LCDS revision #### **Design principles &** levels of service Brian Deegan & Paul Lavelle LCC Policy Forum 10.10.13 Transport for London THE MAYOR'S **VISION FOR** CYCLING IN LONDON #### What's new in LCDS (1)? - Response to changing policy context (Vision, Go Dutch, APPCG) - Driving quality through current investment (Superhighways, Quietways, Grid, Mini-Hollands) - Integration with spatial planning and urban design - New quality framework: - design principles - level of service assessment - Defining best practice & drawing on international benchmarking - Dealing with interaction with other modes - Promoting innovation and trialling #### What's new in LCDS (2)? - More design options for segregated / lanes and tracks, and their interaction with other infrastructure - More and clearer ways of achieving cycle priority - Emphasising the importance of area permeability for cycling, and of areawide traffic management/reduction - Guidance on off-highway cycling - Expanded guidance on cycle parking - Dealing with cyclists at road works and long-term development areas - Phased implementation of cycling infrastructure #### **Design Principles** #### **SAFETY** Separation / protection from motor traffic Low speed / vehicle restricted environments Subjective and actual safety – day/night Considerate, consensual behaviour by all users #### **DIRECTNESS** Convenient, connected, visible routes Minimise deviations Permeability – closures, exemptions Design speed of cyclists #### **COMFORT** Smooth riding surface Design for effective width Minimise undulations, gradients, deflections, pot holes Well-sited, secure cycle parking #### **COHERENCE** Continuous network Consistent standards of provision Legibility & wayfinding Simple, appropriate to the place #### **ATTRACTIVENESS** Tidier, decluttered streets Integration with kerbside activity Wider environmental enhancements Improvement of pedestrian accessibility #### **ADAPTABILITY** Durable, easy to maintain Allowing good interchange between modes Cycling facilities kept open during roadworks Temporary and trial layouts Able to grow over time ### New strategic framework for cycling interventions: the Roads Task Force report Cyclists take one less sick day per year than non-cyclists, estimated to save UK business £128m per year and potentially £2bn over the next ten years²⁰. - more efficient/flexible use of space - managing demand by shifting to more sustainable modes - improved safety for vulnerable road users #### The RTF's vision focuses on three core aims: - To enable people and vehicles to move more efficiently on London's streets and roads - To transform the environment for cycling, walking and public transport - To improve the public realm and provide better and safer places for all the activities that take place on the city's streets, and provide an enhanced quality of life ### Cycling facilities by RTF 'Street-type' **Movement Function** #### Work on a "Cycling Level of Service Assessment Tool" | | | aliat Laural of Com- | : A | 'a al | | Ī | |--------------------------------|-------------------------------------|--|---|---|--|---------------------------| | Sections that fail to meet the | | receive no score. This may i | | | | ļ | | Principle | Measurement
Factor | Indicator | | core (for referenc | e) | ROUTE/LINK/JUNCTION SCORE | | Principle | Factor | Leftright hook at junctions | Side road junctions frequent
and/or untreated | 2 (Amber) Side road junctions fewer and with effective entry treatments | Side roads closed or treated
to blend in with footway | | | | | Collision alongside or from
behind | Cyclists in unrestricted traffic
lanes or cycle lanes less than
2m wide | Cyclists in cycle lanes at least
2m wide on carriageway | Cyclists away from
unrestricted traffic | | | | Collision risk | Kerbside activity (bus stops,
parking loading) or collision
with open door | Frequent lerbside activity on
nearside of cyclists –
narrowino cycle lanes | Less frequent kerbside
activity on nearside of cyclists
- wide cycle lanes | Segregated cycle lanes
(floating kerbside activity) or
no kerbside activity | | | | | Other vehicle fails to give way
or disobeys signals | Poor visibility, route continuity
across junctions and
understanding of priority | Clear route continuity through
junctions / good visibility and
understanding or priority | Oycle priority at signalled and
uncontrolled junctions | | | Safety | | Separation from heavy traffic | Cyclists in unrestricted traffic
lanes or cycle lanes less than
2m wide | Cyclists in cycle lanes at least
2m wide on carriageway | Cyclists away from
unrestricted traffic | | | | Feeling of safety | (If not segregated) Speed of traffic | 85% percentile greater than
35mph | 85% percentile 25-35mph | 85% percentile less than
25mph | | | | reeling of salety | (If not segregated) Volume of
traffic | Greater than 20,000 AADT | 5,000 - 20,000 AADT | Less than 5,000 AADT | | | | | Interaction with heavy traffic (HGVs and buses) | Frequent interaction between
cyclists and HGVs/buses | Occasional interaction
between cyclists and
HGVs/buses | No interaction between
cyclists and HGVs/buses | | | | | Risk/lear of crime
Lighting | High fear of crime
Large stretches of darkness | Low fear of crime
Small stretches of darkness | No fear of crime
Route lit thoroughly | | | | Social safety | Isolation | Route passes far from other
activity | Route always close to activity | Route always overlooked | | | | - | Highway environment
behavlour | Highway design encourages
aggressive user behaviour | Highway design controls
behaviour | Highway design encourages
