Lenovo Flex System EN2092 1Gb Ethernet Scalable Switch

Lenovo Press Product Guide

The Lenovo® Flex System™ EN2092 1Gb Ethernet Scalable Switch enables administrators to offer full Layer 2 and 3 switching and routing capability with combined 1 Gb and 10 Gb external ports in a Flex System chassis. Such consolidation simplifies the data center infrastructure and helps reduce the number of discrete devices, management consoles, and management systems while leveraging the 1 Gb Ethernet infrastructure. In addition, the next-generation switch module hardware supports IPv6 Layer 3 frame forwarding protocols. This Scalable Switch delivers cost savings with flexible port mapping and Features on Demand upgrades, efficient traffic management, increased external bandwidth, and strong Ethernet switching price/performance.

Figure 1 shows the switch module.

Did you know?

The base switch configuration comes standard with 24x 1 GbE port licenses that can be assigned to internal or external 1 GbE connections or even external SFP+ ports with flexible port mapping. For example, this feature allows you to trade off one external 1 GbE RJ-45 port for one internal 1 GbE port (or vice versa) or trade off ten 1 GbE ports for one 10 GbE port. You then have the flexibility of turning on more ports when you need them using Lenovo's Features on Demand upgrade licensing capabilities that provide “pay as you grow” scalability without the need to buy additional hardware.

Delivering advanced virtualization awareness and cloud readiness helps simplify management and automates VM mobility by making the network VM aware with VMready® which works with all the major hypervisors.
Part number information

The part numbers to order the switch and optional upgrades are shown in Table 1.

Table 1. Part numbers and feature codes for ordering

<table>
<thead>
<tr>
<th>Description</th>
<th>Part number</th>
<th>Feature code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lenovo Flex System EN2092 1Gb Ethernet Scalable Switch</td>
<td>49Y4294</td>
<td>A0TF</td>
</tr>
<tr>
<td>Features on Demand upgrades</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flex System EN2092 1Gb Ethernet Scalable Switch (Upgrade 1)</td>
<td>90Y3562</td>
<td>A1QW</td>
</tr>
<tr>
<td>Flex System EN2092 1Gb Ethernet Scalable Switch (10Gb Uplinks)</td>
<td>49Y4298</td>
<td>A1EN</td>
</tr>
</tbody>
</table>

The part number for the switch, 49Y4294, includes the following items:

- One Lenovo Flex System EN2092 1Gb Ethernet Scalable Switch
- Important Notices Flyer
- Warranty Flyer
- Documentation CD-ROM

The switch does not include a serial management cable. However, the optional Flex System Management Serial Access Cable, 90Y9338, is supported and contains two cables, a mini-USB-to-RJ45 serial cable and a mini-USB-to-DB9 serial cable, either of which can be used to connect to the switch locally for configuration tasks and firmware updates.

The part numbers for the upgrades, 90Y3562 and 49Y4298, include the following items:

- Feature on Demand Activation Flyer
- Upgrade activation letter

The base switch and upgrades are as follows:

- 49Y4294 is the part number for the base switch, and it comes with 14 internal 1 GbE ports enabled, one to each compute node and ten external 1 GbE ports enabled. All external 1 GbE ports have RJ-45 connectors.
- 90Y3562 (Upgrade 1) can be applied on the base switch to take full advantage of four-port adapter cards installed in each compute node. This upgrade enables 14 additional internal ports, for a total of 28 ports (two ports to each node). The upgrade also enables 10 additional external 1 GbE ports for a total of twenty 1 GbE external RJ-45 ports. This upgrade requires the base switch.
- 49Y4298 (10Gb Uplinks) can be applied on the base switch when you need more external bandwidth. The upgrade enables four external 10 GbE ports with SFP+ connectors (SFP+ transceivers or DAC cables are not included). This upgrade requires the base switch.
- Both 90Y3562 (Upgrade 1) and 49Y4298 (10Gb Uplinks) can be applied on the switch at the same time to allow you to use 28 internal 10 GbE ports leveraging all four ports on an four-port expansion card, and to utilize all external ports on the switch.
Flexible port mapping: With Networking OS version 7.8 or later clients have more flexibility in assigning ports that they have licensed on the EN2092 which can help eliminate or postpone the need to purchase upgrades. While the base model and upgrades still activate specific ports, flexible port mapping provides clients with the capability of reassigning ports as needed by moving internal and external 1 GbE ports or trading off ten 1 GbE ports for the use of an external 10 GbE port (or vice versa). This is very valuable when you consider the flexibility with the base license and with 10Gb Uplinks upgrade.

