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Overview

NLG: what it is? what does it do?

Template-based generation
(canned text)

Rule-based generation
Trainable NLG
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Some applications

Simple report/letter writing
— WeatherReporter: textual weather reports
— STOP: personalised smoking-cessation letters

— ModelExplainer: UML diagrams description for software
development

Question answering about knowledge bases
Automated summarization of text
Machine translation

Dialogue systems

Frangois Mairesse, University of Sheffield

Inputs to a generator

» Content plan

— Meaning representation of what to communicate
» E.g. describe a particular restaurant

* Knowledge base
» E.g. database of restaurants

» User model

— Imposes constraints on output utterance
» E.g. user wants short utterances

+ Dialogue history
» E.g. to avoid repetitions, referring expressions

Frangois Mairesse, University of Sheffield




Natural language generation
objectives

* From a meaning representation of what to say
— E.g. entities described by features in an ontology
— E.g. has(WokThisWay, cuisine(bad))

« Output: a natural language string describing the
input
— E.g. “WokThisWay’s food is awful’

* Desirable properties
— Simple to use
— Able to generate well-formed, human-like sentences
— Trainable? Able to learn?
— Variation in the output?
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Template-based generation

Most common technique in spoken
language generation

In simplest form, words fill in slots:

“Flights from SRC to DEST on DATE. One moment
please.”

Most common sort of NLG found in
commercial systems

Used in conjunction with concatenative TTS
to make natural-sounding output
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Template-based generation:

Pros & Cons
* Pros

— Conceptually simple
* No specialized knowledge needed to develop

— Tailored to the domain, so often good quality

 Cons

— Lacks generality
» Repeatedly encode linguistic rules (e.g., subject-verb agreement)
— Little variation in style

— Difficult to grow/maintain
» Each new utterance must be added by hand
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Enhance template generation

» Templates can be expanded/replaced to
contain information needed to generate
more complex utterances

- Need deeper utterance representations

- Need linguistic rules to manipulate
them
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Components of a
rule-based generator

Content planning
— What information must be communicated?
» Content selection and ordering

Sentence planning
— What words and syntactic constructions will be used for describing
the content?
« Aggregation

— What %Iements can be grouped together for more natural-sounding, succinct
output?

* Lexicalization
— What words are used to express the various entities?

Realization

— How is it all combined into a sentence that is syntactically and
morphologically correct?

Prosody assignment (spoken language generation only)

— How to produce appropriate speech based on the previous levels of
representation?
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Spoken language generation:
pipeline architecture

Content
Planner

What to say

Sentence
Planner

Surface
Realizer

Prosody
Assigner

Speech
Synthesizer

How to Say It

What is Heard

Dialogue
Manager

Spoken Language Generation
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Speech
Synthesis




Example

* Output from dialogue manager

— Two assertions

has(WokThisWay, cuisine(bad))
has(WokThisWay, decor(good))

+ Content planning HAVE

— Select information ordering Subsi .
+ Sentence planning
— Choose syntactic templates >  ENTITY FEATURE

— Choose lexicon \
+ bad > awful; cuisine = food quality MODIFIER
» good > excellent; decor -> décor

— Aggregate the two proposition by merging objects
— Generate referring expressions
* ENTITY - this restaurant
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Example (continued)

» Realization
— Choose correct verb inflection: HAVE > has
— No article needed for feature names
— Convert sentence representation into a final string
— Capitalize first letter and insert punctuation
* Prosody assignment
— Standard pitch for an assertion

— Emphasize user preference for food quality by increasing the voice
intensity for modifier “awful”

> “This restaurant has awful food quality
but excellent decor.”
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Content planning

» Typically look at spoken/textual data to characterize
how information is
» Selected
» Ordered
» Combined together

» A content planner will take a meaning representation
and produce a content plan tree
— Leaves are bits of information

— Internal nodes are rhetorical relations
(Mann & Thompson, 1988)

» E.g. justification, contrast, inference, etc.
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Example content plan tree

» For a restaurant recommendation

» Each leaf is associated with a syntactic
template

Jjustify

nuclens: <1> infer
assert=reco— o
best

satellite: <2> satellite: <3> satellite: <4> satellite: <5>
assert-reco— assert-reco— assert-reco— assert-reco—
cuisine food—quality service price
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Sentence planning

