Polarimetry of a 22° halo

G. P. Können and J. Tinbergen

The linear polarization and intensity of a 22° halo has been measured simultaneously at seven wavelengths as a function of scattering angle. The polarization pattern is found to be dominated by a narrow peak centered at the halo angle. The amount of polarization in this peak is much higher than expected from Fresnel refraction alone. The observations are explained with a birefringence–diffraction halo polarization model. The effective diameter of the hexagonal face of the halo-generating crystals is found to be 41 and 54 μm for two separate scans. An independent single-wavelength parhelion observation indicates a stronger birefringence peak concentrated in an even smaller angular scattering range and a crystal diameter of 220 μm. Crystal sizes derived from the halo intensity distributions are found to be consistent with those obtained from polarization. The data demonstrate the power of halo polarimetry as a tool for detection and identification of birefringent crystals in terrestrial or extraterrestrial atmospheres.

I. Introduction

The strong polarization of the inner limbs of refraction halos makes polarimetry a sensitive means for detecting low-intensity halos. This places the potentials of halo polarimetry for remote sensing of atmospheres next to that of other polarimetric methods, of which several have been applied successfully over course of time.1,2 Inner-limb polarization is the result of birefringence of halo-generating crystals, which causes the halo to consist of two mutually shifted orthogonally polarized components.3,4 In the open air, inner-limb polarization can be easily observed, particularly for parhelia. However, for a better understanding of halo polarization, clearly more quantitative observations are required, and such measurements have not yet been reported.

To fill this observational gap, we constructed a portable polarimetric camera equipped with a color filter of narrow bandwidth. With that camera we collected a parhelion picture, but then our set of measurements was unexpectedly improved. This happened at La Palma when we operated a 1-m telescope equipped with a multichannel polarimeter for an observing campaign directed toward polarimetric detection of ice crystals in the upper atmosphere of Venus.5,6 During that daytime campaign, cirrus spoiled a few hours of our primary observations, but fortunately that same cirrus produced a very clear 22° terrestrial halo. We used the admirable computer control of the telescope to scan the halo, recording its polarization at seven wavelengths simultaneously, and also took a picture with the polarimetric camera. This paper presents an analysis of our current set of measurements, with emphasis on the La Palma halo.

The sequence of this paper is as follows. In Section 2 the physical background of halo polarization is discussed and our previous halo polarization model4 is reformulated on a more general basis. Also, we added a simple diffraction model to it. In Section 3 we derive an analytical model halo polarization distribution to be used for curve fitting the data. In Section 4 the La Palma halo observations are presented and discussed. Section 5 presents the single-wavelength observations of the parhelion. In Section 6 we compare our observations with those of others and draw some conclusions about the applications of halo polarimetry.

II. Theory of Halo Polarization

A. General Arguments

One of us (G. P. Können) has published a theoretical analysis of the polarization of refraction halos.4 The basic physical approach can still be applied, but for the interpretation of our measurements we need to refor-
mulate the model in more general terms. Before doing so, we give an outline of its underlying arguments.

First, we consider the intensity as a function of scattering angle for a refraction halo in the ray optics approximation, in which the birefringence of the crystals is neglected. The light source is taken to be a point source located at infinity. At one particular scattering angle, the intensity jumps from zero to a certain value. For any assumed distribution of crystal orientations this characteristic jump exists, and for all such distributions, except for distributions, the jump is finite. For light to be scattered at the angle of this discontinuity, a unique scattering geometry of the crystals is required. In the case of randomly oriented crystals—on which we shall focus from now on—this geometry is the minimum deviation configuration of the crystals. Hence, the light has to pass symmetrically through the wedge consisting of the crystal faces at which refraction occurs. The refracting edge, defined as the edge of this wedge, must be perpendicular to the scattering plane (see Fig. 1), and the scattering angle at which the jump occurs is called the halo angle.

The constraint on the orientation selects the subset of crystals whose halo light is actually seen by the observer. In that subset, there is no random orientation at all. Near the halo angle, halo light is visible only from crystals that momentarily happen to have their refracting edge perpendicular to the scattering plane. Further away from the halo angle, there is a greater degree of freedom in the angle between the refracting edge and the scattering plane, so that a larger subset of the randomly oriented set of crystals may give rise to halo scattering from a certain point in the celestial sphere toward the observer. Still, the orientation constraint acts as a strong selection criterion so that the angle between the refracting edge and the scattering plane, projected on the celestial sphere, remains close to 90°.

Next we consider birefringence and assume the optical axis to be either parallel to the refracting edge or perpendicular to it. Then the halo consists of two orthogonally polarized components generated by ordinary and extraordinary refraction, respectively, each with its own refractive index and hence its own halo angle. For optically positive crystals (such as ice), the ordinary index of refraction is the lesser of the two.
We take this as an example. Then, at the inner side of the halo, only ordinary refraction is visible. The direction of polarization of ordinary refracted rays is always perpendicular to the plane formed by the light vector (inside the crystal) and the optical axis. However, as already pointed out, the halo-emitting crystals have their refracting edges perpendicular to the scattering plane. When the optical axis of the crystals is parallel with the refracting edge, the angle between this axis and the scattering plane is also 90°. Thus, the inner side of the halo, which, for optically positive crystals, is exclusively the result of ordinary refraction, is completely polarized and the direction of polarization is in the plane of scattering in this case. If the optical axis is perpendicular to the refracting edge, the same situation applies but the direction of polarization of the halo edge is perpendicular to the scattering plane (for positive crystals). We reemphasize that this strong polarization is a direct consequence of the high degree of freedom in the orientation of the re-polarization.

If we look further away from the halo angle, there is a larger degree of freedom in the orientation of the refracting edge with respect to the scattering plane. This would result in a depolarization of both shifted halo components and a smaller mutual shift in scattering angle. In the model, these effects are neglected; the polarization of halos from birefringent crystals can then be calculated straightforwardly from the intensity distributions of the two polarized halo components.

The original model used ray optics for the calculation of the polarization of halos. For interpretation of the present data, diffraction must also be considered. This can be done simply by convolving the Stokes vector \(S(\theta) \) of the halo, obtained in the ray optics approximation, with a diffraction function. Below in this section, the resulting birefringence-diffraction model is formulated explicitly for randomly oriented uniaxial crystals with small birefringence and the optical axis either parallel to or perpendicular to the refracting crystal edge. However, for the more general case we make the following remarks:

(1) For halos caused by randomly oriented birefringent crystals, the polarization of the halo inner edge is always either in the plane of scattering or perpendicular to it. This holds for any orientation of the optical axis within the refraction wedge, as shown in remark (2) below. Hence, if the plane of reference of the Stokes parameters \((Q, U) \) is the scattering plane, \(U = 0 \) and \(Q \) represents the polarized intensity \(I_1 - I_2 \), where the parallel and perpendicular signs refer to the scattering plane.

(2) If the optical axis is inclined to the refracting crystal edge, the polarization of the inner halo edge is generally not complete, even in the idealized situation of geometrical optics and a point-shaped light source. This polarization can be calculated using the fact that, inside a crystal, the polarization plane of the extraordinary refracted ray is the plane formed by the light vector and the optical axis, see Fig. 1. We consider random orientation and hence the minimum deviation configuration. For the general case discussed here, the geometry of this configuration for extraordinary refracted light is slightly different from the isotropic case, but, in practice, this difference is completely negligible. If we neglect the change in polarization at the entrance and exit faces of the crystal by refraction, the polarization direction of the inner edge and the degree of polarization of the birefringence peak can be easily calculated, the latter for the ray optics approximation. By definition, the first Stokes parameter equals intensity \(I \) and the second and third Stokes parameters \(Q \) and \(U \) are given by \(Q = P I \cos 2\phi \) and \(U = P I \sin 2\phi \), respectively. Here \(P \) is the degree of polarization, which is unity for an extraordinary or an ordinary refracted ray, and \(\phi \) is the angle between the plane of polarization and the plane of reference of the Stokes vector. The plane of reference is chosen to be the scattering plane. In the minimum deviation configuration, it crosses the refracting edge at right angles, see Fig. 1. For determination of the refracting angle, one has to consider the polarization geometry of all the contributing crystal configurations. In the case of randomly oriented uniaxial crystals, there are always two of these: the one depicted in Fig. 1 and a second one with the crystal upside down. Let \(\psi \) be the angle between the refracting edge and the plane formed by the light vector and the optical axis. For the configuration shown in Fig. 1, \(\phi = \psi - 90° \); for the second one, \(\phi = 90° - \psi \). Thus, the second Stokes parameter \(Q \) is the same for both configurations and equals \(-I \cos(2\psi) \) for extraordinary refraction (see Fig. 1). For ordinary refraction, \(\psi \) is larger by 90° and so the sign of \(Q \) is reversed. The polarization of the halo inner edge is found by adding \(Q \) from both configurations for the least refracted ray. Expressing the second Stokes parameter in degree of polarization \(P_x \), this leads to

\[
P_x = Q/I = \text{sign}(n_e - n_o) \cos(2\psi).
\]

Here sign \((n_e - n_o) \) is the optical sign of the birefringent crystal. This factor takes into account whether the extraordinary or the ordinary refracted ray is the less refracted and hence responsible for scattering at the halo inner edge. For optically positive crystals such as ice, \(n_e > n_o \), and thus \(P_x = 1 \), ordinary refracted rays making up the inner halo edge.