With flexible port mapping, clients have licenses for a specific number of ports:

- 49Y4294 is the part number for the base switch, and it provides 24x 1 GbE port licenses that can enable any combination of internal and external 1 GbE ports and external 10 GbE ports (with the use of ten 1 GbE port licenses per one 10 GbE port).
- 90Y3562 (Upgrade 1) upgrades the base switch by activation of 14 internal 1 GbE ports and ten external 1 GbE ports which is equivalent to adding 24 more 1 GbE port licenses for a total of 48x 1 GbE port licenses. Any combination of internal and external 1 GbE ports and external 10 GbE ports (with the use of ten 1 GbE port licenses per one 10 GbE port) can be enabled with this upgrade. This upgrade requires the base switch.
- 49Y4298 (10Gb Uplinks) upgrades the base switch by activation of four external 10 GbE ports for a total of 24x 1 GbE ports and 4x 10 GbE ports. With the use of one external 10 GbE port license for ten 1 GbE ports, any combination of internal and external 1 GbE ports and external 10 GbE ports can be enabled with this upgrade. This upgrade requires the base switch.
- Both 90Y3562 (Upgrade 1) and 49Y4298 (10Gb Uplinks) simply activate all the ports on the EN2092 which is 28 internal 1 GbE ports, 20 external 1 GbE ports, and four external 10 GbE SFP+ ports.

Note: When both Upgrade 1 and 10Gb Uplinks are activated, flexible port mapping is no longer used because all the ports on the EN2092 are enabled.

The following table lists supported port combinations on the switch and required upgrades.

<table>
<thead>
<tr>
<th>Supported port combinations</th>
<th>Upgrade required</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>14x internal 1 GbE ports</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10x external 1 GbE ports</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>28x internal 1 GbE ports</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>20x external 1 GbE ports</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4x external 10 GbE ports</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>14x internal 1 GbE ports</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10x external 1 GbE ports</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4x external 10 GbE ports</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>28x internal 1 GbE ports</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>20x external 1 GbE ports</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4x external 10 GbE ports</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 2. Supported port combinations (Part 2: Flexible port mapping*)

<table>
<thead>
<tr>
<th>Supported port combinations</th>
<th>Quantity required</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 24x 1 GbE ports (internal and external)</td>
<td>1</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>• 14x 1 GbE ports (internal and external)</td>
<td></td>
</tr>
<tr>
<td>• 1x external 10 GbE SFP+ port</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>• 48x 1 GbE ports (internal and external)</td>
<td>1</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>• 28x 1 GbE ports (internal and external)</td>
<td></td>
</tr>
<tr>
<td>• 2x external 10 GbE SFP+ ports</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>• 14x 1 GbE ports (internal and external)</td>
<td>1</td>
</tr>
<tr>
<td>• 4x external 10 GbE SFP+ ports</td>
<td>0</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>• 34x 1 GbE ports (internal and external)</td>
<td></td>
</tr>
<tr>
<td>• 2x external 10 GbE SFP+ ports</td>
<td>1</td>
</tr>
</tbody>
</table>

* Flexible port mapping is available in Networking OS 7.8 or later.

Supported cables and transceivers

With the flexibility of the EN2092 switch, clients can take advantage of the technologies that they require for multiple environments:

- For 1 GbE links, you can use RJ-45 UTP cables up to 100 m. Clients that need longer distances can leverage the SFP/SFP+ external ports using a 1000BASE-SX transceiver which can drive distances up to 220 meters using 62.5 µ multi-mode fiber and up to 550 meters with 50 µ multi-mode fiber or the 1000BASE-LX transceivers that support distances up to 10 kilometers using single-mode fiber (1310 nm).

- For 10 GbE (supported on external SFP+ ports), you can use direct-attached copper (DAC) SFP+ cables for in-rack cabling and distances up to 7 m. These DAC cables have SFP+ connectors on each end, and they do not need separate transceivers. For longer distances the 10GBASE-SR transceiver can support distances up to 300 meters over OM3 multimode fiber or up to 400 meters over OM4 multimode fiber with LC connectors. The 10GBASE-LR transceivers can support distances up to 10 kilometers on single mode fiber with LC connectors.
If the 10Gb Uplinks upgrade (49Y4298) is used or the client uses flexible port mapping to activate an external SFP+ port, then either SFP+ transceivers or DAC cables are required to provide outside connectivity. The following table lists supported SFP/SFP+ and DAC cable options.

