
〉

+ σDh(w,w
i)
}

, then we have

Eji[−D(wi+1)] ≤ Eji[−D(wi)−
〈

∇D(wi), wi+1 − wi
〉

+ σDh(w
i+1, wi)]

= Eji[−D(wi)− 1
n

(〈

∇D(wi), ri+1 − wi
〉

+ σDh(r
i+1, wi)

)

]

≤ Eji[−D(wi)− 1
n

(〈

∇D(wi), w − wi
〉

+ σDh(w,w
i)− σDh(w, r

i+1)
)

]

= Eji[−D(wi)− 1
n

〈

∇D(wi), w −wi
〉

+ σDh(w,w
i)− σDh(w,w

i+1)]

= Eji[−
n−1
n D(wi)− 1

n

(

D(wi) +
〈

∇D(wi), w − wi
〉)

+ σDh(w,w
i)− σDh(w,w

i+1)] ,
(19)

where the first inequality is from the coordinate-wise σ-smoothness of D(w) relative to h(w) and
the fact that wi+1 is a coordinate update from wi, the first equality is due to expectation and the
separability of h(·), the second inequality uses the three-point property (Lemma A.1), the second
equality uses Proposition 3.8, and the third equality is just arithmetic rearrangement.

Notice that

−D(wi)−
〈

∇D(wi), w − wi
〉

+ nσDh(w,w
i)− nσDh(w,w

i+1)

= −D(wi)−
〈

∇wφ(β̃
i, wi), w − wi

〉

+ nσDh(w,w
i)− nσDh(w,w

i+1)

= −φ(β̃i, w) + (nσ − 1)Dh(w,w
i)− nσDh(w,w

i+1) ,

where the last equality utilizes Proposition 3.3. We can then rewrite (19) (after multiplying by n
on both sides) as

Eji [−nD(wi+1)] ≤ Eji

[

−(n− 1)D(wi)− φ(β̃i, w) + (nσ − 1)Dh(w,w
i)− nσDh(w,w

i+1)
]

. (20)

18

Multiplying (20) by
(

nσ
nσ−1

)i+1
and summing over i = 0, . . . , k − 1, we obtain:

Eξk

[

−
∑k

i=1 n
(

nσ
nσ−1

)i
D(wi)

]

≤ Eξk

[

−
∑k

i=1(n− 1)
(

nσ
nσ−1

)i
D(wi−1)−

∑k
i=1

(

nσ
nσ−1

)i
φ(β̃i−1, w) + nσDh(w,w

0)

]

≤ Eξk

[

−
∑k

i=1(n− 1)
(

nσ
nσ−1

)i
D(wi−1)−

(

∑k
i=1

(

nσ
nσ−1

)i
)

φ(β̄k−1, w) + nσDh(w,w
0)

]

,

where the last inequality is from Proposition 3.9 and the convexity of φ(β,w) in β. Since the
sequence

{

D(wi)
}

is non-decreasing in i it follows that:

Eξk

[

−

(

k
∑

i=1

(

nσ

nσ − 1

)i
)

D(wk)

]

≤ Eξk

[

−

(

k
∑

i=1

(

nσ

nσ − 1

)i
)

φ(β̄k−1, w)

]

+nσDh(w,w
0) . (21)

Let us substitute the following value of w in (21): w ← ŵk−1 := argmaxw{φ(β̄
k−1, w)}, which

yields:

(

k
∑

i=1

(

nσ

nσ − 1

)i
)

Eξk

[

φ(β̄k−1, ŵk−1)−D(wk)
]

≤ nσDh(ŵ
k−1, w0) ≤ nσDmax ,

where the last inequality above comes from the definition of Dmax. Therefore we have

Eξk

[

P (β̄k−1)−D(wk)
]

≤
nσ

(

∑k
i=1

(

nσ
nσ−1

)i
)Dmax =

Dmax
(

1 + 1
nσ−1

)k
− 1

,

which furnishes the proof by utilizing Proposition 3.9.

Remark 3.3. A natural question to ask next is whether one can achieve an accelerated convergence
rate when R(·) is strongly convex, similar to that in [41], [25]. The answer actually is yes, as one
can utilize similar proof techniques as those developed in [25]. However, the accelerated version
may not have a natural interpretation in the primal variables.

A Appendix

A.1 Properties of Conjugate Functions

Recall the definition of the conjugate of a function f(·):

f∗(y) := sup
x∈dom f

{yTx− f(x)} .

