It is a lack of personal savings that forces us to use our credit cards or obtain personal loans to pay for the expenses we incur in our lives. What is a Cash Cushion – A cash cushion is a separate fund that is established and set aside solely to be used for the purpose of covering these unforeseen expenses, repairs, etc. I hope you will also follow Fiscal Literacy on Twitter & Facebook or sign up via email to receive our free personal finance, news and updates. Guarda le calze autoreggenti di Michela, la Gilda di Calolziocorte, la rossa con un metro e 72 di coscia lunga, la miss romagna con giarrettiera a vista dall’alba al tramonto.
Se dopo aver visionato il filmato, ed attentamente analizzato le calze AUTOREGGENTI di Michela, sei dell’opinione che la Brambilla possa REGGERE anche un Ministero, firma la petizione. Richiedi assistenza gratuita o ulteriori informazioni su una petizione per michela vittoria brambilla ministro.
Per porre una domanda sul tema trattato nell'articolo e visualizzare il form per l'inserimento, devi prima autenticarti cliccando qui. Potrai anche utilizzare le icone posizionate in basso nel pannello di registrazione, che ti consentiranno l'accesso diretto con un account Facebook o Google+. Between 1900 and 1901, divers salvaging the wreck of the Antikythera, an archeological undertaking, as this was an ancient wreck, discovered what to all intents and purposes was a mechanical computer of great age, obviously constructed with the aim of calculating astronomical positioning.
Consensus among scholars is that the mechanism itself was made in the Greek-speaking world. Even the most complex mechanical devices described by the ancient writers Hero of Alexandria and Vitruvius contained only simple gearing.
The fragment that first caught the eye of StaIs was one of the corroded, inscribed plates that is an integral part of the Antikythera mechanism, as the device later came to be called.
As soon as the fragments had been discovered they were examined by every available archaeologist; so began the long and difficult process of identifying the mechanism and determining its function.
By good fortune George Stamires, a Greek epigrapher, was there at the same time; he was able to give me invaluable help by deciphering and transcribing much more of the inscriptions than had been read before. The fragments show that the original instrument carried at least four large areas of inscription: outside the front door, inside the back door, on the plate between the two back dials and on the parapegma plates near the front dial.
But even from the evidence of a few complete words one can get an idea of the subject matter. Putting together the information gathered so far, it seems reasonable to suppose that the whole purpose of the Antikythera device was to mechanize just this sort of cyclical relation, which was a strong feature of ancient astronomy. The Antikythera mechanism must therefore be an arithmetical counterpart of the much more familiar geometrical models of the solar system which were known to Plato and Archimedes and evolved into the orrery and the planetarium.
It is to the prehistory of the mechanical I clock that we must look for important analogies the Antikythera mechanism and for an assessment of its significance. On the one hand the Islamic devices knit the whole story together, and demonstrate that it is through ancestry and not mere coincidence that the Antikythera mechanism resembles a modern clock. WHEN a Greek sponge diver called Elias Stadiatos discovered the wreck of a cargo ship off the tiny island of Antikythera in 1900, it was the statues lying on the seabed that made the greatest impression on him. The Antikythera mechanism, as it is now known, was originally housed in a wooden box about the size of a shoebox, with dials on the outside and a complex assembly of bronze gear wheels within.
Michael Wright, the curator of mechanical engineering at the Science Museum in London, has based his new analysis on detailed X-rays of the mechanism using a technique called linear tomography. In some cases, says Mr Wright, Price seems to have “massaged” the number of teeth on particular gears (most of which are, admittedly, incomplete) in order to arrive at significant astronomical ratios. The Greeks believed in an earth-centric universe and accounted for celestial bodies' motions using elaborate models based on epicycles, in which each body describes a circle (the epicycle) around a point that itself moves in a circle around the earth. A device that just modelled the motions of the sun, moon, Mercury and Venus does not make much sense.