civilised behaviour through
negotiation and forgiveness | | | | Journey time | Ability to maintain own speed
on links | Cyclists travel at speed of
slowest vehide/cycle ahead | Cyclists can usually pass
traffic and other cyclists | Cyclists can always choose
their own speed (within
reason) | | | Directness | | Delay at junctions | Cyclists journey time longer
than motor vehicles | Cyclists journey time around
the same as motor vehicles | Cyclists can bypass signals or
have their own stage | | | | Directness | Directness of route | Cycle route longer or with
more turns than main road | Cycle route around the same
length and turns as main road | Cycle route shorter or has
fewer turns than main road | | | Coherence | Connections | Ability to join/feave route
safety and easily, consider
left and right turns | Cyclists cannot connect to
other roules without
dismounting or rushing | Cyclists can connect to other routes | Cyclists have dedicated
connections to other routes
provided | | | | | Density of other routes | No other safe routes around | Some other safe routes
around | Dense network of cycle
routes | | | | Wayfinding | Signing
Density of defects including | Easy to get lost | Hard to get lost | Impossible to get lost | | | | Surface quality | non cycle friendly ironworks,
raised/sunken covers/quilles | Numerous defects Handrolled HRA, Unstable | Minor defects Machine laid HRA, smooth | Smooth high grip surface
SMA, smooth and firm blocks | | | | Surface material | Pavement construction Allocated riding zone range. | bibcis/sets | blocks | undisturbed by turning heavy
vehicles | | | Comfort | Effective width without
conflict | Segregated or nearside lane
allocation each direction
Uphill gradient over 100m | <1.5m | 1.5-2.0m | >2.0m | | | | Gradient | range
Pinch points caused by | <5% | 35% | >3% | | | | Deflections | horizontal deflections (non
segregated) | Lane width 3.2-4.0m | Lane width <3.2m | Lane width >4.0m | | | | Undulations | Vertical deflections
Highway layout, function and | High impact round top humps | Sinusoidal humps
Some priority given to walking | None | | | | Prioritise walking and
cycling | road markings adjusted to
promote walking and cyding
SUDS/green infrastructure or | Little priority given to walking
and cycling | and cycling on minor
junctions | Priority given to walking and
cycling | | | | Greening/SUDS | sustainable materials
incorporated into design | No greening element | Some greening elements | Full integration of greening
elements | | | Affractiveness | Air quality
Street family | PM 10 & NOX values
Appropriate design for link | High (exceeding EU levels) Poor match | Medium
Some compromises | Low
Good fit for surroundings | | | Agractiveness | Minimise street clutter | and place
Signage required to support
scheme layout | Large amounts of signage to
conform with regulation due
to counter intuitive or over
engine ered solutions | Moderate amount of signage
particularly around junctions | Signage for wayfinding purposes only | | | | Secure cycle parking | Ease of access to secure
cycle parking within
businesses and on street | No additional cycle parking
provided or small provision in
insecure non overlooked
areas | Some cycle parking provided
but not enough to meet
demand | Cycle parking provided to
meet demand | | | | Public transport integration | Smooth transition between
modes or route continuity
maintained through bus/train
interchanges | No consideration for cyclists
within interchange area | Cycle route continuity
maintained through
interchange and some cycle
parking available | Cycle route continuity
maintained and secure cycle
parking provided. Transport
of cycles available. | | | Adaptability | Flexibility | Facility can be expanded or
layouts adopted within area
constraints in order to counter
collision risk or an increase in
demand. Utility road works
can be managed without
route severance | No adjustments are possible
within constraints and road
works will lead to circuitous
diversion routes. | Links can be adjusted to meet
demand but junctions are
constrained by motor vehicle
capacity limitations. Some
road works will require
closure | Layout can be adapted freely
without constrain to meet
demand or collision risk.
Adjustments can be made to
maintain full route quality
when roadwork's are present | | | | | | Provision struggles to cope | | | | | | Growth enabled | Route matches predicted
usage and has exceedence
built into the design | with existing cycling demand
which could lead to conflict
with other modes | Provision is matched to
predicted demand flows | Provision has spare capacity
for large increases in
predicted cycle use
TOTAL | Max 9 | - Measurable criteria, grouped by Design Principle - Developed from IHT tool, Go Dutch matrix, emerging TfL best practice - Applicable to individual schemes, options or route choices - Adjustable to fit different route types ### SAFE – Objective and Subjective (48/100points) #### Cyclist Level of Service Assessment Tool Low level scores on critical factors must be mitigated through realignment or highway layout changes irrespective of high scores in other categories | Measurement | | | | Score (for reference) | ROUTE/LINK/JUNCTION SCORE | | | |-------------|-------------------|--|---|---|--|--|------------| | Principle | Factor | Indicator | 0(Red) | 1 (Amber) | 2 (Green) | | 1 | | | | Left/right hook at junctions | Side road junctions frequent
and/or untreated. Major
junctions conflicting
movements not seperated | treatments. Major junctions | Side roads closed or treated
to blend in with footway.