Equation (1) nicely summarizes all the polarization possibilities of the inner edge of halos caused by randomly oriented uniaxial crystals. Since \(U = 0 \) in that case [remark (1)], the degree of polarization \(P \) is given by \(|P_x| = |Q|/I \), while the direction of polarization is given by the sign of \(Q \) or \(P_x \). If \(P_x > 0 \), the polarization is in the plane of scattering, otherwise it is perpendicular to it. For the 22° ice halo, \(\psi = 0 \) and thus \(P_x = 1 \). So, the plane of polarization of the halo inner edge is parallel to the scattering plane and its degree of polarization in geometrical optics and for a point-shaped light source is unity. For the 46° ice halo, \(\psi = 90° \) and thus \(P_x = -1 \). Hence the polarization is again complete, but the direction of polarization is perpendicular.
to the scattering plane. If a halo would emerge from a situation where $\psi = 30^\circ$, the degree of polarization of the halo inner edge is only 0.5; if $\psi = 45^\circ$, the polarization according to Eq. (1) is zero. Such decreased degrees of polarization of the birefringence peak may occur if, e.g., an ice halo is generated by a pair of pyramidal faces on either end of the crystal that are not adjacent to the same or to opposite prism faces. For some halos resulting from exotic crystals in other atmospheres, the same may happen. Finally, in the special case when the halo ray happens to be parallel to the optical axis, there is no split of the ray at all and the halo behavior at the halo angle is the same as for isotropic crystals.

What remains to be proved is that $U = 0$ for randomly oriented crystals. This is already evident from the geometry in Fig. 1, showing that the third Stokes parameter U of the two crystal configurations contributing to halo scattering is of opposite sign. This can also be proved considering the relations between ϕ and ψ. We take the extraordinary ray as an example. Then, for the configuration shown in Fig. 1, $\phi = \psi - 90^\circ$ and hence $U = -I \sin 2\psi$. If the crystal is upside down $\phi = 90^\circ - \psi$ and so $U = I \sin 2\psi$. Hence, the contributions to U cancel out and thus $U = 0$ for the halo. This proves the statement in remark (1).

(3) If preferential crystal orientation is present, the resulting halo usually has a noncircular shape. The inner boundary of this halo is again polarized and its polarization at a certain scattering azimuth can be found by considering the scattering geometry of the crystals responsible for scattering toward this boundary. As the refracting edge need not be perpendicular to the scattering plane in this case, U will in general be nonzero. Hence, the plane of polarization will be tilted with respect to the scattering plane. An illustrative example of this case is the parhelion, which appears at the same altitude as the Sun. Consequently, at the halo the scattering plane, being the great circle between halo and Sun, does not cross the celestial vertical at right angles. However, the parhelion results from ice crystals with the optical axis vertically oriented. As a result, the polarization of its inner edge is about horizontal, and this direction has a tilt with respect to the scattering plane.

(4) The actual polarization of the halo inner edge depends on the broadening of the birefringence peak by the solar disk and/or by diffraction. Since contributions to Stokes parameters can be added, a broadening leaves the direction of polarization unaltered. However, if the birefringence peak of the ray optical halo is narrow, the broadening results in a peak degree of polarization considerably less than that indicated by Eq. (1).

B. Basic Formulas

Now we return to the case in which the optical axis and the refracting edge are either parallel ($\psi = 0$ in Fig. 1) or perpendicular ($\psi = 90^\circ$) and formulate the birefringence–diffraction model of halo polarization in the remainder of the section. This is done in the following way. In this Subsection 2.B, we derive some general relationships between the intensity $I(\theta)$ and the second Stokes parameter $Q(\theta)$ of halos caused by birefringent crystals. In Subsection 2.C, the halo intensity distribution $I(\theta)$ is specified as $I_x(\theta)$, being the one in geometrical optics and for a point-shaped light source at infinity. Using the technique in Subsection 2.B, the corresponding second Stokes parameter $Q_x(\theta)$ of the halo is calculated. In Subsection 2.D, the broadening function $g(\theta)$ is derived, which with I_x and Q_x must be convolved to take into account the broadening by diffraction and the solar disk smearing. The properties and interpretation of the resulting model are discussed in Section 3.

From now on we focus on random orientation and take the scattering plane as the plane of reference of the halo Stokes vector $S(\theta)$. Consequently, the third Stokes parameter U is zero, and so we deal with intensity and with the second Stokes parameter Q only.

Let $f(\theta)$ be the intensity of a refraction halo generated by isotropic crystals, θ the scattering angle, and $f_1(\theta)$ and $f_2(\theta)$ the intensities of the halo components with polarization in the plane of scattering and perpendicular to it, respectively. The ratio f_2/f_1 is denoted by F and is determined by the Fresnel coefficients of refraction. F is a slowly decreasing function of θ. At the halo scattering angle θ, and for geometrical optics, the relation $F = \cos^4(\theta/2)$ holds. For a 22° halo, this latter expression yields $F = 0.929$. At $\theta = 23^\circ$ and $\theta = 26^\circ$, its value is dropped by 0.006 and 0.015, respectively.

For birefringent crystals, the intensity distributions of the halo are denoted by $I(\theta)$, $I_1(\theta)$, and $I_2(\theta)$. Introducing birefringence causes a splitting of the original halo into two components. The angular separation between them is denoted by $\Delta \theta_h$. We restrict ourselves to the case where the splitting takes place in the plane of scattering but note that, for a preferential orientation of the crystals, this need not be so.

For small birefringence the change of F with respect to the isotropic situation can be neglected. Hence, under the above-mentioned assumptions we have

\[I(\theta) = \frac{1}{1 + f} f(\theta + \Delta \theta_h), \]

\[I_2(\theta) = \frac{1}{1 + f} f(\theta - \Delta \theta_h). \]

(2)

For ice, the optical axis coincides with the crystallographic C axis. For the 22° halo and the 46° halo, $\Delta \theta_h$ is $+0.11^\circ$ and -0.15°, respectively. Here, the sign of $\Delta \theta_h$ is determined by Eq. (1), in which $\psi = 0$ and $\psi = 90^\circ$, respectively. We assume the function f to be differentiable, expand f in Eqs. (2) in a Taylor series near θ, and then calculate the halo intensity I from Eqs. (2):

\[I(\theta) = I_x(\theta) + I_2(\theta) \approx f(\theta) + f_2(\theta) \Delta \theta_h = \frac{1 - F}{1 + F} f(\theta). \]

(3)

The latter approximation can be applied since the term in front of $f' \theta$ is very small. Replacing f by I in Eqs. (2), we find for the second Stokes parameter Q the expression:
The unit is counts/solid angle. The light source was a monochromatic point source at infinity. Results are shown for both isotropic and anisotropic crystals. The only difference is that for anisotropic crystals there is, near the halo angle \(\theta_0 \), a ledge of 0.1° width and of \(I = 3800 \). Within this ledge, only ordinary refraction contributes to halo scattering and hence the halo is completely polarized.

\[
Q(\theta) = I_1(\theta) - I_0(\theta) = \frac{1 - F}{1 + F} I(\theta) + \frac{1}{2} \delta \theta_0' \Gamma(\theta) \tag{4}
\]

As mentioned above, the identity at the left-hand side of Eq. (4) is valid because the plane of reference of the Stokes vector \(S(\theta) \) is chosen to be the scattering plane. For the same reason, the third Stokes parameter of the halo \(U(\theta) \) is zero. Expressing Eq. (4) in degree of polarization \(P_2 \), we obtain

\[
P_2(\theta) = \frac{Q(\theta)}{I(\theta)} = \frac{1 - F}{1 + F} + \frac{1}{2} \delta \theta_0' \Gamma(\theta)/I(\theta) \tag{5}
\]

The first term in Eq. (5) is the classical value of the intrinsic degree of polarization of a refraction halo; the second term is an additional one caused by birefringence.

The relation between \(f \) and \(f_j \), Eq. (3), and the relation between \(Q \) and \(I \), Eq. (4), can be tested with numerical simulations of halos. Figures 2 and 3 show the results of a Pattloch-Tränkle type Monte Carlo simulation of the 22° ice crystal halo. The Monte Carlo program is from Tape and was extended by us with a ray optical description of polarization and birefringence. Figure 2 shows halo intensity simulations for isotropic and anisotropic crystals, in which only light rays resulting from two refractions have been counted (other contributions are negligible). As expected from Eq. (3), no significant difference between the anisotropic case and the isotropic case is apparent outside the range of the birefringence peak. Figure 3 shows the corresponding results for the second Stokes parameter \(Q \) of the halo. Also shown in Fig. 3 is \(Q \) for anisotropic crystals according to the current model, i.e., derived from isotropic simulation using Eq. (4).

This curve compares well with the direct calculations at least up to a scattering angle of 30°, which includes the whole region of significance for a 22° ice crystal halo.

