Navigation

  • index
  • next |
  • previous |
  • H2O 2.4.0.10 documentation »

Data Science in H2OΒΆ

  • Generalized Linear Model (GLM)
    • Defining a GLM Model
    • Expert Settings
    • Interpreting a Model
    • Expert Settings
    • Validate GLM
    • Cross Validation
    • Cost of Computation
    • GLM Algorithm
    • References
  • K-Means
    • When to use K-Means
    • Defining a K-Means model
    • Interpreting a Model
    • References
    • K-Means Algorithm
    • References
  • Random Forest (RF)
    • When to use RF
    • Defining a Model
    • Interpreting Results
    • RF Error Rates
  • Random Forest Data Science
  • Principal Components Analysis
    • Defining a PCA Model
    • Interpreting Results
    • Notes on the application of PCA
  • Summary
    • Inputs
    • Output
  • Gradient Boosted Regression and Classification
    • Defining a GBM Model
    • Interpreting Results
    • GBM Algorithm
    • Reference
  • Deep Learning
    • References
    • Defining a Deep Learning Model
    • Interpreting the Model
  • Data Science and Machine Learning
  • SGD
    • References
  • References
    • Recommended Reading
    • GLM
    • Poisson
    • Logistic (binomial and multinomial)
    • GBM
    • Neural Networks
    • Tweedie
    • K-Means

Table Of Contents

  • Getting Started from a Downloaded Zip File
  • H2O on Hadoop
  • H2O on a Multi-Node Cluster
  • H2O installation in R Console From Download Table
  • H2O installation in R Studio
  • H2O + R Console For Developers Using Git
  • H2O on EC2
  • Scala for H2O: Shalala
  • Walk-Through Tutorials
  • Quick Start Videos
  • H2O Command-line Options
  • Introduction to H2O
  • H2O Algorithms Roadmap
  • Glossary
  • Public Data Sets
  • H2O Performance Datasheet
  • H2O User Guide
  • R Package Documentation
  • Data Science in H2O
    • Generalized Linear Model (GLM)
    • K-Means
    • Random Forest (RF)
    • Random Forest Data Science
    • Principal Components Analysis
    • Summary
    • Gradient Boosted Regression and Classification
    • Deep Learning
    • Data Science and Machine Learning
    • SGD
    • References
  • Benchmarks
  • Getting Started with Development in H2O
  • H2O Community
  • H2OLicense
  • Troubleshooting H2O
  • Tunneling between servers with H2O
  • Contact Us
  • HA considerations for H2O

Previous topic

R Package Documentation

Next topic

Generalized Linear Model (GLM)

This Page

  • Show Source

Quick search

Enter search terms or a module, class or function name.

Navigation

  • index
  • next |
  • previous |
  • H2O 2.4.0.10 documentation »
© Copyright 2013, 0xdata, Inc. Created using Sphinx 1.2b3.