Natural Language Generation

ART on Dialogue Models and Dialogue Systems

François Mairesse
University of Sheffield
F.Mairesse@sheffield.ac.uk
http://www.dcs.shef.ac.uk/~francois

Overview

• NLG: what it is? what does it do?
• Template-based generation (canned text)
• Rule-based generation
• Trainable NLG
Some applications

- Simple report/letter writing
 - WeatherReporter: textual weather reports
 - STOP: personalised smoking-cessation letters
 - ModelExplainer: UML diagrams description for software development

- Question answering about knowledge bases

- Automated summarization of text

- Machine translation

- Dialogue systems

Inputs to a generator

- Content plan
 - Meaning representation of what to communicate
 - E.g. describe a particular restaurant

- Knowledge base
 - E.g. database of restaurants

- User model
 - Imposes constraints on output utterance
 - E.g. user wants short utterances

- Dialogue history
 - E.g. to avoid repetitions, referring expressions
Natural language generation objectives

• From a meaning representation of what to say
 – E.g. entities described by features in an ontology
 – E.g. has(WokThisWay, cuisine(bad))
• Output: a natural language string describing the input
 – E.g. “WokThisWay’s food is awful”

• Desirable properties
 – Simple to use
 – Able to generate well-formed, human-like sentences
 – Trainable? Able to learn?
 – Variation in the output?

Template-based generation

• Most common technique in spoken language generation
• In simplest form, words fill in slots:
 “Flights from SRC to DEST on DATE. One moment please.”
• Most common sort of NLG found in commercial systems
• Used in conjunction with concatenative TTS to make natural-sounding output
Template-based generation: Pros & Cons

• Pros
 – Conceptually simple
 • No specialized knowledge needed to develop
 – Tailored to the domain, so often good quality

• Cons
 – Lacks generality
 • Repeatedly encode linguistic rules (e.g., subject-verb agreement)
 – Little variation in style
 – Difficult to grow/maintain
 • Each new utterance must be added by hand

Enhance template generation

• Templates can be expanded/replaced to contain information needed to generate more complex utterances

→ Need deeper utterance representations
→ Need linguistic rules to manipulate them
Components of a rule-based generator

- **Content planning**
 - What information must be communicated?
 - Content selection and ordering

- **Sentence planning**
 - What words and syntactic constructions will be used for describing the content?
 - Aggregation
 - What elements can be grouped together for more natural-sounding, succinct output?
 - Lexicalization
 - What words are used to express the various entities?

- **Realization**
 - How is it all combined into a sentence that is syntactically and morphologically correct?

- **Prosody assignment** (spoken language generation only)
 - How to produce appropriate speech based on the previous levels of representation?

Spoken language generation: pipeline architecture
Example

• Output from dialogue manager
 – Two assertions
 \[\text{has}(\text{WokThisWay}, \text{cuisine(bad)}) \]
 \[\text{has}(\text{WokThisWay}, \text{decor(good)}) \]
• Content planning
 – Select information ordering
• Sentence planning
 – Choose syntactic templates
 – Choose lexicon
 • bad \rightarrow awful; cuisine \rightarrow food quality
 • good \rightarrow excellent; decor \rightarrow décor
 – Aggregate the two proposition by merging objects
 – Generate referring expressions
 • ENTITY \rightarrow this restaurant

Example (continued)

• Realization
 – Choose correct verb inflection: HAVE \rightarrow has
 – No article needed for feature names
 – Convert sentence representation into a final string
 – Capitalize first letter and insert punctuation
• Prosody assignment
 – Standard pitch for an assertion
 – Emphasize user preference for food quality by increasing the voice intensity for modifier “awful”

\[\text{“This restaurant has awful food quality but excellent decor.”} \]
Content planning

- Typically look at spoken/textual data to characterize how information is
 - Selected
 - Ordered
 - Combined together

- A content planner will take a meaning representation and produce a content plan tree
 - Leaves are bits of information
 - Internal nodes are rhetorical relations (Mann & Thompson, 1988)
 - E.g. justification, contrast, inference, etc.