Table 3. Supported SFP/SFP+ transceivers and DAC cables

<table>
<thead>
<tr>
<th>Description</th>
<th>Part number</th>
<th>Feature code</th>
<th>Maximum quantity supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial console cables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flex System Management Serial Access Cable Kit</td>
<td>90Y9338</td>
<td>A2RR</td>
<td>1</td>
</tr>
<tr>
<td>SFP transceivers - 1 GbE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lenovo 1000BASE-T SFP Transceiver (does not support 10/100 Mbps)</td>
<td>00FE333</td>
<td>A5DL</td>
<td>4</td>
</tr>
<tr>
<td>Lenovo 1000BASE-SX SFP Transceiver</td>
<td>81Y1622</td>
<td>3269</td>
<td>4</td>
</tr>
<tr>
<td>Lenovo 1000BASE-LX SFP Transceiver</td>
<td>90Y9424</td>
<td>A1PN</td>
<td>4</td>
</tr>
<tr>
<td>SFP+ transceivers - 10 GbE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lenovo 10GBASE-SR SFP+ Transceiver</td>
<td>46C3447</td>
<td>5053</td>
<td>4</td>
</tr>
<tr>
<td>Lenovo 10GBASE-LR SFP+ Transceiver</td>
<td>90Y9412</td>
<td>A1PM</td>
<td>4</td>
</tr>
<tr>
<td>Optical cables for 1 GbE SX SFP and 10 GbE SR SFP+ transceivers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lenovo 1m LC-LC OM3 MMF Cable</td>
<td>00MN502</td>
<td>ASR6</td>
<td>4</td>
</tr>
<tr>
<td>Lenovo 3m LC-LC OM3 MMF Cable</td>
<td>00MN505</td>
<td>ASR7</td>
<td>4</td>
</tr>
<tr>
<td>Lenovo 5m LC-LC OM3 MMF Cable</td>
<td>00MN508</td>
<td>ASR8</td>
<td>4</td>
</tr>
<tr>
<td>Lenovo 10m LC-LC OM3 MMF Cable</td>
<td>00MN511</td>
<td>ASR9</td>
<td>4</td>
</tr>
<tr>
<td>Lenovo 15m LC-LC OM3 MMF Cable</td>
<td>00MN514</td>
<td>ASRA</td>
<td>4</td>
</tr>
<tr>
<td>Lenovo 25m LC-LC OM3 MMF Cable</td>
<td>00MN517</td>
<td>ASRB</td>
<td>4</td>
</tr>
<tr>
<td>Lenovo 30m LC-LC OM3 MMF Cable</td>
<td>00MN520</td>
<td>ASRC</td>
<td>4</td>
</tr>
<tr>
<td>SFP+ direct-attach cables - 10 GbE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lenovo 1m Passive SFP+ DAC Cable</td>
<td>90Y9427</td>
<td>A1PH</td>
<td>4</td>
</tr>
<tr>
<td>Lenovo 1.5m Passive SFP+ DAC Cable</td>
<td>00AY764</td>
<td>A51N</td>
<td>4</td>
</tr>
<tr>
<td>Lenovo 2m Passive SFP+ DAC Cable</td>
<td>00AY765</td>
<td>A51P</td>
<td>4</td>
</tr>
<tr>
<td>Lenovo 3m Passive SFP+ DAC Cable</td>
<td>90Y9430</td>
<td>A1PJ</td>
<td>4</td>
</tr>
<tr>
<td>Lenovo 5m Passive SFP+ DAC Cable</td>
<td>90Y9433</td>
<td>A1PK</td>
<td>4</td>
</tr>
<tr>
<td>Lenovo 7m Passive SFP+ DAC Cable</td>
<td>00D6151</td>
<td>A3RH</td>
<td>4</td>
</tr>
</tbody>
</table>
Benefits

The Flex System EN2092 1Gb Scalable Switch is considered particularly suited for these clients:

- Clients who want to leverage GbE in their infrastructure
- Clients who are implementing a virtualized environment and require multiple GbE ports
- Clients who require investment protection for 10 Gb external ports
- Clients who want to reduce TCO and improve performance while maintaining high levels of availability and security
- Clients who want to avoid or minimize oversubscription, which can result in congestion and loss of performance
- Clients who want to implement a converged infrastructure with NAS or iSCSI

The switch offers the following key benefits:

- Increases network performance
 With the growth of virtualization and the evolution of cloud, many of today’s applications require low latency and high-bandwidth performance. The EN2092 delivers non-blocking architecture with 176 Gbps throughput and full line rate performance, making it ideal for managing dynamic workloads across the network. In addition, the switch provides a rich Layer 2 and Layer 3 feature set that is ideal for many of today’s data centers, plus it offers a combined external bandwidth of 60 Gb.

- Pay as you grow investment protection and lower total cost of ownership
 The EN2092’s flexible port mapping allows you to reallocate ports as you need which helps reduce acquisition and operational costs. The base switch configuration includes 24x 1 GbE port licenses that can be assigned to internal 1 GbE connections and 1 GbE or even 10 GbE (by using ten 1 GbE licenses per one 10 GbE port) external ports. You then have the flexibility of turning on more 1 GbE connections to the compute node and more 1 GbE or 10 GbE external ports when you need them using Lenovo's Features on Demand licensing capabilities that provide “pay as you grow” scalability without the need to buy additional hardware.

- Cloud ready
 Delivering advanced virtualization awareness helps simplify management and automates VM mobility by making the network VM aware with VMready which works with all the major hypervisors.

