Best books mechanical design,basic wilderness survival kit contents checklist,the walking dead survival instinct quanto custa,off the grid book download - 2016 Feature

24.02.2015 admin
Science, Technology and Medicine open access publisher.Publish, read and share novel research.
Titanium and Titanium Alloys as BiomaterialsVirginia Saenz de Viteri1 and Elena Fuentes1[1] IK4-Tekniker, Eibar, Spain1. Schematic representation of a sliding tribological coating with the presence of third bodies [37]3.2. IntroductionBone and its several associated elements – cartilage, connective tissue, vascular elements and nervous components – act as a functional organ. Varying Ti-6Al-4V surface roughness induces different early morphologic and molecular responses in MG63 osteoblast-like cells. They provide support and protection for soft tissues and act together with skeletal muscles to make body movements possible. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. Large-sliding contact elements accurately predict levels of bone-implant micromotion relevant to osseointegration.
Nanostructured materials for inhibition of bacterial adhesion in orthopedic implants: a minireview.
Bones are relatively rigid structures and their shapes are closely related to their functions. Effects of implant surface coatings and composition on bone integration: a systematic review. Bone metabolism is mainly controlled by the endocrine, immune and neurovascular systems, and its metabolism and response to internal and external stimulations are still under assessment [1].Long bones of the skeletal system are prone to injury, and internal or external fixation is a part of their treatment. Joint replacement is another major intervention where the bone is expected to host biomaterials. The natural oxide is thin (about 3–10nm in thickness [39] ) amorphous and stoichiometrically defective.
It is known that the protective and stable oxides on titanium surfaces are able to provide favorable osseointegration [73] [74]. Materials implanted into the bone will, nevertheless, cause local and systemic biological responses even if they are known to be inert. The stability of the oxide depends strongly on the composition structure and thickness of the film [75].On titanium and its alloys a thin oxide layer is formed naturally on the surface of titanium metal in exposure to air at room temperature [76] [77] [78].
Host responses with joint replacement and fixation materials will initiate an adaptive and reactive process [2].The field of biomaterials is on a continuous increase due to the high demand of an aging population as well as the increasing average weight of people.
Biomaterials are artificial or natural materials that are used to restore or replace the loss or failure of a biological structure to recover its form and function in order to improve the quality and longevity of human life.
Biomaterials are used in different parts of the human body as artificial valves in the heart, stents in blood vessels, replacement implants in shoulders, knees, hips, elbows, ears and dental structures [3] [4] [5].
They are also employed as cardiac simulators and for urinary and digestive tract reconstructions. However, contact loads damage this thin native oxide film and cause galvanic and crevice corrosion as well as corrosion embrittlement.
Among all of them, the highest number of implants is for spinal, hip and knee replacements.
Moreover, the low wear resistance and high friction coefficient without applied protective coatings on the surface gravely limit its extensive applications. It is estimated that by the end of 2030, the number of total hip replacements will rise by 174% (572,000 procedures) and total knee arthroplasties are projected to grow by 673% from the present rate (3.48 million procedures) [6]. This is due to the fact that human joints suffer from degenerative diseases such as osteoarthritis (inflammation in the bone joints), osteoporosis (weakening of the bones) and trauma leading to pain or loss in function. Anodizing produces anatase phase of titania that shows poor corrosion resistance in comparison with rutile phase. The degenerative diseases lead to degradation of the mechanical properties of the bone due to excessive loading or absence of normal biological self-healing process. Artificial biomaterials are the solutions to these problems and the surgical implantation of these artificial biomaterials of suitable shapes help restore the function of the otherwise functionally compromised structures.
However, not only the replacement surgeries have increased, simultaneously the revision surgery of hip and knee implants have also increased. These revision surgeries which cause pain for the patient are very expensive and also their success rate is rather small. Since they rapidly develop and extinguish (within 10-4-10-5 s), the discharges heat the metal substrate to less than 100-150 ?C. The target of present researches is developing implants that can serve for much longer period or until lifetime without failure or revision surgery [7].
