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DIRECTIONS, AND ITS APPLICATION TO LOW-RANK MATRIX

COMPLETION∗
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Abstract. Motivated principally by the low-rank matrix completion problem, we present an
extension of the Frank–Wolfe method that is designed to induce near-optimal solutions on low-
dimensional faces of the feasible region. This is accomplished by a new approach to generating
“in-face” directions at each iteration, as well as through new choice rules for selecting between in-
face and “regular” Frank–Wolfe steps. Our framework for generating in-face directions generalizes the
notion of away steps introduced by Wolfe. In particular, the in-face directions always keep the next
iterate within the minimal face containing the current iterate. We present computational guarantees
for the new method that trade off efficiency in computing near-optimal solutions with upper bounds
on the dimension of minimal faces of iterates. We apply the new method to the matrix completion
problem, where low-dimensional faces correspond to low-rank matrices. We present computational
results that demonstrate the effectiveness of our methodological approach at producing nearly optimal
solutions of very low rank. On both artificial and real datasets, we demonstrate significant speedups
in computing very low rank nearly optimal solutions as compared to the Frank–Wolfe method (as
well as several of its significant variants).
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1. Introduction. In the last ten years the problem of matrix completion (see, for
example, [7, 8, 32]) has emerged as an important and ubiquitous problem in statistics
and machine learning, with applications in diverse areas [6, 36], with perhaps the most
notable being recommender systems [2, 3, 20]. In matrix completion one is given a
partially observed data matrix X ∈ Rm×n, i.e., there is only knowledge of the entries
Xij for (i, j) ∈ Ω, where Ω ⊆ {1, . . . ,m} × {1, . . . , n} (often, |Ω| � m × n), and
the task is to predict (fill in) the unobserved entries of X. The observed entries are
possibly contaminated with noise, i.e., X = Z∗+ E , where Z∗ ∈ Rm×n represents the
“true data matrix” and E is the noise term, and the goal is to accurately estimate
the entire matrix Z∗, which most importantly includes estimating the entries Z∗ij for
(i, j) 6∈ Ω. Clearly, this problem is in general ill-posed—without any restrictions, the
unobserved entries can take on any real values. The ill-posed nature of the problem
necessitates that any successful approach must, either explicitly or implicitly, make
some type of assumption(s) about the underlying structure of the matrix Z∗. The most
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320 ROBERT M. FREUND, PAUL GRIGAS, AND RAHUL MAZUMDER

common approach, especially without a priori knowledge about the data-generating
mechanism, is to assume that the matrix Z∗ is low-rank. This situation is similar
to the “bet on sparsity” principle in linear regression [16]: if Z∗ does not have low-
rank structure, then we cannot expect any method to successfully fill in the missing
entries; on the other hand, if Z∗ does have low rank, then a method that makes such
a structural assumption should have a better chance at success.

The low-rank structural assumption naturally leads to the following optimization
problem:

(1)

Pr : min
Z∈Rm×n

1

2

∑
(i,j)∈Ω

(Zij −Xij)
2

s.t. rank(Z) ≤ r ,

where r is a parameter representing the assumed belief about the rank of Z∗. Notice
that (1) is a combinatorially hard problem due to the rank constraint [9].

Pioneered by [10], a promising strategy for attacking (1) is to use the nuclear
norm as a proxy for the rank. Recall that for a given Z ∈ Rm×n, the sum of the
singular values of Z is a norm often referred to as the nuclear norm. Directly replacing
the combinatorially hard rank constraint in (1) with a constraint on the nuclear norm
of Z leads to the following convex optimization problem:

(2)

NNδ : f∗ := min
Z∈Rm×n

1

2

∑
(i,j)∈Ω

(Zij −Xij)
2

s.t. ‖Z‖N1 ≤ δ .

Let BN1(Z, δ) := {Y ∈ Rm×n : ‖Y − Z‖N1 ≤ δ} denote the nuclear norm ball of
radius δ centered at the point Z, so that the feasible region of (2) is BN1(0, δ). De-
spite its apparent absence from the problem formulation, it is nevertheless imperative
that computed solutions of (2) have low rank. Such low-rank computed solutions are
coerced by the nuclear norm constraint, and there has been substantial and influential
work showing that for many types of data-generating mechanisms, an optimal solution
of (2) will have appropriately low rank (see, for instance, [7, 8, 10, 31]). This line of
work typically focuses on studying the properties of optimal solutions of (2), and thus
abstracts away the choice of algorithm to solve (2). Although this abstraction may
be reasonable in some situations, and is certainly a reasonable way to study the ben-
efits of nuclear norm regularization, it may also be limiting. Indeed, in recent years,
the notion that “convex optimization is a black box” has become increasingly unrea-
sonable. Concurrently with the explosion of “big data” applications, there has been
a substantial amount of recent work on the development and analysis of algorithms
for huge-scale convex optimization problems where interior-point methods and other
polynomial-time algorithms are ineffective. Moreover, there has been an increasing
interest in algorithms that directly promote desirable structural properties of their
iterates. One such algorithm that satisfies both of these properties—scalability to
huge-size problems and structurally favorable iterates—is the Frank–Wolfe method
and its extensions, which are the starting point of the work herein. Indeed, much
of the recent computational work for matrix completion is based on directly apply-
ing first-order methods and related methods that have structurally favorable iterates
[5, 19, 24, 35]. Mazumder, Hastie, and Tibshirani [25] develop a related algorithm
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IN-FACE EXTENDED FRANK–WOLFE 321

based on singular value decomposition (SVD) soft thresholding that efficiently uti-
lizes the special structure of matrix completion problems. In one of the earlier works
applying the Frank–Wolfe method to nuclear norm regularized problems, Jaggi and
Sulovský [18] consider first lifting the nuclear norm regularized problem (2) to a prob-
lem over the semidefinite cone and then applying the Frank–Wolfe method. Tewari,
Ravikumar, and Dhillon [34] as well as Harchaoui, Juditsky, and Nemirovski [14]
pointed out that the Frank–Wolfe method can be applied directly to the nuclear norm
regularized problem (2), and Harchaoui, Juditsky, and Nemirovski [14] also developed
a variant of the method that applies to penalized nuclear norm problems, which was
also studied in [35]. Mishra et al. [26] develop a second-order trust region method that
shares a few curious similarities with the extended Frank–Wolfe method developed
herein. Mu et al. [27] consider a hybrid proximal gradient/Frank–Wolfe method for
low-rank matrix and tensor recovery. Rao, Shah, and Wright [30] consider a variant
of Frank–Wolfe with “backward steps” (which differ from the classical “away steps”
of Wolfe [38] and Guélat and Marcotte [13]) in the general context of atomic norm
regularization. Backward steps comprise a flexible methodology aimed at producing
sparse representations of solutions. In this regard, backward steps are unrelated to
away steps except to the extent that both may result in sparse solutions.

The Frank–Wolfe method, in-face directions, and structural implications. Due to
its low iteration cost and convenient structural properties (as we shall soon discuss),
the Frank–Wolfe method (also called the conditional gradient method) is especially
applicable in several areas of machine learning and has thus received much renewed
interest in recent years; see [12, 15, 17, 23, 34] and the references therein. The Frank–
Wolfe method, originally developed by [11] in the context of quadratic programming,
was later generalized to convex optimization problems with smooth (differentiable)
convex objective functions and bounded convex feasible regions, of which (2) is a
particular instance. Indeed, letting f(Z) := 1

2

∑
(i,j)∈Ω(Zij −Xij)

2 denote the least

squares objective in (2), it is easy to see that f(·) is a smooth convex function, and
the feasible region of (2) is BN1(0, δ), which is a bounded convex set.

As applied to (2), the Frank–Wolfe method proceeds at the current iterate Zk by
solving a linear optimization subproblem to compute

Z̃k ← arg min
Z∈BN1(0,δ)

{
∇f(Zk) • Z

}
(here “•” denotes the usual trace inner product) and updates the next iterate as

(3) Zk+1 ← Zk + ᾱk(Z̃k − Zk)

for some ᾱk ∈ [0, 1]. It can be shown (see, for instance, [12, 15, 17]), as we expand
upon in section 2, that for appropriate choices of the step-size sequence {ᾱk} it holds
that

(4) f(Zk)− f∗ ≤ 8δ2

k + 3
and rank(Zk) ≤ k + 1 .

The bound on the objective function gap in (4) is well understood and follows from
a standard analysis of the Frank–Wolfe method. The bound on the rank of Zk in
(4), while also well understood, follows from the special structure of the nuclear
norm ball. Specifically, and as we further expand upon in sections 2 and 3, for the
nuclear norm regularized matrix completion problem (2), the solutions to the linear
optimization subproblem solved at each iteration are specially structured—they are

D
ow

nl
oa

de
d 

12
/2

8/
17

 to
 1

8.
9.

61
.1

12
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

322 ROBERT M. FREUND, PAUL GRIGAS, AND RAHUL MAZUMDER

rank-one matrices arising from the leading left and right singular vectors of the matrix
∇f(Zk). Thus, assuming that Z0 is a rank-one matrix, the simple additive form of
the updates (3) leads to the bound on the rank in (4). The above bound on the rank
of Zk is precisely the “favorable structural property” of the iterates of the Frank–
Wolfe method that was mentioned earlier, and when combined with the bound on
the objective function gap in (4) it yields a nice tradeoff between data fidelity and
low-rank structure. However, note that when k is large—as might be necessary if the
desired objective function value gap needs to be very small—then the bound on the
rank of Zk might not be as favorable as one might wish. Indeed, one of the primary
motivations underlying the research herein is to develop theoretical and practical
methods for solving (2) that simultaneously achieve both good data fidelity (i.e., a
small optimality gap in (2)) and low rank of the iterates Zk.