C. Halos in Geometrical Optics

We now consider the halo intensity function \(f_g(\theta) \) in geometrical optics for isotropic crystals and a point source of light at infinity. For randomly oriented crystals, as well as for all realistic cases of preferential crystal orientation, this function \(f_g(\theta) \) jumps at the halo angle \(\theta_0 \) from zero to a finite value \(f_g(\theta_0) \); for \(\theta > \theta_0 \), \(f_g(\theta) \leq 0 \). This behavior is apparent in Fig. 2. Hence, the halo intensity \(I_g(\theta) \) for birefringent crystals in geometrical optics and a point-shaped light source reaches its maximum \((I_g)_{\text{max}} \) after two jumps, see Eqs. (2). We define the halo angle \(\theta_0 \) in birefringent crystals to be the mean of the halo angles for ordinary and extraordinary refracted rays so that the jumps take place at \(\theta = \theta_0 - \frac{1}{2} [\Delta \theta_b]_+ \) and \(\theta = \theta_0 + \frac{1}{2} [\Delta \theta_b]_+ \), respectively. Hence \((I_g)_{\text{max}} = I_g(\theta_0 + \frac{1}{2} [\Delta \theta_b]) \). Since these jumps, \(|Q_g| = \frac{1}{2} |I_g(\theta_0 + \frac{1}{2} [\Delta \theta_b])| \), and is, therefore, large with respect to the \(|Q_g| \) value for larger values of \(\theta \), at which Eqs. (4) and (5) still apply.

Now we assume \([\Delta \theta_b]_+ \) to be small compared to the broadening finite size of the solar disk and/or the diffraction pattern function, with which \(I_g \) and \(Q_g \) ultimately have to be convolved. Then we may in \(I_g \) neglect the birefringence by again using the approximation of Eq. (3):

\[
I_g(\theta) = I_{g1}(\theta) + I_{g2}(\theta) = f_g(\theta) \tag{6}
\]

For \(Q_g \) we may apply Eq. (4), but near \(\theta = \theta_0 \) the high \(|Q| \)-value has to be taken into account by a \(\delta \) function.
Put \((I_g)_{\text{max}} = f_g(\theta_h)\); for \(\Delta \theta_h > 0\) with Eqs. (2) and (6) this to

\[
Q_g(\theta) = \frac{(I_g)_{\text{max}}}{1 + F} \delta(\theta - \theta_h) + \frac{1 - F}{1 + F} f_g(\theta) + \frac{1}{2} \Delta \theta_h f_g'(\theta).
\]

(7)

If \(\Delta \theta_h < 0\), Eq. (7) can also be applied if the first term is multiplied by an additional factor \(F\).

D. Diffraction

To get a more realistic model of the halo Stokes parameters, the ones derived from geometrical optics have to be convolved with a diffraction function with the solar disk and weighted with a particle size distribution. In this Subsection 2.D, we outline this procedure.

The diffraction pattern \(D(\theta)\) for a rectangular slit of width \(a\) producing its maximum intensity \(D_a\) at \(\theta = 0\) is given by

\[
D(\theta) = D_a \left(\frac{\sin x}{x} \right)^2,
\]

(8)

where \(\theta\) is in the plane perpendicular to the slit and may be positive or negative. Parameter \(x\) is given by

\[
x = \frac{\pi}{180^\circ} \frac{a \theta}{\lambda},
\]

(9)

where \(\theta\) is in degrees. If the slit has a fixed length-to-width ratio, \(D_a\) is proportional to \(a^4/\lambda^2\) and slit width \(a\) for a crystal equals the width of the emerging light beam in the geometric approximation.

For a cloud of crystals, Eq. (8) has to be weighted with the crystal size distribution. If the size distribution is broad enough, this results in a function without oscillations. This is, for example, the case if a gamma distribution is used. The width of the remaining diffraction peak at \(\theta = 0\) is related to the mean slit width, to be calculated from the mean surface area of the emerging beams and hence of the slit. So, this effective mean width is \((a^2)^{1/2}\). For a gamma distribution, the width of the diffraction peak for a given mean slit width turns out to be less than the primary diffraction peak of a single particle with a slit width equal to that mean.

Although it is known that crystal size distributions are peaked, the size distributions may differ greatly from case to case. In our case, it is unknown. Instead of adopting an \(ad \ hoc\) size distribution, we chose for a simple model diffraction function, derived from Eq. (8) using the approximation

\[
\left(\frac{\sin x}{x} \right)^2 \approx \frac{1}{1 + x^2},
\]

(10)

where \(x\) is again given by Eq. (9) with \(a\) being replaced by \(a_{\text{eff}}\), the effective slit width in the cloud of crystals. The function in relation (10) represents a model of the cross-sectional weighted diffraction function and consists of one diffraction peak without oscillations. If its integral over \(\theta\) is normalized to unity, this is the function with which the geometric halo functions \(I_g\) and \(Q_g\) have to be convolved to take diffraction and a broad crystal size spectrum into account. We call this function \(g(\theta)\).

Figure 4 compares the adopted diffraction function \(g(\theta)\), relation (10), with the diffraction function for a single particle, Eq. (8), and a function obtained by weighting Eq. (8) with a gamma distribution of sizes with \(n = 3\). The latter size distribution approximately corresponds to the observed ones given in Ref. 17. As can be seen from Fig. 4, \(g(\theta)\) falls approximately between the others.

After normalization, the diffraction function \(g(\theta)\) becomes

\[
g(\theta) = \frac{1}{(\pi \theta_{1/2})} \frac{1}{1 + (\theta/\theta_{1/2})^2},
\]

(11)

where \(\theta_{1/2}\) is the angular separation between the diffraction maximum and its half-value point. This parameter relates to the effective slit width by means of

\[
\theta_{1/2} = \frac{180^\circ}{\pi^2} \frac{\lambda}{a_{\text{eff}}},
\]

(12)

We note that, for Eq. (11) and for the single particle function \(\sin^2 x/x^2\) [Eq. (8)], the same normalizing constant \(1/\pi \theta_{1/2}\) applies.

The width of the Sun can be taken into account by an additional convolution of the halo functions with a function \(g_s(\theta)\), which represents a disk:

\[
g_s(\theta) = \frac{2}{\pi^2} (s^2 - \theta^2)^{1/2},
\]

(13)

Here \(s\) is the semidiameter of the Sun. However, if the diffraction broadening is larger than \(s\), we may still use Eq. (11), interpreting \(\theta_{1/2}(\text{tot})\) as caused by diffraction and by the solar disk. The diffraction part \(\theta_{1/2}\) can be simply calculated from \(\theta_{1/2}(\text{tot})\) using the Gaussian deconvolution rule

\[
\theta_{1/2}^2(\text{tot}) = \theta_{1/2}^2 + \gamma_0^2 s^2.
\]

(14)

The convolution integral, transforming the halo Stokes vector \(S_g(\theta)\) in geometrical optics into the halo...
Stokes vector $S_H(\theta)$ broadened by diffraction and by the solar disk, is given by

$$S_H(\theta) = \int_0^\infty S_s(x) g(x - \theta) dx.$$ \hspace{2cm} (15)

III. Model Halo Polarization Distribution and Its Interpretation

The convolution of the Stokes parameter of the geometrical optics halo with the function $g(\theta)$ produces a model simulation of the polarization of a natural halo. We assume the observed signal to consist of a halo model simulation of the polarization of a natural halo. We also need an estimate for the ratio $(I_p)_{\text{max}}/(U_H)_{\text{max}}$ to be used for the interpretation of A. This requires a somewhat better approximation for $I_p(\theta)$ than the one leading to Eq. (17). We take for this an exponential function $I_p(\theta) = (I_p)_{\text{max}} \exp[-\alpha(\theta - \theta_h)]$ and approximate the convolving function by a constant that, according to Eq. (11), should be $1/\pi \theta_{1/2}$. Then, $(I_p)_{\text{max}}$ can be approximated by the mean value of $I_p(\theta)$ in the interval $\theta \in [\theta_h, \theta_h + \pi \theta_{1/2}]$, yielding

$$I_p(\theta)_{\text{max}}/U_H(\theta)_{\text{max}} = \pi \alpha \theta_{1/2}/[1 - \exp(-\pi \alpha \theta_{1/2})].$$ \hspace{2cm} (18)

In this approximation, $(I_p)_{\text{max}}$ occurs at $\theta = \theta_h + \frac{1}{2} \pi \theta_{1/2}$. At that angle, we find from the exponential distribution and Eq. (18), that $I_p(\theta)$ is almost equal to $I_p(\theta)$. This holds to within 10% if $\alpha \theta_{1/2} < 0.5$, which includes all cases of relevance.

The exponential approximation of the intensity distribution fits the simulated one surprisingly well. For the 22° Monte Carlo halo in Fig. 2, $\alpha = 0.4$ deg$^{-1}$; for the 46° halo from the same crystals, $\alpha = 0.2$ deg$^{-1}$.

The model representation $Q(\theta)$ is depicted in Fig. 5, which shows that the halo signal consists of the sum of a diffraction-broadened birefringence peak reaching its maximum value A at $\theta = \theta_h$ and a smooth function that we may call the residual value of $Q(\theta)$. The shape of the function describing this residual value is identical to that of the simple model representation of $I_p(\theta)$ in Eq. (17).