The following properties of conjugate functions are used in this paper:

19

Proposition A.1. (see [3], [46], [23]) If f(·) is a closed convex function, then f∗∗(·) = f(·).
Furthermore:

1. f(·) is γ-smooth with domain R
p with respect to the norm ‖ · ‖ if and only if f∗(·) is 1/γ-

strongly convex with respect to the (dual) norm ‖ · ‖∗ .

2. If f(·) is differentiable and strictly convex, then the following three conditions are equivalent:

(a) y = ∇f(x)

(b) x = ∇f∗(y), and

(c) xT y = f(x) + f∗(y) .

A.2 Three-Point Property

We state here the “three-point property” as memorialized by Tseng [44]:

Lemma A.1. (Three-Point Property [44]) Let φ(x) be a convex function, and let Dh(·, ·) be
the Bregman distance for h(·). For a given vector z, let

z+ := argmin
x∈Q
{φ(x) +Dh(x, z)} .

Then
φ(x) +Dh(x, z) ≥ φ(z+) +Dh(z

+, z) +Dh(x, z
+) for all x ∈ Q .

A.3 Proof of Proposition 3.8

Note that

〈∇h (a)−∇h (x) , y〉 =

n
∑

i=1

〈∇hi (ai)−∇hi (xi) , yi〉

= nEj 〈∇hj (aj)−∇hj (xj) , yj〉

= nEj 〈∇hj (bj)−∇hj (xj) , yj〉

= nEj

n
∑

i=1

〈∇hi (bi)−∇hi (xi) , yi〉

= nEj 〈∇h (b)−∇h (x) , y〉 ,

where the second equation is from expectation, and the third and fourth equation follow because
bj = aj and bi = xi for all i 6= j. Using similar logic it also holds that

〈∇h (a) , a〉 − 〈∇h (x) , x〉 = nEj (〈∇h (b) , b〉 − 〈∇h (x) , x〉) ,

and

h (a)− h (x) = nEj (h (b)− h (x)) .

20

Therefore,

Dh (y, a)−Dh (y, x) = 〈∇h (a) , y − a〉 − 〈∇h (x) , y − x〉 − (h (a)− h (x))

= 〈∇h (a)−∇h (x) , y〉 − (〈∇h (a) , a〉 − 〈∇h (x) , x〉)− (h (a)− h (x))

= nEj [〈∇h (b)−∇h (x) , y〉 − (〈∇h (b) , b〉 − 〈∇h (x) , x〉)− (h (b)− h (x))]

= nEj [〈∇h (b) , y − b〉 − 〈∇h (x) , y − x〉 − (h (b)− h (x))]

= nEj [Dh (y, b)−Dh (y, x)] .

A.4 Connections and Comparisons to Stochastic Dual Coordinate Descent Meth-

ods

Compared with the stochastic dual coordinate descent methods developed in [40][25][41], our anal-
ysis does not require R(·) to be strongly convex. And in the case when R(·) is strongly convex, our
coordinate update at each iteration requires the solution of a univariate problem of the following
form for a suitably given scalar cji :

min
wji

cjiwji + l∗ji(wji) , (22)

in comparison with the algorithms in [40] or [25] for which the coordinate update at each iteration
requires the solution of the following univariate problem for suitably given scalars cji and bji :

min
wji

cjiwji + l∗ji(wji) + bjiw
2
ji . (23)

There are many cases where (22) has a closed-form solution whereas (23) does not, for example
when the loss lji(·) comes from logistic regression. This makes our method more efficient in practice
for these types of loss functions.

The unaccelerated version of [25] is a randomized coordinate method with a composite function,
and has the following update :

wi+1
ji

= argmin
wji

{

ciwji +
1
2η (wji − wi

ji)
2 + 1

n l
∗
ji(wji)

}

,

where ci is one coordinate of the gradient. The above update can be viewed as a coordinate mirror
descent method update with reference function h(w) := 1

2η‖w‖
2 + 1

nL
∗(w). This is similar to the

equivalence of composite optimization and mirror descent in the deterministic case discussed in
Section 3.3 of [27].

A.5 Regarding Randomized Coordinate Mirror Descent with Non-smooth Func-

tions

Since the seminal work of Nesterov [32], there have been many research results on randomized
coordinate descent for minimizing a smooth objective function. However, there has not been

21

much research on randomized coordinate descent for minimizing a non-smooth objective function;
in fact the only work as far as we know is [33] which considers a special non-smooth objective
function – the maximum of some convex functions. On the other hand, the analysis in [32] and the
many following-up papers (including [36], [28], and others) cannot be applied directly to analyze
the non-smooth case so far as we can tell. In our analysis in Theorem 3.1, we use (in the dual)
randomized coordinate mirror descent for a non-smooth objective function. Indeed, one can consider
a randomized coordinate of a subgradient as an unbiased stochastic subgradient descent (up to a
scalar), and then use the analysis of stochastic mirror descent algorithm (developed in [26]) to
develop convergence guarantees.