Here we see that in the case of the Frank–Wolfe method, the properties of the
algorithm provide additional insight into how problem (2) induces low-rank structure.
A natural question is, Can the tradeoff given by (4) be improved, either theoretically
or practically, or both? That is, can we modify the Frank–Wolfe method in a way that
maintains the bound on the objective function gap in (4) while strictly improving the
bound on the rank? This is the motivation for the development of what we call “in-
face” directions and their subsequent analysis herein. We define an in-face direction
to be any descent direction that keeps the next iterate within the minimal face of
BN1(0, δ) containing the current iterate (where the minimal face of a point x ∈ S is
the smallest face of the convex set S that contains the point x). It turns out that the
faces of the nuclear norm ball are characterized by the (thin) SVDs of the matrices
contained within them [33]. Therefore an in-face direction will move to a new point
Zk+1 with an SVD structure similar to that of Zk, and, moreover, will keep the rank
of Zk+1 the same (or will lower it, which is even better), i.e., rank(Zk+1) ≤ rank(Zk).
Clearly if we can find good in-face directions, then the bound on the rank in (4) will
be improved. At the same time, if there are no in-face directions that are “good
enough” with respect to improvements in objective function values, then a “regular”
Frank–Wolfe direction may be chosen, which will usually increase the rank of the next
iterate by one. In this paper, we develop an extension of the Frank–Wolfe method
that incorporates in-face directions, and we provide a precise theoretical analysis of
the resulting tradeoff akin to (4), as well as computational results that demonstrate
significant improvements over existing methods in terms of both ranks and run times.

1.1. Organization and results. The paper is organized as follows. In section 2,
after reviewing the basic Frank–Wolfe method and the away-step modification of Wolfe
and Guélat and Marcotte, we present our extended Frank–Wolfe method based on
“in-face” directions (in addition to regular Frank–Wolfe directions), this being the
main methodological contribution of the paper. This in-face extended Frank–Wolfe
method is specifically designed to induce iterates that lie on low-dimensional faces of
the feasible set S, since low-dimensional faces of the feasible region contain desirable
“well-structured” points (sparse solutions when S is the `1 ball, low-rank matrices
when S is the nuclear norm ball). The in-face directions are any directions that keep
the current iterate in its current minimal face of S. We present two main strategies for
computing in-face directions: (i) away steps, as introduced by Wolfe [38] and Guélat
and Marcotte [13], and (ii) approximate full optimization of the objective f(·) over
the current minimal face. The in-face extended Frank–Wolfe method uses a simple
decision criterion for selecting between in-face and regular Frank–Wolfe directions. In
Theorem 2 we present computational guarantees for the in-face extended Frank–Wolfe
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IN-FACE EXTENDED FRANK–WOLFE 323

method. These guarantees essentially show that the in-face extended Frank–Wolfe
method maintains O(c/k) convergence after k iterations (which is optimal for Frank–
Wolfe-type methods in the absence of polyhedral structure or strong convexity [23]),
all the while promoting low-rank iterates via the parameters of the method which
affect the constant c above; see Theorem 2 for specific details.

In section 3 we discuss in detail how to apply the in-face extended Frank–Wolfe
method to solve the matrix completion problem (2). We resolve issues such as char-
acterizing and working with the minimal faces of the nuclear norm ball, solving linear
optimization subproblems on the nuclear norm ball and its faces, computing steps
to the boundary of the nuclear norm ball, and updating the SVD of the iterates. In
Proposition 2 we present a bound on the ranks of the matrix iterates of the in-face
extended Frank–Wolfe method that specifies how the in-face directions reduce the
rank of the iterates over the course of the algorithm. Furthermore, as a consequence
of our developments we also demonstrate, for the first time, how to effectively apply
the away-step method of [13] to problem (2) in a manner that works with the natural
parameterization of variables Z ∈ Rm×n (as opposed to an “atomic” form of [13], as
we expand upon at the end of section 2.1).

Section 4 contains a detailed computational evaluation of the in-face extended
Frank–Wolfe method and discusses several versions of the method based on different
strategies for computing in-face directions and different algorithmic parameter set-
tings. We compare these versions to the regular Frank–Wolfe method, the away-step
method of [13], an atomic version of [13] (as studied in [1, 21, 22, 28]), as well as the
“fully corrective” variant of Frank–Wolfe [15, 17, 22] and the CoGEnT “forward-
backward” method of [30]. We present several experiments on simulated problem
instances as well as on the MovieLens10M dataset. Our results demonstrate that the
in-face extended Frank–Wolfe method (in different versions) shows significant com-
putational advantages in terms of delivering low rank and low run time to compute a
target optimality gap. Especially for larger instances, one version of our method deliv-
ers very low rank solutions with reasonable run times, while another version delivers
the best run times, beating existing methods by a factor of 10 or more.

1.2. Notation. Let E be a finite-dimensional linear space. For a norm ‖·‖ on E,
let ‖ · ‖∗ be the associated dual norm, namely ‖c‖∗ := max{cT z : ‖z‖ ≤ 1}, where cT z
denotes the value of the linear operator c acting on z. The ball of radius δ centered at
z̄ is denoted B(z̄, δ) := {z : ‖z−z̄‖ ≤ δ}. We use I to denote the identity matrix whose
dimension is dictated by the context. For X,Y ∈ Sk×k (the set of k × k symmetric
matrices), we write “X � 0” to denote that X is symmetric and positive semidefinite,
“X � Y ” to denote that X − Y � 0, “X � 0” to denote that X is positive definite,
etc. For a given Z ∈ Rm×n with r := rank(Z), the (thin) SVD of Z is Z = UDV T ,
where U ∈ Rm×r and V ∈ Rn×r are each orthonormal (UTU = I and V TV = I), and
D = Diag(σ1, . . . , σr) comprises the nonzero (hence positive) singular values of Z. The
nuclear norm of Z is then defined to be ‖Z‖N1 :=

∑r
j=1 σj . (In much of the literature,

this norm is denoted ‖ · ‖∗; we prefer to limit the use of “∗” to dual norms, and hence
we use the notation ‖ · ‖N1 instead.) Let BN1(Z, δ) := {Y ∈ Rm×n : ‖Y −Z‖N1 ≤ δ}
denote the nuclear norm ball of radius δ centered at the point Z. Let ‖Z‖F denote

the Frobenius norm of Z, namely ‖Z‖F =
√∑r

j=1 σ
2
j =

√
Tr(ZTZ). The dual

norm of the nuclear norm is the largest singular value of a matrix and is denoted
by ‖ · ‖∗N1 = ‖ · ‖N∞; given S ∈ Rm×n with SVD given by S = UDV T , we have
‖S‖N∞ = max{σ1, . . . , σr}. A spectrahedron is a set of the form Skt := {X ∈ Sk×k :
X � 0, I •X ≤ t} or S̄kt := {X ∈ Sk×k : X � 0, I •X = t}, where “•” denotes the
usual trace inner product.
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2. Frank–Wolfe method, away steps, and in-face steps. Problem (2) is an
instance of the more general problem

(5) f∗ := min
x∈S

f(x) ,

where S ⊂ E is a closed and bounded convex set and f(·) is a differentiable convex
function on S. We first review solving instances of (5) using the Frank–Wolfe method,
whose basic description is given in Algorithm 1. Typically the main computational

Algorithm 1 Frank–Wolfe method for optimization problem (5).

Initialize at x0 ∈ S, (optional) initial lower bound B−1, k ← 0 .

At iteration k:
1. Compute ∇f(xk) .
2. Compute x̃k ← arg minx∈S{f(xk) +∇f(xk)T (x− xk)} .

Bwk ← f(xk) +∇f(xk)T (x̃k − xk) .
Update best bound: Bk ← max{Bk−1, B

w
k } .

3. Set xk+1 ← xk + ᾱk(x̃k − xk), where ᾱk ∈ [0, 1] .

burden at each iteration of the Frank–Wolfe method is solving the linear optimization
subproblem in step 2 of Algorithm 1. The quantities Bwk are lower bounds on the
optimal objective function value f∗ of (5), a fact which follows easily from the gradient
inequality (see Jaggi [17] or [12]), and hence Bk = max{B−1, B

w
0 , . . . , B

w
k } is also a

lower bound on f∗. The lower bound sequence {Bk} can be used in a variety of
step-size strategies [12] in addition to being useful in termination criteria.

When the step-size sequence {ᾱk} is chosen using the simple rule ᾱk := 2
k+2 ,

then the Frank–Wolfe method has the following computational guarantee at the kth
iteration for k ≥ 0:

(6) f(xk)− f∗ ≤ f(xk)−Bk ≤
2LD2

k + 3
,

where D := maxx,y∈S ‖x − y‖ is the diameter of S, and L is a Lipschitz constant of
the gradient of f(·) on S, namely

(7) ‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖ for all x, y ∈ S .

If ᾱk is instead chosen by exact line-search, namely ᾱk ← arg minα∈[0,1] f(xk+α(x̃k−
xk)), then the guarantee (6) still holds (see section 3.4 of [12]), this being particularly
relevant when f(·) is a convex quadratic as in (2), in which case the exact line-search
reduces to a simple formula. Alternatively, one can consider a step-size rule based
on minimizing an upper-approximation of f(·) inherent from the smoothness of the
gradient, namely

(8) f(y) ≤ f(x) +∇f(x)T (y − x) + L
2 ‖y − x‖2 for all x, y ∈ S ,

which follows from (7) (see [12], for example, for a concise proof). The following is a
modest extension of the original analysis of Frank and Wolfe in [11].