Mr Wright devised a putative model in which the mechanisms for each celestial body stack up like layers in a sandwich, and started building it in his workshop. The origins of much modern technology, from railway engines to robots, can be traced back to the elaborate mechanical toys, or automata, that flourished in the 18th century. At the time, it was barely realized how very unusual this was, because, with a date of construction estimated at between 100 and 150 years before Christ, this artifact should have been impossible to build.
It contains many gears, and is sometimes called the first known analog computer, although its flawless manufacturing suggests that it may have had a number of undiscovered predecessors during the Hellenistic Period.
For example, the taximeter used by the Greeks to measure the distance travelled by the wheels of a carriage employed only pairs of gears (or gears and worms) to achieve the necessary ratio of movement. Gladys Weinberg of Athens has been kind enough to report to me the results of several recent archaeological examinations of the amphorae, pottery and minor objects from the ship. We are now in the position of being able to "join" the fragments and to see how they fitted together in the original machine and when they were brought up from the sea [see illustration].
On one side of the plate we can trace all the gear wheels of the assembly and can determine, at least approximately, how many teeth each had and how they meshed together. All the metal parts of the machine seem to have been cut from a single sheet of low-tin bronze about two millimeters thick; no parts were cast or made of another metal. The front dial provides the only known extensive specimen from antiquity of a scientifically graduated instrument.
As I have noted, there are also inscriptions around all the dials, and furthermore each part and hole would seem to have had identifying letters so that the pieces could be put together in the correct order and position.
Using the cycles that have been mentioned, one could easily design gearing that would operate from one dial having a wheel that revolved annually, and turn by this gearing a series of other wheels which would move pointers indicating the sidereal, synodic and draconitic months. Preserved complete at the Museum of History of Science at Oxford is a 13th-century Islamic geared calendar-computer that has various periods built into it, so that it shows on dials the various cycles of the sun and moon. On the other hand they show that the Antikythera mechanism was no flash in the pan but was a part of an important current in Hellenistic civilization. Derek de Solla Price, in collaboration with the National Scientific Research Center Demokritos and the physicist CH Karakalos who carried out the x-ray tomography of the original and the mechanism reconstituted to show their operation. He returned to the surface, removed his helmet, and gabbled that he had found a heap of dead, naked women. X-ray photographs of the fragments, in which around 30 separate gears can be distinguished, led the late Derek Price, a science historian at Yale University, to conclude that the device was an astronomical computer capable of predicting the positions of the sun and moon in the zodiac on any given date. This involves moving an X-ray source, the film and the object being investigated relative to one another, so that only features in a particular plane come into focus. Price's account also, he says, displays internal contradictions, selective use of evidence and unwarranted speculation. Mr Wright found evidence that the Antikythera mechanism would have been able to reproduce the motions of the sun and moon accurately, using an epicyclic model devised by Hipparchus, and of the planets Mercury and Venus, using an epicyclic model derived by Apollonius of Perga. But if an upper layer of mechanism had been built, and lost, these extra gears could have modelled the motions of the three other planets known at the time—Mars, Jupiter and Saturn. The completed reconstruction, details of which appeared in an article in the Horological Journal in May, went on display this week at Technopolis, a museum in Athens. The purpose of two dials on the back of the device is still unclear, although one may indicate the year.

Cicero, writing in the first century BC, mentions an instrument “recently constructed by our friend Poseidonius, which at each revolution reproduces the same motions of the sun, the moon and the five planets.” Archimedes is also said to have made a small planetarium, and two such devices were said to have been rescued from Syracuse when it fell in 212BC. He believed that the mechanism was strongly suggestive of an ancient Greek tradition of complex mechanical technology which, transmitted via the Arab world, formed the basis of European clockmaking techniques. It appears to be constructed upon theories of astronomy and mathematics developed by Greek astronomers and it is estimated that it was made around 150-100 BC. One hypothesis is that the device was constructed at an academy founded by the Stoic philosopher Posidonius on the Greek island of Rhodes, which at the time was known as a center of astronomy and mechanical engineering, and that perhaps the astronomer Hipparchus was the engineer who designed it since it contains a lunar mechanism which uses Hipparchus's theory for the motion of the Moon. It could be argued that if the Greeks knew the principle of gearing, they should have had no difficulty in constructing mechanisms as complex as epicyclic gears.