The five free parameters in Eq. (16) contain the following information:

- A determines the height of the sharp birefringence peak in $Q(\theta)$ measured relative to $(I_p)_{\text{max}}$. The larger $|A|$, the more significant polarimetry is as a diagnostic for halos. Relaxing the condition that $|A \theta_h|$ is small with respect to the diffraction broadening of the peak for a moment, a general expression for A can be found from Eqs. (7), (11), and (15), where the δ function in Eq. (7) is replaced by a rectangular function:

$$A = (I_p)_{\text{max}} \frac{2\pi}{\pi} \frac{1}{\arctan(\frac{\Delta \theta_h}{\theta_{1/2}})}$$

$$\approx \frac{(I_p)_{\text{max}}}{\pi} \arctan(\frac{\Delta \theta_h}{\theta_{1/2}}),$$

which is maximally ~ 0.5. For $|\Delta \theta_h| \lesssim \theta_{1/2}$, it simplifies to

$$A \approx \frac{(I_p)_{\text{max}}}{2\pi} \frac{\Delta \theta_h}{\theta_{1/2}},$$

(19)

(20)

For the terrestrial 22° halo not broadened by diffraction [so $\theta_{1/2} = 0$; see Eq. (14)], $(I_p)_{\text{max}} \approx (I_H)_{\text{max}}$ [Eq. (18)] and the magnitude of A is 0.15. For large $\theta_{1/2}$, Eq. (18) and relation (20) indicate that A does not drop to zero, but reaches a limiting value of $\frac{1}{2\pi} \alpha \Delta \theta_h$. For the 22° halo with $\alpha = 0.4$ deg$^{-1}$, this limit is 0.02.

- C is the residual polarization of the halo without...
taking the birefringence peak into account. It is given by the last two terms in Eq. (7) divided by \((I_H)_{\text{max}}\). We consider this expression at the scattering angle at which the halo intensity \(I_H\) reaches its maximum. At that angle, \(I_H \approx I_{B}\) and, therefore,

\[
C = \frac{1 - F}{1 + F} + \frac{1}{2} \alpha \theta_h \frac{I_{Q}(\theta)}{I_{H}(\theta)}.
\]

(21)

If birefringence is absent, \(C\) depends on the Fresnel coefficients alone and its value is 0.037 for the 22° halo. In the birefringent case, \(C = 0.037\) provides an estimate for the first derivative of \(I_g(\theta)\) and for its exponential parameter \(\alpha = -I_g'/I_g\).

- \(A\) and \(C\) provide a value for the intrinsic degree of polarization of the halo in the absence of background intensity. This intrinsic polarization \(P_H\) peaks near \(\theta_h\) where the halo intensity \(I_H(\theta) = \frac{1}{2}(I_H)_{\text{max}}\). Hence, from Eq. (15) we have

\[
(P_H)_{\text{max}} \approx Q_h(\theta_h)/I_{B}(\theta_h) = 2A + C.
\]

(22)

Outside the birefringence peak, say for \(\theta > \theta_h + 2\theta_{1/2}\) (see Fig. 4), the intrinsic halo polarization is of the order of residual polarization \(C\). For still larger scattering angles, \(P_H\) starts to increase slowly. This is because \(Q_{B}(\theta)\) remains constant and \(I_{H}(\theta)\) decreases, see Figs. 2 and 3. This occurs outside the region of the La Palma observations.

- \(Q_B\) is the background on which the halo signal is superposed. It may be caused by a number of effects, including single scattering by drops, aerosols, or by imperfectly shaped crystals, Rayleigh scattering, and multiple scattering in the cloud. The multiple scattering effects may cause a signal in the third Stokes parameter where no halo signal is present. We denote this component by \(U_B\).

- \(\theta_{1/2}\) with Eq. (12) provides a value for the effective slit width of the crystals \(a_{\text{eff}}\). This slit width represents the cross-sectional weighted width of the light beam emerging from the crystals. The determining factor of the slit width is the length of one of the crystal edges, hence one of the linear dimensions of the crystal. This length can be calculated from the scattering geometry of the crystals contributing to the birefringence peak. In the case of random orientation, this scattering geometry is the minimum deviation configuration with the refracting edge perpendicular to the scattering plane. For the 22° ice crystal halo, the slit width is determined by the length of the sides of the hexagonal-shaped crystal face. The diameter \(d\) of this hexagon is found from

\[
d = 2.65 a_{\text{eff}}.
\]

For the 46° ice crystal halo, however, it depends on the aspect ratio of the crystal whether the slit width is limited by the sides of the hexagon or by crystal length \(l\). For columns, the former situation holds so that \(a_{\text{eff}}\) provides redundant information about hexagon diameter \(d\) by means of \(d = 3.1 a_{\text{eff}}\). For plates, however, the limiting edge length is crystal length \(l\), a parameter that cannot be determined from the 22° halo. It can be calculated with \(l = 2.7 a_{\text{eff}}\).

We note that an estimate for \(\theta_{1/2}\) and hence for the crystal size can also be obtained from the first derivative of \(I_H(\theta)\) at its inflection point near \(\theta_h\) (see, however, Lynch and Schwartz\(^{14}\) for an alternative method). From the simple halo intensity distribution function given by Eq. (17) it follows immediately that

\[
\frac{(I_H)_{\text{max}}}{(I_B)_{\text{max}}} = \frac{1}{\pi \theta_{1/2}}.
\]

(24)

Interestingly, the same formula can be applied for a less trivial intensity distribution \(I_H(\theta)\), such as, for example, the one assuming an exponential behavior of the ray optical halo intensity \(I_{B}(\theta)\). This is briefly outlined in Appendix A. On the other hand, it can be expected that the accuracy of \(\theta_{1/2}\) calculated from the slope of \(I_{H}(\theta)\) is often low compared with the one obtainable from \(Q\), also because the observed intensity \(I(\theta)\) must be corrected for a background \(I_{B}(\theta)\), which for circular halos must be guessed.

IV. La Palma Halo

A. Instruments

The observation took place at Observatorio del Roque de los Muchachos, La Palma, 22 June 1988. The altitude of the observatory is 2800 m and its geographic position is 17°52'34" W, 28°45'34" N. The instruments used were the Jacobus Kapteyn 1-m Cassegrain telescope and the Multi Purpose Fotometer (MPF).\(^{18}\) The telescope was baffled and vignetteed on the east side to prevent direct sunlight from reaching the mirror.\(^{19}\) The telescope focal ratio is f/15, the focal plane diaphragm was 10 arcsec. During the halo scans, the solar elevation was 70° and the telescope was pointing westward at an elevation of around 50°. At that elevation, its absolute pointing accuracy is within 7 arcsec.
Details of the MPF are given elsewhere. In this instrument, incoming polarized light is modulated at 100 Hz by a rotating half-wave plate. After passing an analyzing polarizer, the light is split into twelve beams by several beam splitters. Each beam subsequently passes a color filter and the photons are counted with photomultipliers. The integration time was 5.4 s for each point; after each integration there is a dead time of 5 s. The orientation of the coordinate system of the polarimeter with respect to the telescope frame was determined at night by observing unpolarized stars. The zero-point polarization of the system was determined at night by observing unpolarized objects such as the Sun and a white, backscattered ma halo. More important was the halo intensity distribution obtained by the camera, which was superior to the MPF scan by virtue of relatively uniform clouds. The second contribution of the camera was a picture of a parhelion taken on another occasion, which is discussed in Section 5.

The MPF operated at eight different wavelengths; four wavelengths were observed twice. As the standard deviation of the polarization was determined by photon statistics, we averaged the results for channels with identical wavelengths \(\lambda \). Table I summarizes the technical data. The photon statistics of the \(\lambda = 542\) nm points turned out to be very poor with respect to the other channels. In the evaluation of the measurements the 542-nm data were not considered.

Additional information about the halo was obtained by means of a four-lens polarimetric camera of 125-mm focal length. This camera is a rebuilt commercial camera for passport photographs. Its purpose is to resolve fine-scale structures in polarization patterns such as the halo birefringence peak. It takes four pictures simultaneously on the same sheet film negative. Behind each lens is a polarizer, cut from the same commercial lenses, determined from remote terrestrial objects, was found to be the same within 25 \(\mu \)m (0.01°). Therefore, digitized photos can be made to overlap by a simple translation procedure. The camera has a Sun finder; if the Sun is centered in that finder, the scattering angle in the images is known to within an accuracy of \(\pm 0.1° \). This was calibrated with exposures of the horizon on a lake.

The halo negative was scanned with the Leiden Observatory Astroscan machine at a resolution of 50 \(\times \) 50 \(\mu \)m (0.02° \(\times \) 0.02°). After conversion from density to intensity, the pictures were made to overlap by the translation procedure and the Stokes parameters and degrees of polarization in each pixel were calculated. Subsequently, 5 \(\times \) 5 pixel (0.11° \(\times \) 0.11°) smoothing was applied. The standard deviation in the degree of polarization for one of these large pixels is of the order of 5 \(\times \) 10\(^{-3}\), enough to resolve fine-scale features. The uncertainty in the absolute value of the polarization may be two to three times higher, but this uncertainty only affects the background polarization on which the fine-scale features are superposed.

However, as the standard deviation of 5 \(\times \) 10\(^{-3}\) is of the order of that of our poorest MPF channel, the degrees of polarization obtained did not contribute much to our polarization measurements of the La Palma halo. More important was the halo intensity distribution obtained by the camera, which was superior to the MPF scan by virtue of relatively uniform clouds. The second contribution of the camera was a picture of a parhelion taken on another occasion, which is discussed in Section 5.