At the same time the local temperature and pressure inside the discharge channel can reach 10-3-10-4 K and 10-2-10-3 MPa, respectively, which is high enough to give rise to plasma thermo-chemical interactions between the substrate and the electrolyte. Thus, development of appropriate material with high longevity, superior corrosion resistance in body environment, excellent combination of high strength and low Young?s modulus, high fatigue and wear resistance, high ductibility, excellent biocompatibility and be without citotoxicity is highly essential [8] [9].In general, metallic biomaterials are used for load bearing applications and must have sufficient fatigue strength to endure the rigors of daily activity. These interactions result in the formation of melt-quenched high-temperature oxides and complex compounds on the surface, composed of oxides of both the substrate material and electrolyte-borne modifying elements.
Ceramic biomaterials are generally used for their hardness and wear resistance for applications such as articulating surfaces in joints and in teeth as well as bone bonding surfaces in implants.
Polymeric materials are usually used for their flexibility and stability, but have also been used for low friction articulating surfaces. The external part of the layer is porous (with pore diameter ranging from 3 to 8 µm) (Figure 10). Titanium is becoming one of the most promising engineering materials and the interest in the application of titanium alloys to mechanical and tribological components is growing rapidly in the biomedical field [10], due to their excellent properties.This chapter is focused on the use of titanium and its alloys as biomaterials from a tribological point of view. The coating becomes increasingly compact on going towards the interface with the substrate. The main limitation of these materials is their poor tribological behavior characterized by high friction coefficient and severe adhesive wear.
A number of different surface modification techniques have been recently applied to titanium alloys in order to improve their tribological performance as well as osseointegration. This chapter includes the most recent developments carried out in the field of surface treatments on titanium with very promising results.2.
Biomaterial propertiesThe main property required of a biomaterial is that it does not illicit an adverse reaction when placed into services, that means to be a biocompatible material. The structure and composition of anodic oxide films are known to be strongly dependent on film formation temperature and potential [85] [86]. As well, good mechanical properties, osseointegration, high corrosion resistance and excellent wear resistance are required.
In the case of PEO coatings, both the electrolyte composition and the current density regime have an influence on the phase composition and morphology of the anodic oxide layer [87]. A higher spark voltage causes a higher level of discharge energy, which provides a larger pore [88].The influence of electrolyte characteristics on the phase composition of PEO films on titanium has previously been studied [89] [90]. BiocompatibilityThe materials used as implants are expected to be highly non toxic and should not cause any inflammatory or allergic reactions in the human body.
The success of the biomaterials is mainly dependent on the reaction of the human body to the implant, and this measures the biocompatibility of a material [11].
The two main factors that influence the biocompatibility of a material are the host response induced by the material and the materials degradation in the body environment (Figure 1).


Ca and P ions can be incorporated into the layer, controlling the electrolyte employed during the electro oxidation process, and they further transform it into hydroxyapatite by a hydrothermal treatment [41].One technique that could show the effect of the electrolyte in the chemical composition of the coating could be the EDS (Energy Dispersive Spectroscopy) technique. Mechanical propertiesThe most important mechanical properties that help to decide the type of material are hardness, tensile strength, Young?s modulus and elongation. The results of different samples, uncoated cp Ti, a coating obtained with a commercial electrolyte and a coating prepared in an aqueous electrolyte containing calcium phosphate and ?-glycerophosphate, are showed in the following spectrums. An implant fracture due to a mechanical failure is related to a biomechanical incompatibility. The Ca- and P-containing titania coatings produced by PEO improve the bioactivity of the titanium-constructed orthopedic implant [91].