 Support for Switch Partition (SPAR) allows clients to virtualize the switch with partitions that isolate communications for multi-tenancy environments.

- Simplifies network infrastructure
 The EN2092 1Gb Scalable Switch simplifies deployment and growth by using its innovative scalable architecture. This architecture helps increase return on investment by reducing the qualification cycle, while providing investment protection for additional I/O bandwidth requirements in the future. The extreme flexibility of the switch comes from the ability to turn on additional ports as required, both down to the compute node and for upstream connections (including 10 GbE). Also, as you consider migrating to a converged LAN and SAN, the EN2092 switch can be leveraged in either an iSCSI or NAS converged environment.
• Simplified management

A key challenge is the management of a discrete network environment. The EN2092 1Gb Scalable Switch supports a command-line interface (CLI) for integration into existing scripting and automation. Network management can be simplified by using port profiles, topology views, and virtualization management.

For more advanced levels of management and control, which can significantly reduce deployment and day-to-day maintenance times, while providing in-depth visibility into the network performance and operations of Lenovo switches. Plus, when leveraging tools like VMware vCenter Server or vSphere, or Switch Center provides additional integration for better optimization.

Features and specifications

Note: Features and specifications listed in this section are based on Networking OS 7.8.

The EN2092 Scalable Switch has the following features and specifications:

• Internal ports
 • Twenty-eight internal full-duplex Gigabit ports
 • Two internal full-duplex 1 GbE ports connected to the chassis management module

• External ports
 • Four ports for 1 Gb or 10 Gb Ethernet SFP/SFP+ transceivers (support for 1000BASE-SX, 1000BASE-LX, 1000BASE-T, 10GBASE-SR, or 10GBASE-LR) or SFP+ direct-attach copper (DAC) cables. SFP+ modules or DAC cables are not included and must be purchased separately.
 • Twenty external 10/100/1000 1000BASE-T Gigabit Ethernet ports with RJ-45 connectors
 • One RS-232 serial port (mini-USB connector) that provides an additional means to configure the switch module

• Scalability and performance
 • Fixed-speed external 10 Gb Ethernet ports for maximum external bandwidth
 • Autosensing 10/100/1000 external Gigabit Ethernet ports for bandwidth optimization
 • Non-blocking architecture with wire-speed forwarding of traffic
 • Media access control (MAC) address learning: automatic update, support of up to 32,000 MAC addresses
 • Up to 128 IP interfaces per switch
 • Static and LACP (IEEE 802.3ad) link aggregation, up to 60 Gb of total external bandwidth per switch, up to 64 trunk groups, up to 16 ports per group
 • Support for jumbo frames (up to 9,216 bytes)
 • Broadcast/multicast storm control
 • IGMP snooping for limit flooding of IP multicast traffic
 • IGMP filtering to control multicast traffic for hosts participating in multicast groups
 • Configurable traffic distribution schemes over trunk links based on source/destination IP or MAC addresses or both
 • Fast port forwarding and fast uplink convergence for rapid STP convergence
Availability and redundancy

- Virtual Router Redundancy Protocol (VRRP) for Layer 3 router redundancy
- IEEE 802.1D STP for providing L2 redundancy
- IEEE 802.1s Multiple STP (MSTP) for topology optimization, up to 32 STP instances supported by single switch
- IEEE 802.1w Rapid STP (RSTP) (provides rapid STP convergence for critical delay-sensitive traffic like voice or video)
- Per-VLAN Rapid STP (PVRST) enhancements
- Layer 2 Trunk Failover to support active/standby configurations of network adapter teaming on compute nodes
- Hot Links provides basic link redundancy with fast recovery for network topologies that require Spanning Tree to be turned off

VLAN support

- Up to 1024 VLANs supported per switch, with VLAN numbers ranging from 1 to 4095 (4095 is used for management module's connection only)
- 802.1Q VLAN tagging support on all ports
- Private VLANs

Security

- VLAN-based, MAC-based, and IP-based ACLs
- 802.1x port-based authentication
- Multiple user IDs and passwords
- User access control
- Radius, TACACS+ and LDAP authentication and authorization
- NIST 800-131A Encryption
- Selectable encryption protocol; SHA 256 enabled as default
- IPv6 ACL metering

Quality of Service (QoS)