Table I. Status of the MPF During the Halo Scans

<table>
<thead>
<tr>
<th>Wavelength/Full Width at Half-Maximum Bandwidth (nm)</th>
<th>Number of Channels Used</th>
<th>Halo Angle</th>
<th>Error in (P) (\times 10^4)</th>
<th>((P_x))(_{zero}) (\times 10^4)</th>
<th>((P_y))(_{zero}) (\times 10^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>402/10</td>
<td>1</td>
<td>22.56°</td>
<td>20</td>
<td>23 ± 2</td>
<td>-3 ± 2</td>
</tr>
<tr>
<td>441/10</td>
<td>2</td>
<td>22.32°</td>
<td>13</td>
<td>23 ± 3</td>
<td>6 ± 3</td>
</tr>
<tr>
<td>481/10</td>
<td>2</td>
<td>22.43°</td>
<td>16</td>
<td>23 ± 3</td>
<td>6 ± 4</td>
</tr>
<tr>
<td>542/10</td>
<td>1</td>
<td>21.91°</td>
<td>46</td>
<td>41 ± 6</td>
<td>1 ± 6</td>
</tr>
<tr>
<td>622/10</td>
<td>2</td>
<td>21.71°</td>
<td>10</td>
<td>6 ± 2</td>
<td>8 ± 0</td>
</tr>
<tr>
<td>712/10</td>
<td>1</td>
<td>21.55°</td>
<td>9</td>
<td>-7 ± 2</td>
<td>0 ± 2</td>
</tr>
<tr>
<td>791/10</td>
<td>2</td>
<td>21.43°</td>
<td>7</td>
<td>-6 ± 2</td>
<td>0 ± 2</td>
</tr>
<tr>
<td>850/30</td>
<td>1</td>
<td>21.35°</td>
<td>18</td>
<td>4 ± 3</td>
<td>-11 ± 3</td>
</tr>
<tr>
<td>590/33</td>
<td>Camera</td>
<td>21.79°</td>
<td>50</td>
<td>040 ± 100</td>
<td>215 ± 100</td>
</tr>
</tbody>
</table>

The 22° halo angles were calculated using the indices of refraction of ice given by Hobbs,\(^8\) which are valid with respect to vacuum and a temperature of \(-3°C\). The halo angles given are the mean for ordinary and extraordinary refraction. \(P \) is the degree of polarization; its standard deviation is determined by photon statistics. (\(P_x \))\(_{zero} \) and (\(P_y \))\(_{zero} \) are the instrumental zero-point polarizations in the second and third Stokes parameters expressed in degrees of polarization.

The halo was caused by the atmospheric extinction of terrestrial light scattered by ice crystals. The standard deviation in the degree of polarization for one of these large pixels is of the order of 5 \(\times \) 10\(^{-3}\), enough to resolve fine-scale features. The uncertainty in the absolute value of the polarization may be two to three times higher, but this uncertainty only affects the background polarization on which the fine-scale features are superposed.
During these measurements, which we call scan A, the halo was relatively bright and stable. During the twelfth integration (14:41:40 UT), a picture was obtained with the polarimetric camera (see Fig. 7).

After this successful measurement, a final attempt was undertaken to scan the halo in the reverse direction, starting at 14:47:27 UT, but soon the halo disappeared and subsequently the clouds also disappeared. At 14:55 UT the sky was again clear and we continued our observations of Venus.

The cirrus generating the La Palma halo can be identified in the NOAA-9 satellite picture taken at 16:15 UT. It was a fast-moving cirrus band associated with the subtropical jet stream. The cloud band passed all the Canary Islands, including the meteorological station at Tenerife. The vertical temperature sounding of 12:00 UT at that station can, therefore, also be considered as representative of our observing site. At a pressure level of 21.7 kPa, the sounding showed a maximum wind speed of 30 m/s from a north-west direction. In this jet, an inversion layer extended from 22.6 to 21.4 kPa with a minimum dew-point depression of 10°C at 22.6 kPa. Obviously the cirrus clouds were associated with that inversion, which was at a height of 11 km above sea level. The temperature of the humid layer was reported to be −53°C at its bottom and −56°C at its top.

Figures 8–10 show the results of scan A. The plane of reference of the Stokes vector \((Q,U)\) was rotated in such a way that \(Q\) is parallel to the scattering plane. The measurements for \(\lambda = 441\) and 712 nm are displayed; the results of the other five wavelengths are similar. The Stokes parameters are expressed in degree of polarization: \(P_\mathrm{x} = Q/I\) and \(P_\mathrm{y} = U/I\). The solid curves in Fig. 8 are the result of a regression of the data with the model discussed in Section 3. Figure 11 is the halo intensity obtained from the densitometer scan of the halo picture, Fig. 7. Figure 12 shows \(P_\mathrm{x}\) and the regression line for the incomplete scan \(B\) at \(\lambda = 712\) nm. For \(\lambda = 441\) nm, scan \(B\) did not extend to the maximum of \(P_\mathrm{x}\).

C. Data Reduction

The MPF intensity measurements in Fig. 10 show much stronger fluctuations than can be expected from the internal standard deviations for the individual points. These fluctuations, which are absent in the photographic record of the intensity, Fig. 11, are correlated for different wavelengths and obviously result from the varying density of the moving clouds, see also the picture in Fig. 7. On the other hand, the scatter in the observed degrees of polarization \(P_\mathrm{x}\) and \(P_\mathrm{y}\) in Figs. 8 and 9 does agree with the internal standard deviations of the points. This means that the relative contribution of the halo to the total intensity remained constant during the intensity fluctuations. The direct observations of \(Q(=P_\mathrm{x}I)\) obviously show the same fluctuations as the intensity points. Therefore, we prefer the observed degrees of polarization rather than the direct observations of the intensity.

20 August 1991 / Vol. 30, No. 24 / APPLIED OPTICS 3391
to use the observed \(P \) points for curve fitting with Eq. (16). These points are transformed to \(Q \) values by multiplication with the simple halo intensity function given by Eq. (17). This requires a value of the background intensity \(I_B \), which is expressed relative to the maximum halo intensity \((I_H)_{\text{max}} \). We note that the choice of \(I_B \) hardly influences the result for the regression constants \(\theta_B \) and \(\theta_{1/2} \) in Eq. (16) but does affect the others. If the values of \(I_B \) given in Table II are increased by, e.g., 20%, the results of \(\theta_B \) and \(\theta_{1/2} \) only change by 0.01°, while \(A \), \(C \), and \(Q_B \) increase by 15%, 10%, and 20%, respectively.

To reach consistency in the estimation of \(I_B \) for the different wavelengths, it was estimated as follows. For \(\lambda = \) 712 nm, \(I_B \) was determined directly from Fig. 10, yielding \(I_B = 1 \) at the halo maximum with an
Fig. 8. Polarization of the La Palma halo for two wavelengths, \(\lambda = 712 \) and 441 nm, observed during scan A. \(P_r = Q/I \) is the second Stokes parameter expressed in degree of polarization; \(\theta \) is the scattering angle. The plane of reference of the Stokes vector is the scattering plane. \(\theta_h \) is the halo angle for \(T = -3^\circ \text{C} \) averaged over the two directions of polarization. The solid curves are the best fit of the observations with the birefringence–diffraction model described in Section 3. The time and the solar elevation, \(h_{\text{sun}} \), are indicated at the top of the figure. The moment the photograph (Fig. 7) was taken is indicated by an arrow. The halo was also recorded at five additional wavelengths; the results (not shown) are similar to those presented here.

Fig. 9. Polarization of the La Palma halo of scan A for \(\lambda = 712 \) and 441 nm. \(P_t = U/I \) is the third Stokes parameter expressed in degree of polarization; \(\theta \) is the scattering angle. The plane of reference of the Stokes vector is the scattering plane. \(\theta_h \) is the halo angle for \(T = -3^\circ \text{C} \) averaged over the two directions of polarization.

Fig. 10. Intensity \(I(\theta) \) of the La Palma halo of scan A in counts/point for \(\lambda = 712 \) and 441 nm. \(\theta \) is the scattering angle, \(\theta_h \) is the halo angle for \(T = -3^\circ \text{C} \) averaged over the two directions of polarization. The standard deviation from photon statistics is of the order of \(10^3 \) counts/point. The fluctuations in the measurements are determined by local density differences in the moving ice cloud.

Fig. 11. Intensity of the La Palma halo during scan A as a function of scattering angle \(\theta \) obtained from the photograph in Fig. 7. The densitometer scan was taken through the uniform cloud in the middle of Fig. 7. \(\theta_h \) is the halo angle for the camera wavelength of 590 nm. The absolute value of the scattering angle contains an uncertainty of \(\pm 0.1^\circ \).

estimated error of 20%. Then we determined the relative photon efficiency of the telescope/MPF combination for the various channels. This was done by using a calibration measurement on Vega, whose absolute spectral distribution is known.24,25 The Vega elevation of 70° was the same as the solar elevation during the halo scans and the measurement took place the night following the halo observation. With this calibration, we determined the intensity per unit bandwidth \(d\lambda \) of the point at \(\theta = 18^\circ \) in the halo scan for the different wavelengths relative to that at \(\lambda = 712 \) nm. This ratio is denoted here by \(R(\lambda) \). Under the assump-
Fig. 12. Same as Fig. 8 but for the relatively short theoretical curve in Eq. (16) was done by solving the with the one derived from the photographic observation that both the halo scattering cross section at maximum halo intensity and the ratio \(I_B/I(18^\circ) \) are independent of wavelength, \(I_B(\lambda) \) can be calculated from

\[
I_B(\lambda) = I_B(712)R(\lambda)I_r(Sun, 712)/I_r(Sun, \lambda),
\]

where \(I_r(Sun, \lambda) \) is the solar intensity in a small bandwidth \(d\lambda \). The resulting values of \(I_B \) are consistent with the one derived from the photographic observation in Fig. 11 (\(I_B = 1.2 \) at 590 nm) and are included in Table II.