For this reason, it is expected that the material employed to replace the bone has similar mechanical properties to that of bone. OsseointegrationThe inability of an implant surface to integrate with the adjacent bone and other tissues due to micromotions, results in implant loosening [15]. Osseointegration (capacity for joining with bone and other tissue) is another important aspect of the use of metallic alloys in bone applications (Figure 2). As a surface begins to contact with biological tissues, water molecules first reach the surface. A good integration of implant with the bone is essential to ensure the safety and efficacy of the implant over its useful life. Hence, surface wettability, initially, may play a major role in adsorption of proteins onto the surface, as well as cell adhesion. It has been shown in previous studies [16], that enhancement of the bone response to implant surfaces can be achieved by increasing the roughness or by other surface treatments [17]. It is known that changes in the physicochemical properties, which influence the hydrophilicity of Ti dioxide, will modulate the protein adsorption and further cell attachment [39]. By anodic oxidation, elements such as Ca and P can be imported into the surface oxide on titanium and the micro-topography can be varied through regulating electrolyte and electrochemical conditions.
This is disadvantageous for two main reasons: (1) the process of degradation reduces the structural integrity and (2) degradation products may react unfavorably with the host.
Metallic implant degradation results from both electrochemical dissolution and wear, but most frequently occurs through a synergistic combination of the two [23] [24]. The highest wear resistance was displayed by the PEO-treated samples, with negligible wear loss even under the highest applied load of 35 N. This good tribological behavior should be mainly related to the superior thickness of this coating that can better support the applied load.The PEO treatment leads to a very good tribological behavior, significantly reducing both wear and friction of the Ti-6Al-4V alloy, even under high applied loads (up to 35 N). In the corrosion process, the metallic components of the alloy are oxidized to their ionic forms and dissolved oxygen is reduced to hydroxide ions.
This good tribological behaviour should be mainly related to the superior thickness of this coating, which can better support the applied load.
The main wear mechanism is micro-polishing and the coating thickness dictates its tribological life [95].Last studies carried out have concluded that the PEO surface treatments enhance the biological response “in vitro”, promoting early osteoblast adhesion, and the osseointegrative properties “in vivo”, accelerating the primary osteogenic response, as they confirmed by the more extensive bone-implant contact reached after 2 weeks of study [94]. Wear resistanceWear always occurs in the articulation of artificial joints as a result of the mixed lubrication regime. The movement of an artificial hip joint produces billions of microscopic particles that are rubbed off cutting motions. ConclusionsTitanium and its alloys are considered to be among the most promising engineering materials across a range of application sectors.
These particles are trapped inside the tissues of the joint capsule and may lead to unwanted foreign body reactions.
Due to a unique combination of high strength-to-weight ratio, melting temperature and corrosion resistance, interest in the application of titanium alloys to mechanical and tribological components is growing rapidly in a wide range of industries, especially in biomedical field, also due to their excellent biocompatibility and good osseointegration. Histocytes and giant cells phagocytose and “digest” the released particles and form granulomas or granuloma-like tissues.
In such application, components made from Ti-alloys are often in tribological contact with different materials (metals, polymers or ceramics) and media, under stationary or dynamic loading and at various temperatures. At the boundary layer between the implant and bone, these interfere with the transformation process of the bone leading to osteolysis.
Hence, the materials used to make the femoral head and cup play a significant role in the device performance.
These interactions can generate various adverse effects on titanium components, such as high friction or even seizure (galvanic and crevice corrosion) as well as corrosion embrittlement, which lead to the premature failure of the implanted systems.
Titanium alloys are fast emerging as the first choice for majority of applications due to the combination of their outstanding characteristics such as high strength, low density, high immunity to corrosion, complete inertness to body environment, enhanced compatibility, low Young?s modulus and high capacity to join with bone or other tissues.
Their lower Young?s modulus, superior biocompatibility and better corrosion resistance in comparison with conventional stainless steels and cobalt-based alloys, make them an ideal choice for bio-applications [26]. Because of the mentioned desirable properties, titanium and titanium alloys are widely used as hard tissue replacements in artificial bones, joints and dental implants.3.