References

[1] Zeyuan Allen-Zhu, Katyusha: The first direct acceleration of stochastic gradient methods, Pro-
ceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, ACM, 2017,
pp. 1200–1205.

[2] Zeyuan Allen-Zhu and Yang Yuan, Improved svrg for non-strongly-convex or sum-of-non-
convex objectives, International conference on machine learning, 2016, pp. 1080–1089.

[3] M. Avriel, Nonlinear optimization: Analysis and methods, Prentice-Hall, 1976.

[4] Francis Bach, Duality between subgradient and conditional gradient methods, SIAM Journal on
Optimization 25 (2015), no. 1, 115–129.

[5] Heinz H Bauschke, Jérôme Bolte, and Marc Teboulle, A descent lemma beyond lipschitz gra-
dient continuity: first-order methods revisited and applications, Mathematics of Operations
Research 42 (2016), no. 2, 330–348.

[6] A. Beck and M. Teboulle, Mirror descent and nonlinear projected subgradient methods for
convex optimization, Operations Research Letters 31 (2003), no. 3, 167–175.

[7] Emmanuel J Candès and Benjamin Recht, Exact matrix completion via convex optimization,
Foundations of Computational mathematics 9 (2009), no. 6, 717.

[8] Chih-Chung Chang and Chih-Jen Lin, Libsvm: a library for support vector machines, ACM
transactions on intelligent systems and technology (TIST) 2 (2011), no. 3, 27.

[9] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien, Saga: A fast incremental gradient
method with support for non-strongly convex composite objectives, Advances in neural infor-
mation processing systems, 2014, pp. 1646–1654.

[10] Maryam Fazel, Matrix rank minimization with applications, Ph.D. thesis, PhD thesis, Stanford
University, 2002.

[11] M. Frank and P. Wolfe, An algorithm for quadratic programming, Naval Research Logistics
Quarterly 3 (1956), 95–110.

[12] Robert M Freund and Paul Grigas, New analysis and results for the frank–wolfe method,
Mathematical Programming 155 (2016), no. 1-2, 199–230.

22

[13] Robert M Freund, Paul Grigas, and Rahul Mazumder, An extended frank–wolfe method with
in-face directions, and its application to low-rank matrix completion, SIAM Journal on Opti-
mization 27 (2017), no. 1, 319–346.

[14] J. Giesen, M. Jaggi, and S. Laue, Optimizing over the growing spectrahedron, ESA 2012: 20th
Annual European Symposium on Algorithms (2012).

[15] Filip Hanzely and Peter Richtárik, Fastest rates for stochastic mirror descent methods, arXiv
preprint arXiv:1803.07374 (2018).

[16] Zaid Harchaoui, Anatoli Juditsky, and Arkadi Nemirovski, Conditional gradient algorithms for
norm-regularized smooth convex optimization, Mathematical Programming 152 (2015), no. 1-2,
75–112.

[17] Elad Hazan and Satyen Kale, Projection-free online learning, arXiv preprint arXiv:1206.4657
(2012).

[18] Elad Hazan and Haipeng Luo, Variance-reduced and projection-free stochastic optimization,
International Conference on Machine Learning, 2016, pp. 1263–1271.

[19] Arthur E Hoerl and Robert W Kennard, Ridge regression: Biased estimation for nonorthogonal
problems, Technometrics 12 (1970), no. 1, 55–67.

[20] M. Jaggi, Revisiting Frank-Wolfe: Projection-free sparse convex optimization, Proceedings of
the 30th International Conference on Machine Learning (ICML-13), 2013, pp. 427–435.

[21] Thorsten Joachims, Advances in kernel methods, MIT Press, Cambridge, MA, USA, 1999,
pp. 169–184.

[22] Rie Johnson and Tong Zhang, Accelerating stochastic gradient descent using predictive variance
reduction, Advances in neural information processing systems, 2013, pp. 315–323.

[23] Sham M. Kakade, Shai Shalev-Shwartz, and Ambuj Tewari, Regularization techniques for
learning with matrices, The Journal of Machine Learning Research 13 (2012), no. 1, 1865–
1890.

[24] Guanghui Lan and Yi Zhou, Conditional gradient sliding for convex optimization, SIAM Jour-
nal on Optimization 26 (2016), no. 2, 1379–1409.

[25] Qihang Lin, Zhaosong Lu, and Lin Xiao, An accelerated randomized proximal coordinate gra-
dient method and its application to regularized empirical risk minimization, SIAM Journal on
Optimization 25 (2015), no. 4, 2244–2273.