 Three main tasks

— Lexicalisation

* Many ways to express entities and rhetorical relations

— E.g. Justify(X,Y) - “X because Y”
- “X'since Y”

» Typically a domain lexeme database to avoid any
misunderstanding

— E.g. CUISINE - “food”

— Aggregation
— Referring expression generation
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Sentence planning: aggregation

Produces a shorter utterances and dialogues, but adds
complexity

Simple: combine two sentences using a conjunction

Merge two sentences with same subject or same object
— E.g. “The pizza is warm” + “The pizza is tasty”
- “The pizza is warm and tasty”
— E.g. “John bought a TV” “Sam bought a TV”
-> DOESN'T ALWAYS WORK!

Syntactic embedding
— E.g. “The pizza is warm” + “I'm eating the pizza”
- “The pizza that I'm eating is warm”
- “I'm eating the warm pizza”
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Sentence planning:
referring expressions

* How to refer to an entity?
— “The Frog & Parrot”, “The pub”, “It”, etc.

— Need to know if initial reference
—> dialogue history

— Pronominalization algorithm
» Trade-off between missed pronouns and inappropriate
pronouns
— Pronominalize all entities previously mentioned?

No! Need to check for ambiguities, if entity with same
person, gender and number was mentioned
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Pipeline architecture

» Advantages

— Modularity
* Helps managing complexity
» Components can be improved independently
» However
— Lower level components can'’t influence higher
level generation decisions

» E.g. if the utterance’s length needs to be controlled

— Content and sentence planning decisions need to be
influenced by the realizer

— Many other research systems, but harder to
maintain and scale up

— Do humans use a pipeline?
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Question

If you had to build a dialogue system,
which approach would you choose for
your NLG component (between
templates and more complex linguistic
rules) and why? Feel free to choose a
particular domain to support your case.
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Trainable NLG
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Making NLG trainable

 What does it mean?

— Produce better language automatically by
looking at a collection of existing texts

« Why?
— Make it less domain dependent
« Different sources of data for different domain

— Produce more complex utterances
* Requires less linguistic expertise
* Idioms can’t be produced by rules
» E.g. “This restaurant’s food is to die for”
* E.g. “The service will make you want to kill yourself’
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Making NLG trainable

* How?
— Overgenerate and rank
* Produce various candidate utterances
— Rule-based
» Use a statistical model to rank them

— Function assigning a score to utterances
— Typically learned based on textual data

* Pro
— Initial generation can be imperfect
» Conflicts between generation choices
» Cons
— Usually high number of utterances to choose from
— Can be hard to extract good model from data
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HALogen: combining rules with

statistical language models
(Langkilde-Geary, 2002)

Input Output

} I

Symbolic Statistical
Generator RENIEN

*Mapping rules >« Ngram model
oDictionaries Packed set of based on 250

*Morphology expressions | million words of
newspaper text
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Example input format

(al / |conform,adapt|
:AGENT (nl / NONHUMAN-ANIMAL)
:REASON (cl / Jalter>verbify|
:GPI (el / |environs]|)))
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Example Input and Output

(al / |conform, adapt |
:AGENT (nl / NONHUMAN-ANIMAL)
:REASON (cl / |alter>verbify|
:GPI (el / |environs])))

Not-so-ideal:

» Beasts are adjusting because of a surround’s alteration.
» Faunas conformed due to alteratia of environs.

» Because of changing of surroundings, creature adapts.

Ideal:

« The animals adapted because of environmental
changes.
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Recasting input for
surface-level syntax

IF top level contains logical-subject,
and also contains veice=passive,
logical-object <cuisine THEN map logical-subject to

postmod ( / <venue> postmod, and add anchor=by.
:anchor b
o> “<Cuisine> is served by
{ B <venue>.”
:anchor by))
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Symbolic Generator

» Mapping rules (about 255 rules)
1. Recast one input to another
2. Add missing information to under-specified inputs
3. Assign linear order to constituents
4. Apply functions, such as morphological inflection

» Dictionaries
A. Sensus dictionary, based on WordNet
= (~100,000 words and concepts)
B. Closed-class lexicon
C. User-defined dictionary

» Morphology rules
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Using statistical language model
to prune choices

 How to select the best alternative?