Titanium and titanium alloysThe elemental metal titanium was first discovered in England by William Gregor in 1790, but in 1795 Klaproth gave it the name of titanium. Combination of low density, high strength to weight ratio, good biocompatibility and improved corrosion resistance with good plasticity and mechanical properties determines the application of titanium and its alloys in such industries as aviation, automotive, power and shipbuilding industries or architecture as well as medicine and sports equipment.Increased use of titanium and its alloys as biomaterials comes from their superior biocompatibility and excellent corrosion resistance because of the thin surface oxide layer, and good mechanical properties, as a certain elastic modulus and low density that make that these metals present a mechanical behaviour close to those of bones. Light, strong and totally biocompatible, titanium is one of the few materials that naturally match the requirements for implantation in the human body. Among all titanium and its alloys, the mainly used materials in biomedical field are the commercially pure titanium (cp Ti, grade 2) and Ti-6Al-4V (grade 5) alloy. They are widely used as hard tissue replacements in artificial bones, joints and dental implants. As a hard tissue replacement, the low elastic modulus of titanium and its alloys is generally viewed as a biomechanical advantage because the smaller elastic modulus can result in smaller stress shielding.
Other property that makes titanium and its alloys the most promising biomaterials for implants is that titanium-based materials in general rely on the formation of an extremely thin, adherent, protective titanium oxide film. The presence of this oxide film that forms spontaneously in the passivation or repassivation process is a major criterion for the excellent biocompatibility and corrosion resistance of titanium and its alloys.Concerning the medical applications of these materials, the use of cp (commercially pure) Titanium is more limited to the dental implants because of its limited mechanical properties.
In cases where good mechanical characteristics are required as in hip implants, knee implants, bone screws, and plates, Ti-6Al-4V alloy is being used [27] [28]. One of the most common applications of titanium alloys is artificial hip joints that consist of an articulating bearing (femoral head and cup) and stem [24], where metallic cup and hip stem components are made of titanium. Wear problems in titanium and titanium alloysThe fundamental drawback of titanium and its alloys which limits wider use of these materials include their poor fretting fatigue resistance and poor tribological properties [30] [31], because of its low hardness [32].
Their poor tribological behavior is characterized by high coefficient of friction, severe adhesive wear with a strong tendency to seizing and low abrasion resistance [33]. Titanium tends to undergo severe wear when it is rubbed between itself or between other materials. This causes a more intensive wear as a result of creation of adhesion couplings and mechanical instability of passive layer of oxides, particularly in presence of third bodies (Figure 4).
Owing to this effect, in cases of total joint replacements made of titanium head and polymer cup, the 10%-20% of joints needs to be replaced within 15-20 years and the aseptic loosening accounts for approximately 80% of the revisions [34]. Corrosion behaviour of titanium and titanium alloysAll metals and alloys are subjected to corrosion when in contact with body fluid as the body environment is very aggressive owing to the presence of chloride ions and proteins. The metallic components of the alloy are oxidized to their ionic forms and dissolved oxygen is reduced to hydroxide ions.Most metals and alloys that resist well against corrosion are in the passive state.
Metals in the passive state (passive metals) have a thin oxide layer (TiO2 in case of titanium) on their surface, the passive film, which separates the metal from its environment [38].


Typically, the thickness of passive films formed on these metals is about 3-10 nm [39] and they consist of metal oxides (ceramic films). It is known that the protective and stable oxides on titanium surfaces (TiO2) are able to provide favorable osseointegration. The stability of the oxide depends strongly on the composition structure and thickness of the film [40].Because of the presence of an oxide film, the dissolution rate of a passive metal at a given potential is much lower than that of an active metal. It depends mostly on the properties of the passive film and its solubility in the environment.