Example content plan tree

- For a restaurant recommendation
- Each leaf is associated with a syntactic template

![Example content plan tree diagram](image)
Sentence planning

• Three main tasks
 – Lexicalisation
 • Many ways to express entities and rhetorical relations
 – E.g. Justify(X,Y) → "X because Y"
 – E.g. CUISINE → "food"
 • Typically a domain lexeme database to avoid any misunderstanding
 – E.g. CUISINE → "food"
 – Aggregation
 – Referring expression generation

Sentence planning: aggregation

• Produces a shorter utterances and dialogues, but adds complexity

• Simple: combine two sentences using a conjunction

• Merge two sentences with same subject or same object
 – E.g. "The pizza is warm" + "The pizza is tasty"
 → "The pizza is warm and tasty"
 – E.g. "John bought a TV" "Sam bought a TV"
 → DOESN'T ALWAYS WORK!

• Syntactic embedding
 – E.g. "The pizza is warm" + "I’m eating the pizza"
 → "The pizza that I’m eating is warm"
 → "I’m eating the warm pizza"
Sentence planning: referring expressions

• How to refer to an entity?
 – Need to know if initial reference → dialogue history

 – Pronominalization algorithm
 • Trade-off between missed pronouns and inappropriate pronouns
 – Pronominalize all entities previously mentioned?
 No! Need to check for ambiguities, if entity with same person, gender and number was mentioned

Pipeline architecture

• Advantages
 – Modularity
 • Helps managing complexity
 • Components can be improved independently

• However
 – Lower level components can’t influence higher level generation decisions
 • E.g. if the utterance’s length needs to be controlled
 – Content and sentence planning decisions need to be influenced by the realizer
 – Many other research systems, but harder to maintain and scale up
 – Do humans use a pipeline?
Question

• If you had to build a dialogue system, which approach would you choose for your NLG component (between templates and more complex linguistic rules) and why? Feel free to choose a particular domain to support your case.
Making NLG trainable

• What does it mean?
 – Produce better language *automatically* by looking at a collection of existing texts

• Why?
 – Make it less domain dependent
 • Different sources of data for different domain
 – Produce more complex utterances
 • Requires less linguistic expertise
 • Idioms can’t be produced by rules
 • E.g. “This restaurant’s food is to die for”
 • E.g. “The service will make you want to kill yourself”

• How?
 – Overgenerate and rank
 • Produce various candidate utterances
 – Rule-based
 • Use a statistical model to rank them
 – Function assigning a score to utterances
 – Typically learned based on textual data

 • Pro
 – Initial generation can be imperfect
 » Conflicts between generation choices
 • Cons
 – Usually high number of utterances to choose from
 – Can be hard to extract good model from data
HALogen: combining rules with statistical language models

(Langkilde-Geary, 2002)

Input

Symbolic Generator
- Mapping rules
- Dictionaries
- Morphology

Output

Statistical Ranker
- Ngram model based on 250 million words of newspaper text

Example input format

(a1 / |conform,adapt|
 :AGENT (n1 / NONHUMAN-ANIMAL)
 :REASON (c1 / |alter>verbify|
 :GPI (e1 / |environ|)))
Example Input and Output

(a1 / [conform, adapt]
 :AGENT (n1 / NONHUMAN-ANIMAL)
 :REASON (c1 / [alter>verbify]
 :GPI (e1 / [environ])))

Not-so-ideal:
• Beasts are adjusting because of a surround’s alteration.
• Faunas conformed due to alteratia of environs.
• Because of changing of surroundings, creature adapts.

Ideal:
• The animals adapted because of environmental changes.