Theorem 1 (extension of [11]). Let L̄ ≥ L be given, and consider using either
an exact line-search or the following step-size rule for the Frank–Wolfe method:

(9) ᾱk ← min

{∇f(xk)T (xk − x̃k)

L̄‖xk − x̃k‖2
, 1

}
for all k ≥ 0 .
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Then f(xk) is monotone decreasing in k, and it holds that

(10) f(xk)− f∗ ≤ f(xk)−Bk ≤
1

1
f(x0)−B0

+ k
2L̄D2

<
2L̄D2

k
.

Proof. The first inequality of (10) follows from the fact that Bk ≤ f∗, and the
third inequality follows from the fact that f(x0) ≥ f∗ ≥ B0. The second inequality
can be rewritten as

1

f(xk)−Bk
≥ 1

f(x0)−B0
+

k

2L̄D2
,

which states that the reciprocal of the optimality bound gap grows at least according
to the indicated linear function in k. The above inequality holds trivially for k = 0,
and hence to prove the second inequality of (10) it suffices to show that

(11)
1

f(xk+1)−Bk+1
≥ 1

f(xk)−Bk
+

1

2L̄D2
for all k ≥ 0 ,

the proof of which is given in Appendix A, where the monotonicity of f(xk) is also
proved.

In addition to it being the crux of the proof of (10), we will also use inequality
(11) and related inequalities as the basis for choosing among candidate directions in
the in-face extension of Frank–Wolfe that we will develop in section 2.2.

2.1. Away steps. In [38] Wolfe introduced the concept of an “away step” in a
modified version of the Frank–Wolfe method, and Guélat and Marcotte [13] provided
a modification thereof and an extensive treatment of the convergence properties of
the away-step modified Frank–Wolfe method, including eventual linear convergence
of the method when the objective function is strongly convex, the feasible region is
polyhedral, and a form of strict complementarity holds. Quite recently there has
been much renewed interest in the Frank–Wolfe method with away steps, with most
of the focus being on demonstrating global linear convergence with computational
guarantees for a particular “atomic” version of [13]; see Lacoste-Julien and Jaggi
[21, 22], Beck and Shtern [1], and Peña, Rodŕıguez, and Soheili [28].

Algorithm 2 presents the modified Frank–Wolfe method with away steps as de-
veloped in [13]. The algorithm needs to work with the minimal face of a point x ∈ S,
which is the smallest face of S that contains the point x; here we use the notation
FS(x) to denote the minimal face of S which contains x. Step 2 of the modified
Frank–Wolfe method is the “away step” computation, whereby xk + αstop

k (xk − x̂k)
is the point on the current minimal face FS(xk) that is farthest along the ray from
the “bad” solution x̂k through the current point xk. Step 3 of the modified method
is the regular Frank–Wolfe step computation, which is called a “toward step” in [13].
(Please see [13] as well as [38] for an expanded exposition of away steps, including
illustrative figures.) Notice that implementation of the away-step modified Frank–
Wolfe method depends on the ability to characterize and work with the minimal face
FS(xk) of the iterate xk. When S is not a polytope, this minimal face capability is
very much dependent on problem-specific knowledge of the structure of the set S.

The convergence of the modified Frank–Wolfe method is proved in Theorem 4 of
[13] under the assumption that ᾱk in step 5 is chosen by exact line-search; however,
a careful review of the proof therein shows that convergence is still valid if one uses
a step-size rule in the spirit of (9) that uses the quadratic upper-approximation of
f(·) using L or L̄ ≥ L. The criterion in step 4 of Algorithm 2 for choosing between
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Algorithm 2 Modified Frank–Wolfe method with away steps for optimization prob-
lem (5).

Initialize at x0 ∈ S, (optional) initial lower bound B−1, k ← 0 .

At iteration k:
1. Compute ∇f(xk) .
2. Compute x̂k ← arg maxx{∇f(xk)Tx : x ∈ FS(xk)} .

αstop
k ← arg maxα{α : xk + α(xk − x̂k) ∈ FS(xk)} .

3. Compute x̃k ← arg minx{∇f(xk)Tx : x ∈ S} .
Bwk ← f(xk) +∇f(xk)T (x̃k − xk) .
Update best bound: Bk ← max{Bk−1, B

w
k } .

4. Choose descent direction:
If ∇f(xk)T (x̃k−xk) ≤ ∇f(xk)T (xk− x̂k), then dk ← x̃k−xk and β̄k ← 1 ;
Else dk ← xk − x̂k and β̄k ← αstop

k .
5. Set xk+1 ← xk + ᾱkdk, where ᾱk ∈ [0, β̄k] .

the regular Frank–Wolfe step and the away step seems to be tailor-made for the
convergence proof in [13]. In examining the proof of convergence in [13], one finds
that the fact that x̂k is an extreme point is not relevant for the proof, nor is the
property that x̂k is a solution of a linear optimization problem. Indeed, this begs a
different way to think about both generating and analyzing away steps, which we will
do shortly in subsection 2.2.

Away steps are not affine-invariant. The feasible region S of (5) can always be
(implicitly) expressed as S = conv(A), where A = {x̃j : j ∈ J } is a (possibly infinite)
collection of points in S that includes all of the extreme points of S. In fact, in many
current applications of Frank–Wolfe and its relatives, S is explicitly constructed as
S := conv(A) for a given collection A whose members are referred to as “atoms,” with
each atom x̃j ∈ A a particularly “simple” point (such as a unit coordinate vector ±ei,
a rank-one matrix, etc.). Let us consider the (possibly infinite-dimensional) vector
space V := {α ∈ R|J | : support(α) is finite}, define the simplicial set ∆J by

∆J :=

α ∈ V : α ≥ 0,
∑
j∈J

αj = 1

 ,

and consider the linear map M(·) : ∆J → S such that M(α) :=
∑
j∈J αj x̃

j . Then it
is obvious that the following two optimization problems are equivalent:

(12) min
x∈S

f(x) ≡ min
α∈∆J

f(M(α)) ,

where the left side is our original given problem of interest (5) and the right side is
its re-expression using the convex weights α ∈ ∆J as the variables. Furthermore,
it follows from the fundamental affine-invariance of the regular Frank–Wolfe method
(Algorithm 1) as articulated by Jaggi [17] that the Frank–Wolfe method applied to
the left-side problem above is equivalent (via the linear mapping M(·)) to the Frank–
Wolfe method applied to the right-side problem above. However, this affine invariance
property does not extend to the away-step modification of the method, due to the
fact that the facial structure of a convex set is not affine invariant—not even in the
case when S is a polytope. This is illustrated in Figure 1. The left panel shows a
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S

xk

FS(xk)
xk

FS(xk)

x̃1

x̃2

x̃3

Fig. 1. Illustration that facial structure of a polytope is not affine-invariant.

polytopal feasible region S ⊂ R3 with FS(xk) highlighted. The polytope S has 10
extreme points. The right panel shows in detail FS(xk) by itself, wherein we see
that xk = .25x̃1 + .25x̃2 + .50x̃3 (among several other combinations of other extreme
points of FS(xk) as well). Let us now consider the atomic expression of the set S
using the 10 extreme points S and instead expressing our problem in the format of
the right side of (12), wherein the feasible region is the unit simplex in R10, namely
∆10 := {α ∈ R10 : α ≥ 0, eTα = 1}, where e = (1, . . . , 1) is the vector of ones. If the
current iterate xk is given the atomic expression αk = (.25, .25, .50, 0, 0, 0, 0, 0, 0, 0),
then the minimal face F∆10

(αk) of αk in ∆10 is the subsimplex {α ∈ R10 : α ≥
0, eTα = 1, α4 = · · · = α10 = 0}, which corresponds back in S ⊂ R3 to the narrow
triangle in the right panel of Figure 1, and which is a small subset of the pentagon
corresponding to the minimal face FS(xk) of xk in S. Indeed, this example illustrates
the general fact that the faces of the atomic expression of S will always correspond
to subsets of the faces of the facial structure of S. Therefore, away-step subproblem
optimization computations using the original representation of S will optimize over
larger subsets of S than will the corresponding computations using the atomic re-
expression of the problem. Indeed, we will show in section 4 in the context of matrix
completion that by working with the original representation of the set S in the setting
of using away steps, one can obtain significant computational savings over working
with the atomic representation of the problem.

Finally, we point out that the away-step modified Frank–Wolfe methods studied
by Lacoste-Julien and Jaggi [21, 22], Beck and Shtern [1], and Peña, Rodŕıguez, and
Soheili [28] can all be viewed as applying the away-step method (Algorithm 2) to the
“atomic” representation of the optimization problem, as in the right side of (12).

2.2. An “in-face” extended Frank–Wolfe method. Here we present an “in-
face” extension of the Frank–Wolfe method, which is significantly more general than
the away-step method of Wolfe [38] and Guélat and Marcotte [13] (Algorithm 2), and
its atomic version studied by Lacoste-Julien and Jaggi [21, 22], Beck and Shtern [1],
and Peña, Rodŕıguez, and Soheili [28]. The method is motivated by the desire to
compute and work with points x that have specific structure, usually sparsity (in the
case when x is a vector or matrix) or low rank (in the case when x is a matrix).
More generally, we will think of the structure as being related to the dimension of
the minimal face FS(x) of S containing x. The algorithm is designed to balance
progress towards two different goals, namely (i) optimizing the objective function,
and (ii) having the iterates lie in low-dimensional faces of S. In the case of the matrix
completion problem (2) in particular, if an iterate lies in a low-dimensional face of S,
then the iterate will have low rank (see Theorem 3). Such low rank is advantageous
not only because we want the output solution to have low rank, but also because
a low-rank iterate yields a substantial reduction in the computation costs at that
iteration. This last point will be further developed and exploited in sections 3 and 4.
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We present our “in-face extended Frank–Wolfe method” in Algorithm 3. At step 2
of each iteration the algorithm works with an “in-face” direction dk which will keep
the next candidate point in the current minimal face FS(xk). This is equivalent to
requiring that xk+dk lie in the affine hull of FS(xk), which is denoted by Aff(FS(xk)).
Other than the affine hull condition, the direction dk can be any descent direction
of f(·) at xk if such a direction exists. The candidate iterate xBk is generated by
stepping in the direction dk all the way to the relative boundary of the minimal face
of the current point xk. The point xAk is the candidate iterate generated using the
in-face direction and a suitable step-size β̄k, perhaps chosen by exact line-search or by
a quadratic approximation rule. In steps 3(a) and 3(b) the algorithm applies criteria
for choosing which, if any, of xBk or xAk to accept as the next iterate of the method.
If the criteria are not met for either xBk or xAk , then the method computes a regular
Frank–Wolfe step in step 3(c) and updates the lower bound Bk.