- Support for IEEE 802.1p, IP ToS/DSCP, and ACL-based (MAC/IP source and destination addresses, VLANs) traffic classification and processing
- Traffic shaping and re-marking based on defined policies
- Eight Weighted Round Robin (WRR) priority queues per port for processing qualified traffic
- IP v4 Layer 3 functions
 - Host management
 - IP forwarding
 - IP filtering with ACLs, up to 896 ACLs supported
 - VRRP for router redundancy
 - Support for up to 128 static routes
 - Routing protocol support (RIP v1, RIP v2, OSPF v2, BGP-4), up to 2048 entries in a routing table
 - Support for DHCP Relay
 - Support for IGMP snooping and IGMP relay
 - Support for Protocol Independent Multicast (PIM) in Sparse Mode (PIM-SM) and Dense Mode (PIM-DM).
- IP v6 Layer 3 functions
 - IPv6 host management (except default switch management IP address)
 - IPv6 forwarding
 - Up to 128 static routes
 - Support for OSPF v3 routing protocol
 - IPv6 filtering with ACLs
- Virtualization
 - VMready
 - Switch partitioning (SPAR)
 - SPAR forms separate virtual switching contexts by segmenting the data plane of the module. Data plane traffic is not shared between SPARs on the same switch.
 - SPAR operates as a Layer 2 broadcast network. Hosts on the same VLAN attached to a SPAR can communicate with each other and with the upstream switch. Hosts on the same VLAN but attached to different SPARs communicate through the upstream switch.
 - SPAR is implemented as a dedicated VLAN with a set of internal compute node ports and a single external port or link aggregation (LAG). Multiple external ports or LAGs are not allowed in SPAR. A port can be a member of only one SPAR.
- Manageability
 - Simple Network Management Protocol (SNMP V1, V2, and V3)
 - HTTP browser GUI
 - Telnet interface for CLI
 - SSH and SSHv2
 - Serial interface for CLI
 - Scriptable CLI
 - Firmware image update (TFTP and FTP)
 - Network Time Protocol (NTP) for switch clock synchronization
• Monitoring
 • Switch LEDs for external port status and switch module status indication
 • Remote Monitoring (RMON) agent to collect statistics and proactively monitor switch performance
 • Port mirroring for analyzing network traffic passing through the switch
 • Change tracking and remote logging with the syslog feature
 • Support for the sFLOW agent for monitoring traffic in data networks (separate sFLOW analyzer required elsewhere)
 • POST diagnostics

The following features are not supported with IPv6:
 • Default switch management IP address
 • SNMP trap host destination IP address
 • Bootstrap Protocol (BOOTP) and DHCP
 • RADIUS, TACACS+ and LDAP
 • QoS metering and re-marking ACLs for out-profile traffic
 • VMware Virtual Center (vCenter) for VMready
 • Routing Information Protocol (RIP)
 • Internet Group Management Protocol (IGMP)
 • Border Gateway Protocol (BGP)
 • Virtual Router Redundancy Protocol (VRRP)
 • sFLOW

Standards supported

The switch supports the following IEEE standards:

 • IEEE 802.1D Spanning Tree Protocol (STP)
 • IEEE 802.1s Multiple STP (MSTP)
 • IEEE 802.1w Rapid STP (RSTP)
 • IEEE 802.1p Class of Service (CoS) prioritization
 • IEEE 802.1Q Tagged VLAN (frame tagging on all ports when VLANs are enabled)
 • IEEE 802.1x port-based authentication
 • IEEE 802.2 Logical Link Control
 • IEEE 802.3 10BASE-T Ethernet
 • IEEE 802.3u 100BASE-TX Fast Ethernet
 • IEEE 802.3ab 1000BASE-T copper twisted pair Gigabit Ethernet
 • IEEE 802.3z 1000BASE-SX short range fiber optics Gigabit Ethernet
 • IEEE 802.3z 1000BASE-LX long range fiber optics Gigabit Ethernet
 • IEEE 802.3ad Link Aggregation Control Protocol
 • IEEE 802.3x Full-duplex Flow Control
 • IEEE 802.3ae 10GBASE-SR short range fiber optics 10 Gb Ethernet
 • IEEE 802.3ae 10GBASE-LR long range fiber optics 10 Gb Ethernet
 • 10GSFP+Cu SFP+ Direct Attach copper
Supported chassis and adapter cards

The EN2092 switches are installed in I/O bays in the rear of the Flex System chassis, as shown in the following figure. Switches are typically installed in pairs because ports on I/O adapter cards are routed to two I/O bays for redundancy and performance. The Flex System chassis supports up to four EN2092 switches.

![I/O bay diagram](image)

Figure 2. Location of the I/O bays in the Flex System chassis

The Flex System EN2092 Scalable Switch can be installed in bays 1, 2, 3, and 4 of the Flex System chassis. A supported adapter card must be installed in a corresponding slot of the compute node. Each adapter can use up to four lanes to connect to the respective I/O module bay. The EN2092 is able to use up to two of the four lanes.

In compute nodes that have an integrated dual-port 10 GbE network interface controller (NIC), NIC’s ports are routed to bays 1 and 2 with a specialized periscope connector, and the adapter card is not required. However, when needed, the periscope connector can be replaced with the adapter card. In such a case integrated NIC will be disabled.