It appears from her report that one might reason-ably date the wreck more closely as 65 B.C. The success of this work has been most significant, for previously it had been supposed that the various dials and plates had been badly squashed together and distorted. On the other side we can do nearly as well, but we still lack vital links that would provide a complete picture of the gearing. There are indications that the maker may have used a sheet made much earlier–uniform metal plate of good quality was probably rare and expensive. When we measure the accuracy of the graduations under the microscope, we find that their average error over the visible 45 degrees is about a quarter of a degree. This design can be traced back, with slightly different periods but a similar arrangement of gears, to a manuscript written by the astronomer al-Biruni about 1000 A.D.
History has contrived to keep that current dark to us, and only the accidental underwater preservation of fragments that would otherwise have crumbled to dust has now brought it to light. The ship's cargo of luxury goods also included jewellery, pottery, fine furniture, wine and bronzes dating back to the first century BC. A new analysis, though, suggests that the device was cleverer than Price thought, and reinforces the evidence for his theory of an ancient Greek tradition of complex mechanical technology. Analysis of the resulting images, carried out in conjunction with Allan Bromley, a computer scientist at Sydney University, found the exact position of each gear, and suggested that Price was wrong in several respects.
In particular, it postulates an elaborate reversal mechanism to get some gears to turn in the right direction. To his instrument-maker's eye, this was suggestive of a fixed central gear around which other moving gears could rotate. In other words, the device may have been able to predict the positions of the known celestial bodies for any given date with a respectable degree of accuracy, using bronze pointers on a circular dial with the constellations of the zodiac running round its edge.
By winding a knob on the side, celestial bodies can be made to advance and retreat so that their positions on any chosen date can be determined. Nor is the device's purpose obvious: it may have been an astrological computer, used to speed up the casting of horoscopes, though it might just as easily have been a luxury plaything. This fits with another, smaller device that was acquired in 1983 by the Science Museum, which models the motions of the sun and moon. And that craft, like so many other aspects of the modern world, seems to have roots that can be traced right back to ancient Greece. However, the most recent findings of The Antikythera Mechanism Research Project, as published in the July 31, 2008, edition of Nature alternatively suggest that the concept for the mechanism originated in the colonies of Corinth, which might imply a connection with Archimedes. On the contrary, from all that we know of science and technology in the Hellenistic Age we should have felt that such a device could not exist. We now know from the fragments in the National Museum that the Greeks did make such mechanisms, but the knowledge is so unexpected that some scholars at first thought that the fragments must belong to some more modern device. From the inscriptions and the dials the mechanism was correctly identified as an astronomical device.
It now appears that most of the pieces are very nearly in their original places, and that we have a much larger fraction of the complete device than had been thought. All the gear wheels have been made with teeth of just the same angle (60 degrees) and size, so that any wheel could mesh with any other. Each of the large dials is inscribed with lines about every six degrees, and between the lines there are letters and numbers. The way in which the error varies suggests that the arc was first geometrically divided and then subdivided by eye only. To provide an idea of their condition it need only be said that in some cases a plate has completely disappeared, leaving behind an impression of its letters, standing up in a mirror image, in relief on the soft corrosion products on the plate below. A line of one inscription signfficantly records "76 years, 19 years." This refers to the well-known Calippic cycle of 76 years, which is four times the Metonic cycle of 19 years, or 235 synodic (lunar) months.