Algorithm 3 In-face extended Frank–Wolfe method for optimization problem (5).

Initialize at x0 ∈ S, (optional) initial lower bound B−1, k ← 0 .
Choose L̄ ≥ L, D̄ ≥ D, and constants γ1, γ2 satisfying 0 ≤ γ1 ≤ γ2 ≤ 1 .

At iteration k:
1. Compute ∇f(xk) . Bk ← Bk−1 .
2. Compute direction dk for which xk + dk ∈ Aff(FS(xk)) and ∇f(xk)T dk < 0. (If
no dk exists, go to Step 3(c).)

αstop
k ← arg maxα{α : xk + αdk ∈ FS(xk)} .

xBk := xk + αstop
k dk .

xAk := xk + β̄kdk, where β̄k ∈ [0, αstop
k ] .

3. Choose next iterate:
(a) (Go to a lower-dimensional face.)

If 1
f(xBk )−Bk

≥ 1
f(xk)−Bk + γ1

2L̄D̄2 , set xk+1 ← xBk .

(b) (Stay in current face.)
Else if 1

f(xAk )−Bk
≥ 1

f(xk)−Bk + γ2
2L̄D̄2 , set xk+1 ← xAk .

(c) (Do regular Frank–Wolfe step and update lower bound.) Else, compute:
x̃k ← arg minx{∇f(xk)Tx : x ∈ S} .
xk+1 ← xk + ᾱk(x̃k − xk), where ᾱk ∈ [0, 1] .
Bwk ← f(xk) +∇f(xk)T (x̃k − xk), Bk ← max{Bk−1, B

w
k } .

Let us now discuss a few strategies for computing in-face directions. One recovers
the away-step direction of the method of Guélat and Marcotte [13] by choosing

(13) dk ← xk − x̂k , where x̂k ← arg max
x
{∇f(xk)Tx : x ∈ FS(xk)} .

Another natural way to compute a suitable dk, which is computationally facile for
relatively low-dimensional faces and for certain problem instances (including matrix
completion), is to directly solve for an (approximately) optimal objective function
solution over the low-dimensional face FS(xk) and thereby set

(14) dk ← xMk − xk , where xMk ← arg min
x
{f(x) : x ∈ FS(xk)} .

Note that in this case, we may naturally set β̄k := 1. Another related type of in-face
direction that may be of interest is to consider a regular Frank–Wolfe step within
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FS(xk), whereby we select

(15) dk ← x̃Fk − xk , where x̃Fk ← arg min
x
{∇f(xk)Tx : x ∈ FS(xk)} .

One may interpret this “in-face Frank–Wolfe step” as a single iteration of the Frank–
Wolfe method applied to the subproblem in (14). As we elaborate in section 4 when
discussing the practical merits of these approaches, our main interests are in the
away-step strategy (13) and the full optimization strategy (14). Both of these in-
face Frank–Wolfe step strategies lead to significant computational advantages over
the regular Frank–Wolfe method, as will be shown in section 4.

One immediate advantage of the in-face extended Frank–Wolfe method (Algo-
rithm 3) compared to the away-step modified Frank–Wolfe method of Guélat and
Marcotte [13] (Algorithm 2) has to do with the number and sizes of linear optimiza-
tion subproblems that are solved. Algorithm 2 needs to solve two linear optimization
subproblems at each iteration—a “small” subproblem on the minimal face FS(xk)
and a “large” subproblem on the entire set S. In contrast, even when computing
directions using away-step computations, Algorithm 3 must solve the “small” linear
optimization problem on the minimal face FS(xk), but the method will need to solve
the “large” subproblem on the entire set S only if it needs to process step 3(c). The
computational advantage from not having to solve the “large” subproblem at every
iteration will be shown in section 4.

We now discuss the criteria that are used in step 3 to choose among the next
step xBk that lies in the relative boundary of the current minimal face FS(xk), the
step xAk that does not necessarily lie in the relative boundary of the current minimal
face FS(xk), and a regular Frank–Wolfe step. We see from step 3 of Algorithm 3 that
a regular Frank–Wolfe step will be chosen as the next iterate unless the criterion of
either step 3(a) or 3(b) is met. The criterion in step 3(a) is met if xBk (which lies on
the relative boundary of FS(xk) by virtue of the definition of αstop

k ) provides sufficient
decrease in the optimality gap as measured with the criterion

1

f(xBk )−Bk
≥ 1

f(xk)−Bk
+

γ1

2L̄D̄2
.

The criterion in step 3(b) is met if xAk provides sufficient decrease in the optimality
gap as measured similarly to above but using γ2 rather than γ1. Since γ1 ≤ γ2, step
3(a) requires a lesser decrease in the optimality bound gap than does step 3(b).

In settings where we strongly desire to compute iterates that lie on low-dimensional
faces (as in the low-rank matrix completion problem (2)), we would like the criteria in
steps 3(a) and 3(b) to be satisfied relatively easily (perhaps with it being even easier
to satisfy the criterion in step 3(a), as this will reduce the dimension of the minimal
face). This can be accomplished by setting the values of γ1 and γ2 to be lower rather
than higher. Indeed, setting γ1 = 0 in step 3(a) ensures that the next iterate lies in a
lower-dimensional face whenever xBk (which by definition lies in a lower-dimensional
face than xk does) does not have a worse objective function value than f(xk). Also,
if one sets γ2 to be smaller, then the criterion in step 3(b) is more easily satisfied,
which ensures that the new iterate will remain in the current face FS(xk) as desired
when the criterion of step 3(b) is satisfied.

As we have discussed, the ability to induce solutions on low-dimensional faces by
setting γ1 and γ2 to have low values can be extremely beneficial. However, this all
comes at a price in terms of computational guarantees, as we now develop. Before
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presenting the computational guarantee for Algorithm 3 we first briefly discuss step-
sizes; the step-size β̄k for steps to the in-face point xAk are determined in step 2, and
the step-size ᾱk for regular Frank–Wolfe steps is chosen in step 3(c). One strategy
is to choose these step-sizes using an exact line-search if the line-search computation
is not particularly burdensome (such as when f(·) is a quadratic function). Another
strategy is to determine the step-sizes according to the quadratic upper approximation
of f(·) much as in Theorem 1, which in this context means choosing the step-sizes as
follows:

(16) β̄k := min

{−∇f(xk)T dk
L̄‖dk‖2

, αstop
k

}
, ᾱk := min

{∇f(xk)T (xk − x̃k)

L̄‖xk − x̃k‖2
, 1

}
.

Let Na
k , N b

k , and N c
k denote the number of times within the first k iterations that the

iterates are chosen according to the criteria in steps 3(a), 3(b), and 3(c), respectively.
Then k = Na

k +N b
k +N c

k , and we have the following computational guarantee.

Theorem 2. Suppose that the step-sizes used in Algorithm 3 are determined ei-
ther by exact line-search or by (16). After k iterations of Algorithm 3 it holds that

f(xk)− f∗ ≤ f(xk)−Bk ≤
1

1
f(x0)−B0

+
γ1Nak
2L̄D̄2 +

γ2Nbk
2L̄D̄2 +

Nck
2L̄D̄2

<
2L̄D̄2

γ1Na
k + γ2N b

k +N c
k

.

Proof. The first inequality is true since Bk ≤ f∗, and the third inequality is
true since f(x0) ≥ B0, so we need only prove the second inequality, which can be
equivalently written as

(17)
1

f(xk)−Bk
≥ 1

f(x0)−B0
+
γ1N

a
k

2L̄D̄2
+
γ2N

b
k

2L̄D̄2
+

N c
k

2L̄D̄2
.

Notice that (17) is trivially true for k = 0 since Na
k = N b

k = N c
k = 0 for k = 0. Let

∆k := (f(xk) − Bk)−1 denote the inverse objective function bound gap at iteration
k. Then if the next iterate is chosen by satisfying the criterion in step 3(a), it holds
that ∆k+1 ≥ (f(xk+1)−Bk)−1 ≥ ∆k + γ1

2L̄D̄2 , where the first inequality derives from
Bk+1 ≥ Bk and the second inequality is from the criterion of step 3(a). Similarly,
if the next iterate is chosen by satisfying the criterion in step 3(b), it holds using
similar logic that ∆k+1 ≥ ∆k + γ2

2L̄D̄2 . And if the next iterate is chosen in step 3(c),
namely, we take a regular Frank–Wolfe step, then inequality (11) holds, which is
∆k+1 ≥ ∆k + 1

2L̄D̄2 . Applying induction then establishes (17), which completes the
proof.