— Estimate the probability of occurrence based on a
corpus: n-gram language models

» Estimates the probability of a sentence, by counting
words in a corpus

P(t) = P(wiwa...wy) = P(w)P(wi|w2)P(wy|wi,...,wu_1)
n
= .[—[lP(W;"H],..'H'F',|)
—

* Markov assumption: probability of a word does only
depend on the n previous words

P(wi_1,wi)

P(wilwy..owiq) = P(wiw;_1) = P{wi_1)
i1
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N gram examples

» Bigram model (n = 2)
P(Ilike drinking beer when I am not drunk) ==
P(I)P(like|I)P(drinking|like) P(beer|drinking)
P(when|beer)P(am|I)P(not|am)P(drunk|not)

* Trigram (n = 3)
P(I like drinking beer when I am not drunk) ~
P(I)P(like|l)P(drinking|l, like) P(beer|like, drinking)
P(when|drinking, beer)P(I|beer, when) P(am|when, I)
P(not|l,am)P(drunk|am,not)
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Computing N-grams

count(w, ;,w,)

P(W |W ) count(W,-_1)

Slightly more complicated to deal with
zeros (interpolation)
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How well do n-grams make
linguistic decisions?

Relative pronoun Preposition (bigrams)

visitor who 9 visitors who 20 in Japan 5413 to Japan 1196

visitor which 0 visitors which 0 came into 244  arrived into 0

visitor that 9 visitors that 14 came to 2443 arrived in 544
came in 1498 arrivedto 35

Preposition (trigrams)

came to Japan 7 arrived to Japan 0
came into Japan 1 arrived into Japan 0
came in Japan O arrived in Japan 4

Word Choice/Singular vs Plural
reliance 567 reliances O
trust 6100 trusts 1083
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How well does
HALogen work?

» Minimally specified input frame (bigram model):

It would sell its fleet age of Boeing Co. 707s because of
maintenance costs increase the company announced
earlier.

Minimally specified input frame (trigram model):
The company earlier announced it would sell its fleet age of
Boeing Co. 707s because of the increase maintenance
costs.

Almost fully specified input frame:

Earlier the company announced it would sell its aging fleet
of Boeing Co. 707s because of increased maintenance
costs.
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N-gram modeling limitations

- Higher n produces better results, but less data to
estimate probability correctly!

- Highly dependent on the source of text (hewspaper
articles)
* Spoken language?

- N gram will never model deep relations in a

sentence, like correct pronouns or distant subject-
verb agreement

» E.g. The restaurant which ... has ...

iresse, University of Sheffield

SPoT/SParKY:
A trainable generator with

deeper linguistic features
(Walker et al. 2002)
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Stochastic generation

+ Randomly generate sentence plan trees from a
content plan tree
— Map rhetorical relations to clause combining operations
E.g. justification > since, because
inference > conjunction, period, merge
— Nodes are ordered

Justify CW-SINCE-NS-justify

nuclens: <t infer assert-reco— CW-CONJUNCTION-infer
assert-reco—
best hest

satellite: <2>  satellite: <3>  satellite: <> satellite: <35> WITH-NS-infer CW-CONJUNCTION=infer
assert-reco— assert-reco— aAsse e assert-reco—
cuisine Tood-quality ervice price

assert-reco- assert-reco- assert-reco-  assert-reco-
cuisine service price food—guality
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Generating Sentence Plans

* How to express each information?

- Database of Deep Syntactic Structures (DSyntS, similar
to parse trees)

offer
SUBJ

OBJ

RESTAURANT value among
NAME NMOD ‘

exceptional  restaurant

selected

* Operations combine DSyntS’s into larger DSyntS’s
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Stochastic generation

» Last step: realization of each alternative

— RealPro (Lavoie and Rambow 97)

+ Combines the syntactic structure (DSyntS) into a
surface sentence, using rules of English (e.g.
agreement)

“WokThisWay has the best overall quality among the selected
restaurants since it is a Chinese restaurant, with good service, its
price is 24 pounds, and it has good food quality.”

“WokThisWay is a Chinese restaurant, with good food quality. It has
good service. Its price is 24 pounds. It has the best overall quality
among the selected restaurants.”
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Trainable sentence ranking

+ Training the ranker
— Training data: user ratings of sentences

Blah

1 Sl User A UserB
iE:
A

Blah...
Sentence 1 4/5 5/5

: - Sentence 2 3/5 1/5
gﬂ " Sentence3 2/5  3/5

— Learning algorithm: RankBoost (Freund et al. 98)

+ Non linear function approximation algorithm, in which the function ranks its
arguments

— Generalizes user ratings for any new sentence
» Compute ranking score
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Trainable sentence ranking

Want to learn user preferences, but how to
represent each sentence plan tree in a finite way?