Recasting input for surface-level syntax

IF top level contains logical-subject, and also contains voice-passive, THEN map logical-subject to postmod, and add anchor=by.
Symbolic Generator

- Mapping rules (about 255 rules)
 1. Recast one input to another
 2. Add missing information to under-specified inputs
 3. Assign linear order to constituents
 4. Apply functions, such as morphological inflection

- Dictionaries
 A. Sensus dictionary, based on WordNet
 * (~100,000 words and concepts)
 B. Closed-class lexicon
 C. User-defined dictionary

- Morphology rules

Using statistical language model to prune choices

- How to select the best alternative?
 - Estimate the probability of occurrence based on a corpus: n-gram language models
 - Estimates the probability of a sentence, by counting words in a corpus
 \[
 P(r) = P(w_1, w_2, \ldots, w_n) = P(w_1)P(w_1 | w_2)P(w_n | w_1, \ldots, w_{n-1}) = \prod_{i=1}^{n} P(w_i | w_1, \ldots, w_{i-1})
 \]
 - Markov assumption: probability of a word does only depend on the n previous words
 \[
 P(w_i | w_1, \ldots, w_{i-1}) \approx P(w_i | w_{i-1}) = \frac{P(w_{i-1}, w_i)}{P(w_{i-1})}
 \]
N gram examples

• Bigram model (n = 2)

\[P(\text{I like drinking beer when I am not drunk}) \approx P(\text{I})P(\text{like}|\text{I})P(\text{drinking}|\text{like})P(\text{beer}|\text{drinking}) \]
\[P(\text{when}|\text{beer})P(\text{am}|\text{I})P(\text{not}|\text{am})P(\text{drunk}|\text{not}) \]

• Trigram (n = 3)

\[P(\text{I like drinking beer when I am not drunk}) \approx P(\text{I})P(\text{like}|\text{I})P(\text{drinking}|\text{I}, \text{like})P(\text{beer}|\text{like}, \text{drinking}) \]
\[P(\text{when}|\text{drinking, beer})P(\text{I}|\text{beer, when})P(\text{am}|\text{when, I}) \]
\[P(\text{not}|\text{I}, \text{am})P(\text{drunk}|\text{am, not}) \]

Computing N-grams

\[P(w_i | w_{i-1}) = \frac{\text{count}(w_{i-1}, w_i)}{\text{count}(w_{i-1})} \]

Slightly more complicated to deal with zeros (interpolation)
How well do n-grams make linguistic decisions?

Relative pronoun
- visitor who: 9
- visitors who: 20
- visitor which: 0
- visitors which: 0
- visitor that: 9
- visitors that: 14

Preposition (bigrams)
- in Japan: 5413
- to Japan: 1196
- came into: 244
- arrived into: 0
- came to: 2443
- arrived in: 544
- came in: 1498
- arrived to: 35

Preposition (trigrams)
- came to Japan: 7
- arrived to Japan: 0
- came into Japan: 1
- arrived into Japan: 0
- came in Japan: 0
- arrived in Japan: 4

Word Choice/Singular vs Plural
- reliance: 567
- reliances: 0
- trust: 6100
- trusts: 1083

How well does HALogen work?

• Minimally specified input frame (bigram model):
 It would sell its fleet age of Boeing Co. 707's because of maintenance costs increase the company announced earlier.

• Minimally specified input frame (trigram model):
 The company earlier announced it would sell its fleet age of Boeing Co. 707's because of the increase maintenance costs.

• Almost fully specified input frame:
 Earlier the company announced it would sell its aging fleet of Boeing Co. 707's because of increased maintenance costs.
N-gram modeling limitations

→ Higher n produces better results, but less data to estimate probability correctly!

→ Highly dependent on the source of text (newspaper articles)
 • Spoken language?

→ N-gram will never model deep relations in a sentence, like correct pronouns or distant subject-verb agreement
 • E.g. The restaurant which ... has ...