Here we see that choosing smaller values of γ1 and γ2 can have a detrimental
effect on the progress of the algorithm in terms of the objective function optimality
gap, while larger values ensure better convergence guarantees. At the same time,
smaller values of γ1 and γ2 are more effective at promoting iterates to lie on low-
dimensional faces. Thus there is a clear tradeoff between objective function optimality
gap accuracy and low-dimensional structure, dictated by the values of γ1 and γ2. One
strategy that is worth studying is setting γ1 = 0 and γ2 to be relatively large, say
γ2 = 1, for example. With these values of the parameters we take an in-face step in
step 3(a) (which lowers the dimension of the face of the iterate) whenever doing so
will not adversely affect the objective function value. This and other strategies for
setting γ1 and γ2 will be examined in section 4.
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A simplified algorithm in the case of full optimization over the current minimal
face. Let us further examine the dynamics of Algorithm 3 in the case of (14), where
we select the in-face direction by fully optimizing the objective function f(·) over
the low-dimensional face FS(xk). Consider performing an in-face step in this case;
i.e., suppose that the next iterate is chosen according to the criteria in steps 3(a)
and 3(b) (recall that we set β̄k := 1 in this case). Then, at the next iteration,
Algorithm 3 is guaranteed to select a regular Frank–Wolfe step via step 3(c). Indeed,
since the next iterate xk+1 is chosen as the optimal solution over FS(xk), by definition
there are no descent directions at xk+1 that remain within FS(xk+1) ⊆ FS(xk), and
thus no valid in-face directions to be selected. Here we see that the parameters
γ1 and γ2 are superfluous—a much more natural procedure is to simply alternate
between regular Frank–Wolfe steps and fully optimizing over FS(xk). This bears
some similarity to, but is distinct from, the “fully corrective” variant of Frank–Wolfe;
see, e.g., [15, 17, 22]. (Indeed, these two algorithms coincide if we consider this
alternating procedure applied to the lifted problem (12).) In this case, the following
computational guarantee follows simply from Theorem 1.

Proposition 1. Consider a slight variation of Algorithm 3 that alternates be-
tween full optimizations (14) over the current face FS(xk) and regular Frank–Wolfe
steps, with step-size ᾱk chosen either by exact line-search or by a quadratic approx-
imation rule (16). For simplicity, consider one iteration to consist of both of these
operations in sequence. Then, for all k ≥ 0, it holds that

f(xk)− f∗ ≤ f(xk)−Bk ≤
1

1
f(x0)−B0

+ k
2L̄D2

<
2L̄D2

k
.

3. Solving matrix completion problems using the in-face extended
Frank–Wolfe method. We now turn our attention to solving instances of (2) using
the in-face extended Frank–Wolfe method (Algorithm 3). We work directly with the
natural parameterization of variables as m× n matrices Z ∈ Rm×n (although, as we
discuss in section 3.6, we utilize low-rank SVD updating to maintain the variables in
an extremely memory-efficient manner). Recall that the objective function of (2) is
f(Z) := 1

2

∑
(i,j)∈Ω(Zij −Xij)

2, whose gradient is ∇f(Z) = (Z −X)Ω. The feasible

region of (2) is S = BN1(0, δ), whose notation we shorten to B := BN1(0, δ). We first
discuss the specification and implementation issues in using Algorithm 3 to solve (2).

We will fix the norm on Z to be the nuclear norm ‖ · ‖N1, whose dual norm is
easily seen to be ‖ · ‖∗N1 = ‖ · ‖N∞. Then it is plain to see that under the nuclear
norm it holds that the Lipschitz constant of the objective function of (2) is L = 1.
This follows since for any Z, Y ∈ Rm×n we have

‖∇f(Z)−∇f(Y )‖N∞ ≤ ‖∇f(Z)−∇f(Y )‖N2 = ‖(Z −X)Ω − (Y −X)Ω‖F

≤ ‖(Z − Y )‖F = ‖(Z − Y )‖N2 ≤ ‖(Z − Y )‖N1 .

Since the feasible region of (2) is S = B := BN1(0, δ), it follows that the diameter of S
is D = 2δ. Let us use the superscript Zk to denote the kth iterate of the algorithm, to
avoid confusion with the subscript notation Zij for indices of the (i, j)th component
of Z.

3.1. Characterization of faces of the nuclear norm ball. To implement
Algorithm 3 we need to characterize and work with the minimal face of B = BN1(0, δ)
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containing a given point. Let Z̄ ∈ B be given. The minimal face of B containing Z̄ is
formally notated as FB(Z̄). We have the following characterization of FB(Z̄) due to
So [33].

Theorem 3 (So [33]). Let Z̄ ∈ B have a thin SVD given by Z̄ = UDV T , and let
r = rank(Z̄). Let FB(Z̄) denote the minimal face of B containing Z̄. If

∑r
j=1 σj = δ,

then Z̄ ∈ ∂B, and it holds that

FB(Z̄) = {Z ∈ Rm×n : Z = UMV T for some M ∈ Sr×r, M � 0, I •M = δ} ,

and dim(FB(Z̄)) = r(r+1)/2−1. Otherwise
∑r
j=1 σj < δ and it holds that FB(Z̄) = B

and dim(FB(Z̄)) = dim(B) = m× n.

Theorem 3 above is a reformulation of Theorem 3 of So [33], as the latter pertains
to square matrices (m = n) and also does not explicitly treat the minimal faces
containing a given point, but is a trivial extension of So’s theorem.

Theorem 3 explicitly characterizes the correspondence between the faces of the
nuclear norm ball and low-rank matrices on its boundary. Note from Theorem 3
that if Z̄ ∈ ∂B and r = rank(Z̄), then FB(Z̄) is a linear transformation of the r × r
spectrahedron S̄rδ := {M ∈ Sr×r : M � 0, I •M = δ}. This property will be most
useful, as it will make it very easy to compute in-face directions, especially when r is
relatively small, as we will see in sections 3.3 and 3.4.

3.2. Linear optimization subproblem solution for regular Frank–Wolfe
step. In step 3(c) of Algorithm 3 we need to solve a linear optimization problem.
Here we show how this can be done efficiently. We need to compute

(18) Z̃k ← arg min
Z∈BN1(0,δ)

∇f(Zk) • Z .

Then an optimal solution Z̃k is readily seen to be

(19) Z̃k ← −δukvTk ,

where uk and vk denote the left and right singular vectors, respectively, of the matrix
∇f(Zk) corresponding to the largest singular value of ∇f(Zk). Therefore computing
Z̃k in step 3(c) is relatively easy so long as the computation of the largest singular
value of∇f(Zk) and associated left and right eigenvalues thereof are easy to accurately
compute. If |Ω| is relatively small, then there are practically efficient methods (such
as power iterations) that can effectively leverage the sparsity of ∇f(Zk).

3.3. Strategies and computation of the in-face direction Dk. Let Dk

denote the in-face direction computed in step 2 of Algorithm 3. As suggested in
section 2.2, we present and discuss two different strategies for generating a suitableDk,
namely (i) using an away-step approach (13), and (ii) directly solving for an optimal
objective function solution over the low-dimensional face FB(Zk) (14). In either case,
computing Dk requires working with the thin SVD of Zk, which characterizes FB(Zk)
as stated in Theorem 3. Of course, the thin SVD of Zk can be recomputed at every
iteration, but this is generally very inefficient. As we expand upon in section 3.6, the
thin SVD of Zk+1 can be efficiently updated from the thin SVD of Zk by utilizing
the structure of the regular Frank–Wolfe and in-face directions. For now, we simply
assume that we have access to the thin SVD of Zk at the start of iteration k.
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Away-step strategy. Here we choose Dk by setting Dk ← Zk−Ẑk, where Ẑk is the
solution of the linear optimization maximization problem over the current minimal
face, as in step 2 of the away-step algorithm (Algorithm 2). We compute the “away-
step point” Ẑk by computing

(20) Ẑk ← arg max
Z∈FB(Zk)

∇f(Zk) • Z ,

and set Dk ← Zk − Ẑk. To see how to solve (20) efficiently, we consider two cases,
namely when Zk ∈ int(B) and when Zk ∈ ∂(B). In the case when Zk ∈ int(B), then
FB(Zk) = B, and the optimal solution in (20) is just the negative of the solution of
(19), namely Ẑk = δukv

T
k .

In the case when Zk ∈ ∂(B), rank(Zk) = r, and Zk has a thin SVD given by
Zk = UDV T , we use the characterization of FB(Zk) in Theorem 3 to reformulate
(20) as

(21) Ẑk ← UM̂kV T , where M̂k ← arg max
M∈S̄rδ

Gk •M

and where Gk := 1
2 (V T∇f(Zk)TU+UT∇f(Zk)V ) so that ∇f(Zk)•UMV T = Gk•M

for all M ∈ S̄rδ . An optimal solution to the subproblem in (21) is readily seen to be

(22) M̂k ← δukuk
T ,

where uk is the normalized eigenvector corresponding to the largest eigenvector of the
r× r symmetric matrix Gk. Therefore computing Ẑk in (20) is relatively easy so long
as the computation of the largest eigenvalue of Gk and the associated eigenvector
thereof are easy to accurately compute. Furthermore, note that Ẑk = UM̂kV T =
δUukuk

TV T is a rank-one matrix.
The above computational steps require the thin SVD of Zk as well as being

able to efficiently compute the largest eigenvalue/eigenvector pair of Gk. Efficient
computational strategies for managing the thin SVD of Zk are described in section 3.6.
We compute the largest eigenvalue/eigenvector pair ofGk by either direct factorization
of the r × r matrix Gk, or by power-method approximation, depending on the value
of r.