Such arithmetical schemes are quite distinct from the geometrical theory of circles and epicycles in astronomy, which seems to have been essentially Greek. It is a pity that we have no way of knowing whether the device was turned automatically or by hand. All the evidence points to the fact that the clock started as an astronomical showpiece that happened also to indicate the time. Such instruments am much simpler than the Antikythera mechanism, but they show so many points of agreement in technical detail that it seems clear they came from a common tradition. It is a bit frightening to know that just before the fall of their great civilization the ancient Greeks had come so close to our age, not only in their thought, but also in their scientific technology. But the most important finds proved to be a few green, corroded lumps—the last remnants of an elaborate mechanical device. This does away with the need for Price's reversal mechanism and leads to the idea that the device was specifically designed to model a particular form of “epicyclic” motion. Mr Wright says his device could have been built using ancient tools because the ancient Greeks had saws whose teeth were cut using v-shaped files—a task that is similar to the cutting of teeth on a gear wheel. But Mr Wright is convinced that his epicyclic interpretation is correct, and that the original device modelled the entire known solar system. Dating from the sixth century AD, it provides a previously missing link between the Antikythera mechanism and later Islamic calendar computers, such as the 13th century example at the Museum of the History of Science in Oxford.
Some historians have suggested that the Greeks were not interested in experiment because of a contempt-perhaps induced by the existence of the institution of slavery-for manual labor. Furthermore, since the identifiable objects come from Rhodes and Cos, it seems that the ship may have. The first conjecture was that it was some kind of navigating instrument – perhaps an astrolabe (a sort of circular star-finder map also used for simple observations).
This work also provides a clue to the puzzle of why the fragments lay unrecognized until StaIs saw them. An input was provided by an axle that came through the side of the casing and turned a crown-gear wheel. There are signs that the machine was repaired at least twice; a spoke of the driving wheel has been mended, and a broken tooth in a small wheel has been replaced.
The next line includes the number "223," which refers to the eclipse cycle of 223 lunar months.

It might have been held in the hand and turned by a wheel at the side so that it would operate as a computer, possibly for astrological use. Gradually the timekeeping functions became more important and the device that showed the marvelous clockwork of the heavens became subsidiary.
That device, in turn, uses techniques described in a manuscript written by al-Biruni, an Arab astronomer, around 1000AD. On the other hand it has long been recognized that in abstract mathematics and in mathematical astronomy they were no beginners but rather "fellows of another college" who reached great heights of sophistication.
Just before Easter in 1900 a party of Dodecanese sponge-divers were driven by storm to anchor near the tiny southern Greek island of Antikythera (the accent is on the "kyth," pronounced to rhyme with pith).
Some thought that it might be a small planetarium of the kind that Archirnedes is said to have made. When they were found, the fragments were probably held together in their original positions by the remains of the wooden frame of the case. This moved a big, four-spoked driving-wheel that was connected with two trains of gears that respectively led up and down the plate and were connected by axles to gears on the other side of the plate. On the upper dial the inscriptions are much more crowded and might well present information on the risings and settings, stations and retrogradations of the planets known to the Greeks (Mercury, Venus, Mars, Jupiter and Saturn). I feel it is more likely that it was permanently mounted, perhaps set in a statue, and displayed as an exhibition piece.
Behind the astronomical clocks of the 14th century there stretches an unbroken sequence of mechanical models of astronomical theory. It was just at this time that Islam was drawing on Greek knowledge and rediscovering ancient Greek texts.
Price to the national Museum in 1980 and remains the reference for the study of the original despite the fact that its construction has been subject to much criticism. Many of the Greek scientific devices known to us from written descriptions show much mathematical ingenuity, but in all cases the purely mechanical part of the design seems relatively crude.
For example, the most extensive and complete piece of inscription is part of a parapegma (astronomical calendar) similar to that written by one Geminos, who is thought to have lived in Rhodes about 77 B.C. Unfortunately the fragments were covered by a thick curtain of calcified material and corrosion products, and these concealed so much detail that no one could be sure of his conjectures or reconstructions. On that side the gear-trains continued, leading through an epicyclic turntable and coming eventually to a set of shafts that turned the dial pointers.