Major junction all conflicting
streams seperated | | Criti | | | | Collision alongside or from behind | Cyclists in unrestricted
traffic lanes or cycle lanes
less than 2m wide | Cyclists in semi segregated cycle lanes at least 2m wide on carriageway | Cyclists away from unrestricted traffic | | Criti
6 | | | Collision risk | Kerbside activity (bus stops, parking loading) or collision with open door | | Less frequent kerbside
activity on nearside of
cyclists – wide cycle lanes | Segregated cycle lanes
(floating kerbside activity)
when frequent or no
kerbside activity | | Critic | | | | Other vehicle fails to give way or disobeys signals | Poor visibility, route continuity across junctions and understanding of priority | Clear route continuity
through junctions / good
visibility and understanding
or priority. Cyclist priority
across minor junctions | Cycle priority at signalled and uncontrolled junctions | | 2 | | Safety | | Separation from heavy traffic | Cyclists in unrestricted
traffic lanes or cycle lanes
less than 2m wide | least 7m wide on | Cyclists away from unrestricted traffic | | 2 | | | | (If not segregated) Speed of traffic | 85% percentile greater than 25mph | 85% narcantile 711-75mnh | 85% percentile less than 20mph | | Critic | | | Feeling of safety | (If not segregated) Volume
of traffic expressed as
Vehicle Risk Unit (VRU) | >5000 VRU per day | 2000-5000 VRU per day | <2000 VRU per day | | Critic | | | | Interaction with heavy traffic (HGVs and buses) | Frequent interaction
between cyclists and
HGVs/buses | hatwaan cyclicte and | No interaction between cyclists and HGVs/buses | | Critic | | | | Risk/fear of crime | High fear of crime due to
ambush spots, loitering,
poor street maintenance | | No fear of crime as high quality streetscene and pleasant interaction | | 2 | | | | Lighting | Large stretches of darkness | Small stretches of darkness | Route lit thoroughly | | 2 | | | Social safety | Isolation | Route passes far from other activity | Route always close to | Route always overlooked | | 2 | | | | Highway environment
behaviour | Highway design encourages
aggressive user behaviour | | Highway design encourages
civilised behaviour through
negotiation and forgiveness | | 2 | ### **COMFORT – Objective (20/100points)** | | Surface quality | Density of defects including non cycle friendly ironworks, raised/sunken covers/gullies | Numerous | | Smooth high grip
surface | 6 | Critical | |---------|----------------------------------|---|-----------------------------|--|---|---|----------| | | INITTACA MATATIAL | Pavement construction with Hot Rolled Asphalt, Stone Mastic Asphalt or blocks/bricks/sets | blocks/sets | HRA, smooth | SMA, smooth and firm blocks undisturbed by turning heavy vehicles | | | | Comfort | Effective width without conflict | 1 | < /m | 2.0 - 2.5m
Superhighway
1.5m to 2m
Quietway | >2.5m
Superhighway
>2m Quietway | e | Critical | | | Gradient | Uphill gradient over 100m range | >5% | 3-5% | <3% | | | | | Deflections | Pinch points
caused by
horizontal
deflections (non
segregated) | Lane width 3.2-
4.0m | Lane width <3.2m | Lane width >4.0m | 2 | | | | Undulations | Vertical
deflections | High impact round top humps | Sinusoidal humps | None | 2 | | ### **DIRECT – Objective and Subjective (8/100points)** | Directness | Journey time | own speed on | speed of slowest | Iligijaliv nagg frattic | Cyclists can
always choose
their own speed
(within reason) | | |------------|---------------|----------------------|---|---|---|---| | | | Delay at junctions | time longer than | Cyclists journey time around the same as motor vehicles | Cyclists can
bypass signals or
have their own
stage | 2 | | | Value of Time | private car use | use value due to
uncomfortable and
stressful conditions | delay inducing | <pre><private attractive="" car="" due="" nature="" of="" pre="" route<="" to="" use="" value=""></private></pre> | | | | Directness | Directiless of foute | against straight line or main road | against straight
line or main road
alternative 20 - | Deviation factor
against straight
line or main road
alternative <20% | 2 | ### **COHERENT – Objective and Subjective (6/100points)** | Coherence | Connections | join/leave
route safely
and easily:
consider left | other routes
without | Cyclists can connect to other routes | Cyclists have dedicated connections to other routes provided | 2 | |-----------|-------------|--|-------------------------|--------------------------------------|--|---| | | | other routes | Network density mesh | density mesh | Network
density mesh
width <250m | 2 | | | Wayfinding | Sianina | . , , | Hard to get
lost | Impossible to get lost | 2 | ### **ATTRACTIVE – Objective and Subjective (12/100points)** | | Impact on walking | Highway layout,
function and road
markings adjusted
to minimise impact
on pedestrians | Reduction in quality of provision for pedestrians | no impact on
nedestrian provision. | Pedestrian provision