Prior to Networking OS 7.8, with 4-port or 8-port adapters, an optional Upgrade 1 (90Y3562) was required for the switch to allow communications on four ports. With Networking OS 7.8 or later, there is no need to buy additional switch upgrades for 4-port adapters if the total number of port licenses on the switch does not exceed the number of external (upstream network ports) and internal (compute node network ports) connections used; clients have the choice of purchasing Upgrade 1 or 10Gb Uplinks upgrade for additional ports.

Notes:

- 10 GbE LOM and adapters supported by the EN2092 operate at 1 GbE speeds.
- On an 8-port adapter, only up to four ports can be used with the EN2092 switches (two adapter ports per switch, two EN2092 switches per adapter), and the remaining four ports cannot be used.
The following table shows compatibility information for the EN2092 and Flex System chassis.

Table 4. Flex System chassis compatibility

<table>
<thead>
<tr>
<th>Description</th>
<th>Part number</th>
<th>Enterprise Chassis with CMM</th>
<th>Enterprise Chassis with CMM2</th>
<th>Carrier-grade Chassis with CMM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flex System EN2092 1Gb Ethernet Scalable Switch</td>
<td>49Y4294</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

The midplane connections between the adapters installed in the compute nodes and the EN2092 switches installed in I/O bays in the chassis are shown diagrammatically in the following figure. The figure shows both half-wide compute nodes, such as the x240 with two adapters, and full-wide compute nodes, such as the x440 with four adapters.

Figure 3. Logical layout of the interconnects between I/O adapters and I/O modules
The following table shows the connections between adapters installed in the compute nodes to the EN2092 switches installed in I/O bays in the chassis.

Table 5. Adapter to I/O bay correspondence

<table>
<thead>
<tr>
<th>I/O adapter slot in the compute node</th>
<th>Port on the adapter</th>
<th>Corresponding I/O module bay in the chassis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slot 1</td>
<td></td>
<td>Bay 1</td>
</tr>
<tr>
<td>Slot 2</td>
<td></td>
<td>Port 1</td>
</tr>
<tr>
<td>Port 1</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Port 2</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Port 3</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Port 4</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Slot 3 (full-wide compute nodes only)</td>
<td></td>
<td>Port 1</td>
</tr>
<tr>
<td>Port 1</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Port 2</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Port 3</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Port 4</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Slot 4 (full-wide compute nodes only)</td>
<td></td>
<td>Port 1</td>
</tr>
<tr>
<td>Port 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Ports 7 and 8 are routed to I/O bays 1 and 2 (Slot 1 and Slot 3) or 3 and 4 (Slot 2 and Slot 4), but these ports cannot be used with the EN4093R switch.
The following table lists the I/O adapters that are supported by the EN2092 1Gb Scalable Switch. 10 GbE adapters operate at 1 GbE speeds when used with this switch.

Table 6. Network adapters

<table>
<thead>
<tr>
<th>Description</th>
<th>Part number</th>
<th>Feature code</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Gb Ethernet (10 GbE adapters operate at 1 GbE speeds)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Embedded 10Gb Virtual Fabric Adapter (2-port)*</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Flex System CN4022 2-port 10Gb Converged Adapter#</td>
<td>88Y5920</td>
<td>A4K3</td>
</tr>
<tr>
<td>Flex System CN4052 2-port 10Gb Virtual Fabric Adapter</td>
<td>00JY800</td>
<td>A5RP</td>
</tr>
<tr>
<td>Flex System CN4054 10Gb Virtual Fabric Adapter (4-port)</td>
<td>90Y3554</td>
<td>A1R1</td>
</tr>
<tr>
<td>Flex System CN4054R 10Gb Virtual Fabric Adapter (4-port)</td>
<td>00Y3306</td>
<td>A4K2</td>
</tr>
<tr>
<td>Flex System CN4058S 8-port 10Gb Virtual Fabric Adapter</td>
<td>94Y5160</td>
<td>A4R6</td>
</tr>
<tr>
<td>1 Gb Ethernet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Embedded 1 Gb Ethernet controller (2-port)**</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Flex System EN2024 4-port 1Gb Ethernet Adapter</td>
<td>49Y7900</td>
<td>A10Y</td>
</tr>
</tbody>
</table>

* The Embedded 10Gb Virtual Fabric Adapter is built into x222 nodes and certain models of the x240 and x440 nodes.
CN4022 support of the EN2092 switch requires Flex System code base 1.3.2 (announced May 13, 2014).
** The Embedded 1 Gb Ethernet controller is built into x220 nodes.

The adapters are installed in slots in each compute node. The following figure shows the locations of the slots in the x240 Compute Node. The positions of the adapters in the other supported compute nodes are similar.

Figure 4. Location of the I/O adapter slots in the Flex System x240 Compute Node
Connectors and LEDs

Figure 5 shows the front panel of the Flex System EN2092 1Gb Ethernet Scalable Switch.