In that case it might well have been turned by the power from a water clock or some other device.
It seems likely that the Antikythera tradition was part of a large corpus of knowledge that has since been lost to us but was known to the Arabs. Gearing was clearly known to the Greeks, but it was used only in relatively simple applications.
With the help of Greek archaeologists the wreck was explored; several fine bronze and marble statues and other objects were recovered. We may thus be reasonably sure that the mechanism did not find its way into the wreck at some later period.
There was nothing to do but wait for the slow and delicate work of the Museum technicians in cleaning away this curtain. The fragments then fell apart, revealing the interior of the mechanism, with its gears and inscribed plates. When the input axle was turned, the pointers all moved at various speeds around their dials. The fragments of all of them are still covered with pieces of the doors of the casing and with other debris. Perhaps it is just such a wondrous device that was mounted inside the famous Tower of Winds in Athens. Following it are instruments and clocklike computers known from Islam, from China and India and from the European Middle Ages. It was developed and transmitted by them to medieval Europe, where it .became the foundation for the whole range of subsequent invention in the field of clockwork.
They employed pairs of gears to change angular speed or mechanical ad- vantage, or to apply power through a right angle, as in the water-driven mill. The finds created great excitement, but the difficulties of diving without heavy equipment were immense, and in September, 1901, the "dig' was abandoned. Furthermore, it cannot have been very old when it was taken aboard the ship as booty or merchandise. Meantime, as the work proceeded, several scholars published accounts of all that was visible, and through their labors a general picture of the mechanism began to emerge. As a result of the new examinations we shall in due course be able to publish a technical account of the fragments and of the construction of the instrument. Very little can be read on the dials, but there is hope that they can be cleaned sufficiently to provide information that might be decisive. It is certainly very similar to the great astronomical cathedral clocks that were built all over Europe during the Renaissance.
The importance of this line is very great, because it was the tradition of clock- making that preserved most of man's skill in scientific fine mechanics. Eight months later Valerios StaIs, an archaeologist at the National Museum, was examining some calcified lumps of corroded bronze that had been set aside as possible pieces of broken statuary. On the basis of new photographs made for me by the Museum in 1955 I realized that the work of cleaning had reached a point where it might at last be possible to take the work of identification to a new level. In the meantime we can tentatively summarize some of these results and show how they help to answer the question. Last summer, wilt the assistance of a grant from the American Philosophical Society, I was able to visit Athens and make a minute examination of the fragments. It has two scales, one of which is fixed and displays the names of the signs of the zodiac; the other is on a movable slip ring and shows the months of the year. Thus the Antikythera mechanism is, in a way, the venerable progenitor of all our present plethora of scientific hardware.
There are four ways of getting at the answer First, if we knew the details of the mechanism, we should know what it did.
The front dial fitted exactly over the main driving-wheel, which seems to have turned the pointer by means of an eccentric drum-assembly. By means of key letters inscribed on the zodiac scale, corresponding to other letters on the parapegma calendar plate, it also showed the main risings and settings of bright stars and constellations throughout the year.
Furthermore, if we are right in supposing that a fiducial mark near the month scale was put there originally to provide a means of setting that scale in case of accidental movement, we can tell more.

Verbal non verbal communication skills ppt
First aid and cpr in brampton
Healthy meal ideas for large groups
Reducing leg swelling after knee replacement surgery

Comments to «Con ed bill template»

  1. Elen on 20.04.2016 at 11:27:25
    However is extra frequent recollect and comply with it one hundred%, it was an enormous improvement in management.
  2. ISABELLA on 20.04.2016 at 12:39:23
    Hide the strain ring, and the relative lack.
  3. Bakinskiy_Avtos on 20.04.2016 at 20:29:40
    And phentolamine, the calcium-channel antagonist verapamil, the polypeptide VIP, the males who suffered from.
  4. PALMEIRAS on 20.04.2016 at 12:30:56
    Enormous slice and utilizing different pharmacological.