[26] Haihao Lu, ” relative-continuity” for non-lipschitz non-smooth convex optimization using
stochastic (or deterministic) mirror descent, arXiv preprint arXiv:1710.04718 (2017).

[27] Haihao Lu, Robert M Freund, and Yurii Nesterov, Relatively smooth convex optimization by
first-order methods, and applications, SIAM Journal on Optimization 28 (2018), no. 1, 333–
354.

[28] Zhaosong Lu and Lin Xiao, On the complexity analysis of randomized block-coordinate descent
methods, Mathematical Programming 152 (2015), no. 1-2, 615–642.

23

[29] Michael W Mahoney and Petros Drineas, Cur matrix decompositions for improved data anal-
ysis, Proceedings of the National Academy of Sciences 106 (2009), no. 3, 697–702.

[30] Julien Mairal, Incremental majorization-minimization optimization with application to large-
scale machine learning, SIAM Journal on Optimization 25 (2015), no. 2, 829–855.

[31] Julien Mairal, Rodolphe Jenatton, Guillaume Obozinski, and Francis Bach, Convex and net-
work flow optimization for structured sparsity, Journal of Machine Learning Research 12
(2011), no. Sep, 2681–2720.

[32] Yu Nesterov, Efficiency of coordinate descent methods on huge-scale optimization problems,
SIAM Journal on Optimization 22 (2012), no. 2, 341–362.

[33] , Subgradient methods for huge-scale optimization problems, Mathematical Program-
ming 146 (2014), no. 1-2, 275–297.

[34] Zheng Qu, Peter Richtárik, and Tong Zhang, Quartz: Randomized dual coordinate ascent with
arbitrary sampling, Advances in neural information processing systems, 2015, pp. 865–873.

[35] Pradeep Ravikumar, Martin J Wainwright, John D Lafferty, et al., High-dimensional ising
model selection using 1-regularized logistic regression, The Annals of Statistics 38 (2010),
no. 3, 1287–1319.

[36] Peter Richtarik and Martin Takac, Iteration complexity of randomized block-coordinate descent
methods for minimizing a composite function, Mathematical Programming 144 (2014), no. 1-2,
1–38.

[37] Mark Schmidt, Nicolas Le Roux, and Francis Bach, Minimizing finite sums with the stochastic
average gradient, Mathematical Programming 162 (2017), no. 1-2, 83–112.

[38] Suhail M. Shah, Frank–Wolfe variants for minimization of a sum of functions, arXiv preprint
arXiv:1805.10200v2 (2018).

[39] Shai Shalev-Shwartz, Sdca without duality, regularization, and individual convexity, Interna-
tional Conference on Machine Learning, 2016, pp. 747–754.

[40] Shai Shalev-Shwartz and Tong Zhang, Stochastic dual coordinate ascent methods for regularized
loss minimization, Journal of Machine Learning Research 14 (2013), no. Feb, 567–599.

[41] , Accelerated proximal stochastic dual coordinate ascent for regularized loss minimiza-
tion, International Conference on Machine Learning, 2014, pp. 64–72.

[42] Robert Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal
Statistical Society. Series B (Methodological) (1996), 267–288.

[43] P. Tseng, On accelerated proximal gradient methods for convex-concave optimization, Tech.
report, May 21, 2008.

[44] , On accelerated proximal gradient methods for convex-concave optimization, Tech. re-
port, May 21, 2008.

[45] Yaoliang Yu, Xinhua Zhang, and Dale Schuurmans, Generalized conditional gradient for sparse
estimation, The Journal of Machine Learning Research 18 (2017), no. 1, 5279–5324.

24

[46] C. Zalinescu, Convex analysis in general vector spaces, World Scientific, 2002.

[47] Yuchen Zhang and Lin Xiao, Stochastic primal-dual coordinate method for regularized empirical
risk minimization, The Journal of Machine Learning Research 18 (2017), no. 1, 2939–2980.

25

	1 Introduction
	1.1 Problem set-up, examples, Algorithm ??
	1.2 Related literature
	1.3 Contributions
	1.4 Notation

	2 Dual problem, and equivalence of Algorithm ?? in the dual with Randomized Coordinate Mirror Descent
	3 Convergence Guarantees
	3.1 Linear Convergence when R() is Strongly Convex

	A Appendix
	A.1 Properties of Conjugate Functions
	A.2 Three-Point Property
	A.3 Proof of Proposition ??
	A.4 Connections and Comparisons to Stochastic Dual Coordinate Descent Methods
	A.5 Regarding Randomized Coordinate Mirror Descent with Non-smooth Functions