![Front panel of the Flex System EN2092 1Gb Ethernet Scalable Switch](image)

The front panel contains the following components:

- LEDs that display the status of the switch module and the network:
 - OK LED indicates that the switch module has passed the power-on self-test (POST) with no critical faults and is operational.
 - Identify: This blue LED can be used to identify the switch physically, by illuminating via the management software.
 - Error LED (switch module error) indicates that the switch module has failed the POST or detected an operational fault.

- One mini-USB RS-232 console port that provides an additional means to configure the switch module. This mini-USB-style connector enables connection of a special serial cable. (The cable is optional and it is not included with the switch. See the "Part number information" section for details).

- Twenty external 1000BASE-T Ethernet ports for 10/100/1000 Mbps connections to external Ethernet devices.

- Four external SFP+ port connectors to attach SFP/SFP+ transceivers for 1 Gb or 10 Gb connections or DAC cables for connecting to external Ethernet devices.

- An Ethernet link OK LED and an Ethernet Tx/Rx LED for each external port on the switch module.
Network cabling requirements

The network cables that can be used with the switch are listed in the following table.

Table 7. EN2092 network cabling requirements

<table>
<thead>
<tr>
<th>Transceiver</th>
<th>Standard</th>
<th>Cable</th>
<th>Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Gb Ethernet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR SFP+ Transceiver (40C3447)</td>
<td>10GBASE-SR</td>
<td>Up to 30 m with fiber optic cables supplied by Lenovo (see Table 3); 850 nm OM3 multimode fiber cable (50 µ or 62.5 µ) up to 300 m or up to 400 m with OM4 multimode fiber</td>
<td>LC</td>
</tr>
<tr>
<td>LR SFP+ Transceiver (90Y9412)</td>
<td>10GBASE-LR</td>
<td>1310 nm single-mode fiber cable up to 10 km</td>
<td>LC</td>
</tr>
<tr>
<td>Direct attach cable</td>
<td>10GSFP+Cu</td>
<td>SFP+ DAC cables up to 5 m (see Table 3)</td>
<td>SFP+</td>
</tr>
<tr>
<td>1 Gb Ethernet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External RJ-45 ports (fixed)</td>
<td>1000BASE-T</td>
<td>UTP Category 5, 5E, and 6 up to 100 meters</td>
<td>RJ-45</td>
</tr>
<tr>
<td>RJ-45 SFP Transceiver (00FE333)</td>
<td>1000BASE-T</td>
<td>UTP Category 5, 5E, and 6 up to 100 meters</td>
<td>RJ-45</td>
</tr>
<tr>
<td>SX SFP Transceiver (81Y1622)</td>
<td>1000BASE-SX</td>
<td>Up to 30 m with fiber optic cables supplied by Lenovo (see Table 3); 850 nm multimode fiber cable (50 µ or 62.5 µ) up to 550 m</td>
<td>LC</td>
</tr>
<tr>
<td>LX SFP Transceiver (90Y9424)</td>
<td>1000BASE-LX</td>
<td>1310 nm single-mode fiber cable up to 10 km</td>
<td>LC</td>
</tr>
<tr>
<td>Management ports</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External 1 GbE management port</td>
<td>1000BASE-T</td>
<td>UTP Category 5, 5E, and 6 up to 100 meters</td>
<td>RJ-45</td>
</tr>
<tr>
<td>External RS-232 management port</td>
<td>RS-232</td>
<td>DB-9-to-mini-USB or RJ-45-to-mini-USB console cable (comes with optional Management Serial Access Cable, 90Y9338)</td>
<td>Mini-USB</td>
</tr>
</tbody>
</table>

Warranty

The switch carries a 1-year, customer-replaceable unit (CRU) limited warranty. When installed in a chassis, these switches assume your system’s base warranty and any Lenovo warranty service upgrade.
Physical specifications

The approximate dimensions and weight of the switch are as follows:

- Height: 30 mm (1.2 inches)
- Width: 401 mm (15.8 inches)
- Depth: 317 mm (12.5 inches)
- Weight: 3.7 kg (8.1 lb)

Shipping dimensions and weight (approximate):

- Height: 114 mm (4.5 in)
- Width: 508 mm (20.0 in)
- Depth: 432 mm (17.0 in)
- Weight: 4.1 kg (9.1 lb)

Agency approvals

The switch conforms to the following regulations:

- United States FCC 47 CFR Part 15, Subpart B, ANSI C63.4 (2003), Class A
- IEC/EN 60950-1, Second Edition
- Canada ICES-003, issue 4, Class A
- Japan VCCI, Class A
- Australia/New Zealand AS/NZS CISPR 22:2006, Class A
- Taiwan BSMI CNS13438, Class A
- CE Mark (EN55022 Class A, EN55024, EN61000-3-2, EN61000-3-3)
- CISPR 22, Class A
- China GB 9254-1998
- Turkey Communique 2004/9; Communique 2004/22
- Saudi Arabia EMC.CVG, 28 October 2002
Typical configurations

Prior to Networking OS 7.8, compute nodes with 4-port network adapters required Upgrade 1 for the EN2092 to enable connectivity on all four adapter ports despite of number of compute nodes and external connections used. With the introduction of flexible port mapping in Networking OS 7.8, if the Flex System chassis is not fully populated with the compute nodes that have four network ports, there might be no need to buy Upgrade 1.