The development of the in-face Frank–Wolfe step strategy (15) in this case is quite
similar. Indeed, we simply replace the maximization in (21) with a minimization,
which corresponds to a smallest eigenvalue computation, and set Dk accordingly.

Direct solution on the minimal face. In this strategy we use the alternating version
of Algorithm 3 described at the end of section 2.2, and we choose Dk by setting Dk ←
Z̄k − Zk, where Z̄k optimizes (exactly or perhaps only approximately) the original
objective function f(Z) over the current minimal face, under the assumption that
such optimization can be done efficiently and accurately. Indeed, when Zk ∈ int(B),
then we default to the previous away-step strategy since optimizing over the minimal
face is identical to the original problem (2). Otherwise, when Zk = UDV T ∈ ∂(B)
we again use the characterization of FB(Zk) in Theorem 3 to compute Z̄k as

(23) Z̄k ← UM̄kV T , where M̄k ← arg min
M∈S̄rδ

f(UMV T ) .

Of course, it is only sensible to consider this strategy when Zk has low rank, for
otherwise (23) is nearly as difficult to solve as the original problem (2), whose solution
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we seek to approximate using the in-face extended Frank–Wolfe method. Since f(·)
is a convex quadratic function, it follows that the subproblem in (23) is solvable as a
semidefinite/second-order conic optimization problem, and thus conic interior-point
methods may be practical. Alternatively, one can approximately solve (23) by taking
a number of steps of any suitably effective method, such as a proximal/accelerated
first-order method [37] (or even the Frank–Wolfe method itself).

3.4. Computing the maximal step-size αstop
k in step 2. Here we describe

how to efficiently compute the maximal step-size αstop
k in step 2 of Algorithm 3, which

is determined as

(24) αstop
k ← arg max

α
{α : Zk + αDk ∈ FB(Zk)} .

Let us first assume that Zk ∈ ∂(B). We will utilize the SVD of the current iterate
Zk = UDV T . Using either the away-step strategy or the direct solution strategy for
determining the in-face direction Dk in section 3.3, it is simple to write Dk = U∆V T

for an easily given matrix ∆ ∈ Sr×r. Since Zk ∈ ∂(B) and Zk + Dk ∈ FB(Zk), it
holds that I •D = δ and hence I •∆ = 0. Using the characterization of FB(Zk) in
Theorem 3, it follows that (24) can be reformulated as

αstop
k ← arg max

α,M
{α : UDV T + αU∆V T = UMV T , M ∈ S̄rδ }(25)

= arg max
α
{α : D + α∆ � 0} .

In the case when Dk is chosen using the away-step approach, we have from (21) and
(22) that ∆ := D − δukuk

T satisfies Dk = Zk − Ẑk = U∆V T . In this case the

maximum α satisfying (25) is easily seen to be αstop
k :=

(
δuk

TD−1uk − 1
)−1

. When
Dk is chosen by some other method, such as the direct solution method on the minimal
face, the optimal solution of (25) is seen to be αstop

k := −[λmin(D−
1
2 ∆D−

1
2 )]−1.

In the case when Zk ∈ int(B), then (24) can be written as αstop
k ← arg max{α :

‖Zk + αDk‖N1 ≤ δ}, and we use binary search to approximately determine αstop
k .

3.5. Initial values, step-sizes, and computational guarantees. We initial-
ize Algorithm 3 by setting

(26) Z0 ← −δu0v
T
0 ,

where u0 and v0 denote the left and right singular vectors, respectively, of the ma-
trix ∇f(0) corresponding to the largest singular value of ∇f(0). This initialization
corresponds to a “full step” iteration of the Frank–Wolfe method initialized at 0 and
conveniently satisfies rank(Z0) = 1 and Z0 ∈ ∂B. We initialize the lower bound as
B−1 ← max

{
f(0) +∇f(0) • Z0, 0

}
, where the first term inside the max corresponds

to the lower bound generated when computing Z0 and the second term is a valid lower
bound since f∗ ≥ 0. Moreover, this initialization has a provably good optimality gap,
namely f(Z0) ≤ B−1 + 2δ2 ≤ f∗ + 2δ2, which follows from Proposition 3.1 of [12].

Because f(·) is a convex quadratic function, we use an exact line-search to deter-
mine β̄k and ᾱk in steps 2 and 3(c), respectively, since the line-search reduces to a
simple formula in this case.

Utilizing the bound on the optimality gap for Z0 and recalling that L = 1 and
D = 2δ, we have from Theorem 2 that the computational guarantee for Algorithm 3
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is

f(Zk)−Bk ≤ f(Zk)− f∗ ≤ 1

1
f(Z0)−B0

+
γ1Nak
8δ2 +

γ2Nbk
8δ2 +

Nck
8δ2

≤ 8δ2

4 + γ1Na
k + γ2N b

k +N c
k

.

3.6. Efficiently updating the thin SVD of Zk. At each iteration of Algo-
rithm 3 we need to access two objects related to the current iterate Zk: (i) the current
gradient ∇f(Zk) = (Zk −X)Ω (for solving the regular Frank–Wolfe linear optimiza-
tion subproblem and for computing in-face directions), and (ii) the thin SVD given
by Zk = UDV T (for computing in-face directions). For large-scale matrix completion
problems, it can be very burdensome to store and access all mn entries of the (typi-
cally dense) matrix Zk. On the other hand, if r := rank(Zk) is relatively small, then
storing the thin SVD of Zk requires keeping track of only mr+ r+ nr entries. Thus,
when implementing Algorithm 3 as discussed above, instead of storing the entire ma-
trix Zk, we store in memory the thin SVD of Zk (i.e., the matrices U, V , and D),
which we initialize from (26) and efficiently update as follows. Let Dk denote the di-
rection chosen by Algorithm 3 at iteration k ≥ 0, which is appropriately scaled so that
Zk+1 = Zk +Dk. To compute the thin SVD of Zk+1, given the thin SVD of Zk, we
consider the cases of regular Frank–Wolfe directions and in-face directions separately.
In the case of a regular Frank–Wolfe direction, we have that Dk = ᾱk(−δukvTk −Zk)
and therefore

Zk+1 = Zk+ᾱk(−δukvTk −Zk) = (1−ᾱk)Zk−ᾱkδukvTk = (1−ᾱk)UDV T−ᾱkδukvTk .

Thus, given the thin SVD of Zk, computing the thin SVD of Zk+1 is a scaling plus a
rank-one update of the thin SVD, which can be performed very efficiently in terms of
both computation time and memory requirements; see [4]. An analogous argument
applies to the away-step strategy when Zk ∈ int(B). Otherwise, when Zk ∈ ∂(B),
recall that we can write any in-face direction as Dk = U∆V T for an easily given
matrix ∆ ∈ Sr×r. Thus we have

Zk+1 = Zk +Dk = UDV T + U∆V T = U(D + ∆)V T .

Recall from (25) that we have D + ∆ � 0. Therefore, to compute the thin SVD
of Zk+1, we first compute an eigendecomposition of the r × r symmetric positive
semidefinite matrix D + ∆, so that D + ∆ = RSRT , where R is orthonormal and
S is diagonal with nonnegative entries, and then update the thin SVD of Zk+1 as
Zk+1 = (UR)S(V R)T .

To compute the current gradient from the thin SVD of Zk, note that ∇f(Zk) =
(Zk − X)Ω is a sparse matrix that is 0 everywhere except on the Ω entries; thus
computing ∇f(Zk) from the thin SVD of Zk requires performing |Ω| length r inner
product calculations. As compared to storing the entire matrix Zk, our implemen-
tation requires a modest amount of extra work to compute ∇f(Zk), but the cost of
this extra work is far outweighed by the benefits of not storing the entire matrix Zk.
Alternatively, it is slightly more efficient to update only the Ω entries of Zk at each
iteration (separately from the thin SVD of Zk) and to use these entries to compute
∇f(Zk).
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3.7. Rank accounting. As developed throughout this section, the computa-
tional effort required at iteration k of Algorithm 3 depends very much on rank(Zk)
for tasks such as computing the in-face direction Dk (using either the away-step ap-
proach or direct solution on the minimal face), computing the maximal step-size αstop

k

in step 3, and updating the thin SVD of Zk. Herein we examine how rank(Zk) can
change over the course of the algorithm. At any given iteration k, there are four
relevant possibilities for how the next iterate is chosen:

(a) The current iterate Zk lies on the boundary of B, and the next iterate Zk+1

is chosen according to the criterion in step 3(a).
(b) The current iterate Zk lies on the boundary of B, and the next iterate Zk+1

is chosen according to the criterion in step 3(b).
(c) The next iterate Zk+1 is chosen according to the criterion in step 3(c).
(d) The current iterate Zk lies in the interior of B, and the next iterate is chosen

according to either the criterion in step 3(a) or the one in step 3(b).
The following proposition presents bounds on the rank of Zk.

Proposition 2. Let Na
k , N b

k, N c
k, and Nd

k denote the number of times within
the first k iterations that the above conditions (a), (b), (c), and (d) hold, respectively.
Then

(27) rank(Zk) ≤ k + 1− 2Na
k −N b

k .

Proof. Using the choice of the initial point Z0 developed in section 3.5, it holds
that rank(Z0) = 1. Now consider the ith iterate value Zi for i = 1, . . . , k. If condition
(a) holds, then Zi+1 lies on a lower-dimensional face of FB(Zi) ⊂ B, whence from
Theorem 3 it follows that rank(Zi+1) ≤ rank(Zi)− 1. If instead condition (b) holds,
then rank(Zi+1) = rank(Zi) since Zi+1 lies in the relative interior of FB(Zi) ⊂ B.
Finally, in the case that either condition (c) or condition (d) holds, it follows from
(19) that Z̃i is a rank-one matrix, and thus it holds that rank(Zi+1) ≤ rank(Zi) + 1.
Since the four cases above are exhaustive, we have k = Na

k +N b
k +N c

k +Nd
k , and we

obtain rank(Zk) ≤ 1 +N c
k +Nd

k −Na
k = k + 1− 2Na

k −N b
k .