SPoT/SParKY:
A trainable generator with deeper linguistic features
(Walker et al. 2002)
Stochastic generation

- Randomly generate sentence plan trees from a content plan tree
 - Map rhetorical relations to clause combining operations
 \[\text{E.g.: justification} \rightarrow \text{since, because} \]
 \[\text{inference} \rightarrow \text{conjunction, period, merge} \]
 - Nodes are ordered

Generating Sentence Plans

- How to express each information?
 - Database of Deep Syntactic Structures (DSyntS, similar to parse trees)

- Operations combine DSyntS’s into larger DSyntS’s
Stochastic generation

- Last step: realization of each alternative
 - RealPro (Lavoie and Rambow 97)
 - Combines the syntactic structure (DSyntS) into a surface sentence, using rules of English (e.g. agreement)

"WokThisWay has the best overall quality among the selected restaurants since it is a Chinese restaurant, with good service, its price is 24 pounds, and it has good food quality."

"WokThisWay is a Chinese restaurant, with good food quality. It has good service. Its price is 24 pounds. It has the best overall quality among the selected restaurants."

Trainable sentence ranking

- Training the ranker
 - Training data: user ratings of sentences
 - Learning algorithm: RankBoost (Freund et al. 98)
 - Non linear function approximation algorithm, in which the function ranks its arguments
 - Generalizes user ratings for any new sentence
 - Compute ranking score

<table>
<thead>
<tr>
<th>Sentence</th>
<th>User A</th>
<th>User B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentence 1</td>
<td>4/5</td>
<td>5/5</td>
</tr>
<tr>
<td>Sentence 2</td>
<td>3/5</td>
<td>1/5</td>
</tr>
<tr>
<td>Sentence 3</td>
<td>2/5</td>
<td>3/5</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Trainable sentence ranking

- Want to learn user preferences, but how to represent each sentence plan tree in a finite way?
- Associate features to each alternative tree
 - Node counts of sentence plan tree

![Diagram of sentence plan tree with counts]

Evaluation Goals

- Major problem: not clear that quality is good enough for real systems
- Training evaluation: shows that the learning algorithm (RankBoost) did a good job learning from judges’ feedback
 - Compare the human score of the highest ranked alternative with the best alternative chosen by the judges
- But doesn’t show
 - That the output quality is good (for real people)
 - How the output quality compares to rule-based approaches or template approaches
Evaluation Experiment

- 60 subjects compared
 - 7 generators
 - On outputs for 20 text plans
 - Provided subjective rating on 1..5 scale

- Communicator: Template based generator
- SPoT: Trainable sentence planner
- Two Rule-based
- Two Baseline: No Aggregation, Random
- Best: human selection from Random

François Mairesse, University of Sheffield
Results of Evaluation (60 Subjects)

- Random worst, no aggregation second worst
- Rule-based systems scored in medium-range
- SPoT and template-based score equally well
- But SPoT was trained for this domain in days, template-based developed over ~ 2 years!
Linguistic Variation

- Use different models for ranking
 - E.g. n-gram models computed on texts with different style
 - Problem favor ‘average’ style
- A lot of variation is idiomatic
 - E.g. breaking the ice, beating around the bush
- Stored in human memory?
- Paraphrasing problem
 - Map a meaning representation to multiple realizations
 - Major problem: not much data available!

Paraphrase acquisition

- With a sentence-aligned corpus
 - Merge nodes of parse trees together recursively
 (Pang et al., 03)
 - Many false paraphrases
 - Sentence-aligned corpus hard to obtain, even more for spoken dialogues
Paraphrase acquisition

• Without aligned corpus: DIRT (Lin & Pantel, 2001)
 – Compute paths in parse trees
 • Leaves are arguments
 • E.g. N:subj,V:buy→V:from:N
 X buys something from Y

 – Based on the Distributional Hypothesis:
 If two paths tend to occur in similar contexts,
 the meanings of the paths tend to be similar

 – For each pair of paths, compute a similarity measure based on the
 number of occurrences with identical arguments

 – Resulting paraphrases are very noisy, produces antonym phrases

→ Still lot of work to be done!

Conclusion

• Complex dialogue needs NLG

• Template are simple to implement and produce good results for a very small domain and inflexible dialogues

• Rule-based NLG allows you to produce richer utterances, but still highly domain dependent

• Machine-learning viable alternative to hand-crafting in NLG, probably only option for systems with large generation capabilities