The actual curve fitting of the Q points with the theoretical curve in Eq. (16) was done by solving the nonlinear regression interactively by successive linear approximations, where after each step the newly found value of \(\theta_h \) was substituted into Eq. (17) before the next iteration was started.

Table II gives the results of the regression. The last column gives the outcome of a \(\chi^2 \) test of the observed points with the curve. The fact that the \(\chi^2 \) values are comparable to the number of points involved indicates that the regression has been successful in the sense that the variance of the points with respect to the curve is neither larger nor smaller than what is to be expected from the standard deviations of the observed points. See also Figs. 8 and 12, where the solid lines are the regression lines.

The results of the \(\lambda = 542 \)-nm channel have been omitted in Table II, since they were far less accurate than the others. The reason is the larger standard deviation in the observations (see Table I). For the same reason, the camera results have not been included. We note, however, that its results (A \(= 500 \) \(\pm 150 \) \(\times 10^{-4} \), \(\theta_h = 21.76 \pm 0.15^\circ \), and \(\theta_{1/2} = 0.64 \pm 0.15^\circ \)) are consistent with the MPF observations. For scan B we included only the results of the four longest wavelengths in Table II. The reason is that the scan stopped at \(\theta = 22.4^\circ \) and hence did not sufficiently pass the halo angle for the 402-481-nm wavelengths. For the longer wavelengths, this scan is still long enough to yield quite reliable values for the constants \(\theta_h, \theta_{1/2} \), and A of Eq. (16), although not for C and \(Q_B \).

D. Interpretation of the La Palma Halo

Halo Identification

At high solar elevations, it is difficult to distinguish between the shape of a 22° halo and a circumscribed halo caused, respectively, by random orientation and preferential orientation with the horizontally directed C axis. However, visual inspection during the La Palma halo indicated a poorly colored halo with a flat.

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>(\theta_h) (deg)</th>
<th>(\theta_{1/2}) (deg)</th>
<th>(A \times 10^4)</th>
<th>(C \times 10^4)</th>
<th>(Q_B \times 10^4)</th>
<th>(U_B \times 10^4)</th>
<th>(I_B)</th>
<th>(\chi^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>402</td>
<td>22.61 ± 0.03</td>
<td>0.36 ± 0.05</td>
<td>474 ± 38</td>
<td>174 ± 33</td>
<td>-8 ± 10</td>
<td>-113 ± 7</td>
<td>1.9</td>
<td>38</td>
</tr>
<tr>
<td>441</td>
<td>22.44 ± 0.03</td>
<td>0.54 ± 0.03</td>
<td>418 ± 18</td>
<td>145 ± 24</td>
<td>-7 ± 6</td>
<td>-59 ± 3</td>
<td>1.4</td>
<td>36</td>
</tr>
<tr>
<td>481</td>
<td>22.32 ± 0.03</td>
<td>0.61 ± 0.04</td>
<td>377 ± 15</td>
<td>120 ± 20</td>
<td>16 ± 5</td>
<td>32 ± 3</td>
<td>1.2</td>
<td>25</td>
</tr>
<tr>
<td>622</td>
<td>21.85 ± 0.03</td>
<td>0.80 ± 0.05</td>
<td>342 ± 13</td>
<td>155 ± 17</td>
<td>38 ± 5</td>
<td>-15 ± 2</td>
<td>1.1</td>
<td>83</td>
</tr>
<tr>
<td>712</td>
<td>21.66 ± 0.04</td>
<td>0.89 ± 0.06</td>
<td>295 ± 11</td>
<td>222 ± 13</td>
<td>40 ± 9</td>
<td>-16 ± 1</td>
<td>1.0</td>
<td>39</td>
</tr>
<tr>
<td>791</td>
<td>21.56 ± 0.03</td>
<td>0.93 ± 0.05</td>
<td>307 ± 10</td>
<td>216 ± 13</td>
<td>55 ± 8</td>
<td>-13 ± 2</td>
<td>1.1</td>
<td>48</td>
</tr>
<tr>
<td>850</td>
<td>21.38 ± 0.08</td>
<td>1.09 ± 0.12</td>
<td>366 ± 25</td>
<td>329 ± 33</td>
<td>4 ± 24</td>
<td>5 ± 4</td>
<td>1.4</td>
<td>41</td>
</tr>
</tbody>
</table>

Scan B

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>(\theta_h) (deg)</th>
<th>(\theta_{1/2}) (deg)</th>
<th>(A \times 10^4)</th>
<th>(C \times 10^4)</th>
<th>(Q_B \times 10^4)</th>
<th>(U_B \times 10^4)</th>
<th>(I_B)</th>
<th>(\chi^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>622</td>
<td>21.83 ± 0.06</td>
<td>0.59 ± 0.06</td>
<td>407 ± 63</td>
<td>213 ± 118</td>
<td>12 ± 9</td>
<td>-18 ± 3</td>
<td>1.1</td>
<td>33</td>
</tr>
<tr>
<td>712</td>
<td>21.72 ± 0.07</td>
<td>0.65 ± 0.07</td>
<td>356 ± 39</td>
<td>180 ± 90</td>
<td>30 ± 9</td>
<td>-14 ± 2</td>
<td>1.0</td>
<td>28</td>
</tr>
<tr>
<td>791</td>
<td>21.61 ± 0.05</td>
<td>0.69 ± 0.06</td>
<td>348 ± 37</td>
<td>201 ± 60</td>
<td>25 ± 8</td>
<td>-9 ± 3</td>
<td>1.1</td>
<td>30</td>
</tr>
<tr>
<td>850</td>
<td>21.67 ± 0.14</td>
<td>0.92 ± 0.18</td>
<td>414 ± 110</td>
<td>17 ± 150</td>
<td>66 ± 22</td>
<td>8 ± 6</td>
<td>1.4</td>
<td>20</td>
</tr>
</tbody>
</table>

\(a \) Equation (17) is used to transform \(P_r \) into the second Stokes parameter \(Q \). \(A \) is the polarized intensity of the maximum height of the birefringence peak, \(C \) is the residual polarization, and \(Q_B \) and \(I_B \) are the background in \(Q \) and the background intensity, respectively. \(U_B \) is the background in the third Stokes parameter \(U \) obtained by averaging the \(P_r \) values. All the parameters, \(A, C, Q_B, U_B \), and \(I_B \), are measured with respect to the maximum halo intensity \((I_B)_{max} \). \(\theta_h \) is the halo angle and \(\theta_{1/2} \) is the angular separation between the maximum of the diffraction peak and its half-value point. The last column gives the results of a \(\chi^2 \) test. The number of points is 38 for scan A and 23 for scan B.
intensity distribution. This favors the former identification. This temporary conclusion can be confirmed with polarimetric measurements. For a scattering azimuth of 204° of a circumscribed halo and a solar elevation of 70°, the angle between the crystal C axis (which is the optical axis) and the Sun’s rays is ~10°. This skew incidence causes the circumscribed halo to be 0.3° further away from the Sun than the circular halo. Such a shift of halo angle is not found (see below). Furthermore, such a crystal configuration would cause a tilt of the direction of polarization of -1.9° with respect to the scattering plane. This tilt occurs because the plane containing the optical axis of the crystal and the light ray determining the polarization does not cross the scattering plane at right angles, see also Ref. 28. Since in Figs. 8 and 9 we transformed the plane of reference of the Stokes vector to the scattering plane, this means that a maximum of P_x would be accompanied by a minimum of P_y if the halo is the circumscribed halo. The magnitude of the P_y peak would be sin (2 x 1.9°) of that of the P_x peak and hence ~1.7 x 10^{-3} in Fig. 9. We see no evidence of such a minimum and we conclude that the La Palma halo was indeed the result of randomly oriented crystals.

V. Halo Angles
A comparison of Tables I and II shows that the observed halo angles are systematically higher than the calculated halo angles. For scan A the mean difference is 0.12 ± 0.012°; for scan B it is 0.17 ± 0.03°. If the 0.02° pointing uncertainty of the telescope is taken into account, the standard deviation of these numbers changes to 0.02° and 0.04°, respectively. However, the numbers in Table I were calculated with an index of refraction with respect to vacuum and for a temperature of -3°C. We denote this halo angle by \(\theta_h(T) \). Then, for a pressure level of 22.5 kPa and a temperature \(T \) in degrees Celsius, from the temperature dependence of the index of refraction, the index of refraction of air, and the well-known minimum deviation formula for the 22° halo, we find that

\[
\theta_h(T) - \theta_h(-3°C) = -76° (20 + 3.822) \times 10^{-3}.
\]

The observed differences in the halo angle yield, with Eq. (26), a crystal temperature of \(T = -48 ± 7°C \) for scan A and \(T = -64 ± 14°C \) for scan B, in agreement with the cloud temperature of -54°C, as observed by the Tenerife vertical sounding. The uncertainty of 7°C in the scan A crystal temperature is caused chiefly by the uncertainty of 0.02° in the pointing of the telescope. Hence the agreement with cloud temperature means that the polarimetrically observed halo angles agree to within this pointing uncertainty of 0.02° with the theoretical halo angles. Figure 13 shows a plot of \(\theta_h \) (observed) - \(\theta_h(-3°C) \) as a function of wavelength. We note that, for the high solar elevation and the high elevation of the scan, the effect of atmospheric refraction on the observed halo angle can be neglected since it amounts to only 3 x 10^{-3} deg.