4. Computational experiments and results. In this section we present com-
putational results of experiments wherein we apply different versions of the in-face
extended Frank–Wolfe method to the nuclear norm regularized matrix completion
problem (2).1 Our main focus is on simulated problem instances, but we also present
results for the MovieLens10M dataset. The simulated instances were generated ac-
cording to the model X := w1UV

T +w2E , where the entries of U ∈ Rm×r, V ∈ Rn×r,
and E ∈ Rm×n are all independent and identically distributed standard normal ran-
dom variables, and the scalar parameters w1, w2 control the signal-to-noise ratio
(SNR), namely w1 := 1/‖UV T ‖F and w2 := 1/(SNR‖E‖F ). The set of observed
entries Ω was determined using uniform random sampling of entries with probability
ρ, where ρ is the target fraction of observed entries. The objective function f(·) val-
ues were normalized so that f(0) = .5, and we chose the regularization parameter δ
using a cross-validation-like procedure based on an efficient path algorithm variant of
Algorithm 1.2

1All computations were performed using MATLAB R2015b on a 3 GHz Intel Core i7 MacBook
Pro laptop.

2Specifically, we apply a version of Algorithm 1 that periodically increases the value of δ, utilizing
the previously found solution as a warm-start at the new value of δ. We maintain a holdout set Ω′

and ultimately select the value of δ that minimizes the least-squares error on this set.
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We study several versions of the in-face extended Frank–Wolfe method (Algo-
rithm 3) based on different strategies for setting the parameters γ1,γ2, which we com-
pare to the regular Frank–Wolfe method (Algorithm 1) and the away-step method
(Algorithm 2). We also study the atomic version of the away-step method and the
“fully corrective” variant of Frank–Wolfe [15, 17, 22]—both of which reformulate (2)
in the atomic format of the right side of (12). Finally, we also include comparisons
with CoGEnT—the “forward-backward” variant of the Frank–Wolfe method studied
in [30]. All methods are implemented according to the details presented in section
3, except for CoGEnT.3 We focus on the following ten versions of methods, where
“IF- ·” stands for In-Face:

• Frank-Wolfe—Algorithm 1.
• IF-(1,1)—Algorithm 3 using an away-step strategy, with γ1 = 1, γ2 = 1.
• IF-(0,1)—Algorithm 3 using an away-step strategy, with γ1 = 0, γ2 = 1.
• IF-(0,∞)—Algorithm 3 using an away-step strategy, with γ1 = 0, γ2 = ∞.

This corresponds to always moving to the relative boundary of the minimal
face containing Zk (thereby reducing the rank of Zk+1) as long as the objec-
tive function value does not increase, while never moving partially within the
current face.

• IF-Optimization—the simplified version of Algorithm 3 with full in-face
optimization as described at the end of section 2.2. The in-face optimization
subproblem is (approximately) solved using the proximal gradient method
with matrix entropy prox function.

• IF-Rank-Strategy—Algorithm 3 with the away-step strategy and with γ1

and γ2 set dynamically as follows: we initially set γ1 = γ2 = ∞ and then
reset γ1 = γ2 = 1 after we observe five consecutive iterations where rank(Zk)
does not increase. This version can be interpreted as a two-phase method
where we run Algorithm 1 until we observe that rank(Zk) begins to “stall,”
at which point we switch to Algorithm 3 with γ1 = γ2 = 1.

• FW-Away-Natural—Algorithm 2.
• FW-Away-Atomic—Algorithm 2 applied to the atomic reformulation of (2)

using the right side of (12) [1, 21, 22, 28].
• FW-Fully-Corrective—the “fully corrective” variant of Frank–Wolfe [15,

17, 22], which works with the atomic reformulation of (2) and, at each iter-
ation, fully optimizes the objective function of (2) over the convex hull of
the current set of active atoms. The “correction” optimization subproblem
is (approximately) solved using the proximal gradient method with entropy
prox function over the standard unit simplex.

• CoGEnT—the matrix completion variant of the CoGEnT method stud-
ied in [30]. This variant uses singular value thresholding for the trunca-
tion/backward step—at each iteration, the algorithm computes the SVD of
the current iterate and truncates small singular values to zero. This step is
followed by an enhancement step that optimizes the objective function over
the weights in the SVD. The singular value thresholding parameter is set to
0.05 · δ, and the algorithmic parameter η is set to 0.5.

Tables 1–3 present our aggregate computational results. Before discussing these
in detail, it is useful to first study Figure 2, which shows the behavior of each method
in terms of ranks of iterates4 (left panel) and relative optimality gap (right panel) as a

3The MATLAB code for CoGEnT was obtained from [29].
4The rank of a matrix is computed as the number of singular values larger than 10−6. The

rank-one SVD computation for (18) is performed using the MATLAB function eigs.
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Fig. 2. Figure showing plots of rank and relative optimality gap (log-scale) versus run time
for different methods/strategies, for a single randomly generated problem instance with m = 2000,
n = 2500, ρ = 0.01, r = 10, SNR = 4, and δ = 8.01. This problem has a (very nearly) optimal
solution with rank 37.

function of run time for a particular (and very typical) simulated instance. Examining
the rank plots in the left panel, we see that the evolution of rank(Zk) is as follows:
the four methods IF-(1,1), IF-(0,1), IF-(0,∞), and FW-Away-Natural all quickly
attain rank(Zk) ≈ 37 (the apparent rank of the optimum) and then stay at or near
this rank. In contrast, the four methods Frank-Wolfe, IF-Rank-Strategy, IF-
Optimization, and FW-Away-Atomic all grow rank(Zk) approximately linearly
during the early stages (due to a larger percentage of regular Frank–Wolfe steps)
and then reach a maximum value that can be an order of magnitude larger than the
optimal rank before the rank starts to decrease. Once the rank starts to decrease, IF-
Rank-Strategy and IF-Optimization decrease rank(Zk) rather rapidly, whereas
Frank-Wolfe and FW-Away-Atomic decrease rank(Zk) painfully slowly.

The right panel of Figure 2 shows the relative optimality gaps of the methods.
It is noteworthy that two methods—IF-Optimization and IF-Rank-Strategy—
achieve very rapid progress during their early stages, a point that we will soon revisit.
However, all methods exhibit eventual slow convergence rates, which is in line with
the O(1/k) theoretical convergence bound.

Let us now synthesize the two panels of Figure 2. The four methods Frank-
Wolfe, IF-Rank-Strategy, IF-Optimization, and FW-Away-Atomic all go
through two phases: in the first phase each constructs a “high information” (high-
rank) solution (by taking mostly regular Frank–Wolfe steps), followed by a second
phase where the solution is “refined” by lowering the rank while further optimizing
the objective function (by taking proportionally more away-steps). Frank-Wolfe
and FW-Away-Atomic build up to very high information, but their build-down is
sorely ineffective in terms of both ranks and objective function values. IF-Rank-
Strategy is extremely effective at the refinement phase, and IF-Optimization is
less effective in terms of rank reduction but still more so than the other methods,
except, of course, for IF-Rank-Strategy. The other four methods, namely IF-
(1,1), IF-(0,1), IF-(0,∞), and FW-Away-Natural, all rarely exceed rank 37, as
they spend a very high proportion of their effort on away-steps. Of these four methods,
IF-(0,∞) tends to perform best in terms of objective function values, as will be seen
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shortly in Tables 1 and 2. Finally, we point out that for very large scale problems,
storing the SVD of a high-rank matrix may become burdensome (over and above the
computational cost for computing in-face directions on high-dimensional faces); thus
it is important that the maximum rank of the iterates be kept small. In this regard
Figure 2 indicates that excessive memory requirement may arise for Frank-Wolfe,
IF-Rank-Strategy, FW-Away-Atomic, and possibly IF-Optimization.

Table 1 presents computational results for three different types of small-scale ex-
amples, averaged over 25 sample instances generated and run for each type. Note that
the run time, final rank, and maximum rank reported in Table 1 are in sync with the
patterns observed in Figure 2. IF-Rank-Strategy exhibits the best run times, fol-
lowed by IF-Optimization and then by IF-(0,∞), all of which significantly outper-
form Frank-Wolfe, FW-Away-Natural, and FW-Away-Atomic. Furthermore,
IF-Optimization and IF-(0,∞) have relatively low values of the maximum rank
(unlike IF-Rank-Strategy), while not giving up too much in terms of run time
relative to IF-Rank-Strategy. Note that FW-Away-Atomic and FW-Fully-
Corrective are dramatically ineffective at delivering low-rank solutions, which is
undoubtedly related to the fact that the faces of the atomic representation are simply
too small to be effective; see Figure 1 and the discussion at the end of section 2.
Note that our best In-Face methods—IF-(0,∞), IF-Optimization, and IF-Rank-
Strategy—significantly beat both FW-Fully-Corrective and CoGEnT in both
run time and final rank; this fact may be attributed to several factors, including the
considerable time required to solve the correction/enhancement subproblems when
the number of atoms is large.