Osseointegration of titanium and titanium alloysWhen an implant is surgically placed within bone there are numerous biological, physical, chemical, thermal and other factors functioning that determine whether or not osseointegration will occur.Titanium and its alloys have been widely used for dental and orthopedic implants under load-bearing conditions because of their good biocompatibility coupled with high strength and fracture toughness. Despite reports of direct bonding to bone, they do not form a chemical bond with bone tissue. For the last decade, various coatings have been attempted to provide titanium and its alloys with bond-bonding ability, which spontaneously bond to living bone. Surface treatments of titanium and titanium alloysSurface engineering can play a significant role in extending the performance of orthopedic devices made of titanium several times beyond its natural capability.The main objectives of surface treatments mainly consist of the improvement of the tribological behaviour, corrosion resistance and osseointegration of the implant. There are coatings for enhanced wear and corrosion resistance by improving the surface hardness of the material that can be applied by different surface modifications techniques such as surface oxidation, physical deposition methods like ion implantation and plasma spray coatings, as well as thermo-chemical surface treatments such as nitriding, carburizing and boriding [43] [44].Great efforts have been devoted to thickening and stabilizing surface oxides on titanium to achieve desired biological responses. The biological response to titanium depends on the surface chemical composition, and the ability of titanium oxides to absorb molecules and incorporate elements.
One possible alternative to solve tribological problems and which is going to explain more detail consists of protecting the alloy surface by means of biocompatible Diamond-Like Carbon (DLC) coatings. They are thus metastable and mostly amorphous, “crystalline” clusters being too small or too defective to reach graphite or diamond structures. Both the mechanical and the tribological properties of DLC coatings have been studied for about 30 years, and several different types of DLC coatings can currently be found. DLC films are attractive biomedical materials due to their relatively high hardness, low friction coefficient, owing to the solid lubricant because of its graphite and amorphous carbon contents [31], good chemical stability and excellent bio and hemocompatibility [45] [44] [46] [47]. Thermal oxidation results in the formation of a 15-30 µm thick titanium dioxide layer of the rutile phase.
Conventional anodic oxidation, which is carried out in various solutions providing passivation of the titanium surface, generates thin films of amorphous hydrated oxide or crystalline TiO2 in the anatase form [52]. These films exhibit poor corrosion resistance in some reducing acids and halide solutions, while rutile generally possesses much better protective properties. The presence of Ca-ions has been reported to be advantageous to cell growth, and in vivo data show implant surfaces containing both Ca and P enhance bone apposition on the implant surface.Furthermore, there are alternative methods to improve the biocompatibility such as biocompatible chemicals [54] and materials such as ceramics for coating.
In some studies, titanium surfaces were modified using phosphoric acid in an “in vitro” study to improve the biocompatibility of dental implants. Results indicated that pretreatment of the implant with phosphoric acid caused no citotoxicity to the osteoblasts [55]. Micro arc oxidation method in phosphoric acid on titanium implants provided chemical bonding sites for calcium ions during mineralization [56].
Hydroxyapatite (HA) coating is a proven method to improve the implants? mechanical bonding [57] [58], biocompatibility and improve the osseointegration.
The higher the degree of osseointegration, the higher is the mechanical stability and the probability of implant loosening becomes smaller. The process of osseointegration depends upon the surface properties such as surface chemistry, surface topography, surface roughness and mainly the surface energy. Plasma Electrolytic Oxidation (PEO) or Micro-Arc Oxidation (MAO) technique is used for the synthesize TiO2 layer.
This technique is based on the modification of the growing anodic film by arc micro-discharges, which are initiated at potentials above the breakdown voltage of the growing oxide film and move rapidly across the anode surface. This technology provides a solution by transforming the surface into a dense layer of ceramic which not only prevents galling but also provides excellent dielectric insulation for contact metals, helping to protect them against aggressive galvanic corrosion. PEO process transforms the surface of titanium alloys into a complex ceramic matrix by passing a pulsed, bi-polar electrical current in a specific wave formation through a bath of low concentration aqueous solution. A plasma discharge is formed on the surface of the substrate, transforming it into a thin, protective layer of titanium oxide, without subjecting the substrate itself to damaging thermal exposure. Among all the above mentioned surface treatments, Diamond-Like Carbon coating and Plasma Electrolytic Oxidation are the most promising ones applied on titanium surfaces. Diamond-like carbon coatingsIn some biomedical applications continuously sliding contact is required, subjecting the implant to aggressive situations. Some trade-offs can be found in combining both hard and soft materials in composite or multilayer coatings, which require complex procedures and further optimization of the deposition process.