enhanced by cycling
provision | | |----------------|----------------------------|---|--|--|--|---| | | Greening | Green infrastructure or sustainable materials incorporated into design | No greening | | Full integration of greening elements | | | | Air quality | PM10 & NOX values referenced from concentration maps | High (exceeding EU levels) | Medium | Low | | | Attractiveness | Noise polution | Noise level from recommended riding range | >78DB | 65-78DB | <65DB | | | | Minimise street
clutter | Signage required to support scheme layout | | Moderate amount of
signage particularly
around junctions | _ | | | | Secure cycle parking | Ease of access to secure cycle parking within businesses and on street | No additional cycle parking provided or small provision in insecure non overlooked areas | nraviada nut nat | Cycle parking
provided to meet
demand | 0 | ### **ADAPTABLE- Objective and Subjective (6/100points)** | | Public transport integration | Smooth transition between modes or route continuity maintained through bus/train interchanges | No consideration
for cyclists within
interchange area | Cycle route continuity maintained through interchange and some cycle parking available | Cycle route continuity maintained and secure cycle parking provided. Transport of cycles available. | | |--------------|------------------------------|--|--|--|---|---| | Adaptability | Flexibility | Facility can be expanded or layouts adopted within area constraints in order to counter collision risk or an increase in demand. Utility road works can be managed without route severance | No adjustments are possible within constraints and road works will lead to circuitous diversion routes | Links can be adjusted to meet demand but junctions are constrained by motor vehicle capacity limitations. Road works will not require closure; cycling will be maintained although route quality may be compromised to some extent | Layout can be adapted freely without constrain to meet demand or collision risk. Adjustments can be made to maintain full route quality when roadwork's are present | | | | Growth enabled | Route matches predicted usage and has exceedence built into the design | Provision struggles to cope with existing cycling demand which could lead to conflict with other modes | Provision is
matched to
predicted demand
flows | Provision has spare capacity for large increases in predicted cycle use | 0 | ### +Separation of streams, slow circulating traffic -Large area required, Intuitive? # +Protected space for cycling, benefits for all users -Bus stop conflict, relies on good will ### +Bicycle street, usable by all bike types - Access for residents # +Bypass bus stop without mixing with traffic -Pedestrian cycle conflict if high bus use # +Good cut through, well lit, dropped kerb flush -Narrow footway, line marking on footway? Barking and Dagenham ## +Wide, good surface quality, pleasant, greenway -No lighting so intimidating at night ### +Cycle route through closure, street trees, open feel -Positioning could be more central to avoid conflict? # +Access through closure, streetscape, open -Traffic calming on a cycle track? - +Ingenious way to end two way track and allow all movements at signalised junction - -Counter intuitive, tight entrance to general traffic ### +Offside segregated cycle track ### -Only one direction catered for, left or straight on ## +Bridge protection incorporating segregation, wide -Wide enough to overtake easily without clipping # +Symbols placed perfectly, dooring zone gap -Ambiguity at junction? ## +Two way cycle route that avoids heavy bus route -Taking provision away from pedestrians Hammersmith & Fulham ## +Cycle Track feeding into ASL -Footway too narrow <1.8m, Symbols badly placed Hammersmith & Fulham # +Clear route through paving, single level -Conflict downhill with pedestrians? ### +Cycle lane maintained up to junction -Cycle lane leads to kerb buildout and parking bay ## +High quality lighting provided on park route -Unmade path needs upgrading (better use of ## +Clear route to toucan, shared area, safe crossing -Pedestrians tripping on antiskid? ## +Red surface to indicate potential for conflict -No deflection on roundabout entry/exit so high ### +Reallocation of road space to accommodate ACL -Primary road position may be better past side road, ## +Remove central hatching to accommodate ACL -Why not MCL is no parking allowed? ### +Permeability through a narrow road ### -Pedestrian conflict in town centre # +Offside lane inside offside bus lane -Difficult to access, PGR and footway division ### +Two way track and traffic calming on road, hybrid -Footway width, pedestrian permeability across? ## +Narrow segregation island ,<450mm clearance -Risk of vehicle strike on signal post? ### +Rubber traffic island 500mm wide ### -Temporary look and feel? # +Maintain route continuity through junction -ls secondary road position advisable? ### Full consultation planned for November