Associate features to each alternative tree
— Node counts of sentence plan tree

@ Traversal ( WITH-NS-infer,
WITH-NS=infer assert-reco-cuisine,

assert-reco-service )

&ISS("rl__ reco= “ssm‘t,_“"w_ '_—l Leaves-under ( WITH-NS-infer ) = 2
cuisine service

Leaves ( assert-reco-cuisine, assert-reco-service ) = 1
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Evaluation Goals

» Major problem: not clear that quality is good enough for real systems

» Training evaluation: shows that the learning algorithm (RankBoost) did
a good job learning from judges’ feedback

— Compare the human score of the highest
ranked alternative with the best alternative chosen by the judges

B Random
Spot
M Best

+ But doesn’t show
— That the output quality is good (for real people)
— How the output quality compares to rule-based approaches or template
approaches
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Evaluation Experiment

60 subjects compared

— 7 generators

— On outputs for 20 text plans

— Provided subjective rating on 1..5 scale

Communicator: Template based generator
SPoT: Trainable sentence planner

Two Rule-based

Two Baseline: No Aggregation, Random
Best: human selection from Random
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Dialog Context So Far (applies to all versions of the system utterance)
SVETEM: Flying to Dallas, What departure airport was that?

USER: from Newark on September the first
<iabler

Possible variants for next dialog uiterances by system Consider the following statement: The spsfem's ufferance 13 easy fo understand, well-formed, and appropriate to the
dialogue confexf. For sach variant, please rate to what extent you agree with this statement

1. What time would youlike to fly on September the 1 to DALLAS from Newark?
' Completely dissgges {1 Somwbur dissgres € Heithar szpee nor disszres ) Somewhat szpee (1 Complasly szpee

2. Leaving onthe 1. Leaving in September. Going to DALLAS. Leaving from Newatk, What time would vou like to leave?
) Completaly disszree € Somwbut dissgres € Hether azree mor diszres ) Somehat szres () Completaly szpes

3. What time would youlike to travel on September the 1 to DALLAS from Newark?
' Completely dissgree (| Soomevbut disagree £ Heither agpee mor dissgres ' Somevhat sgree (' Completely sgpes
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Results of Evaluation
(60 Subjects)

[0 Random

H No Agg.

[0 Rule-Based 1

0 Rule-Based 2
[ Best

H Spot

[0 Communicator
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Results of Evaluation

Random worst, no aggregation second worst
Rule-based systems scored in medium-range
SPoT and template-based score equally well

But SPoT was trained for this domain in days,
template-based developed over ~ 2 years!
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Linguistic Variation

Use different models for ranking

— E.g. n-gram models computed on texts with
different style
* Problem favor ‘average’ style

A lot of variation is idiomatic

— E.g. breaking the ice, beating around the bush
Stored in human memory?

Paraphrasing problem

— Map a meaning representation to multiple
realizations

— Major problem: not much data available!
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Paraphrase acquisition

» With a sentence-aligned corpus

— Merge nodes of parse trees
together recursively
(Pang et al., 03)

— Many false paraphrases

— Sentence-aligned corpus hard to obtain, even more for spoken
dialogues
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Paraphrase acquisition

* Without aligned corpus: DIRT (Lin & Pantel, 2001)

— Compute paths in parse trees
» Leaves are arguments
« Eg N:subj:V<&buy—>V:from:N
X buys something from Y
They had previ

— Based on the Distributional Hypothesis:
If two paths tend to occur in similar contexts,
the meanings of the paths tend to be similar

— For each pair of paths, compute a similarity measure based on the
number of occurrences with identical arguments

— Resulting paraphrases are very noisy, produces antonym phrases

> Still lot of work to be done!
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Conclusion

Complex dialogue needs NLG

Template are simple to implement and produce
good results for a very small domain and inflexible
dialogues

Rule-based NLG allows you to produce richer
utterances, but still highly domain dependent

Machine-learning viable alternative to hand-
crafting in NLG, probably only option for systems
with large generation capabilities
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