VI. Crystal Size
Parameter \(\theta_{1/2} \) in Table II allows the calculation of the effective slit width of the crystals. Figure 14 shows a plot of \(\theta_{1/2} \) as a function of wavelength for scan A. The observed values have been corrected for the smearing by the solar disk by using Eq. (14). Hence, the presented values of \(\theta_{1/2} \) can be attributed to diffraction alone.

Figure 14 also includes a least-squares regression line through the observations. As expected from Eq. (12), it passes close to the origin and thus Eq. (12) can be used to determine \(\alpha_{eff} \). The resulting values are \(\alpha_{eff} = 15.4 ± 0.04 \mu m \) for scan A and \(\alpha_{eff} = 20.5 ± 1.2 \mu m \) for scan B. Then diameters \(d \) of the hexagon-shaped face of the crystals are found from Eq. (23) and result in scan A: \(d = 41 ± 1.1 \mu m \), scan B: \(d = 54 ± 3.0 \mu m \). Scan A took place much closer to the edge of the cloud; the difference between these sizes may be attributed to the inhomogeneities within the crystal cloud.

VII. Amplitude of the Birefringence Peak
The significance of polarimetry for halo detection depends strongly on ratio \(A \) of the amplitude of the sharp birefringence peak in \(Q(\theta) \) and the maximum intensity of the halo. As mentioned above, for the solar-disk-smeared 22° halo, \(A \) ranges between 0.15 and 0.02, being a function of broadening of the birefringence peak, \(\theta_{1/2} \).

Figure 15 compares the measured values of \(A \) with the theory, relation (20) and Eq. (18). To suppress noise in the \(\theta_{1/2} \) values, they are not taken directly from Table II but are recalculated from the \(\alpha_{eff} \) values determined above. The theoretical line has been calculated assuming \(\alpha = 0.4 \text{deg}^{-1} \) in Eq. (18). Adopting \(\alpha = 0.3 \text{deg}^{-1} \) results in a lowering of the \(A \) values by only 0.003.

Figure 15 indicates that the agreement is good in spite of the fact that \(A \) in each scan may contain a systematic relative error of ~15%. We emphasize that the curve in Fig. 15 is valid exclusively for the circular
With Eq. (21), this discrepancy of 0.017 ± 0.004 leads to a value of $3.2 \pm 0.8 \text{deg}^{-1}$ for $\alpha = -I_s'(\theta)/I_s(\theta)$. Within the uncertainty, this is in agreement with the simulation given in Fig. 2 and is also consistent with the observations of Lynch and Schwartz, leading to $\alpha = 4.3 \text{deg}^{-1}$ for $\theta > 24^\circ$.

The maximum intrinsic halo polarization $(P_H)_{\text{max}}$ can be calculated from the data in Table II using relation (22). No significant wavelength dependence is present in it. Averaged over all observations of scan A, $(P_H)_{\text{max}} = 0.087 \pm 0.002$.

Normally, a degree of polarization of the order of 0.1 is not visible by visual inspection with a polarizer, but halo polarization is an exception because rotation of the polarizer causes a shift of the halo rather than a variation of intensity. Therefore, our sensitivity for detecting halo polarization depends on our capability to locate the halo inner-edge position in the sky. The Mach–Seelinger perception theory, which has also been proved to apply to halo edges, indicates that this capability is surprisingly good. This situation is improved by the color of the halo, which discriminates halo light from the background. This accounts, e.g., for the small standard deviation in visual halo radius observations, even if these are obtained on different days. In the case of visual polarization observation, the situation is even more favorable, because the halo intensity is obviously constant during the observation and the cloud structures near the halo can be used as a reference. These facts explain the good visibility of halo shift in polarized light. As the magnitude of the shift is related to the amplitude of the birefringence peak, the governing factor of the visibility of halo polarization is the intrinsic polarization $2A$ of this peak rather than the total intrinsic halo polarization itself.

IX. Background Polarization

The Stokes parameters of background polarization, expressed in degree of polarization, can be found from Table II by using $P_x = Q_B/I_B$ and $P_y = U_B/I_B$. The results, to which the correction for the zero-point polarization (Table I) has been applied, are given in Table III.

Table III. Polarization of the Background Intensity on Which the Halo Signal Is Superposed

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>$P_x \times 10^4$</th>
<th>$P_y \times 10^4$</th>
<th>$P_{sc} \times 10^4$</th>
<th>$P_{vert} \times 10^4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>402</td>
<td>-27 ± 7</td>
<td>-56 ± 6</td>
<td>-142 ± 19</td>
<td>127 ± 14</td>
</tr>
<tr>
<td>441</td>
<td>-28 ± 8</td>
<td>-48 ± 6</td>
<td>-126 ± 20</td>
<td>109 ± 14</td>
</tr>
<tr>
<td>481</td>
<td>-13 ± 7</td>
<td>-40 ± 7</td>
<td>-95 ± 21</td>
<td>91 ± 14</td>
</tr>
<tr>
<td>622</td>
<td>29 ± 7</td>
<td>-22 ± 4</td>
<td>-16 ± 15</td>
<td>50 ± 8</td>
</tr>
<tr>
<td>712</td>
<td>47 ± 7</td>
<td>-16 ± 3</td>
<td>14 ± 13</td>
<td>36 ± 8</td>
</tr>
<tr>
<td>791</td>
<td>53 ± 7</td>
<td>-14 ± 4</td>
<td>24 ± 15</td>
<td>32 ± 8</td>
</tr>
<tr>
<td>850</td>
<td>3 ± 17</td>
<td>15 ± 6</td>
<td>37 ± 29</td>
<td>-34 ± 12</td>
</tr>
</tbody>
</table>

*a The Stokes parameters are expressed in degree of polarization. P_x and P_y are the second and third Stokes parameters divided by the intensity; the plane of reference is the scattering plane. In the last column, the polarization has been decomposed on a nonorthogonal basis consisting of the scattering plane and the celestial vertical. The resulting parameters are P_{sc} and P_{vert}. This decomposition separates one particular type of multiple scattering from the others (see text).
Also included in Table III is a decomposition of \((P_s, P_y)\) into \(P_{sc}\) and \(P_{vert}\). Here \(P_{sc}\) has the plane of scattering as a reference and \(P_{vert}\) has the celestial vertical. \(P_{sc}\) and \(P_{vert}\) are not orthogonal since the scattering plane is tilted by 13° with respect to the vertical (Fig. 6). The advantage of this decomposition is that it isolates a particular case of multiple scattering, i.e., the one where the last scattering center is located below the layer of large optical thickness. In this contribution, the incident light is the skylight and hence the symmetry axis of the scattering is the zenith. If the sky is brightest near the horizon, the polarization that occurs at the last scattering center \(P_{vert}\) is positive, otherwise it is negative.\(^3\) Table III indicates that mainly the former situation materialized. This is to be expected if the cloud is still rather transparent. The fact that \(P_{vert}\) decreases the wavelength may be attributed to a lower luminosity near the horizon because of the smaller Rayleigh scattering cross section.

The other component, \(P_{sc}\), is partly caused by multiple scattering in the cloud. Another part might be caused by single scattering by halo-generating crystals. However, our Monte Carlo simulation showed that this contribution is only 300 in the units of Fig. 2 and thus at least 1 order of magnitude less than the intensity of the halo maximum. Since the observed background intensity is of the order of the halo intensity, it must be caused by multiple scattering in the cloud and/or perhaps by single scattering by particles other than halo-generating crystals. Hence, no further information about the physical state of these crystals is obtainable from the background polarization.

X. Intensity Slope versus Birefringence Peak Width

Within the present formalism the \(\theta_{1/2}\) value obtained from polarimetry is directly linked to the maximum slope of the halo intensity distribution, Eq. (24). This can be tested with the current set of data. The MPF intensity scan in Fig. 10 is not suitable for this, since the fluctuation in it prevents an accurate estimate of the slope, but the photographic record of the intensity in Fig. 11 is smooth enough for this purpose. Figure 11 yields \((I_H')_{max}/(I_H)_{max} = 0.45 \pm 0.03 \text{ deg}^{-1}\), which corresponds to \(\theta_{1/2} = 0.71 \pm 0.05^\circ\) [Eq. (24)]. With Eq. (12) and \(\lambda = 590\) nm this gives a slit width of 15.4 ± 1.0 \(\mu\)m. The agreement of this value with the one derived from polarimetry is perfect.

XI. Parhelion

On 13 June 1988 at 18:46 UT, we recorded a bright parhelion with the polarimetric camera. The place of observation was 52.19°N and 5.28°E, the solar elevation was 8.5°. Figure 16 shows the picture, Figs. 17 and 18 show the intensity and \(P_r\), respectively, of the parhelion, scanned straight through the intensity maximum of the halo. The plane of reference of the Stokes...
parameter is the horizontal rather than the scattering plane, but for this low solar elevation the angle between these planes is $< 20\degree$. P_x did not show significant fluctuations and is not shown. We were unable to get the Sun in the Sun finder of the camera when the picture was taken, so that the absolute value for the scattering angle is not known. In Figs. 17 and 18 we have assumed that the peak in the polarization coincides with the halo angle.