Consider the following scenario. You are planning to install ten x240 compute nodes with EN2024 adapters or ten high-density x222 compute nodes that will be connected to two EN2092 switches installed in I/O bays 1 and 2. You are also planning to use four external 1 GbE ports on each EN2092 for the connectivity to the upstream network. In this scenario, the total number of 1 GbE ports needed per one EN2092 is 24. The base switch supplies required 24 port licenses; therefore, the solution can be implemented without the need to buy Upgrade 1.

![Diagram](image)

Figure 6. EN2092 flexible port mapping with EN2024 4-port adapter card

The solution components used in the scenario shown in Figure 6 are listed in Table 8.

<table>
<thead>
<tr>
<th>Diagram reference</th>
<th>Description</th>
<th>Part number</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Flex System x240 Compute Node or other supported compute node</td>
<td>Varies</td>
<td>Up to 10</td>
</tr>
<tr>
<td>2</td>
<td>Flex System EN2024 4-port 1Gb Ethernet Adapter</td>
<td>49Y7900</td>
<td>1 per compute node</td>
</tr>
<tr>
<td>3</td>
<td>Flex System Enterprise Chassis with additional power supplies and fan modules if needed</td>
<td>8721A1G</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Lenovo Flex System EN2092 1Gb Ethernet Scalable Switch</td>
<td>49Y4294</td>
<td>2 per chassis</td>
</tr>
</tbody>
</table>
Related publications and links

For more information see the following Flex System EN2092 1Gb Ethernet Scalable Switch product publications, available from the Flex System Information Center: http://publib.boulder.ibm.com/infocenter/flexsys/information/index.jsp

- Installation Guide
- Application Guide
- Command Reference

Other documents:

- US Announcement Letter 112-053
 http://ibm.com/common/ssi/cgi-bin/ssialias?infotype=dd&subtype=ca&htmlfid=897/ENUS112-053
- Flex System Enterprise Chassis Product Guide
 http://lenovopress/tips0865
- Flex System Interoperability Guide
 http://lenovopress.com/fsig
- Flex System Products and Technology, SG24-8255
 http://lenovopress/sg248255
- Product Guides for Flex System compute nodes and options
 http://lenovopress.com/flexsystem
- System x and Cluster Solutions configurator (x-config)
- System x Configuration and Options Guide:
 http://ibm.com/systems/xbc/cog/
- ServerProven for Flex System
Notices

Lenovo may not offer the products, services, or features discussed in this document in all countries. Consult your local Lenovo representative for information on the products and services currently available in your area. Any reference to a Lenovo product, program, or service is not intended to state or imply that only that Lenovo product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any Lenovo intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any other product, program, or service. Lenovo may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

Lenovo (United States), Inc.
1009 Think Place - Building One
Morrisville, NC 27560
U.S.A.
Attention: Lenovo Director of Licensing

LENOVO PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. Lenovo may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

The products described in this document are not intended for use in implantation or other life support applications where malfunction may result in injury or death to persons. The information contained in this document does not affect or change Lenovo product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of Lenovo or third parties. All information contained in this document was obtained in specific environments and is presented as an illustration. The result obtained in other operating environments may vary. Lenovo may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Any references in this publication to non-Lenovo Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this Lenovo product, and use of those Web sites is at your own risk. Any performance data contained herein was determined in a controlled environment. Therefore, the result obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurements may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

© Copyright Lenovo 2012-2015. All rights reserved.
This document was created or updated on May 20, 2015.

Send us your comments in one of the following ways:

- Use the online Contact us review form found at: ibm.com/redbooks
- Send your comments in an e-mail to: redbooks@us.ibm.com

This document is available online at http://lenovopress.com/tips0861.

Trademarks

Lenovo, For Those Who Do and the Lenovo logo are trademarks or registered trademarks of Lenovo in the United States, other countries, or both. These and other Lenovo trademarked terms are marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US registered or common law trademarks owned by Lenovo at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of Lenovo trademarks is available on the Web at http://www.lenovo.com/legal/copytrade.html.

The following terms are trademarks of Lenovo in the United States, other countries, or both:

- Flex System™
- Lenovo®
- Lenovo(logo)®
- VMready®

Other company, product, or service names may be trademarks or service marks of others.