Nevertheless, a diverse family of carbon-based materials seems to “naturally” combine the desired set of tribological properties, providing not only low friction but also high wear resistance. In some cases, friction values lower than 0.01 have been reported [63] [64], offering a sliding regime often referred to as “superlubricity”. These exceptional tribological abilities explain the increasing success of Diamond-Like Carbon coatings over the years, both in industrial applications and in the laboratory.
The exceptional tribological behavior of Diamond-Like Carbon films appears to be due to a unique combination of surface chemical, physical, and mechanical interactions at their sliding interfaces [65].Since their initial discovery in the early 1950s, Diamond-Like Carbon coatings have attracted the most attention in recent years, mainly because they are cheap and easy to produce and offer exceptional properties for demanding engineering and medical applications.
These films are currently being evaluated for their durability and performance characteristics in certain biomedical implants including hip and knee joints and coronary stents.Diamond-Like Carbon is the only coating that can provide both high hardness and low friction under dry sliding conditions. These films are metastable forms of carbon combining both sp2 and sp3 hybridizations, including hydrogen when a hydrocarbon precursor is used during deposition. In this case, the first titanium layer was deposited in order to improve adhesion of DLC coating to the substrate and relax stress of the coatingIt is well known that Diamond-Like Carbon films usually present smooth surfaces, except maybe in the case of films formed by unfiltered cathodic vacuum arc deposition (Figure 7).
The formation of carbonous transfer layer on the sliding surface was observed to reduce the friction coefficient [68].DLC coatings are usually applied by means of Cathodic Arc Evaporation Physical Vapor Deposition technology.
The arc evaporation process begins with the striking of a high current, low voltage arc on the surface of a cathode that gives rise to a small (usually a few microns wide) highly energetic emitting area known as a cathode spot. The plasma jet intensity is greatest normal to the surface of the cathode and contains a high level of ionization (30%-100%) multiply charged ions, neutral particles, clusters and macro-particles (droplets). The metal is evaporated by the arc in a single step, and ionized and accelerated within an electric field.
Theoretically the arc is a self-sustaining discharge capable of sustaining large currents through electron emission from the cathode surface and the re-bombardment of the surface by positive ions under high vacuum conditions.If a reactive gas is introduced during the evaporation process dissociation, ionization and excitation can occur during interaction with the ion flux and a compound film will be deposited.
Without the influence of an applied magnetic field the cathode spot moves around randomly evaporating microscopic asperities and creating craters. However if the cathode spot stays at one of these evaporative points for too long it can eject a large amount of macro-particles or droplets as seen above. These droplets are detrimental to the performance of the coating as they are poorly adhered and can extend through the coating. A recent tribological study carried out about the effect of deposition of Diamond-Like Carbon coatings on a substrate of Ti-6Al-4V for knee implants has confirmed that these types of coating improve the tribological response of substrate decreasing the coefficient of friction (µ) (Table 1) and reducing the wear of the surface (Figure 8) [69]. For this study fretting tests were performed using alumina balls as counter body, bovine serum as lubricant and a continuous temperature of 37 ?C, trying to simulate real environment.



Survival race zdj?cia
Best mystery book series of all time yahoo
Survivalcraft android worlds
Best books wilderness survival 101

Rubric: Provide First Aid



Comments

  1. ENRIGUE writes:
    And oil prices, flatlining yields whatever floats idea.
  2. mefistofel writes:
    Fowl for food in Emerald i leach the castings w/ molasses water to add meals and.
  3. sebuhi writes:
    Phrase my father but I can see as a future this as the pebbles will not seperate.