Table 2 presents computational results for eight individual medium- and large-
scale examples. Here we see mostly similar performance for the different methods, as
was seen for the small-scale examples in Table 1. IF-Rank-Strategy, IF-(0,∞),
and IF-Optimization deliver the best balance between final rank, maximum rank,
and run time, with perhaps IF-(0,∞) consistently delivering lower-rank solutions
albeit with higher run times. We note that for these instances, IF-Rank-Strategy
does not consistently deliver low-rank solutions, which is due to the extra time it takes
before the second phase (“refinement”) of the method commences. We did not include
results for CoGEnT, as there was insufficient memory to run CoGEnT on any of
these instances.5 Similar to observations from Table 1, our best In-Face methods—IF-
(0,∞), IF-Optimization, and IF-Rank-Strategy—significantly beat FW-Fully-
Corrective in both run time and final rank.

Table 3 shows computational tests on a large-scale real dataset, namely the Movie-
Lens10M dataset, with m = 69878, n = 10677, |Ω| = 107 (with sparsity approximately
1.3%), and δ = 2.59. We only tested IF-(0,∞) (and benchmarked against Frank-
Wolfe and FW-Away-Natural) since IF-(0,∞) appears to be very promising for
large-scale instances due to its ability to maintain relatively low-rank iterates through-
out, while also performing well in terms of run time. The results in Table 3 further
reinforce the findings from Table 2 concerning the advantages of IF-(0,∞) in terms
of both rank of the final iterate as well as run time to achieve the target optimality
gap. Note that IF-(0,∞) dominates both Frank-Wolfe and FW-Away-Natural
in terms of run time and dominates Frank-Wolfe in terms of final rank, while

5The CoGEnT code directly works with the variables Zij and thus has large memory require-
ments. A more efficient implementation of CoGEnT may be able to run on the instances in Table 2
and may also have better performance on the instances in Table 1.
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Table 3
CPU time and rank of final solutions for Frank-Wolfe, FW-Away-Natural, and IF-(0,∞)

for different relative optimality gaps for the MovieLens10M dataset.

MovieLens10M Dataset

Frank-Wolfe FW-Away-Natural IF-(0,∞)
Relative optimality gap time (mins) rank time (mins) rank time (mins) rank

10−1.5 7.38 103 10.86 52 7.01 44
10−2 28.69 315 23.08 87 14.73 79

10−2.25 69.53 461 34.78 113 22.80 107
10−2.5 178.54 454 76.64 141 42.24 138

it is essentially the same as FW-Away-Natural on the final rank. Also note that
FW-Away-Natural generally dominates Frank-Wolfe in terms of both run time
and final rank.

We conclude our computational research with a diagnostic evaluation of the dif-
ferent types of iterations and associated CPU times of different methods. Table 4
presents a detailed breakdown of the types of iterations and other algorithmic diag-
nostics for different methods applied to the middle grouping of 25 small-scale examples
of Table 1. Recall that there are four types of iterations that can arise in the in-face
extended Frank–Wolfe method, namely types (a), (b), (c), and (d) as exposited in sec-
tion 3.7. These types naturally extend to FW-Away-Natural, FW-Away-Atomic,
and FW-Fully-Corrective, but not to CoGEnT; hence CoGEnT is not included
in our evaluation. Rows 2–5 of Table 4 break down the iterations into the four types,
and rows 7–9 report information on the CPU time spent on in-face directions and reg-
ular Frank–Wolfe directions. For methods that use standard away steps (IF-(1,1),
IF-(0,1), IF-(0,∞), IF-Rank-Strategy, and FW-Away-Natural), most of the
time is spent computing regular Frank–Wolfe directions. Indeed, as the bottom row of
the table indicates, for four of these methods the average CPU time spent per in-face
direction is a mere 2–6% of that spent computing regular Frank–Wolfe directions.
IF-Rank-Strategy spends comparatively more time computing the in-face direc-
tion because the computational burden of the in-face direction scales with the ranks of
the iterates. Also, IF-Optimization spends more time computing in-face directions,
because solving the proximal gradient algorithm is more expensive than elementary
linear optimization. Furthermore, the atom-based methods (FW-Away-Atomic and
FW-Fully-Corrective) spend more time computing in-face directions because the
computational burden scales with the number of atoms and the number of atoms
becomes extremely large.

Row 6 of Table 4 reports the final rank and the bound on the final rank from
Proposition 2. Very curiously, the bound from Proposition 2 is nearly tight for both
IF-(0,∞) and FW-Away-Natural, whereas it is generally very loose otherwise. The
tightness of the bounds for these two methods is due to the fact that the different
steps taken are almost evenly split between regular Frank–Wolfe steps (type (c)) and
steps of type (a)—iterations that go to the boundary of the current minimal face. The
former almost always increases the rank by one, whereas the latter always decreases
the rank by at least one.

Summary conclusions. In addition to its theoretical computational guarantees
(Theorem 2, Proposition 1), the in-face extended Frank–Wolfe method (in different
versions) shows significant computational advantages in terms of delivering low rank
and low run time to compute a target optimality gap. Especially for larger instances,
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IF-(0,∞) delivers very low rank solutions with reasonable run times. IF-Rank-
Strategy delivers the best run times, beating existing methods by a factor of 10
or more. And in the large-scale regime, IF-Optimization generally delivers both
low rank and low run times simultaneously, and is usually competitive with the best
methods on one or both of rank and run time.

Appendix A. Remainder of the proof of Theorem 1. Recall that it remains
to prove the following inequality:

(28)
1

f(xk+1)−Bk+1
≥ 1

f(xk)−Bk
+

1

2L̄D2
for all k ≥ 0 .

Let us fix some simplifying notation. Let rk := f(xk) − Bk ≥ 0, and let Gk :=
∇f(xk)T (xk − x̃k) ≥ 0. Note that Bk ≥ Bwk = f(xk) − Gk, so that Gk ≥ rk ≥ 0 for
k ≥ 0. Also define Ck := L̄‖x̃k − xk‖2, whereby Ck ≤ L̄D2 and ᾱk = min{GkCk , 1}
for k ≥ 0. With this notation, (28) can be written as 1/rk+1 ≥ 1/rk + 1/(2L̄D2).
Substituting x = xk and y = xk+1 = xk + ᾱk(x̃k − xk) in (8) and using L̄ ≥ L yields
(29)

f(xk+1) ≤ f(xk) + ᾱk∇f(xk)T (x̃k−xk) + L̄
2 ᾱ

2
k‖x̃k−xk‖2 = f(xk)− ᾱkGk + 1

2 ᾱ
2
kCk .

Note that if instead we use an exact line-search to determine xk+1, then (29) also
holds since in that case we have f(xk+1) ≤ f(xk + ᾱk(x̃k − xk)). We now examine
two cases depending on the relative magnitudes of Gk and Ck.

Case 1: Gk ≤ Ck. In this case ᾱk = Gk/Ck, and substituting this value in the

right side of (29) yields f(xk+1) ≤ f(xk)− (Gk)2

2Ck
, which shows that f(xk+1) ≤ f(xk)

as well as rk+1 ≤ rk. Using Bk+1 ≥ Bk also yields

rk+1 ≤ f(xk+1)−Bk ≤ f(xk)− (Gk)2

2Ck
−Bk = rk −

(Gk)2

2Ck
≤ rk −

rkrk+1

2Ck
,

where the last inequality uses rk+1 ≤ rk ≤ Gk. Dividing the above inequality by
rk+1rk and rearranging yields

1

rk+1
≥ 1

rk
+

1

2Ck
≥ 1

rk
+

1

2L̄D2
,

where the second inequality above uses Ck ≤ L̄D2. This shows that (28) holds in this
case.

Case 2: Gk > Ck. In this case ᾱk = 1. Substituting x = xk and y = xk+1 =
xk+ᾱk(x̃k−xk) = x̃k in (29) yields f(xk+1) ≤ f(xk)−Gk+ 1

2Ck < f(xk)−Ck+ 1
2Ck =

f(xk)− 1
2Ck, which shows that f(xk+1) < f(xk) as well as rk+1 < rk, and also yields

(30)
rk+1 = f(xk+1)−Bk+1 ≤ f(xk+1)−Bk ≤ f(xk)−Gk+ 1

2Ck−Bk = rk−Gk+ 1
2Ck ,

from which we derive

(31) 0 ≤ rk+1 ≤ rk −Gk + 1
2Ck < rk −Gk + 1

2Gk = rk − 1
2Gk ,

where the last inequality above uses Gk > Ck. We now consider two subcases, one
for k = 0 and another subcase for k ≥ 1. Let us first consider when k = 0. Then

G0r0 +G0C0 = G0r0 + 1
2G0C0 + 1

2G0C0 ≥ (r0)2 + 1
2 (C0)2 + 1

2r0C0 ,
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since G0 ≥ C0 and G0 ≥ r0; now add r0C0 to both sides and rearrange to yield

r0C0 ≥ r0C0 + (r0)2 −G0r0 −G0C0 + 1
2 (C0)2 + 1

2r0C0

= (r0 −G0 + 1
2C0)(r0 + C0)

≥ r1(r0 + C0) ,

where the second inequality uses (30) with k = 0. Therefore

1

r1
≥ r0 + C0

r0C0
=

1

r0
+

1

C0
≥ 1

r0
+

1

L̄D2
,

which proves (28) for this case for k = 0. Finally, we consider when k ≥ 1. Taking
(31) and dividing by rkrk+1 and rearranging yields

1

rk+1
>

1

rk
+

Gk
2rkrk+1

≥ 1

rk
+

1

2rk+1
,

where the second inequality follows since Gk ≥ rk. Now notice from (31) that rk+1 ≤
rk − Gk + Ck/2 ≤ Ck/2 since Gk ≥ rk. Substituting this last inequality into the
rightmost term above yields

1

rk+1
≥ 1

rk
+

1

Ck
≥ 1

rk
+

1

2Ck
≥ 1

rk
+

1

2L̄D2
,

which shows (28) for this case for k ≥ 1, and completes the proof.
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