It is instructive to compare the parhelion observation with the La Palma halo. Figure 17 shows a more pronounced halo intensity peak and Fig. 18 indicates a stronger polarization in a narrower angular range. One reason for this is a larger crystal size, but part of the effect may result from the fact that the parhelion light distribution differs essentially from that of the 22° halo. In fact, for an exact interpretation of the parhelion, the present model with Eq. (16) should be carefully reevaluated and perhaps slightly modified, but for a single observation, this seems overdone. Qualitative conclusions can already be drawn from the present model because for a parhelion the polarization also results from a broadened birefringence peak.

The conclusions are the following. The slope of the intensity distribution near θ_h is much larger than that of the La Palma halo. The value of $(I_{H})_{\text{max}}/(I_H)_{\text{max}}$ is $1.8 \pm 0.1 \text{ deg}^{-1}$, corresponding to $\theta_{1/2} = 0.18 \pm 0.01 \text{°}$. This is only 0.06° larger than the broadening caused by the solar disk. With Eqs. (12) and (14), this indicates a slit width of $83 \pm 6 \mu\text{m}$ and hence a crystal diameter of $d = 220 \pm 17 \mu\text{m}$. The polarimetric scan gives $\theta_{1/2} = 0.23\degree$, but the shape of the P_x scan resembles a solar disk-broadened peak more closely than a diffraction-broadened peak. Fitting with the latter to obtain $\theta_{1/2}$ proved to be less accurate; its results provide only a lower limit to the crystal size, of the order of 150 μm.

The degree of polarization is very large; the intrinsic polarization in the birefringence peak rises to 40% and $A = 0.2$. This is five times larger than the La Palma value and exceeds even the limiting value in Fig. 15. However, the limiting value for a parhelion may be different from that for a 22° halo since the intensity distribution is different. A previous analysis of this type of distribution gave $A = 0.21$ if the crystals are large (Ref. 4, Fig. 8), and that number fits the observation.

XII. Discussion and Conclusions

Little quantitative information is available in the literature about the properties of light distributions of natural halos. Polarimetric observations have been published in one case but never for refraction halos. So we are left with intensity distributions with which to compare our results but only two observations of that type have been reported. The first is by Brüche and Brüche, the other is by Lynch and Schwartz. Both are densitometer scans of pictures of the 22° halo, and both pictures were taken without the use of a color filter. Still, the measurements are detailed enough to determine with some accuracy the effective crystal diameter from the maximum slope of the intensity distribution, particularly for the latter observation. Using Eqs. (12), (23), and (24) and adopting $\lambda = 500 \text{ nm}$, we obtain $d = 55 \pm 5 \mu\text{m}$ for the Brüche and Brüche halo and $d = 44 \pm 3 \mu\text{m}$ for the Lynch and Schwartz halo. The quoted errors in these estimates only allow for the uncertainty in the slope determination. The values of the crystal size are consistent with our La Palma observations. This agreement supports the view that halo formation by randomly oriented crystals places the crystal size between stringent boundaries. However, compared to the prediction of the

Fig. 17. Intensity of the parhelion in Fig. 16 as a function of scattering angle θ, scanned through the halo intensity maximum. The background level is taken from a scan 1.4° below the parhelion. The absolute value of the scattering angle is not known: here we assumed that the polarization maximum (Fig. 18) coincides with the halo angle θ_h.

Fig. 18. Second Stokes parameter P_x expressed in degree of polarization for the parhelion in Fig. 16. Two alternative ordinates are indicated on the right. Q_H and $(I_H)_{\text{max}}$ are the second Stokes parameter and the maximum intensity, respectively, of the parhelion; the maximum of $Q_H/(I_H)_{\text{max}}$ corresponds to parameter A. The extreme right axis gives an indication of the intrinsic halo polarization P_H. The absolute value of scattering angle θ is not known; we have assumed that the polarization maximum coincides with the halo angle θ_h. Note that the polarization of the parhelion is stronger than that of the La Palma halo and that the peak is narrower.
Fraser model of crystal disorientation by Brownian motion, the crystal diameters are rather large. A possible reason can be a bias in our method of crystal size determination caused by the adoption of a certain type of size distribution. However, Tape collected crystals during a nearby 22° halo display and his Fig. 3 indicates diameters of the crystal hexagons of the same order as ours.

Our parhelion observations indicate a much larger crystal diameter than those causing the La Palma halo. The 220-μm size is in good agreement with the light pillar crystals measured by Sassen but are considerably larger than the parhelion crystals collected by Tape. Apparently, there is a relatively large degree of freedom in the crystal size responsible for parhelia and hence the diffraction broadening may differ from case to case. Our large crystal parhelion was exceptionally bright with a sharp and vividly colored inner edge, by no means a typical parhelion.

From the foregoing we might conclude that crystal size determination from the light or polarization distribution of halos is quite possible, provided that the crystals are small enough to provide diffraction broadening. Particularly for the 22° halos, the agreement between the optical determination of crystal sizes and the sampling data is encouraging. Still this agreement is of a qualitative nature since the observations took place on different occasions. Polarimetry and photometry of nearby halos with simultaneous crystal sampling are required to enhance the understanding of the relation between crystal sizes and halos.

As a straightforward result, our measurements confirm the existence of strong halo polarization in a narrow scattering angular range. This shows that, in the case of birefringence, halo polarimetry is a much more sensitive method for detecting crystals in the terrestrial atmosphere or in the atmospheres of other planets or their satellites than was previously anticipated. The sharp halo birefringence peak in the polarization provides a sensitive diagnostic and the stability of the degree of polarization in fluctuating crystal densities, indicated by the current measurements, improves its detectability. Since the magnitude of the peak is inversely proportional to its width, the method is more sensitive for large crystals. In general, to resolve the peak, polarimetric observations of high angular resolution are required. The peak is centered at the halo angle and, once resolved, halo angles can be determined with high accuracy, as demonstrated by the La Palma measurements.

Up to now, calculation of halo angles of crystals that may occur in planetary atmospheres has been restricted to the cubic class, but a few anisotropic candidates have also been suggested. These include ice, nitrogen, the ammonia hydrates, and sulfur dioxide, and there may be more. However, as refraction halos of significant intensity always appear at a scattering angle much smaller than 90°, a hypothetical halo in a planetary atmosphere is only visible at the far side of the planet. Thus for an earth-bound observer, only the inner planets can be examined for halos. This was the aim of our La Palma campaign, where we did obtain the required data for Venus and which yielded this paper as a fortunate by-product. For the outer planets, halo scattering can never reach the earth. Therefore, a search for birefringent crystals in the often complicated atmospheres of the outer planets must wait until a future fly-by, orbiting, or landing spacecraft carries a high-resolution polarimeter.

Appendix A: Diffraction Broadening of an Exponential Halo Intensity Distribution

We consider a geometric halo intensity function for θ > θh of the form

\[I_θ(θ) = \left(\frac{\theta}{θ_h} \right)^{α} \exp\left[-\alpha(θ - θ_h)\right], \]

where \(I_θ(θ) \) is the halo intensity distribution after convolution with diffraction function \(g) \) [Eq. (11)] is denoted by \(I_H(θ) \). \(I_θ\max(I_H) \) is given by Eq. (18) and with \(I_θ(θ) = 1 \) can be approximated by

\[\frac{1}{I_H\max} = 1 + \frac{1}{2}\tan\left(\frac{θ}{2}\right) + \frac{1}{2}\tan^2\left(\frac{θ}{2}\right) - \frac{1}{2}\tan^2\left(\frac{θ}{2}\right)^2 + \ldots \]

(A2)

For \(I_H(θ) \) one finds that

\[\frac{I_θ(θ)}{I_H(θ)} = \frac{1}{2} - \frac{θ}{θ_h}, \]

(A3)

\[I_H'(θ) = \frac{1}{2}πθ_{1/2} - αI_H(θ), \]

(A4)

\[I_H''(θ) = -αI_H'(θ), \]

(A5)

\[I_H''''(θ) = \frac{2}{πθ_{1/2}} - αI_H''''(θ). \]

(A6)

The inflection point of \(I_H(θ) \) can be found in first approximation from Eqs. (A5) and (A6), which gives

\[I_H'\max(I_H) \approx I_H'(θ) = \frac{1}{2}αθ_{1/2}I_H''''(θ_h), \]

(A7)

The next term in Eq. (A7) is \(-0.1παθ_{1/2}^3\). Hence, the relative truncation error in Eq. (A7) is of the order of \(αθ_{1/2}^2\).

We thank R. S. Le Poole for assistance in using the Leiden Astroscan densitometer, H. Deen for adaptation of the polarimetric camera, R. E. Wallis for his support during the measurements, S. Kruizinga and T. A. Buishand for statistical advice, G. D. Kelderman for software advice, and A. P. M. Baede for general encouragement. G. P. Können thanks W. Tape for his comments on the draft of this paper during our cool stay at the South Pole.

The Jacobus Kapteyn telescope is operated on the island of La Palma by the Royal Greenwich Observatory in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. This work was financially supported by the Leids Kerkhove Bosscha Fonds, the Leids Sterrenwacht Fonds, and by The Netherlands Organization for Scientific Research.
References